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Abstract—This paper presents novel coding algorithms based on
tree-structured segmentation, which achieve the correct asymp-
totic rate-distortion (R-D) behavior for a simple class of signals,
known as piecewise polynomials, by using an R-D based prune
and join scheme. For the one-dimensional case, our scheme is
based on binary-tree segmentation of the signal. This scheme
approximates the signal segments using polynomial models and
utilizes an R-D optimal bit allocation strategy among the different
signal segments. The scheme further encodes similar neighbors
jointly to achieve the correct exponentially decaying R-D be-
havior ( ( ) 02 ), thus improving over classic wavelet
schemes. We also prove that the computational complexity of
the scheme is of ( log ). We then show the extension of
this scheme to the two-dimensional case using a quadtree. This
quadtree-coding scheme also achieves an exponentially decaying
R-D behavior, for the polygonal image model composed of a white
polygon-shaped object against a uniform black background, with
low computational cost of ( log ). Again, the key is an
R-D optimized prune and join strategy. Finally, we conclude with
numerical results, which show that the proposed quadtree-coding
scheme outperforms JPEG2000 by about 1 dB for real images,
like cameraman, at low rates of around 0.15 bpp.

Index Terms—Binary tree, bit allocation, coding, neighbor
joining, piecewise polynomial functions, pruning, quadtree,
rate-distortion, tree-structured segmentation, .

I. INTRODUCTION

T
HE quest for improved image compression is an on-going

research effort of both theoretical and practical interest.

Transform coders, introduced in the 1950s [12], have played

a key role, in particular with discrete cosine transform (DCT)

based coding [13], [21] leading to the JPEG standard [17]

and then with the wavelet transform and its inclusion into the
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JPEG2000 standard [28]. A good overview of transform coding

is presented in [11], [26]. In the latest wavelet coders and

JPEG2000, wavelets are used because of their good nonlinear

approximation (NLA) properties for piecewise smooth func-

tions in one dimension [31]. However, since wavelets in two

dimensions are obtained by a tensor product of one-dimensional

(1-D) wavelets, they are adapted only to point singularities

and cannot efficiently model the higher order singularities, like

curvilinear singularities, which are abundant in images. This

suggests that wavelets might have some limitation for image

processing applications, particularly for compression.

Since geometrical features, like edges, represent one of

the most important perceptual information in an image, we

need new schemes capable of exploiting the geometrical

information present in images. Therefore, the challenge for

the image-coding community is to design efficient geomet-

rical-coding schemes. From an image-representation point of

view, a number of new schemes have emerged that attempt

to overcome the limitations of wavelets for images with edge

singularities. They include, to name a few, curvelets [1],

wedgelets [8], beamlets [9], contourlets [7], bandelets [18], and

edge-adaptive geometrical schemes [4]. Such schemes try to

achieve the correct -term NLA behavior for certain classes of

two dimensional (2-D) functions, which can model images. To

predict the performance of these schemes in image compression

would require a precise R-D analysis, which is usually more

difficult than NLA analysis.

Recently, there has been a growing interest in the study of

piecewise polynomial functions as an approximation to piece-

wise smooth functions. Wavelets have long been considered

ideal candidates for piecewise smooth functions due to their

vanishing moment properties [16]. It was shown in [3], [19] that

for piecewise polynomial signals, the squared error distortion of

wavelet-based coders decays as . How-

ever, since such a signal can be precisely described by a finite

number of parameters, it is not difficult to observe that the R-D

behavior of an oracle-based method decays as

(1)

In [19], this R-D behavior has been realized with a polynomial

computational cost ( ) using dynamic programming (DP).

However, this scheme cannot be generalized to the 2-D case.

For image-coding applications, tree segmentation-based

schemes have always been popular due to their low com-

putational cost. Quadtree-based image compression, which
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recursively divides the image into simple geometric regions,

has been one of the most popular segmentation-based coding

schemes investigated by researchers [15], [25], [27], [29], [33].

Leonardi et al. [15] utilized the classic split and merge segmen-

tation techniques to extract image regions and then approximate

the contours and image characteristics of those regions. In [14],

Lee proposed adaptive rectangular tiling for image compression

by using different probability models for compressing different

regions of a wavelet subband. Radha et al. [22] presented

binary space partitioning tree-coding scheme, which employed

parent-children pruning for searching the optimal tree structure.

Recently, Wakin et al. [32] extended the zerotree-based space

frequency quantization scheme by adding a wedgelet symbol

[8] to its tree pruning optimization. This enables the scheme

to model the joint coherent behavior of wavelet coefficients

near the edges. Another interesting work for the adaptive edge

representations is reported in [30], which employs nondyadic

rectangular partitioning for image segmentation.

In the present work, our aim is to develop a computationally

efficient tree-based algorithm for attaining the optimal R-D be-

havior for certain simple classes of geometrical images, namely

piecewise polynomial images with polynomial boundaries. A

good approximation of this class allows to develop good approx-

imation and compression schemes for images with strong geo-

metrical features and, as experimental results show, also for real

life images, where an improvement of about 1 dB is achieved

over the state of the art image coder (JPEG2000). This shows

the potential of such geometry-based image coding.

The main difference between the proposed prune-join tree al-

gorithm and the tree segmentation-based schemes considered in

[2], [22], [23], [27], [29], and [33] is as follows. The schemes

in the literature employ the parent-children pruning to obtain

the optimal tree structures for the given bit budget. Hence, they

fail to exploit the dependency among the neighboring nodes

with different parents and cannot achieve the correct R-D be-

havior, whereas our prune-join scheme encodes similar neigh-

bors jointly. Thus, the prune-join coding scheme extends the

concept of pruning the children to the joining of similar neigh-

bors. In doing so, the proposed scheme achieves the optimal

R-D behavior for piecewise polynomial signals. Since our al-

gorithm achieves the optimal R-D behavior with computational

ease [ ], it is practical as well.

Recent work closely related to our work is the

wedgelets/beamlets-based schemes presented in [8], [9]. These

schemes also attempt to capture the geometry of the image by

using the linear-edge model explicitly in the approximation

tile. The main focus of these schemes remains the efficient

approximation of edges only without much attention to the

efficient coding of smooth surfaces. However, our work focuses

on the efficient representation of both the edges and the smooth

surfaces to achieve better R-D performance. Another important

difference is that the wedgelets/beamlets-based schemes utilize

an NLA framework, whereas we use an R-D framework which

is the correct framework for the compression problem.

The paper is organized as follows. In Section II, we study

the 1-D case in detail and show how to modify a tree-based

algorithm so as to achieve the optimal R-D performance for

piecewise polynomial signals. Then, in Section III, we show

Fig. 1. Piecewise linear signal with only one discontinuity.

the extension of the 1-D scheme to 2-D using a quadtree-based

scheme. Section III also presents the R-D behavior of the

proposed algorithms for a simple image model. In Section IV,

we present simulation results, which show the superiority of

the proposed quadtree-based image-coding scheme over the

wavelet-based coder (JPEG2000) at low bit rates. Finally,

Section V offers concluding remarks.

II. ONE-DIMENSIONAL SCENARIO: BINARY-TREE ALGORITHMS

Our goal is to implement a compression algorithm based

on the modeling assumption that signals are piecewise smooth

functions. In this case, if we segment the signal into smaller

pieces, then each piece can be well represented by a simpler

signal model, which we choose to be a polynomial function.

In the next subsection, we consider the pruned binary tree

decomposition of the signal, where two children nodes can be

pruned to improve R-D performance. Then, we propose an ex-

tension of this algorithm which allows the joint-coding of sim-

ilar neighboring nodes. To highlight the intuitions and the main

ideas of these algorithms, we present them together with a toy

example (i.e., compression of a piecewise linear signal with one

discontinuity).

In Section II-C and D, we formally compute the R-D per-

formance of these two coding schemes. Section II-E presents

their computational complexity. Most importantly, we show that

the prune-join tree algorithm, which jointly encodes the similar

neighbors, achieves optimal R-D performance (Theorem 2, Sec-

tion II-D) with computational ease (Section II-E).

A. Binary-Tree Algorithms

Consider the simple signal shown in Fig. 1. It represents a

piecewise linear signal with only one discontinuity at . This

signal has a finite number of degrees of freedom, since it is

uniquely determined by the two polynomials and the discon-

tinuity location. Assume that an oracle provides us the polyno-

mial coefficients and the discontinuity location. Then, a com-

pression algorithm that simply scalar quantizes these parameters

achieves an exponentially decaying R-D behavior ( ) at

high rates. In general, for signals with finite number of parame-

ters, an oracle-based method will provide an exponentially de-

caying R-D behavior at high rates. We will describe the oracle

method in more detail in Section II-B.

Our target is to develop a compression algorithm based on the

binary-tree decomposition which achieves the oracle like R-D

performance for piecewise polynomial signals (PPSs). We first

consider the prune binary-tree algorithm. This algorithm is sim-

ilar in spirit to the algorithm proposed in [23] for searching the

best wavelet packet bases. In our algorithm, each node of the tree

is coded independently, and, as anticipated before, each node

approximates its signal segment with a polynomial. Finally, the

prune-tree algorithm utilizes rate-distortion framework with an
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Fig. 2. Lagrangian cost-based pruning criterion for an operating slope�� for
each parent node of the tree. Prune the children if (D +D ) + �(R +
R ) � (D + �R ).

MSE distortion metric. This algorithm can be described as fol-

lows.

Algorithm 1: The prune binary-tree coding

algorithm

Step 1: Initialization

1. Segmentation of the input signal using

the binary-tree decomposition up to a tree

depth .1

2. Approximation of each node by a polyno-

mial of degree in the least square

error sense.

3. Generation of the R-D curve for each

node by approximating the node by the

quantized polynomial , which is ob-

tained by scalar quantizing the polynomial

coefficients.2

Step 2: The Lagrangian cost-based pruning

4. For the given operating slope , R-D

optimal pruning criterion is as follows:

Prune the children if the sum of the La-

grangian costs of the children is greater

than or equal to the Lagrangian cost of

the parent. That means the children are

pruned if .

This criterion is used recursively to do

fast pruning from the full tree depth to-

ward the root to find the optimal sub-

tree for a given [23]. The Lagrangian

cost-based pruning method is illustrated

in Fig. 2.

5. Each leaf of the pruned subtree for a

given has an optimal rate choice and the

corresponding distortion. Summing up the

rates of all the tree leaves along with

the tree segmentation cost will provide

the overall bit-rate . Similarly,

summing up the associated distortions of

all the tree leaves will give the net dis-

tortion .

Step 3: Search for the desired R-D oper-

ating slope

The value for is determined iteratively

until the bit-rate constraint is met

1In this paper, we use J to indicate the final tree depth for a given bit budget,

whereasJ indicates the initial chosen depth. Clearly,J � J .
2This is best done in an orthogonal basis, that is, the Legendre polynomial

basis. We will explain this in detail in Sections II-E and IV-A.

Fig. 3. Pruned binary-tree segmentation.

as closely as possible. The search algo-

rithm exploits the convexity of the solu-

tion set and proceeds as follows [23].

6. First, determine and so that

.

If the inequality above is an equality

for either absolute slope value, then

stop. We have an exact solution, other-

wise proceed to the next line.

7.

8. Run the Lagrangian cost-based pruning

algorithm (Step 2) for .

If ( ), then the optimum is

found. Stop.

elseif ( ), then and

go to the line 7.

else, and go to the line 7.

The pruned binary-tree decomposition of the piecewise linear

function, shown in Fig. 1, is depicted in Fig. 3. One can ob-

serve that the prune-tree scheme could not merge the neigh-

boring nodes representing the same information [e.g., nodes

(2,3) and (3,5)], as they belong to different parents. Since this

coding scheme fails to exploit the dependency among neigh-

bors in the pruned tree, it is bound to be suboptimal and cannot

achieve the oracle R-D performance.

For correcting the suboptimal behavior, we propose a

prune-join coding scheme, which exploits the dependency

among neighboring leaves, even if they belong to different par-

ents. This scheme extends the concept of pruning the children

to the joining (merging) of similar neighbors.

This new scheme employs the prune-tree coding scheme fol-

lowed by the neighbor joint-coding algorithm, which can be de-

scribed as follows. Given the pruned tree obtained from Algo-

rithm 1, the neighbor joint coding is performed on the leaves of

the tree. Suppose that [or ( )] represents the th node at the

th level of the binary tree. The pruned tree is scanned from left

to right and top to bottom. For instance, the leaves of the tree

shown in Fig. 3 will be scanned in the following order: (1,0),

(2,3), (3,5), (4,8), (4,9). Assume that the current leaf is , then
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Fig. 4. Comparative study of different tree-segmentation algorithms.

the indices ( ) of the neighbors ( ) at level can be com-

puted as follows:

Left neighbor

Right neighbor

In the above formulation, is assumed to be the root node.

For R-D optimality, all leaves of the tree must operate at a

constant slope point on their R-D curves. Therefore, if the

algorithm finds an already scanned neighboring leaf, then it will

decide about the joining of the leaves using the following La-

grangian cost-based approach. The two neighbors (call them

and ) will be joined if the sum of the Lagrangian costs of the

neighbors is greater than or equal to the Lagrangian cost of the

joint block ( ), i.e., if

. If neighbors are jointly coded, then the

neighbor joint-coding variable will be set to one and the joint

leaf polynomial information is stored in place of the neighbors;

otherwise, the neighbor joint-coding variable will be set to zero

and the leaf information will be stored. Note that once a joint

block is constructed, it will be treated as a leaf in place of its

constituent leaves for further joining operation. If the algorithm

does not find any scanned neighbor, then the leaf information

will be stored.

Now, if the current leaf is not the last leaf of the pruned tree,

then the algorithm will restart the above described neighbor

search and join operation for the next leaf of the pruned tree.

Clearly, the neighbor joint-coding variable is an indicator func-

tional, which keeps track of the neighbor joining information

of the pruned tree leaves. Thus, each leaf has a binary neighbor

joint-coding variable, which indicates whether it is jointly coded

or not. The prune-join coding scheme can be summarized as fol-

lows.

Algorithm 2: The prune-join binary-tree

coding algorithm

Step 1: Initialization

Following Steps 1 and 2 of Algorithm 1,

find the best pruned tree for a given .

Step 2: The neighbor joint-coding algo-

rithm

Given the pruned tree, perform the joint

coding of similar neighboring leaves as

explained above.

Step 3: Search for the desired R-D oper-

ating slope

Similar to Algorithm 1, iterate the

process over until the bit budget con-

straint is met.

It is clearly visible in Fig. 4(c) that the prune-join coding

scheme is essentially coding a fixed number of blocks like the

oracle method. Therefore, we expect it to achieve the oracle like

R-D performance for piecewise polynomial signals.3

B. R-D Analysis of the Oracle Method

Consider a continuous time piecewise polynomial signal

, defined over the interval , which contains internal

singularities. Assume that the function is bounded in

magnitude by some constant and the maximum degree of a

polynomial piece is . The signal is uniquely determined by

( ) polynomials and by internal singularities. That means

such a signal can be precisely described by a finite number of

parameters. Suppose that the values for the parameters of the

polynomial pieces, and the locations of the internal singulari-

ties are provided with arbitrary accuracy by an oracle. In that

case, it has been shown in [19] that the R-D behavior of the

oracle-based method decays as

(2)

where and

C. R-D Analysis of the Prune Binary-Tree Coding Algorithm

This section presents the asymptotic R-D behavior of the

prune binary-tree coding algorithm for piecewise polynomial

3However, note that this scheme may not find the globally optimal solution to
the joint coding problem. The reason is that the pruning step may decide to keep
a node because the cost of coding, its children is higher, whereas, in fact, this
cost may be much lower than expected due to the neighbor joint-coding scheme
which operates later.
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signals. We compute the worst case R-D upper-bound in the op-

erational (algorithmic) sense. First, we show that this algorithm

results in a number of leaves to be coded which grows linearly

with respect to the decomposition depth . This implies that

several nodes with same parameters are coded separately [e.g.,

see Fig. 4(b)]. Then, we prove that this independent coding of

similar leaves results in a suboptimal R-D behavior given by

Theorem 1.

Lemma 1: The bottom-up R-D optimal pruning method re-

sults in a binary tree with the number of leaves upper bounded

by , where and represent the final tree depth and

the number of internal singularities in the piecewise polynomial

signal, respectively.

Proof: Since we are interested in the asymptotic R-D be-

havior, we will consider the worst case scenario. As the signal

has only transition points, at most, tree nodes at a tree level

will have a transition point and the remaining nodes will be

simply represented by a polynomial piece without any discon-

tinuity. Clearly, at high rates, for achieving better R-D perfor-

mance the tree-pruning scheme will only split the nodes with

singular points, as they cannot be well approximated by a poly-

nomial.4 This means that every level, except the levels

and , will generate, at most, leaves. The level will have

leaves, while the level 0 cannot have any leaf at high rates

for . Hence, the total number of leaves in the pruned

binary tree is

(3)

Therefore, the number of leaves to be coded grows linearly

with respect to the depth .

Moreover, it can also be noted that in the pruned tree, every

tree level can have at most nodes. Hence, the total number

of nodes in the pruned tree can be given as follows:

(4)

Theorem 1: The prune binary tree-coding algorithm, which

employs the bottom-up R-D optimization using the parent-chil-

dren pruning, achieves the following asymptotic R-D behavior

(5)

where and

, for piecewise polynomials signals.

Proof: Since the piecewise polynomial function has

only transition points, at most leaves will have a transition

point and the remaining leaves (Lemma 1) can be simply

represented by a polynomial piece without any discontinuity.

At high rates, leaves with singular points will be at the tree

depth , so the size of each of them will be . The dis-

tortion of each of these leaves can be bounded by

and it will not decrease with the rate. This is

because simple polynomials cannot represent piecewise poly-

nomial functions. Leaves without singularities can be well ap-

proximated by a polynomial. In particular, a leaf at tree level

4For a proof of this simple fact, refer to [24].

Fig. 5. Conditions to stop the pruning of a singularity containing node at the
tree level J . That means that J becomes the tree depth.

is of size and its R-D function can be bounded by

[19]. Since R-D optimal so-

lution of exponentially decaying R-D functions results in equal

distortion for each leaf [5], the coding algorithm will allocate

same rate to all the leaves without singularities at the same

tree level . As R-D optimality requires that leaves without sin-

gularities operate at a constant slope on their R-D curves,

we have

(6)

Equation (6) is essentially the equal distortion constraint. Let

and be the rates allocated to the leaves without singularities

at levels and , respectively. The equal distortion constraint

for the leaves without singularities at tree levels and means

that

(7)

(8)

where and represent the rates allocated to leaves

without singularities at levels and , respectively. Note

that the nodes with singularities will be allocated zero rate.5

For the given bit budget constraint, the Lagrangian cost-based

pruning algorithm will stop at level if the following two con-

ditions are satisfied (see Fig. 5): 1) the Lagrangian cost of the

singularity containing node at level is less than the sum of the

Lagrangian costs of its children, that is

and 2) the Lagrangian cost of the singularity containing node at

level is more than the sum of the Lagrangian costs of its

children, that is

5As any singularity containing node has the distortion bounded byA T (P +
1) 2 , which will not decrease with the rate allocated to it.
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These two conditions along with (6) and (8) mean that must

satisfy the following inequality:

(9)

This is because (6) gives

and (8) provides .

Since the function

is a monotonically decreasing function of for , we

get6

as (10)

(11)

Multiplying the inequality (11) by , we obtain

(12)

The inequality (12) shows that the pruning scheme selects the

depth and the rate such that the distortions of the leaves

without singularities are of the order . Since the distor-

tions of the singularity containing leaves are also of the order

, the distortion of a leaf without singularity is compa-

rable to that of the leaf with singularities. It is also clear from

(12) that, by choosing , we will obtain the worst case

R-D performance. Thus, setting and using (7), the rate

allocated to a leaf without singularity at tree level will be given

by

This ensures that all the leaves have a distortion of the same

order . Hence, the net distortion can be bounded as fol-

lows:

(13)

Since all the tree levels except can contribute leaves

with no singularity, the total rate required for coding the leaves

is

(14)

6Note that substituting R = (P + 1)=ln 2 in 2 (1 +
(2 ln 2=(P + 1))R ) results in a value which is less than 1/2, so we use
(P + 1)=ln 2 to upper-bound R to obtain a simple analytic expression.

The binary-tree split-merge decision variable will consume

bits ( ) equal to the total number of nodes in the pruned

binary tree. Thus, (4) gives . The total bit rate

can be seen as the sum of the costs of coding the binary tree

itself and the quantized model parameters of the leaves. Hence,

the total bit rate can be written as follows:

as and is large (15)

Combining (13) and (15) by eliminating and noting that the

right hand side of (13) is a decreasing function of , whereas the

right hand side of (15) is an increasing function of , we obtain

the following R-D bound

Therefore, the prune binary-tree algorithm exhibits the an-

nounced decay.

Remark: The reason of the suboptimality of the prune-tree

algorithm is clearly visible in Lemma 1, which shows that the

prune-tree algorithm codes a number of leaves which grows

linearly with the tree depth . This is clearly the element in

the algorithm that determines the suboptimal decay-rate

of the R-D function. A statistical modeling of leaves can im-

prove the constants but cannot change the decay rate. In fact, we

have shown in [24] that the prune binary-tree coding algorithm

achieves an asymptotic R-D behavior which is lower bounded

(in expectation) as follows:

where and , for piecewise polynomial

signals.

D. R-D Analysis of the Prune-Join Binary-Tree Algorithm

Before proving that the prune-join coding scheme achieves

the oracle like asymptotic R-D behavior in the operational sense,

we show that this coding scheme encodes a number of leaves

which remains fixed with respect to the tree depth .

Lemma 2: The prune-join binary-tree algorithm, which

jointly encodes similar neighbors, reduces the effective number

of leaves to be encoded to , where is the number of the

internal singular points in the piecewise polynomial signal.

Proof: To improve the R-D performance, it is obvious

that the neighbor joint-coding scheme will join two neigh-

boring leaves if the joint block does not have a singularity.7 In

particular, if is large enough, each singularity will lie on a

different dyadic leaf. Therefore, as a consequence of neighbor

joining, all the leaves between any two consecutive singularity

containing leaves will be joined to form a single joint block

(see the example in Fig. 6). Thus, the prune-join tree algorithm

results in joint leaves and leaves with a singularity.

Since the leaves containing a singularity will not be encoded,

7For a proof of this simple fact, refer to [24].
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Fig. 6. Illustration of the prune-join binary-tree joining.

the number of encoded leaves becomes . This means that

the number of leaves to be coded remains constant with respect

to the tree depth .

Theorem 2: The prune-join binary-tree algorithm, which

jointly encodes similar neighbors, achieves the oracle like

exponentially decaying asymptotic R-D behavior

(16)

where and

for piecewise polynomial signals.

Proof: The prune-join binary-tree algorithm provides

( ) joint blocks and at most leaves with a singularity.

The distortion of the leaves with singularities is bounded by

and it does not decrease with the

rate (recall that the algorithm tries to approximate each block

with a polynomial). The size of each joint block can be bounded

by . Thus, the distortion of each joint block is bounded by

, where is the rate allocated to

that block. Again, R-D optimization forces all the joint blocks

to have the same distortion. As for the prune-tree algorithm,

one can show that R-D optimization results in a tree-depth

and a bit allocation strategy such that the joint blocks and the

singularity containing leaves have a distortion of the same order

. This means that the algorithm allocates

bits

to each joint block and no bits to the leaves with singularities.

Thus, the total rate required for coding the joint leaves is given

by

In the prune-join coding scheme, the side information con-

sists of two parts. 1) Bits required to code the pruned tree

( ). 2) Bits required to code the leaf joint-coding tree

( ). The tree split-merge variable needs bits

equal to the total number of nodes in the pruned tree, whereas

the joint-coding decision variable requires bits equal to the total

number of leaves in the pruned tree. Hence,

[from (4)], and [from (3)]. The

total bit rate is the sum of the costs of coding the binary tree

itself, the leaves joint-coding information and the quantized

model parameters of the leaves. Thus, the total bit rate can be

written as follows:

(17)

(18)

The net distortion bound is as follows:

from (18).

Therefore, the prune-join tree algorithm achieves the expo-

nentially decaying R-D behavior.

Note that the R-D behavior of the prune-join tree scheme

is worse than that of the oracle method given by (2). One can

notice in (17) that the prune-join tree scheme needs

bits to code the tree-segmentation information, which

causes the divergence in the R-D performance of the proposed

tree scheme and that of the oracle method.

Remark: Note that the prune-tree scheme is the best in the

operational R-D sense, due to the Lagrangian pruning, among

all algorithms that code the dyadic segments independently.

But this scheme fails to achieve the correct R-D behavior, as

it cannot join the similar neighbors with different parents. On

the other hand, although we cannot claim that the prune-join

scheme is the best among all joint-coding schemes, it achieves

an exponentially decaying R-D behavior for piecewise poly-

nomial signals as the prune-join scheme is capable of joining

similar neighbors.
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E. Computational Complexity

For the complexity analysis, we consider a discrete time

signal of size . The complete prune-tree algorithm essentially

performs three operations, as follows.

1) Initialization: Suppose that the signal is decomposed up

to the maximum tree depth , then the number of

nodes is of . Each tree level ( ) contains

pixels, which are divided among nodes. Hence, the average

size of nodes is of . Initialization basically consists of

the following operations.

a) Computation of the Best Legendre Polynomial Approx-

imations: In the operational setup, for a node segment of

length with the underlying grid , the minimum squared-error

Legendre polynomial approximation of order is found by

solving the least square (LS) problem

(19)

(all vectors are column vectors) where is a vector of

polynomial coefficients and is the following

Vandermonde matrix:

(20)

where is the underlying grid for the node

and , are the Legendre polynomial basis func-

tions defined over the node-interval .8 Note that the Le-

gendre polynomial basis functions are computed by applying

the Gram–Schmidt orthogonalization procedure on the standard

polynomial basis set . They can also be com-

puted using Legendre polynomial recurrence relation as in [20].

We can precompute and store the Legendre polynomial-based

Vandermonde matrix to use for further computation. Since

all the nodes of a tree level are of same size, we can assume the

same underlying grid for these nodes and, thus, need to store

only one Vandermonde matrix for every tree level.

The solution to the least-square problem in (19) is achieved

efficiently by means of a factorization of with com-

putational cost of .9 Since the average node-size is

, the overall computational cost for computing the

best polynomials for all nodes will be . Note that

the polynomial degree is included in the complexity constant.

b) Generation of the R-D Curves: Assume that we are

utilizing different quantizers for R-D function generation.

Since the computational cost of the R-D curve for a node is

proportional to its size and the number of quantizers used, the

overall cost of computing the R-D curves for all the tree nodes

is .

Therefore, the overall cost of computing the best polynomials

and R-D curves for all the tree nodes is .

8For example, if the node interval is (�1, 1), then � (x) = (1=
p
2),

� (x) = (3=2)x, and � (x) = (45=8)(x � (1=3)).
9QR factorization means that V = QR, with Q 2 an orthogonal

matrix andR 2 upper triangular matrix whose lastL�P �1 rows
are identically zero. One can find more details in [20, Ch. 3].

2) Pruning Algorithm: This requires to compute the min-

imum Lagrangian cost at each node for the chosen operating

slope . This results in a computational cost of

due to the binary search through the convex R-D curve of each

node. The algorithm also performs split-merge decision at the

nodes, which requires a computational cost of . Hence, the

pruning algorithm has the computational cost of .

3) Iterative Search Algorithm for an Optimal Operating

Slope: This calls the pruning algorithm for the chosen op-

erating slope . Our bisection search scheme obtains the

optimal operating slope in iterations [23]. Thus, the

computational cost of this scheme is .

Hence, the complete computational complexity of the

prune-tree algorithm is

Since a pruned binary tree has a number of leaves of

[ and (3)] and the size of any leaf is

bounded by , the computational cost of the neighbor

joint-coding algorithm will be . The prune-join

coding scheme employs the prune-tree algorithm followed

by the neighbor joint-coding algorithm. Hence, the overall

computational complexity of the prune-join coding scheme is

the sum of the computational costs of the prune-tree scheme

and the neighbor joint-coding scheme. Therefore, the overall

computational complexity of the prune-join coding scheme is

III. EXTENSION TO 2-D: QUAD TREE ALGORITHMS

Although the situation is much more open and complex in

two dimensions, it is not hard to visualize the extension of the

proposed 1-D-coding scheme to the 2-D case. Clearly, all the

algorithms discussed so far in 1-D have an equivalent in 2-D.

The binary-tree segmentation can be replaced by the quadtree

segmentation and polynomial model can be replaced by the 2-D

geometrical model consisting of two 2-D polynomials separated

by a polynomial boundary. The Lagrangian optimization algo-

rithm remains the same. The neighbor joint-coding algorithm is

more involved but it can be implemented efficiently. Therefore,

we can have an efficient quadtree-based coding scheme for 2-D

geometrical signals.

Note that, in 1-D, the signal can contain only point-like singu-

larities, which can be efficiently captured by the binary-tree seg-

mentation. However, in 2-D, the quadtree segmentation cannot

capture the higher order edge singularities, as it can model only

horizontal and vertical edges at dyadic locations. Thus, we need

to improve our node-model from simple polynomial to piece-

wise polynomial with polynomial edge to capture the geometry

inherent in the 2-D images [8].10

10Since the simple 2-D polynomial tile fails to capture the edge-geometry, the
quadtree schemes, which use only 2-D polynomial tiles, result in a sub-optimal
R-D behavior given by D(R) � cR for piecewise polynomial images.
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Fig. 7. Examples of a black and white (B/W) polygonal image, an edge tile and the quadtree segmentation.

For the sake of simplicity, we carry out our analysis on a

simpler image model, which we call the polygonal model.

In the polygonal model, there is a white polygon-shaped

object against a uniform black background [see Fig. 7(a)].

Section III-A outlines the prune and prune-join quadtree

schemes. In Section III-B, we present the oracle R-D behavior.

In Section III-C and D, we analyze the R-D performance of the

quadtree schemes. Similar to the 1-D case, we show that the

prune-join quadtree scheme achieves the oracle like asymptotic

R-D behavior (Theorem 4, Section III-D) with computational

ease.

A. Quadtree Algorithms

Similar to the 1-D case, we first consider the prune quadtree

algorithm. The overall structure of this scheme is similar to the

prune binary-tree algorithm as described in Algorithm 1. Basi-

cally, this algorithm employs a quadtree segmentation, which

approximates each node by a geometrical tile consisting of two

2-D polynomials separated by a polynomial boundary. We then

perform an operational R-D optimization that is similar to the

approach used for the 1-D case.

We shall describe the basic idea of the algorithm using the

polygonal model. In the pruned quadtree, at each level, the only

dyadic blocks that need to be divided further are the ones con-

taining a singular point of the edge. Other dyadic blocks contain

either no edge or a straight edge and they can be efficiently

represented by the edge tiles shown in Fig. 7(b). Essentially,

the quadtree grows only in the region where the algorithm

finds singular points. Thus, the quadtree recursively divides the

linear edges for capturing the vertices of the polygon. Since this

scheme, like the prune binary-tree scheme, could not jointly

code the similar nodes with different parents, it also exhibits

a suboptimal R-D performance. In 2-D, there is one more in-

gredient for suboptimality. A vertex containing node is divided

into four children, and all the children are coded separately

even if two or three of them are similar. Therefore, this scheme

could not perform the joint coding of similar children. This

drawback can be easily seen in Fig. 7(c).

For correcting the suboptimal behavior, we propose the

prune-join quadtree algorithm, which performs the joint coding

of similar neighboring leaves even if they have different parents.

This new scheme also allows to join two or three children only,

Fig. 8. 4-connected neighboring nodes. Every neighbor is assigned a two-bit
index.

while the prune-tree scheme will either join all the children or

code them independently.

The prune-join coding scheme employs the prune quadtree

scheme followed by the neighbor joint-coding algorithm, which

decides whether neighbors should be coded jointly or indepen-

dently. The neighbor joint-coding scheme is similar to that of

the 1-D case, except that the algorithm to search a neighbor on

the quadtree is more complex. So, we shall only describe this

search algorithm. Assume that the nodes and are of sizes

and , respectively. Suppose that their origins (bottom-left

points) are and , respectively. Fig. 8 shows the

four-connected neighbors of a node. The following pseudo code

determines whether is a neighbor of or not.

Down neighbor:

if ( )

if ( )

if ( ), then is the down

neighbor else is not the neighbor.

else,

if ( ), then is the down

neighbor else is not the neighbor.

Up neighbor:

elseif ( )

if ( )

if ( ), then is the up

neighbor else is not the neighbor.

else,

if ( ), then is the up

neighbor else is not the neighbor.

Left neighbor:

elseif ( )
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Fig. 9. Examples of the quadtree representation for the polygonal model.

if ( )

if ( ), then is the left

neighbor, else is not the neighbor.

else,

if ( ), then is the left

neighbor else is not the neighbor.

Right neighbor:

elseif ( )

if ( )

if ( ), then is the right

neighbor else is not the neighbor.

else,

if ( ), then is the right

neighbor, else is not the neighbor.

else, is not the neighbor.

B. Image Model and Oracle R-D Performance

We consider the polygonal model, where there is a white

polygon-shaped object with vertices against a uniform black

background. Assume that the image is defined on the unit square

. In such a case, a possible oracle method simply codes

the position of the vertices of the polygon. With bits for

each vertex, a regular grid on the unit square provides quantized

points within a distance from the original

vertices. As each side length of the polygon is bounded by

(the diagonal of the unit square), the total length of the boundary

of the polygon is bounded by . Hence, the distortion for the

2-D object is upper bounded by . Therefore, for

the polygonal model, the oracle R-D function decays exponen-

tially as

(21)

In Section III-C and D, we present the R-D performance of

the two quadtree algorithms for the polygonal model. This anal-

ysis can be extended to the more general piecewise polynomial

image model, where the edge is also a piecewise polynomial

curve [24].11

11For piecewise polynomial images with piecewise polynomial boundaries,
the quadtree algorithm uses edge tiles which consist of two 2-D polynomials
separated by a polynomial boundary.

C. R-D Analysis of the Prune Quadtree Algorithm

Similar to the 1-D case, first we show that the prune quadtree

schemeencodesanumberof leaves,whichincreases linearlywith

respecttothetreedepth .WethenpresentTheorem3,whichstates

the suboptimal R-D behavior of the prune quadtree scheme.

Lemma 3: The prune quadtree-coding algorithm will result

in a quadtree with a number of leaves upper-bounded by

, where and represent the decomposition depth of the

tree and the number of vertices of the polygon in the image,

respectively.

Proof: Similar to the 1-D scenario, at high rates, the

prune quadtree segmentation scheme recursively divides only

those dyadic blocks which contain a vertex of the polygon

edge. Other dyadic blocks contain either no edge or a straight

edge, so they can be efficiently represented by the edge tiles.

Since the polygon has vertices, there are at most splitting

nodes at each tree level. Thus, they will generate no more than

leaves with a straight edge at the next level. The leaves

generated at depth will be , while the level 0 cannot have

any leaf at high rates for . Hence, the total number of

leaves in the pruned quadtree is bounded as follows:

(22)

Similar to the 1-D case, every tree level can have at most

nodes. Therefore, the total number of nodes in the pruned

quadtree can be given by

(23)

The polygonal model image has a finite number of degrees of

freedom, while the prune quadtree scheme codes a number of

parameters which grows linearly with . Therefore, it is bound

to exhibit a suboptimal R-D behavior. This is more formally

enunciated in the following theorem, which we do not prove

here since the proof follows the same logic of Theorem 1.

Theorem 3: For the polygonal model, the prune quadtree-

coding algorithm, which employs the parent-children pruning,

results in the following asymptotic R-D behavior:

(24)

where and .
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D. R-D Analysis of the Prune-Join Quadtree Algorithm

In this section, we show that the neighbor joint-coding

strategy leads to the desired exponentially decaying R-D be-

havior. First, by following the same steps of Lemma 2, one can

prove the following lemma.

Lemma 4: The prune-join quadtree algorithm, which jointly

encodes similar neighbors, reduces the effective number of

leaves to be encoded to , where is the number of vertices

of the polygon in the image.

Proof: Similar to the 1-D case, it is obvious that the two

neighboring leaves will be joined to improve the R-D perfor-

mance, if the joint block can be well represented by an edge tile.

It is also clear that there will be at most leaves with vertices

at the tree depth . If is large enough, then in the worst case

each vertex will lie in a different dyadic square leaf. Hence,

leaves cannot be represented by the edge tiles. Since the image

can be characterized by only vertices, only different linear

pieces exist in the image. Therefore, only edge tiles can have

different linear pieces. Similar to the 1-D case, the neighbor

joint coding ensures that all the similar leaves characterized

by same linear piece will be joined to form one joint block.

Since the image has different linear pieces, the neighbor joint

coding will result into joint blocks. Therefore, the prune-

join tree algorithm provides joint leaves and leaves with

a vertex. Since the leaves containing a vertex will not be coded,

the number of the encoded leaves becomes .

We are now in the position to state the following theorem.

Theorem 4: For the polygonal model, the prune-join

quadtree algorithm, which jointly encodes similar neighbors,

achieves the oracle like exponentially decaying asymptotic R-D

behavior

(25)

where and .

Proof: The prune-join quadtree algorithm provides

joint blocks to be encoded. In the worst case, each vertex will

lie in a different dyadic leaf at the depth . Their sizes will

be . Therefore, the squared error distortion of each of the

vertex containing leaves is bounded by , if the node

is represented by the mean value 1/2 of the image dynamic

range (0,1). For coding the joint block with a linear edge, we

need to code the locations of two vertices of the linear edge

on the boundary of the unit square. The encoding order of

these two vertices is simply used to specify the value of the

associated regions; for example, when one traverses from the

first vertex to the second one, the black region is on the left. In

this case, if we allocate bits to each line vertex of the linear

edge of a joint leaf, then the maximum distance between the

true line vertices and their quantized version is bounded by

. Thus, the distortion of the joint leaf will be bounded

by , and this distortion bound will be achieved if the

linear edge is the diagonal of the unit square. Similar to 1-D,

R-D optimization results in a tree-depth and a bit allocation

strategy such that the joint leaves and the vertex containing

leaves have a distortion of the same order . Therefore,

the coding scheme will allocate no bits to leaves with vertices

and bits to every joint block having a linear piece of

the polygonal edge to ensure that the distortion for each joint

leaf is bounded by .12 As there are only joint leaves, the

bitrate required for coding the leaves is .

The bitrate needed for coding the quadtree structure

is equal to the total number of nodes in the pruned tree. Thus,

(23) provides . For coding the neighbor joint-

coding information, we need, at most, three bits for each leaf,

as the first bit indicates the joint-coding decision and the next

two bits provide the neighbor index. Thus, the bitrate needed

to code the leaf joint-coding information is

[from (22)]. Hence, the total bitrate is as follows:

as (26)

The net distortion is the sum of the distortions of joint

leaves and leaves with a vertex and it can be expressed as

follows:

(27)

Combining (26) and (27) provides

(28)

Therefore, the prune-join tree algorithm achieves an exponen-

tially decaying R-D behavior.

An example of the two schemes is shown in Fig. 9. It is also of

interest to note that the prune-join scheme captures a complex

geometrical tiling of an image without any significant increase

in the complexity.

E. Computational Complexity

The main difference between the binary-tree and quadtree al-

gorithm is that the quadtree scheme employs more complex geo-

metrical-edge tiles. Unlike 1-D, we can approximate a quadtree

node either by a polynomial model (smooth model) or by a

piecewise polynomial model with a linear edge (edge model).

Consider an image of size . The quadtree decomposition

is performed up to the maximum tree depth . Thus,

the total number of nodes will be and the average node

size will be .

1) Smooth Models: Similar to the 1-D case, we need to

follow the Vandermonde matrix-based approach for computing

the best 2-D Legendre polynomial approximation for a tree

node. In 2-D, a th-order polynomial over a region

is defined as follows13:

where , are the 2-D Legendre

polynomial basis functions over the region , and ,

12Each line vertex is coded using 2J + 1 bits.
13Note that the P th-order 2-D polynomial is defined by (P + 1)(P + 2)=2

coefficients.
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TABLE I
SUMMARY OF THE PROPERTIES OF THE DIFFERENT ALGORITHMS

are the associated Legendre polynomial coef-

ficients. Similar to the 1-D case, the 2-D Legendre polynomial

basis functions are computed by applying the Gram–Schmidt or-

thogonalization procedure on the standard polynomial basis set

. For example, if the underlying re-

gion , then , ,

.

Now, in the discrete setup, for a 2-D segment of size (total

number of pixels) with the underlying column-ordered grid

,14 the minimum squared-error Legendre

polynomial approximation of order is obtained by solving

the least-square (LS) problem

(29)

where is a vector of polynomial coeffi-

cients, is the column-ordered form of the 2-D segment , and

is the following:

Vandermonde matrix, as shown in (30) at the bottom of the page.

Similar to 1-D, the solution to the LS problem in (29) is at-

tained efficiently by means of a factorization of with

computational cost of . The Vander-

monde matrix basically depends on the underlying grid,

which is same for all the nodes at the same tree level, as all

nodes of a tree level are of the same size. Thus, only one Van-

dermonde matrix is required per tree level to compute smooth

models. Therefore, we can precompute and store these matrices

and their factorization for different tree levels and use them

for computing 2-D polynomials for tree nodes just like a lookup

table. Since the average node size is , the overall cost

for computing the smooth models for all the tree nodes will be

. Note that for the complexity analysis, we include

in the complexity constant.

2) Edge Models: These are represented by two 2-D polyno-

mials separated by a linear boundary. Therefore, for each node,

14k is the 1-D index obtained by column ordering the 2-D grid like MATLAB.

we need to search for the best edge model for a given set of edge

orientations like the wedgelet/beamlet dictionary [9].15 Thus, for

each edge orientation, we need two Vandermonde matrices as-

sociated with the two regions separated by the edge. We can pre-

compute these Vandermonde matrices as given by (30). Now, we

can compute the best polynomial surfaces associated with each

choice of edge orientation using the Vandermonde matrix ap-

proach. We then select that edge orientation which leads to the

minimum squared error. The edge orientation dictionary and as-

sociated Vandermonde matrices are precomputed and stored so

that the algorithm can use them like a lookup table.16 Since the

average node size is , the computational cost for cal-

culating the edge model for a tree node is . Hence, the

overall cost of computing the edge models for all the tree nodes

will be .

For an image of size , the total number of pixels is

. Suppose that quantizers are utilized for the R-D function

computation. Now, by following the steps of the computational

analysis done in Section II-E for the 1-D case, it can be shown

that the overall computational costs for both the prune and the

prune-join quadtree algorithms will be . Table I

summarizes the properties of the tree algorithms and compares

them with a wavelet coder and a dynamic programming (DP)

coder, but note that DP is not applicable (NA) in the 2-D case.

IV. SIMULATION RESULTS AND DISCUSSION

A. One-Dimensional Case

In this numerical experiment, we consider piecewise

quadratic polynomials with no more than singularities.

15To achieve the theoretical R-D performance for the polygonal model, the
algorithm uses the edge dictionary with O(m logm) linear-edge orientations
for a node of size m � m, where m is, on average, O(logn). This is also
consistent with the high-rate analysis. Moreover, by using the side information
that the polygonal image is binary, the algorithm sets P = 0 and codes only the
linear edge and the constant value (1 or 0) above the linear edge to efficiently
code a node. However, for real images, we limit the maximum number of linear-
edge choices in the edge dictionary to 256, irrespective of the image size. This
is similar as saying that the linear edge is quantized using no more than 8 bits.

16Note that the storage memory requirement is proportional to the size of the
edge-orientation dictionary.

(30)
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Fig. 10. Theoretical (solid) and numerical (dotted) R-D curves for the prune
and prune-join binary-tree algorithms for piecewise polynomial signals.

Polynomial coefficients and singular points are generated

randomly using the uniform distribution on the range [ , 1].

The Legendre polynomial coefficients associated with a node

are scalar quantized with different quantizers. The tree scheme

chooses eight possible quantizers operating at rates 4, 8, 12, 16,

20, 24, 28, and 32 bits. The algorithm also needs to code the

selected quantizer choice using 3 bits as the side information.

In Fig. 10, we compare R-D performance of the two proposed

binary-tree coding algorithms against their theoretical R-D be-

haviors. Fig. 10 shows that the R-D behaviors of the two coding

schemes are consistent with the theory. In particular, the prune-

join binary-tree algorithm achieves the exponentially decaying

R-D behavior.

B. Two-Dimensional Case

Numerical experiments are performed for two image classes,

as follows: 1) polygonal model, where the polygon’s vertices

are generated randomly using uniform distribution on the space

; 2) real images.

For the polygonal images, the edge-tile is simply composed

of two constant regions separated by a linear edge. However,

for real images, an edge tile is composed of two 2-D polyno-

mials, of degree , separated by a linear boundary. Hence,

the algorithm can represent any surface by one of the

polynomial models. For real images, our scheme allows for up

to piecewise quadratic models ( ). Therefore, any surface

can be approximated by either constant or linear or quadratic

polynomial model. Thus, the algorithm will compute ( )

smooth and edge models for each tree node.17 For the

given bit budget, the algorithm selects the model with minimum

Lagrangian cost for a node. This model choice is coded using

bits as a side information. For ,

the algorithm uses 4 bits to indicate the model choice.

For synthetic piecewise polynomial images, we simply use

the uniform scalar quantizer to code the 2-D Legendre polyno-

mial coefficients. However, for real images, we need to use the

nonuniform quantizer [13] for coding the higher order polyno-

mial coefficients, as higher order polynomial coefficients seem

to have Laplacian like distribution. However, the 0th-order co-

efficient is always coded using the uniform quantizer. The edge-

17Since an edge model is composed of two surfaces and each surface can
select any one of the (P + 1) polynomial models, there are (P + 1) possible
edge models.

Fig. 11. Prune-join quadtree tiling for the cameraman image at bit rate =
0:071 bpp.

Fig. 12. Theoretical (solid) and numerical (dotted) R-D curves for the prune
and prune-join quadtree algorithms for the polygonal image class.

orientation choice is coded by its index in the edge dictionary,

which basically represents the quantization of edge orientations.

It is obvious that the higher order polynomial models should

perform better from the nonlinear approximation point of view.

However, when the goal is compression, then the answer is not

simple, as the coding of higher order polynomial may require a

large increase in rate without significant reduction in the overall

distortion. That is why our scheme selects the appropriate poly-

nomial/edge tile according to the Lagrangian cost-based R-D

criterion to achieve better R-D performance. Simulation results

shown in Fig. 11 indicate that the algorithm opts for low-order

polynomial models at low rates. Fig. 11 also shows the com-

plex geometrical tiling obtained by the prune-join tree scheme

to capture the geometry of the cameraman image.

For the cameraman image, simulation results show that our

scheme prefers the piecewise linear model over the piecewise

quadratic model at rates less than 0.2 bpp. Even at higher rates,

we gain slightly by using piecewise quadratic models. Thus, the

piecewise linear polynomial model seems to be a good mod-

eling choice for cameraman at low rates. Finally, in simulations,

we have used only the linear boundary model, which is a good

model for edges at low rates.

The experimental results shown in Fig. 12, for the polyg-

onal model, confirm the derived theoretical R-D behaviors.

In Figs. 13, 15, and 16, we compare the prune-join coding

scheme with JPEG2000. Residual images shown in Fig. 14
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Fig. 13. Comparison of the quadtree coder and a wavelet coder (JPEG2000) for the cameraman image.

Fig. 14. Residual images of the quadtree coder and JPEG2000 for the cameraman image at 0.15 bpp.

Fig. 15. R-D performance comparison of the quadtree schemes and JPEG2000
for the cameraman image.

also demonstrate that the prune-join scheme captures the

image geometry more efficiently in comparison to JPEG2000.

Fig. 14(a) also shows that the residual image obtained by the

tree-coding scheme essentially contains only the texture part of

the cameraman image. Fig. 17 compares the prune-join scheme

with JPEG2000 for different regions of the lena image. When

the image is close to the geometrical model [see Fig. 17(a) and

(b)], the prune-join scheme gives less artifacts. In the textured

region [see Fig. 17(c) and (d)], the geometrical model fails, and

JPEG2000 performs better. Overall, these simulation results

indicate that the prune-join coding scheme attains not only

better visual quality, but also higher coding gain in comparison

to JPEG2000. Moreover, Table II shows that the prune-join

tree algorithm consistently outperforms both the prune-tree

algorithm and JPEG2000 for different real images at low bit

rates. It does so particularly well for the cameraman image

compared to the other images. One possible reason is that the

cameraman image is much closer to the piecewise polynomial

image model in comparison to the other images.

V. CONCLUSION

For 1-D piecewise polynomials, we have presented an effi-

cient binary tree-based compression algorithm, which achieves

oracle-like exponentially decaying R-D behavior with low com-

putational cost of . Similar R-D performance can

also be achieved by the dynamic segmentation algorithm pro-

posed in [19] with large computational cost of . The dy-

namic programming techniques cannot be extended to the 2-D
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Fig. 16. Comparison of the quadtree coder and a wavelet coder (JPEG2000) for the lena image.

Fig. 17. Comparison of artifacts in two regions of the lena image at 0.15 bpp for the prune-join scheme and JPEG2000.

TABLE II
R-D PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS FOR DIFFERENT IMAGES
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case, whereas our binary tree-based coding algorithm can be ex-

tended to the 2-D case in the form of quadtree-based coding al-

gorithms with low computational complexity of .

We have also proved that the quadtree-based coding algorithm

achieves exponentially decaying asymptotic R-D behavior for

the polygonal image model. Numerical simulations (Fig. 12)

also confirm that the algorithm achieves optimal performance

if the input image fits the model exactly. In addition, simu-

lations show that our quadtree algorithm consistently outper-

forms JPEG2000 also in the case of compression of real images

(Figs. 13, 15, 16, and Table II).
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