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Rate-Distortion Performance of DPCM 
Schemes for Autoregressive Sources 

NARIMAN FARVARDIN, STUDENT MEMBER, IEEE, AND JAMES W. MODESTINO, SENIOR MEMBER, IEEE 

Absrruct- An analysis of the rate-distortion performance of differential 

pulse code modulation (DPCM) schemes operating on discrete-tbue auto- 

regressive processes is presented. The approach uses an iterative algorithm 

for the design of the predictive quantizer subject to an entropy constraint 

on the output sequence. At each stage the iterative algorithm optimizes the 

quantizer structure, given the probability distribution of the prediction 

error, while simultaneously updating the distribution of the resulting pre- 

diction error. Different orthogonal expansions specifically matched to the 

source are used to express the prediction error density. A complete 

description of the algorithm, including convergence and uniqueness proper- 

ties, is given. Results are presented for rate-distortion performance of the 

optimum DPCM scheme for first-order Gauss-Markov and Laplace- 

Markov sources, including comparisons with the corresponding rate-distor- 

tion bounds. Furthermore, asymptotic formulas indicating the high-rate 

performance of these schemes are developed for both first-order Gaussian 

and Laplacian autoregressive sources. 

I. INTRODUCTION 

T HE EVER-GROWING DEMAND for transmission 
and storage of data necessitates more efficient use of 

existing transmission and storage facilities. A data com- 
pression system is any scheme that operates on source data 
to remove redundancies so that only those values essential 
to reproduction are retained. Typical source signals gener- 
ally contain two types of redundancies: First, there is 
redundancy due to the high serial correlation in source 
outputs. This redundancy, which is concomitant with a 
nonuniform power spectral density, can be reduced consid- 
erably through the use of predictive encoding schemes such 
as differential pulse code modulation (DPCM). Roughly 
speaking, the source signal can be conceived as having two 
parts. One part is predictable relative to the transmitted 
sequence and hence conveys no useful information; the 
other part (the prediction error) is unpredictable, and since 
it uniquely determines the signal, it contains the useful 
information. A DCPM encoding scheme attempts to dis- 
card the predictable part, because it can be reproduced at 
the receiver, and encodes only the unpredictable portion by 
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using a zero-memory quantizer. The second type of re- 
dundancy is due to the nonuniform probability distribu- 
tion of the encoded signal. That is, the discrete levels at the 
output of the DPCM quantizer do not occur with equal 
probabilities. This type of redundancy can be removed 
through the optimal design of the quantizer subject to an 
entropy constraint, and it generally requires entropy cod- 
ing of the quantizer outputs by means of a buffer-instru- 
mented, variable-length coding scheme. 

Because the quantizer is nonlinear, exact analysis of 
predictive coding schemes is difficult. O’Neal [l] analyzed 
the mean-square performance of DPCM systems for sta- 
tionary Gauss-Markov processes on the assumption that 
the prediction error distribution is Gaussian. Others have 
performed an analysis of the DPCM system based on the 
assumption of decomposability of the prediction error into 
the overload and granular error [2], [3]. 

In contrast to these approaches, Fine [4] performed an 
exact analysis of the mean-square performance for a delta 
modulation system operating on a sampled Wiener process. 
Hayashi [6] extended this result to DPCM systems with an 
equi-step quantizer. Masry and Cambanis [ll] provided an 
exact analysis for delta modulation of the continuous 
parameter Wiener process. To the authors’ knowledge these 
are the only exact analyses concerning DPCM system 
performance. 

Slepian [21], Amstein [5], Hayashi [7], and Janardhanan 
[8], all inspired by Davisson’s idea [19], [20] of obtaining a 
Hermite polynomial series approximation for the distribu- 
tion of the prediction error, have reported various results 
regarding the optimality of DPCM systems in a minimum 
mean-square error sense for Gauss-Markov processes. 
Gibson and Fischer [38], on the other hand, have studied 
an optimal alphabet-constrained data-compression scheme 
that entails the DPCM system as a special case. However, 
little work has been done in characterizing the optimum 
rate-distortion performance of DPCM schemes. While there 
has been some limited work in approximating the optimal 
rate-distortion performance for Gaussian sources at high 
rates [9],[33], there has been no complete analysis for a 
wide range of rates even for Gaussian sources. 

In this paper we present a study of the rate-distortion 
performance of DPCM schemes operating on autoregres- 
sive discrete-time sources. A novel iterative algorithm is 
developed for design of the DPCM quantizer to minimize 
the mean-square distortion subject to a constraint on the 
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Fig. 1. Block diagram of generic predictive coding scheme. 

first-order output entropy. Also, we use different or- 
thogonal series expansions to approximate the distribution 
of the prediction error. These expansions are specifically 
matched to the distribution of the innovation sequence 
generating the autoregressive process. Results on the rate- 
distortion performance of DPCM schemes employing uni- 
form-threshold quantizers for first-order Gauss-Markov 
and Laplace-Markov sources are presented. Also, asymp- 
totic results for high rates are developed for both sources. 

The organization of this work is as follows. In section II 
we describe a general predictive coding scheme, which is 
then restricted to the special case of DPCM. Then we 
describe certain properties of DPCM encoding schemes in 
Section III. In Section III we also carefully formulate the 
problem of optimal encoder design and determine the 
necessary conditions for optima&y. In Section IV two 
algorithms for optimally designing DPCM encoders are 
described. Section V is devoted to a thorough study of the 
prediction error distribution and its evaluation through 
orthogonal series expansion methods. In Section VI we 
present numerical results demonstrating the efficacy of 
optimum DPCM schemes. In Section VII asymptotic re- 
sults are provided for high rates, together with techniques 
for bounding the rate-distortion function. These latter tech- 
niques are particularly useful for characterizing the perfor- 
mance of non-Gaussian sources; Finally, in Section VIII a 
summary and suggestions for future research are included. 

II. PRELIMINARIES AND NOTATION 

In this section we briefly describe a generic predictive 
encoding scheme operating on an Mth-order autoregres- 
sive source. We obtain the optimum system structure for a 
fixed quantizer, mention the impediments in analysis and 
implementation of the optimum system, and then reduce 
the system to the suboptimum DPCM scheme for further 
analysis. 

We assume that the signal to be encoded can be modeled 
as an Mth-order time-discrete autoregressive process de- 
scribed by the recursion 

x, = 5 p,x,-, + w,, n = 1,2;.*, (1) 
Wl=l 

where pl, p2,-. 0) pw are the autoregression constants and 
{ W, } is a zero-mean sequence of independent and identi- 
cally distributed random variables possessing common 
variance uk. Furthermore, we assume that the initial state 

(X0, x-1,. * -7 x-,+1 ) is specified and we are only inter- 
ested in the source outputs for n 2 1. 

This model has been chosen both because it is often a 
good mathematical model for real data (e.g., speech and 
images) and because it provides a well-understood stan- 
dard for comparison [4]-[9], [25]. 

The block diagram of a generic predictive coding scheme 
is illustrated in Fig. 1. Upon observing the transmitted 
sequence Yi, Y2, * . * , Y,-i, the predictor estimates the value 
of the source signal at time instant n. This estimate X:, 
which can also be made at the receiver (in the absence of 
channel errors), is then subtracted from the input X,, to 
obtain the sequence E,, = X,, - 2:) called the prediction 
error. The sequence {E,}, which contains (almost) only 
“new” information about { X, }, in then coded and trans- 
mitted as the sequence { Y,, }. 

Let us assume that &k is the smallest u-algebra gener- 
ated by Y,, Y,,. . ., Y,. Then the casual least mean-square 
estimate,’ called the predicted estimate, of X,, upon observ- 
ing Yi, Y,; . ., Y,- 1 is given by 

2;‘=0. (24 

while 

2; = E{Xnl.4-1>, n = 2,3,-e*, (2b) 

where E { +] . } denotes conditional expectation given a 
u-algebra [lo]. 

Let us denote by 2” the instantaneous estimate of X, 
derived by observing Y,, Y,, . . . , Y, given by 

R = E{ X,l.$J, n = 1,2, ..a. (3) 

Combining (l), (2), and (3) yields 

m=2 

(4) 

The last equation is a direct consequence of the fact that 
{ W,} is a zero-mean and independent sequence. Further- 
more, we can write 

i!&= E{k; + E,(Jal,} 

= E{ ~:IJ@‘,} + E{E,W’,), n = 1,2.... (5) 

‘Throughout this work, we confine ourselves to the squared-error 
distortion criterion. 
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Fig. 2. Block diagram of DPCM coding system for Mth-order autoregressive source. 

But { &‘,, } is a nondecreasing sequence of u-algebras 
(i.e., .&‘“-1 c A?~), and 2:) by definition, is an ~@~-,-mea- 
surable random variable [lo]. Therefore, .?z is dn-mea- 
surable as well, and (5) reduces to 

kn = 2’ + E{ E,Id”}, n = 1,2.-a. (6) 

Unfortunately, the system described by (4) and (6) is 
extremely difficult-if not impossible-to implement. The 
conditional expectations in (4) and (6) are the main draw- 
backs here because they cannot be easily computed. 

Our main objective is the study of the quantizer struc- 
ture and its resulting effect on overall system performance. 
Thus, to make the problem somewhat more tractable, we 
force the predictor to have a simple structure. 

Let us suppose that the prediction error sequence { E,, } 
is “neirly” independent. This statement, although some- 
what heuristic, is meaningful from a practical point of 
view, especially when the system is optimized (as we shall 
describe later) for operation at high rates. If this assump- 
tion holds, then the transmitted sequence { Y, } will also be 
nearly independent. This assumption implies that [12] 

E{ X,-,l.$p1} = &-,, n2m, l<m.M, (7) 

and 

JwnIJ4z~ = E&P-A n = 1,2.-e. (8) 

We assume that the prediction error is coded by means 
of a zero-memory N-level quantizer described by 

G(X) = Q,, XE(T,-JJ, 1=1,2;**,N, (9) 

where T,, r,; * ., TN, and Q,, Q2; . a, QN are the threshold 
levels and the quantization levels, respectively. (To the 
extent possible, we use notation identical to that of [13].) 

Then we can show, in Theorem 1, that 

WW-A> = Y,, n = 1,2;.., (10) 

provided only that the quantization levels are chosen opti- 
mally. 

With these simplifications, (4) and (6) can be written as 

2; = 5 pmka-,, n = 2,3,-e. 7 (114 
m=l 

and 

2n=2; + Y,, n = 1,2-e*. @lb) 

Equation (11) describes the simplified version of our 
predictive coding scheme. This scheme, which is well known 
as differential pulse code modulation, has been widely 
discussed in the literature [l]-[9]. The block diagram of 
this system is illustrated in Fig. 2. In the rest of this work 
we will reStrict attention to this scheme. 

Our go&l is to design the quantizer in such a way that the 
DPCM coding scheme is optimized in a rate-distortion 
theoretic sense. More specifically, we wish to minimize the 
overall average distortion, while the transmission rate is 
kept below a prescribed level. In the following section, we 
will establish certain properties of the DPCM scheme 
under consideration and formulate the optimum design 
problem. 

III. PROPERTIES OF THE DPCM SCHEME AND 

PROBLEM FORMULATION 

We begin this section by substantiating (10) through the 
following theorem. 

Theorem I: Let us assume that qN is an N-level 
zero-memory quantizer with input thresholds T, -e Tl < 
. . * < TN and output levels Q,, Q2,. . . , QN that are chosen 
such that Q,, 1 = 1,2,-e., N is the center of probability 
mass of the interval (T,-,, T,]. Then, if {E,} and {Y,} are 
the quantizer input and output sequences, respectively, and 
E{ E,} = E{ Y,} = 0, n = 1,2; * 0, we have 

%%IY,> = r,, n = 1,2*-v. 

Proof: First note that 

E{E,IY, = Q,} = E{E,IT,-, < E,, I T,}, 

I= 1,2;**,N. (12) 

But, by assumption, 

Q, = E{.W’L < 4, I T,), I= 1,2;*.,N. (13) 

Therefore 

%%IY, = Q,> = Q,, I= 1,2;..,N, (14 

which proves the theorem. 

Recall, that for the case of a zero-memory quantizer, 
driven by a memoryless source, the amount of information 
delivered by the output process about the input process 
equals the entropy of the output process [26]. The follow- 
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ing theorem establishes a similar relationship in predictive 
quantization schemes. 

of Markov processes will recognize that any Mth-order 
Markov process can be represented by a first-order M- 

Theorem 2: In the predictive coding scheme described dimensional Markov process. 

by (ll), if XN 4 (X,, X,; . a, X,) and YN A Using the Chapman-Kolmogorov equation for the pro- 

(Y,, y2,. * a, Y,), then 
cess defined by (19) with M = 1 and p g pl, we obtain 

_^ 

/$irnm +1(X”; YN) = H,(Y), 05) 
p&4 = I'-- pwb - Pb - 4NbNl PE,JY) 43 -CO 

where H,(Y) is the entropy rate of the { Y, } sequence [27]. w 

Proof: We have 
in which PE (e) and Pw( *) designate the pdf’s of E, and 
W, , respectijely. 

I(XN; Y”) = H(YN) - H(YNIXN). (16) 

(Here, we are using the same notation as in [27].) But there 
is a one-to-one relationship between XN and EN A 

(E,, E,,. . ., EN). Furthermore, EN uniquely specifies YN. 
Therefore, given X”, there is no uncertainty concerning 
Y “, and thus 

I(XN; Y”) = H(YN). 07) 

Dividing through by N and passing to the limit on N 
yields the desired result. 

In regard to the quantization error, (llb) can be used to 
show that 

.$,‘E,- Y,=X,,-&, 08) 

where 5, is the error incurred solely by the quantization 
process.’ This is interesting, since it implies that to mini- 
mize the overall reconstruction error, it suffices to mini- 
mize the quantization error. 

At this point we can state the problem more precisely. 
We wish to design an N-level quantizer for the DPCM 
scheme such that the overall average squared-error distor- 
tion-or, equivalently, the average quantization error-is 
minimized, while the entropy rate at the quantizer output is 
held below a perscribed value, say H,. Farvardin and 
Modestino [13] have studied a similar problem for a 
zero-memory quantizer driven by a memoryless stationary 
source. 

In the present situation, unfortunately, the probability 
density function (pdf) of the quantizer input (i.e., the 
prediction error) is not known. The following discussion 
will provide some insight as to how this pdf can be 
calculated and will point out the associated difficulties. 

Let us first note that 

M M 

En = c P,,,&-, + w, - c Pdn-m 
m=l m=l 

= E P,[&-,- 4N(Km)I + W,. (19) 
m=l 

To be able to design the quantizer optimally, we require 
knowledge of the steady-state pdf of the sequence { E,, }, 
which will be denoted by PE( e). A legitimate question, 
obviously, is whether such a steady-state pdf exists. 

Gersho [14] was the first to study this issue in delta-mod- 
ulation systems. Based on a theorem of Doob [15], he 
proved that under certain conditions on the source distri- 
bution, the joint distribution function of the (X,, Xn) 
process converges to a unique stationary distribution, re- 
gardless of the initial condition X1 and the quantizer 
stepsize. This, in turn, implies the convergence of {E,,} in 
distribution. Goldstein and Liu [16] subsequently extended 
Gersho’s results to adaptive DPCM (ADPCM) systems in 
which the quantizer was taken to be an N-level uniform 
quantizer whose stepsize varies in time according to a 
well-described rule. Their results, of course, include non- 
adaptive DPCM systems as a special case. 

More recently, Kieffer [17] has established a stronger 
type of convergence for predictive quantization schemes. 
Specifically, he has shown that under certain conditions the 
triple process {X,, Y,, X,,} is stochastically stable in the 
sense that the sequence {(l/N)Cf;‘=,f( Xr, Y,“, Xp)} con- 
verges almost surely for every bounded function f that is 
continuous in the first two variables and measurable in the 
third. Here XF A (X,, Xn+l,. . * ). 

These convergence arguments are useful in establishing 
the desired result that the sequence of functions { PE,( a)} 
defined by (20) converges to a unique function PE( a). In 
fact, if we write (20) in operator notation as 

PE, = TPE,& (21) 

then Goldstein and Liu show that l), assuming that prob- 
ability functions exist, there exists a unique function PE( a) 
such that [16, Theorems 5 and 61 

PE= TPE, (22) 

and 2) pEn( .) converges to pE( -) [16, Theorem 91. 
Equation (22) is equivalent to the following integral 

equation: 

Equation (19) implies that the prediction error sequence PE(X) = /wmmPw[X - P(Y - qN(d)] Ph> &. (23) 
{ E, } is also a Markov process of the same order as the 
input process { X, }. We shall confine ourselves, hereafter, Therefore, for a fixed quantizer qN( a), the limiting margi- 
to first-order processes. Those conversant with the theory nal pdf of the prediction error can be obtained from the 

above integral equation. Equation (23) reveals the explicit 

‘Hereafter, for economy of notation, we do not indicate the time 
dependence of the steady-state pdf pE( .) on the quantizer 

instants for which the equations hold with the presumption that they can structure qN( -). On the other hand, to determine the 
be understood from the context. optimum quantizer, the marginal pdf of the prediction 
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error is required. This results in a complex interdependence 
between the pdf of the prediction error and the quantizer 
structure. Indeed, this is the main difficulty in obtaining 
the optimal quantizer. 

Recall that we intend to design the quantizer subject to a 
constraint on its output entropy rate. To calculate the 
entropy rate at the quantizer output, however, we need to 
have the N-fold probability density function of the se- 
quence { E, }. Due to the myriad of difficulties associated 
with this, we restrict ourselves to the first-order entropy at 
the quantizer output. This clearly results in a suboptimum 
system. However, at high rates, where the prediction error, 
and hence the quantizer output, are highly uncorrelated, 
the entropy rate is approximately equal to the first-order 
entropy. 

The problem of quantizer design can now be stated as 
follows. We wish to find an N-level quantizer q$( .) that 
minimizes the average squared-error distortion incurred in 
the quantization operation while the first-order entropy at 
the quantizer output is held below a certain value. The 
average distortion and output entropy are given by 

D = lgl f;,‘x - Qr)2~~(d dx (24 

and 

N 

H = - c pIlog 2 P/ b/sample, (25) 
I=1 

respectively, where pE(.) is the solution to the integral 
equation given by (23) and p, is defined by 

pI=/T;;E(x)dx, I= 1,2;..,N. (26) 

Unfortunately, because of the particular type of depen- 
dence of pE( 0) on qN( e), necessary conditions for the 
optimality of the quantizer cannot be expressed in a con- 
cise closed form. However, by looking at the problem from 
a slightly different perspective, we can obtain a more 
appealing formulation of the problem, which leads to an 
algorithmic approach for quantizer design. 

More precisely, we seek and optimum N-level quantizer 
qz( .) and a probability density function pz( *) or, equiv- 
alently, a couple (q,$ pg) such that the following two 
conditions are simultaneously satisfied. 

Condition 1: qz( a) is an optimum N-level quantizer with 
entropy constraint H, for a memoryless source with sta- 
tionary marginal pdf pg( e). 

Condition 2: pj$( .) is the solution to integral equation 
(23), with qN = q$. 

Let us denote by D(q,; pE) the average distortion in- 
curred in a DPCM coding scheme possessing an N-level 
quantizer qN( .) and a steady-state prediction error pdf 
pE( e). Then the optimum (rate-distortion theoretic) perfor- 
mance attainable by an N-level DPCM coding scheme is 
given by 

where %7 is the collection of all couples (qN; pE) satisfying 
Conditions 1 and 2 simultaneously. 

In the following section, we describe two algorithmic 
methods for obtaining D,(H,J. Essentially, these al- 
gorithms work by iteratively applying Conditions 1 and 2. 
In Condition 1 we have to design an optimum entropy- 
constrained quantizer for a memoryless source. We do not 
elaborate on this; details, including specific algorithms, can 
be found in [13]. In Condition 2 we need to solve the 
integral equation (23). Section V is devoted to this issue. 

IV. ALGORITHMS 

Recall that ih obtaining the optimum quantizer, the 
quantities of interest are the average distortion and the 
quantizer output entropy, both of which are functionals of 
the prediction error pdf pE( .) and the quantization map- 
ping q&e), with a specific interdependence between pE(.) 

and qd.1. 
The algorithm used to solve for the optimum quantizer is 

an iterative method in which the quantizer is optimized at 
each iteration and then the pdf of the prediction error is 
updated. This algorithm is described in the following steps. 

Algorithm 1 

1) Choose an initial N-level quantizer q$)( -) with en- 
tropy constraint H, and set i = 0. 

2) Set i = i + 1; for the fixed quantizer q$)( 0) solve 
(23) to find the steady-state pdf p$)( e). 

3) For the fixed pdf p$)(-) use the quantizer design 
algorithm to obtain a quantizer q#+l)( .) subject to 
entropy constraint H,,. 

4) If the difference in the quantizer structure3 in two 
consecutive iterations is greater than some prescribed 
small E > 0, go to 2). Otherwise, halt with pE( .) and 
qN( a) equal to pg( .) and q$( e), respectively. 

In step 3), either of the algorithmic methods described in 
[13] can be used to obtain the optimum quantizer. 

Let us note that in solving (23) at each step of Algorithm 
1, we calculate the steady-state pdf of the prediction error. 
Another approach, which is a slight modification of Al- 
gorithm 1, develops a sequence of quantizers evolving in 
time ultimately converging to the optimum quantizer. This 
approach is presented in the following. 

Algorithm 2 

1) Choose an initial N-level quantizer q$( .) with en- 
tropy constraint H,; set p’& .) = p & .) and i = 0. 

2) Set i = i + 1; for the fixed quantizer q,$)( .) use 

3By the difference in the quantizer structure in two consecutive itera- 
tions we mean 

c IT(i) - T,(‘-‘)I + 2 [Qj” - Q/‘-*)1, where T,c’) md Q,‘i’, 

I-l I-1 

(27) are the Ith threshold and quantization levels, respectively, at the ith 
iteration. 
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3) 

4) 

p$’ = Tp$-‘) to find p$)( a). Here T is the operator 
defined in (21).4 
For the fixed pdf p’$( .), use the quantizer design 
algorithm to obtain a quantizer q$+l)( *) subject to 
entropy constraint HO. 
If the difference in the quantizer structure in two 
consecutive iterations is greater than some prescribed 
small e > 0, go to 2). Otherwise, halt with pE( .) and 
qN( .) equal to pg( a) and qg( e), respectively. 

The main drawback in implementing these algorithms is 
the inherent difficulty in calculating the pdf of the predic- 
tion error-that is, step 2) of either algorithm. In the 
following section, we describe a method for calculating the 
pdf of the prediction error and point out the associated 
difficulties. 

V. DISTRIBUTION OF THE PREDICTION ERROR 

We now proceed to calculate the marginal pdf of the 
prediction error assuming that the quantizer is fixed. Equa- 
tion (19), with M = 1 and p1 = p, can be written as 

E,, = W, + p&-l, (28) 

where I, is independent of W,, m > n. Denoting the 
characteristic function (chf) of a random variable X by 
Qx( v), we can write 

@E,(Z) = @ww~@~"~1(P4~ (29) 

and for the steady-state situation 

%W = @'wW~'E(PZ). (30) 

The chf Qt(z) of the quantization error is given by 

at(z) = ~~~~-jzQ/~~~~jzip,(,)l,(.) dx, (31) 

where I,( a) is the indicator function of the interval 
(T,-,, T,]. Upon defining the Fourier transform of I[(.) by 

t),(z) 9 j--;e’Y,(x) dx, I = 1,2;. a, N, (32) 

and using (31), we can write (30) as 

aE(z) = aw(z) 2 e-jzpQ~(ia,*$,(pz)) , 
[ I 

(33) 
I=1 

in which * designates the convolution operation. 
Equation (33) is the generic form of the functional 

equation describing QE( e). The integral equation (23), or 
its frequency domain equivalent (33), are both extremely 
difficult to solve, except in special cases. For N = 2 with 
Q2 = -Q, = (Y and Tl = 0 (i.e., delta modulation), (33) is 
equivalent to 

6,,(z) = ~,(z)[27~~~(pz)cosapz + 2&,,(pz)sinarpz], 

(344 

41n Algorithm 2, the iteration index i plays an identical role as the time 
index n in (21). 

where && .) denotes the Hilbert transform [18] of @E(e) 
and is described by5 

(34b) 

For the special case of p = 1 and N = 2, Fine [4] has 
solved (33) for @E(a) using Wiener-Hopf factorization 
techniques. Later, Hayashi [6] proved a very useful theo- 
rem that relates the pdf of the prediction error in a DPCM 
scheme with an N-level, symmetric, and uniform quantizer 
to that of a two-level scheme. Therefore, if attention is 
restricted to uniform quantization, it suffices to find the 
solution for a two-level quantizer. 

Unfortunately, for p # 1, which is most interesting in 
many practical situations, techniques for explicit evalua- 
tion of the prediction-error distribution have not yet been 
developed. Therefore, one must resort to efficient numeri- 
cal methods to compute this quantity. The idea of using 
orthogonal series expansions for computing the prediction 
error distribution was apparently first suggested by Davis- 
son [19],[20]. His suggestion was then followed up by 
Slepian [21], Arnstein [5], Hayashi [7], and Janardhanan 
[S]. Each of these works considered a Gaussian input and a 
Hermite polynomial expansion for the pdf of the predic- 
tion error. Arnstein’s work [5] is most relevant to the 
present study. Amstein, however, does not attempt to 
optimize the system in a rate-distortion theoretic sense. 
Instead, he devises an algorithm (similar to Algorithm 2 of 
this paper) by which the quantizer is designed only to 
minimize the average squared-error distortion for a fixed 
number of quantization levels. 

In what follows we consider Gauss-Markov and 
Laplace-Markov sources. For each source we use a “suit- 
able” orthogonal expansion that is matched to the distribu- 
tion of the innovation sequence generating the source and 
that therefore approximates the prediction error density 
with a small number of coefficients in the expansion. 

A. Gauss-Markov Process 

The Gauss-Markov process is defined according to (1) 
with M = 1 and p1 = p, while we take {W,} to be a 
zero-mean sequence of Gaussian random variables with 
variance cr& = 1. It turns out that, under appropriate 
initial conditions, { X,} is a stationary zero-mean Gaussian 
random process with variance u,” = l/(1 - p2). 

Now consider the Gram-Charlier series expressing the 
prediction error pdf pE,(x) in terms of Hermite polynomi- 
als [22] by 

P& = g(x) E @)H,(x), -cYs<xx<, 
k=O 

(354 

5 The Cauchy principal value of an integral is defined by 

PVlm f(x) dx = i9m J_RRf(x) dx. 
-cc 
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where g(x) is the standard normal pdf given by 

g(x) = &eex212, -0900<x<, (35b) 

Hk(x) is defined by 

Hk(x) = t-1)” dkdx) -___ 
g(x) dxk ’ 

k = O,l;.., (35~) 

and (where we assume d’g(x)/dx’ = g(x)) 

ap)= $/Pm p,jx)H,(x)dx, k = ?,2;.. . 
. M 

(35d) 

It is well known that the sequence { Hk(x)} is or- 
thogonal over the interval (- cc,co) with respect to the 
weighting function g(x). That is, 

SW g(x)H,(x)H,(x) dx = k!6,,, k, 1 = 0,l; . ., 
-CC 

(36) 

where 6,, is the Kronecker delta function. 
In (35a) the unknowns are the coefficients ahn), k = 

O,l, .*. . In what follows we obtain a recursive formula 
describing the expansion coefficients at time instant n in 
terms of those at time instant n - 1. 

Let us replace pE,_,(y) in (20) by its series expansion. 
Then 

PE”(4 = IE 
k=O 

4ym- Pwb - Pb - CL&41 
-W 

and therefore, the expansion coefficients at the n th time 
instant are given by 

M 

a$“’ = c A,,/$$ (n-1) , I= O,l;.., @a) 

where 

k=O 

A,,k = $1” jm dx - Pb - %V(d 
-w -co 

%(Y)H,(X)Hk(Y)dxdy~ 1,k = O,l, .a., 

(38b) 

Note that Al,k is independent of time, and hence once 
A / k, 1,k = O,l;.. are calculated, we can evaluate the 
“1;) recursively according to (38a) for all time instants. 

In Appendix A we give a simplification of the double 
integral in (38b). Equation (38a) is, in effect, an infinite 
matrix multiplication. For numerical computations, how- 
ever, it is necessary to consider a truncated version of 
(38a). We shall elaborate on this in the next section. 

B. Laplace-Markov Process 

The stationary Laplace-Markov process is described in 
[36]. By this we mean a first-order Markov process with a 
Laplacian marginal distribution, which is a special case of 

(1) with M = 1 and p1 = p. First we determine the density 
of the process { W, } generating the Laplace-Markov pro- 
cess. 

Upon taking chf’s in (l), we have 

@x(z)= @APZ>%(~>~ (39) 

in which Qx( *) and Qpw( .) denote the characteristic func- 
tions of X, (in steady state) and W,, respectively. But if 

px(x) = ie-IX1, -m<xx<, (404 

as assumed, we have 

-co<<~<. @Ob) 

Note that ax(z) f 0, and hence solving for (9 &z), 

q,&) = l,‘+“::’ = p2+(1 - Z)$, @la) 

and thus 

pw(x) = (1 - p2)+e-ix1 + p26(x), --03~X<co. 

@lb) 

That is, { W,} represents a source generating a random 
variable whose value is either zero with probability p2 or 
Laplacian distributed with probability (1 - p2). Here, again 
under appropriate initial conditions, the process { X,, > is a 
stationary zero-mean Laplacian process with variance u,’ 
= 2. 

The significance of studying Laplace-Markov sources is 
the observation, made by several researchers (e.g., [23]), 
that speech signals possess a marginal density reasonably 
close to a Laplacian density. 

In this case we can use Laguerre polynomials [24], for a 
series expansion of the prediction error pdf. The reason for 
this choice, which will become clear in the next section, is 
that Laguerre polynomials are orthogonal with respect to 
an exponential function (0, cc). More specifically, we can 
write 

P&tX) = ltx) i? h?‘Lk(x), 0Cx-c cc, (42a) 
k=O 

where 
I(x) = eex, o<x<co. (42b) 

Here, the k th order Laguerre polynomial Lk( x) is defined 
for x r 0 by 

Lk(X) = -J- IC(xkl(x)), 
k!l(x) dxk 

k= O,l;*., 

(424 

PP)=Jo mPE,,(x) Lk(X) dx, k = O,l, ... , 

(424 

The orthogonality properties of Laguerre polynomials rela- 
tive to an exponential function on (0, co) imply 

J 
we-xLk(x)L[(x) dx = Sk,. 

0 
(43) 



FARVAFIN AND MODESTINO: DPCM FOR AUTOREGRESSIVE SOURCES 409 

In what follows, we assume that the quantizer possesses In all cases, the quantizer is chosen to be symmetric. 
old symmetry. With this assumption, it is easy to show that Since the input distributions under study are also symmet- 
P,$x>, n = l,&--., has even symmetry, and hence the ric, for reasons described in [13], the number of quantiza- 
integral in (20) can be written as an integral over (0, cc) for tion levels is taken to be odd. In particular, this assumption 
which the Laguerre expansion is valid. That is, (20) can be enables achievement of rates below 1 b/sample. 
written as 

PE”b) = lrn{ Pwb - P(Y - 4dY))l 

+Pwb + P(Y - 4N(Y))l )PE”JY> 4. (44 
Now expanding ~,~-~(y) by means of (42a) yields 

PE”(4 = it P/Y) 
k=O 

+pw[x + P(Y - qNb))l}zb+‘kb) h* (45) 

and again using (42d) implies 

,B,‘“’ = E B,, kj3!n-1), I= O,l;**, (46a) 

where 
k-0 

B,,, = ~m~m{ &[x - P(Y - %v(Y))I 
+Pwb + P(Y - 4N(Y))l> 

-l(y)L,(x)L,(y) dxdy, 1, k = O,l, . . . . (46b) 

Equation (46a), analogous to (38a) for the Hermite series 
expansions, provides the recursive formula for updating the 
Laguerre series expansion coefficients. In Appendix B a 
simplification of the double integral in (45b) is given. 

In the following section, we will use the algorithmic 
procedures described in Section IV and the above expan- 
sion methods to investigate the optimum performance of 
DPCM schemes operating upon first-order Gauss-Markov 
and Laplace-Markov processes. 

VI. NUMERICALRESULTS 

A. Rate-Distortion Performance Results 

Algorithms 1 and 2, along with the polynomial expan- 
sions of Section V, are used to obtain the optimal rate-dis- 
tortion theoretic performance of DPCM employing uni- 
form-threshold quantizers, operating on Gauss-Markov 
and Laplace-Markov sources. In all cases (described be- 
low) the two algorithms converged to the same quantizer 
and hence yielded exactly the same result. 

Performance curves for different values of the corre- 
lation coefficient p (i.e., different amounts of memory in 
the source) have been obtained. Results for p = 0.2, 0.5, 
and -0.8 for N = 3, 5, 9, and in some cases 17 and 33, are 
illustrated in Figs. 3-5 and 6-8 for Gaussian and Laplac- 
ian sources, respectively. In all cases we have normalized 
the mean-square distortion D to the source variance u,“. In 
Figs. 3-5 we have included the rate-distortion function 
R(D) of the corresponding Gauss-Markov source. For 
Laplace-Markov sources, since effective means for com- 
puting the rate-distortion function are not available, upper 
and lower bounds (R,(D), and R,(D), respectively) for 
the rate-distortion function are developed and illustrated in 
Figs. 6-8. Furthermore, asymptotic results for the rate-dis- 
tortion performance of such schemes at high rates and for 
a large number of quantization levels are included in all 
performance curves. This asymptotic result is simply an 
extension of the Gish-Pierce asymptote for zero-memory 
quantization of memoryless sources [29]. These rate-distor- 

1.00 
1 J- 

Asymptotic Result 

\ ,/- N=l7 

In this section we present numerical results describing 
the rate-distortion performance of optimum DPCM 
schemes driven by first-order Gauss-Markov and 
Laplace-Markov processes. 

At the outset, note that in all these results the quantizer 
is taken to be a uniform-threshold quantizer. A uniform 
threshold quantizer is described by T,,, - T, = 8uE, I= 
1,2; * *, N - 2, where 6 is the step size normalized to the 
standard deviation of the prediction error. The normalized 
width of the outer intervals is 11 so that aa, = [(TN - T,) z 1.w. 
- 217a,]/(N - 2). For 6 = 0, the quantizer becomes a ’ 
two-level symmetric quantizer, cf. [13]. This restriction is 1 .w. 
imposed because of the complexity associated with the 
algorithmic methods used for designing optimal entropy- O.M. 
constrained quantizers driven by memoryless sources. These 
algorithms must be used in step 3) of either Algorithm 1 or 
Algorithm 2 of Section IV. While imposing uniformity on ‘*‘I 0.01 0.1 

the quantizer threshold levels results in a suboptimal sys- Normolized Distortion, D/o: 

tern, it reduces the complexity of the quantizer design 
procedure considerably [13]. 

Fig. 3. Performance of optimum DPCM coding scheme for first-order 
Gauss-Markov source with p = 0.2. 
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0.01 0.1 

Normalized Distortion, D/O? 

Fig. 4. Performance of optimum DPCM coding scheme for first-order 
Normaked Dtstortion, D/O: 

Gauss-Markov source with p = 0.5. Fig. 6. Performance of optimum DPCM coding scheme for first-order 
Laplace-Markov source with p = 0.2. 

0.01 0.1 

Normalized Distortion, D/V: 

Fig. 5. Performance of optimum DPCM coding scheme for first-order Normalized Distortion, D/p: 

Gauss-Markov source with p = 0.8. Fig. 7. Performance of optimum DPCM coding scheme for first-order 
Laplace-Markov source with p = 0.5. 

tion function bounds and asymptotic performance results 
are discussed in the next section. cases included the upper portion of the performance curves 

Let us note that for both Gauss-Markov and as well.6 
Laplace-Markov sources, for rates in excess of 1 b/sam- 
ple, we have obtained two quantizers satisfying the neces- 

Several comments about the performance curves are in 

sary conditions. Clearly, for the same value of output 
order. In Figs. 3-5 (Gauss-Markov source), the asymptotic 

entropy, the optimum performance is obtained by the 
results agrees favorably with our numerical result even at 

quantizer yielding the smaller distortion. Thus, in Figs. 3-8 
relatively low rates. This agreement is more pronounced at 
1 

the optimum performance is determined by the lower 
ow correlation values. Moreover, similar to the memory- 

1 ess 
envelope of the performance curves corresponding to dif- 

situation [29], there is only a 0.255 b/sample dif- 

ferent number of quantization levels. Nevertheless, for 
reasons that will become clear shortly, we have in most 

‘The exception here is the case N = 17 where the upper portion of 
these curves is not shown to simplify the figures. 
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Normolized Distortion, D/v: 

Fig. 8. Performance of optimum DPCM coding scheme for first-order 
Laplace-Markov source with p = 0.8. 

ference between the performance of the optimum DPCM 
quantizer and the rate-distortion function at high rates. We 
shall elaborate on this in the next section. 

It can be seen from Figs. 3 and 4 that for low values of p 
the difference between the performance of the DPCM 
system and the rate-distortion function becomes smaller 
for decreasing rates. For larger values of p, however, this 
difference becomes larger at low rates. Specifically, the 
maximum difference for p = 0.8 is observed to be about 
0.55 b/sample. This implies that DPCM quantization 
schemes are relatively less efficient at low rates when the 
source is highly correlated. 

For Laplace-Markov sources our results demonstrate 
similar behavior. Here, the difficulty is that the perfor- 
mance curves (especially at high correlation values) ap- 
proach the asymptotic result very slowly. For reasons to be 
described, obtaining the rate-distortion performance of the 
DPCM quantizer at high rates and large number of quanti- 
zation levels becomes exceedingly difficult at high corre- 
lation values. Therefore, for large p our performance curves, 
in the Laplace-Markov case, do not demonstrate the valid- 
ity of the asymptotic result. Nevertheless, results in Fig. 6 
for p = 0.2 indicate slow convergence of the performance 
curves to the asymptotic result with increasing N. For 
p = 0, a more rapidly converging set of results is reported 
in [12]. 

Finally, let us note that in the Laplacian case the dif- 
ference between the rate-distortion function lower bound 
and the asymptotic result for high rates is no longer equal 
to 0.255 b/sample. The exact value of this difference is 
calculated in the next section. At low rates, nevertheless, 
the optimum performance curve is very close to the rate- 
distortion function lower bound. However, the number of 
quantization levels plays a more important role, in the 

sense that a relatively larger number (compared to the 
Gaussian case) of quantizaion levels is required to obtain 
the optimum performance. For example, for the Laplace- 
Markov source with p = 0.5 at 1 b/sample an additional 
l-dB in signal-to-noise ratio (S/N) can be gained by 
increasing the number of levels from three to nine. 

B. Comparison with Two-Level Schemes 

Note that the limiting form of a three-level symmetric 
uniform-threshold quantizer as the step size 6 approaches 
zero is a two-level (binary) symmetric quantizer. In all our 
results, for three-level schemes at 1 b/sample we have 
obtained two quantizers satisfying the necessary condi- 
tions, one of which is the above binary quantizer. The 
rate-distortion performance of the system with this binary 
quantizer is determined by the endpoint of the three-level 
performance curves at one b/sample. 

Binary predictive quantization schemes (sometimes called 
delta modulation) play an important role in data cdmpres- 
sion for their ease of implementation. Arnstein [5] has 
studied the optimum performance of such systems for 
Gaussian autoregressive inputs. The following discussion 
provides further insight concerning the performance of 
such systems and the potential advantages of a system with 
additional quantization levels. 

First, note that for Gauss-Markov sources no tangible 
improvement at 1 b/sample is obtained by increasing the 
number of levels from three to five or even nine. Thgrefore, 
for Gaussian sources, the optimum performance at 1 
b/sample can be achieved by at most three quantization 
levels. For small correlation values (p = 0, and 0.2), the 
three-level scheme offers a slight improvement over the 
binary scheme. For higher correlation values (p = 0.5 and 
0.8), interestingly, the opposite behavior is observed. That 
is, the optimum two-level scheme outperforms the three- 
level one. It must be kept in mind, however, that we have 
confined attention to symmetric uniform-threshold 
schemes. When this restriction is removed, performance at 
least as good as a two-level system can be obtained. 
Finally, it should be mentioned that the nonconvex behav- 
ior of the performance curve for p = 0.8 at low rates (Fig. 
5) can be convexified by a time-sharing of appropriate 
quantizers [30]. The dotted line in Fig. 5 designates this 
time-sharing result. In Table I we have summarized the 
rate-distortion performance of the optimal two-level and 

TABLE I 
S/NOFOPTIMLJMDPCMCODINGSCHEMESAND 

COMPARISONWITHRATE-DISTORTIONFUNCTION 

AT~B/SAMPLEFORSTATI~NARY 

GAUSS-MARKOVSOURCES 

P 2-level 

0.0 4.39 dB 
0.2 4.51 
0.5 5.22 
0.8 7.56 

3-level 

4.59 dB 
4.65 
5.09 
6.85 

R(D) 

6.02 dB 
6.20 
7.27 

10.46 
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TABLE II 
S / N OF OPTIMUM DPCM CODING SCHEMES AND 

COMPARISON WITH BATE-DISTORTION FUNCTION 

BOUNDS AT 1 B / SAMPLE FOR STATIONARY 

LAPLACE-MARKOV SOURCES 

P 2-level 3-level 5-level 9-level R,(D) R,(D) 

0.0 3.01 dB 5.23 dB 5.15 dB 5.76 dB 6.62 dB 6.02 dB 
0.2 3.03 5.40 5.98 6.00 6.91 6.20 

7.50 9.81 1.21 0.5 3.36 6.44 1.42 
0.8 4.65 8.00 11.14 11.80 21.69 10.46 

three-level symmetric systems, as well as the corresponding 
values of the rate-distortion function at 1 b/sample (in- 
cluding the p = 0 case). 

For Laplace-Markov sources the results are quite differ- 
ent. In all cases, the optimum three-level scheme outper- 
forms the binary scheme at 1 b/sample. The rationale for 
such behavior is easily explained. Due to the impulse 
component in the pdf of {W,} (cf. (41b)), the prediction 
error assumes values close to zero with very high probabil- 
ity, and hence any symmetric binary scheme fails to be 
efficient since it does not include a representative zero 
level. (Specific examples of symmetric sources with high 
probabilities about the origin are given in [37]. It is shown 
that symmetric two-level quantizers are not optimal for 
these sources.) Moreover, as one can see from the perfor- 
mance curves in Figs. 6-8, further improvement can be 
obtained by increasing the number of quantization levels. 
Again, a summary of results (including the p = 0 case) for 
different number of quantization levels and the corre- 
sponding rate-distortion function bounds for the 
Laplace-Markov source are presented in Table II. For 
example, at p = 0.8 an improvement in excess of 7 dB in 
S/N can be achieved by going from a two-level to a 
nine-level quantizer. 

forced to use a truncated version of (38a) or (46a). This 
raises the question of whether the truncated version in- 
eludes enough terms for an accurate computation of the 
coefficients. In what follows we shall elaborate on this. 

First, note that a standard (i.e., zero-mean, umt-vari- 
ante) normal density can be described by the Gram- 
Charlier expansion with lyO = 1, and CX~ = 0, k 2 1. We 
say then that the series expansion of (35a) is “matched” to 
a standard normal density. Thus, it is possible to express a 
pdf close to standard normal by means of the 
Gram-Charlier expansion with a small number of coeffi- 
cients. Indeed, this has been the case for the pdf of the 
prediction error at high rates. (At high rates, where the 
quantization error is small, we have E, = W,, and hence 
E,, has a density close to the standard normal.) In fact, for 
the Gauss-Markov source with p = 0.8, as Amstein [5] 
correctly points out, even at rates as low as 1 b/sample a 
small number of coefficients provide sufficient accuracy. In 
Tables III and IV, for H, = 1 b/sample we have presented 
the steady-state expansion coefficients describing the pdf 

C. Convergence and Uniqueness 

It can be observed from Figs. 3-8 that the solution to 
the necessary conditions for optimality is nonunique for 
output entropies in excess of 1 b/sample. Specifically, for 
1 I Ha < log *N there exist two couples (qN, pE) satisfy- 
ing Conditions 1 and 2 of Section III. From a rate-distor- 
tion standpoint, only that solution yielding the smaller 
distortion (lower portion of the performance curve) is 
useful. However, to demonstrate the nonunique nature of 
the solution and, more importantly, to study the behavior 
of the binary quantizer situation, we have in most cases 
included all these results, including nonoptimum ones, in 
our performance curves. 

As mentioned earlier, in all cases the two algorithms 
described in Section IV converged to the same optimum 
quantizer. The major difficulty in implementing these al- 
gorithms is computing the coefficients of the series expan- 
sion for the prediction error pdf. Recall that, in theory, an 
infinite matrix multiplication operation described by (38a) 
and (46a) is necessary to compute the steady-state expan- 
sion coefficients. In a practical situation, however, we are 

TABLE III 
STEADY-STATE HERMITE POLYNOMIAL EXPANSION 

COEFFICIENTS FOR A TWO-LEVEL OPTIMAL 

SYSTEM DRIVEN BY A STATIONARY 

GAUSS-MARKOV SOURCE WITH 

D = 0.8a 

(Yg = l.OOOOOO 
a2 = 0.155708 
a4 = 0.226487 E-01 
a6 = 0.253093 E-02 
as = 0.231255 E-03 

alo = 0.180370 E-04 
ci12 = 0.123977 E-05 
* 14 = 0.767338 E-07 
al6 = 0.433662 E-08 
a,, = 0.225994 E-09 
a 2. = 0.109315 E-10 

&2k+l = 0, kO,l, . . 

aN = 2, TV = 0, Q, = -Q, = 0.9081. Normalized 
Distortion = 0.17508; output entropy = 1.00. 

TABLE IV 
STEADY-STATE HERMITE POLYNOMIAL EXPANSION 

COEFFICIENTS FOR A THREE-LEVEL UNIFORM 

THRESHOLD OPTIMAL SYSTEM DRIVEN BY A 

STATIONARY GAUSS-MARKOV SOURCE 

WITH p = 0.8a 

(Y() = 1.OOOOOO 
a2 = 0.180650 
CQ = 0.277711 
a6 = 0.294607 
as = 0.234260 

alo = 0.144731 
al2 = 0.714309 
al4 = 0.288450 
l-xl6 = 0.973740 
a,, = 0.280507 
a2o = 0.704617 

a 2k-1 - -0 k= t 

E-01 
E-02 
E-03 
E-04 
E-06 
E-07 
E-09 
E-10 
E-12 

O,l, .‘. 

aN = 3, T2 = - Tl = 1.3850, Q3 = -Q, = 1.9736, 
Q, = 0. Normalized Distortion = 0.20323; output en- 
tropy = 1.0096. 
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of the prediction error when the source is Gauss-Markov 
with p = 0.8 and the quantizers are the optimum two and 
three-level quantizer, respectively. Note that our results for 
the binary quantizer agree with Amstein’s [5]. In all cases, 
we have taken the number of coefficients large enough so 
that no discernable change in the results can be achieved 
by any further increase. 

At low rates, the variance of the prediction error in- 
creases. In fact, in the extreme case of H,, = 0, IJ~ = l/(1 
- p2). (This occurs when the middle quantization interval 
occupies the entire support of the prediction error pdf. In 
this case Y, = 0 and hence E, = X,.) Therefore, for (p] 
close to one, u,$ becomes very large and hence the predic- 
tion error pdf deviates considerably from the standard 
normal density. Therefore, in the low-rate regime, a larger 
number of coefficients is required. Indeed, for p = 0.8 we 
had to use 56 coefficients in the expansion of the predict- 
ion error pdf for H, = 0.53 b/sample. This has been the 
lowest rate for which we were able to obtain the optimum 
performance for p = 0.8. 

For Laplace-Markov sources the situation is slightly 
different. The series expansion based, on Laguerre poly- 
nomials given in (42a) is matched to a Laplacian density 
described by (40a). Therefore, a pdf close to Laplacian can 
be expressed by (42a) with a small number of coefficients. 
This is the case for the pdf of the prediction error when the 
output entropy is small. More specifically, E,, = X,, so that 
pE( 0) is close to that given by (40a). At higher rates, where 
the pdf of the prediction error deviates from a Laplacian 
density, a larger number of coefficients is required. This 
has been the major difficulty in obtaining the rate-distor- 
tion performance of the DPCM quantization scheme driven 
by Laplace-Markov sources at high rates. 

VII. ASYMPTOTICRESULTSANDBOUNDS 

Let us assume that an optimal DPCM coding scheme 
with entropy constraint H, is designed, and let P;( .) 
denote the steady-state marginal pdf of the prediction error 
sequence. If the prediction error exhibits a certain degree 
of smoothness, the asymptotic result developed by Gish 
and Pierce [29] determines the rate-distortion performance 
of the optimum quantizer at high rates. Specifically, if the 
number of quantization levels N is large and if the output 
entropy H, is also large (low distortion), then the average 
quantization error D is given by 

(47) 

where h g is the differential entropy of a memoryless source 
with pdf pg( e). 

It is the intent of this section to develop similar asymp- 
totic formulas for the performance of DPCM encoding 
schemes at high rates and make appropriate comparisons 
with the rate-distortion function lower bound for both 
Gauss-Markov and Laplace-Markov sources. The follow- 
ing theorem proves useful in the development. 

Theorem 3: Let R,(D) and R,(D) be the rate-distor- 
tion functions (subject to a squared-error distortion mea- 
sure) of the input process { X, } and the prediction error 
process { E, }, respectively. Then there is a critical distor- 
tion D,* > 0 such that 

R,(D) = R,(D), D ~(0, D;]. 

Proof: For convenience we assumed M = 1. Then 
(lla) and (llb) yield 

n-1 

Tn = Y, + c piY,-i, 
i=l 

and hence 
n-1 

n = 1,2,-s., (48) 

Xn = En + C P%N(En-i), n=1,2;+.. (49) 
i=l 

Now if we define XN and EN as in Theorem 2, we can 
write 

XN = FN(EN), (50) 

where FN is a nonlinear operator. Letting JFN define the 
Jacobian of this transformation, we have 

JFN = det z [ 1 J 

(51) 

It is easily shown that the Jacobian matrix is a lower 
triangular matrix with diagonal entries equal to one. Thus 

JF, = 1. (52) 

Conversely, we can write 

EN = F;‘(XN), (53) 

where F;l is the inverse of FN. Here, again we can show 
that the Jacobian of F;l is unity, i.e., 

J&l = 1. (54) 

Now we resort to a Theorem by Hopkins [31, Theorem 
2.21 in which it is established that 

R,(D) 2 R,(D) - ClirnIj N-tco N R,p%dhslJFNlde~ 

(55) 

for D E (0, D:], where D; > 0 and pi( .) is the N-fold 
pdf of the prediction error sequence. Using (52) we can 
write the last inequality as 

Rx(D) 2 R,(D), D E (0, D;] . (56) 

Interchanging the roles of X and E and using (54) we will 
have 

R,(D) 2 Rx(D), D E (0, D;] > (57) 

where D$ > 0. Now comparing (56) and (57) yields 

R,(D) = R,(D), D +,Dc*], (58) 

where D,* = min { D,T, D,T ) > 0, which was to be proved. 
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This theorem, in effect, substantiates the fact that at high 
rates the rate-distortion function of the source and predic- 
tion error coincide. This is not surprising, however, since at 
high rates the prediction error is very close to the innova- 
tion sequence { W, } generating the input autoregressive 
process and it is established by Gray [32] for Gaussian 
autoregressive processes, and by Hopkins [31] for a generic 
autoregressive process, that there is a critical distortion DC 
below which the rate-distortion functions of the source 
{ X, j and the innovation sequence { W, } coincide. 

In general, we conjecture that the rate-distortion func- 
tion of the prediction error is upper bounded by the source 
rate-distortion function and lower bounded by the innova- 
tion sequence rate-distortion function. This is based on the 
argument that when the quantizer is very fine so that 
qN(x) = x, E, equals W, and hence R,(D) = R,(D). On 
the other hand, when the quantizer is very coarse so that 
qN(x) = 0, V’x, E, = X,, and thus R,(D) = R,(D). In 
intermediate cases, we suspect R,(D) I RE( D) I 
R,( 0). This conjecture remains to be proved. At high 
rates (i.e., D I min {D,*, DC}), however, we do have 

R,(D) = R,(D) = R,(D). (59) 

A. Asymptotic Results 

For the Gauss-Markov case, at high rates the prediction 
error possesses a normal density for which the Gish-Pierce 
asymptote is valid, as given by (47), with 

hg = i log 22rreuz. (60) 

But from (28) we have 

2- 2 
‘E - ‘W + p2D. (61) 

Thus, (47) can be written as 

(62) 

which determines the asymptotic behavior of the system at 
high rates. Notice that for Ho sufficiently large we have 

b( Ho) = ( re/6)u$2-2H0, @a) 

or, correspondingly, 

Ho = i log,(*e/6) + i log,(u$/D). (63b) 

This asserts that at high rates there is a (l/2) log 2( re/6) 
= 0.255 b/sample difference between R,(D) = R,(D) 
and the asymptotic result. This, of course, conforms with 
the previously reported results in [9] and [33]. 

For the Laplace-Markov source this situation is totally 
different. This is mainly due to the fact that the Gish-Pierce 
result [29] requires a certain degree of smoothness in the 
source density. This, unfortunately, is not the case here due 
to the impulse component in (41b). In the following we 
provide some discussion of this subtle issue. 

Let us consider a memoryless source whose pdf is de- 
scribed by (41b). We want to obtain asymptotic results for 

the quantizer performance in this case. We assume that the 
point x = 0 is not the boundary of any two quantization 
intervals. This is because the point x = 0 occurs with a 
highly probability and, hence, assigning an appropriate 
representative level will help reduce the average distortion. 
We, moreover, assume that the point x = 0 belongs to the 
i*th quantization interval and Qi* = 0. Then the prob- 
ability of the i th quantization level is given by 

i # i* 

i = i* (64) 
3 

where P; is the corresponding probability of the ith quan- 
tization level when p = 0 in (41b). 

The quantizer output entropy is then given by 

Ho = -[p’ +(1 - p2)P,:] log,[$ +(1 - P2>P,:] 

- C (1 - p2)P;log2[(l - p’)Pj’], (65) 
i#i* 

which can be simplified to 

Ho = (1 - p2)Hi - p210g2[p2 +(1 - P”>P,:] 

-(l - p2)log,(l - p”) +(1 - p’)P,: 

*log 2 

(1 - p’)P,: 

p2 -(l - p”)P,:’ 
(66) 

where H,’ is the quantizer output entropy when p = 0. 
Furthermore, the average distortion can easily be shown to 
be 

D = (1 - p’)D’, (67) 

with D’ denoting the average distortion when p = 0. 
In the limiting case of fine quantization (where the 

Gish-Pierce result holds) we have PA = 0, and therefore, 

Ho = (1 - p2)H,’ + Z’(p’), 63) 

where &‘( .) is the binary entropy function given by 

x+Y) = -alog2a -(l - (“)log,(l - a), OrCY<l. 

(69) 

When p = 0 the Gish-Pierce result holds and we have 

D’ = +hr&‘, (70) 

in which h, is the differential entropy of the memoryless 
Laplacian source in (40a). Combining (67), (68), and (70) 
yields 

Dz1-P2 -22(h~-(Ho-~(p’))/(l-~‘)) 
12 > (71) 

which is the desired result. Note that a similar result holds 
for the general case in which the source density is a mixture 
of any smooth density and an impulse, provided that h, in 
(71) is replaced by the differential entropy of the smooth 
component. 

Carter and Neuhoff [34] have developed bounding tech- 
niques for the rate-distortion function of regenerative com- 
posite sources similar to that in (41b). Specifically, if the 
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source density p ( .) is described by 

P(X) = P2PlW +(1 - P2)P2(4Y (72) 

then the rate-distortion function is lower-bounded accord- 
ing to 

R(D) 2 D i&,{ p2Rl(Dl) +(l - P*)R,(D~)}, 
1, 2 

(W 

where R,(a) and R,( *) are the rate-distortion functions of 
pl( .) and p2( *), respectively, and 

9= {(D,, D,): P*D, +(I - p*)~, I D}. (73b) 

When pi(x) = 6(x), which is the case in (41b), we have 
R,(D,) = 0, and hence the infimum in (73a) occurs at 
D, = D/(1 - p*). Thus 

R(D) 2 (1 - p’)R, g R(D). (74 

Using the Shannon lower bound [28], which is tight at 
high rates, for R *( .) in (74) we can write 

R(D) 2 (1 - p’) 
2neD 

h, - + log,- 
I l-p2 * 

From (71) we have 

H,, =X(p’) +(l - p*) 
120 

h, - ilog,- 
1 - p2 

(75) 

1 2 P-6) 
which enables us to determine the difference between the 
rate-distortion function lower bound R(D) and the 
asymptotic performance expressed by (76). Unlike the 
Gish-Pierce result we get7 

AR&Ho-R(D)=X’(p2)+q log 2y 

= &‘(p’) + (1 - p*)O.255, b/sample. (77) 

Envision the memoryless source of (41b) as the output of 
a switch that randomly and independently moves between 
two positions: up and down. The switch is up with prob- 
ability p* and down with probability (1 - p*). When the 
switch is up its output is zero with probability one. When 
the switch is down its output is a real-valued variable 
distributed according to (40a). With this in mind an inter- 
esting interpretation for (77) can be provided. The quanti- 
zation performance penalty is a factor (1 - p2) of the 
ordinary penalty 0.255 b/sample plus an additional term 
equal to the uncertainty in the switch position. 

Note that, as one would expect, for p = 0, X(O) = 0, 
and AR = 0.255 b/sample. On the other hand, for p = 1, 
AR = 0. This makes sense, for at p = 1 the source output 
is zero with probability one and there is no uncertainty in 
the switch position. Straightforward differentiation implies 
that AR is maximized at 

P = /& = O-675 (78) 

and that AR max = log,(l + m) = 1.133 b/sample. 

'We conjecture that R(D) in (74) is tight. If this conjecture is true, the 
quantity AR is truly representative of the penalty due to zero-memory 
quantization of the source given by (72). 

415 

Now we are in a position to determine the asymptotic 
performance of the DPCM coding scheme driven by 
Laplace-Markov sources. We assume that at high rates the 
pdf of the error sequence is close to that of the innovation 
sequence. Thus using (71), we can write 

D = ~2”hi-(Ha-~~~?))/(l-~‘~~, (79) 

where h; is the differential entropy of the smooth compo- 
nent in the pdf of the prediction error. This quantity can 
easily be shown to be 

hZ = 1 + log 2 z b/sample. w-4 

Again, using (61), we can write the asymptotic perfor- 
mance as 

D= 
((1 _ P2)e2/3)2-*(H”-“r(pz))/(l-p2) 

1 _ ((1 - P*)e*p2/30ty)2-*(H,-~(~*))/(1-p2) 

$ &Ho). (81) 

For sufficiently large H,, (81) can be approximated by 

&(H,) = ((1 _ p2)e*/3)2-2(Ho-~(Pz))/(1-Pz), (82) 

or, equivalently, 

H,=&‘(p2)++&g2 3D . 
(1 - p2)e2 

(83) 

Comparing (83) to R(D) in (75), which is also a tight 
lower bound to Rx(D) at high rates, results in a difference 
equal to that given in (77), as one would expect. 

Asymptotic results illustrated in Figs. 3-5 and 6-8 are 
obtained by means of (62) and (81) respectively. 

B. Rate-Distortion Function Bounds 

For the Gaussian case the rate-distortion function can be 
calculated exactly [28], [32]. For the Laplacian case, for 
which the rate-distortion function is not known exactly, we 
have used upper and lower bounds. The upper bound is the 
well-known Gaussian upper bound [28] and the lower 
bound is the autoregressive lower bound [32]. This lower 
bound is determined in terms of the rate-distortion func- 
tion of the innovation sequence described by (41b). This 
rate-distortion function, in turn, has been lower bounded 
by the Carter-Neuhoff composite lower bound described 
in (74). (In Figs 3-8 the Gaussian upper bound and the 
combined autoregressive composite lower bound are desig- 
nated by R J D) and R L( D), respectively.) We have used 
the Blahut algorithm [35] for computing R2(.) in (74). 

VIII. SUMMARYANDCONCLUSIONS 

We have studied the structural properties of optimum 
DPCM schemes for Mth-order autoregressive inputs. Nec- 
essary conditions for optimality of the quantizer in these 
schemes are developed and algorithmic approaches for 
designing such quantizers are proposed. Also, difficulties 
inherent in computing the distribution of the prediction 
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error are examined carefully. To overcome these problems, 
we have developed series expansion methods matched to 
the source distribution. Our algorithmic procedures for 
optimum quantizer design are used in conjunction with the 
series expansion techniques to design optimum uniform- 
threshold entropy-constrained DPCM encoding schemes 
for first-order Gaussian and Laplacian autoregressive 
sources. It is shown that for Gaussian sources there could 
be a wide gap between the optimum performance and the 
rate distortion function at low rates, when the source is 
highly correlated. 

Asymptotic results, similar to those developed by Gish 
and Pierce [29] in the memoryless case, are developed in 
some detail. These results, which agree favorably with our 
numerical results in the Gaussian case, imply that at high 
rates there is only a 0.255-b/sample performance penalty. 
Corresponding asymptotic results for Laplacian sources 
demonstrate a wider gap between the optimum quantizer 
performance and the rate-distortion function lower bound. 
Unfortunately, at high correlation values our numerical 
results in the Laplacian case are not sufficient to demon- 
strate the validity of the predicted asymptotic performance. 
Because of the complexity of the quantizer design proce- 
dure at high rates when the number of levels is large, we 
were not able to provide performance results beyond N = 
17. 

In all our numerical results we have restricted attention 
to uniform-threshold quantizers. Obviously, removal of this 
constraint can only improve the performance. We have 
decided to forego studying this issue, however, because of 
the complexity of more general optimum entropy-con- 
strained quantizer design procedures. 

A logical extension of this research is to consider the 
case p = 1. Indeed, (1) with M = 1, p = 1 and Gaussian 
innovations represents the discrete-time version of the 
well-known Wiener process [6]. In this case the prediction- 
error density can be calculated explicitly, and hence there 
is no need for the series expansions. Another issue that 
remains to be thoroughly studied is a proof for the conver- 
gence of the algorithm as well as sufficient conditions for 
the quantizer optimality. 

Finally, we should note that we have considered only the 
first-order entropy of the quantizer output. At low rates, 
the prediction error is highly correlated and hence the 
entropy rate at the quantizer output might be noticeably 
lower than the first-order entropy. Computing or bounding 
this entropy rate is another issue that deserves study. 
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APPENDIX A 

RECURSIVEEQUATIONFORUPDATINGTHBHERMITE 

EXPANSIONCOEFFICIENTS 

In this appendix we present a simplified version of (38b) in the 
text. Also, formulas describing the quantizer output entropy and 
average distortion in terms of the Hermite expansion coefficients 
will be given. 

Let us define 

4;(y) A jm Pwb - P(Y - q,(.d)lH,(x) dx, 
--oo 

I = 0,l; . . . (A.l) 

Then, replacing pw(x) by g(x) and using (35c), it is easy to 
show that 

F,(Y) = P’b - %ml’, l=O,l;-.. (A.4 

Thus (38b) of the text can be written as 

4,,=$jm g(y)Hki,(y)[y-q,(y)l,‘d~, k,l=O,l>.... 
. -03 

(A.3) 

Again, using (35~) and integrating by parts yields the following 
result: 

&y fjTY (x - ei)‘-kd4 dx, I>k 
, 1 

A I,k = 

with 

r N-l 

PlIl- C (Qi+l 
L i=l 

N-l 

P’ c (Q,+I - Qi 
i=l 

A 0,o = 1 

A O,k = 0, k 2 1. 

I=k>l 

(A.4a) 

(A.4b) 

(A.4c) 

Here, as in [5], we have assumed that qh (x) is zero everywhere 
except where x - qN( x) is zero, in which case qj,,(x) is +tr 
impulse whose weight is equal to the quantizer jump at that 
point. 

Using (61) and the facts that u$ = 1 and ui = 2a, + 1 (cf. 
[ 5]), implies 

D4”. 
P’ 

(A.5) 

The quantizer output entropy H is given by (25), where P, can 
be expressed as 

But 

T 
s ( gx 
q-1 

4 = jT;lP,(x) dx 

= k~oakjT~~g(x)H,(X)dx. (A.61 

Hk(x) dx = g(T,-,)H,-,(T,-,) -g(T,)Hk-l(T,), 

k>l. (A.7) 
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and thus using (A.5) implies 

D = 4th - 2P, + 1) - 2(1 - P’) 

P” 
(B.8) 

I = 1,2,..., (A.s) 

which, together with (25), leads to a formula for Ho in terms of 

the expansion coefficients. 

APPENDIX B 

RECURSIVE EQUATION FOR UPDATING THE LAGIJERRE 

EXPANSION COEFFICIENTS 

In this appendix we present a simplification of (46b). Corre- 

sponding formulas for the output entropy and average distortion 

are also derived in terms of the Laguerre expansion coefficients. 

Upon defining 

G,(Y) p im{ PI& - P(Y - q,(y))] 

+P& + P(Y - q,v(~))l)WW~ 

y r. 0, 12 0, (B.l) 

we can write (46b) as 

B,,k =/mGt(y)W&)4, l,k= RI,..,. (B.2) 
0 

Similar to (A.6), we can express P, in terms of the Laguerre 

expansion coefficients by 

Noting that p ,+,( -) in (B.l) is given by (41b) and using (42c), the 

following simplified version of (B.l) can be obtained. 

G,(y) = P’ +(l - p2)2’-‘[l - exp{ -0 - q.dY)I)] 
VI 

+ i ci,rlPlilY - h4Y)li, 12 1, y 2 0, (B.3a) L2] 
i=l 

where [31 

ci,t~(-f)lj?21:[(j-:j+~(~)]+P2(~)}, [4] 

i = 1,2;. . ,I. (B.3b) ~51 

Also 
[61 

GO(Y) = 1 (B.4) 

Equations (B.3) and (B.4) are used to facilitate the computation [71 

of B,, k expressed by the double integration in (46b). 

Note that PI 

L,(x) = 1, @5a) L91 

L,(x) = 1 - x, (B.5b) 

and WI 

L*(x) = 1 - 2X + $2. (B.5c) [11] 

Therefore 
PI 

u; = 4( p2 - 2p, + 1). WI 

On the other hand, [I31 

uk=2(1-p*>, (B.7) 

(B.9a) 

while for f = (N + 1)/2 

p(N+ 1)/2 = 2 E Pk/qN+1)‘21( x) Lk( x) dx. (B.9b) 
k=O o 

But, 

/T~j(x)lk(x)dx=& [~(xk~tx),ll" , (B.104 

T-1 

= '2' (-l)kp'-j[Xk-je-X] ' 

j=o (k-j)! 
F-1 

(B.lOb) 

Equation (B.lOb), together with (B.9) and (25), describes the 
quantizer output entropy in terms of the expansion coefficients. 
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