
Rate-monotonic scheduling on uniform multiprocessors∗

Sanjoy K. Baruah

The University of North Carolina at Chapel Hill

Email: baruah@cs.unc.edu

Joël Goossens

Université Libre de Bruxelles

Email: joel.goossens@ulb.ac.be

Abstract

Each processor in a uniform multiprocessor ma-
chine is characterized by a speed or computing capac-
ity, with the interpretation that a job executing on a
processor with speed s for t time units completes (s× t)
units of execution. The scheduling of systems of peri-
odic tasks on uniform multiprocessor platforms using
the rate-monotonic scheduling algorithm is con-
sidered here. A simple, sufficient test is presented for
determining whether a given periodic task system will
be successfully scheduled by algorithm upon a particular
uniform multiprocessor platform — this test general-
izes earlier results concerning rate-monotonic schedul-
ing upon identical multiprocessor platforms.

Keywords. Uniform multiprocessors; periodic tasks;
global scheduling; static priorities; rate-monotonic al-
gorithm.

1. Introduction and Motivation

Safety-critical embedded systems are often com-
prised of very simple processes that are restricted to ex-
ecute in strictly-controlled environments. Such systems
are typically modelled as finite collections of simple,
highly repetitive tasks, each of which generates jobs
in a very predictable manner. These jobs have upper
bounds upon their worst-case execution requirements,
and associated deadlines. In the periodic model of
hard real-time tasks, a task is characterized by two

∗Supported in part by the National Science Foundation

(Grant Nos. CCR-9988327, ITR-0082866, and CCR-0204312).

parameters – an execution requirement and a period –
with the interpretation that the task generates a job
at each integer multiple of its period, and each such
job must execute for an amount equal to the execution
requirement of the job by a deadline equal to the next
integer multiple of the period. A periodic task sys-
tem consists of several independent such periodic tasks
that are to execute on a specified preemptive processor
architecture.

Dynamic and static priorities Run-time schedul-
ing is the process of determining, during the execution
of a real-time application system, which job[s] should
be executed at each instant in time. Run-time schedul-
ing algorithms are typically implemented as follows: at
each time instant, assign a priority to each active (in-
formally, a job becomes active at its ready time, and
remains so until it has executed for an amount of time
equal to its execution requirement, or until its deadline
has elapsed) job, and allocate the available processors
to the highest-priority jobs.

With respect to certain run-time scheduling algo-
rithms, it is possible that some tasks τi and τj both
have active jobs at times t1 and t2 such that at time
t1, τi’s job has higher priority than τj ’s while at time
t2, τj ’s job has higher priority than τi’s. Run-time
scheduling algorithms that permit such “switching” of
the order of priorities between tasks are known as dy-
namic priority algorithms. The earliest deadline first
scheduling algorithm (Algorithm EDF) [10, 6] is an ex-
ample of a dynamic priority algorithm. By contrast,
static priority algorithms must satisfy the constraint
that for every pair of tasks τi and τj , whenever τi and



τj both have active jobs, it is always the case that the
same task’s jobs have higher priority.

For systems comprised of periodic tasks that are to
execute upon a single shared processor , a very popu-
lar static-priority run-time scheduling algorithm is the
rate-monotonic scheduling algorithm (Algorithm RM )
[10]. Algorithm RM assigns each task a priority in-
versely proportional to its period – the smaller the pe-
riod, the higher the priority, with ties broken arbitrar-
ily but in a consistent manner: if periodic tasks τi and
τj have equal periods and τi’s job is given priority over
τj ’s job once, then all of τi’s jobs are given priority over
all of τj ’s jobs.

Multiprocessor Machines. In multiprocessor com-
puting platforms there are several processors available
upon which jobs may execute. In this paper, we study
the scheduling of hard-real-time systems on multipro-
cessor platforms, under the assumptions that while job
preemption and interprocessor migration is permitted
(i.e., a job executing on a processor can be interrupted
at any time, and its execution resumed later on the
same or a different processor, with no cost or penalty),
intra-job parallelism is forbidden (i.e., at any instant
in time each job may be executing on at most one pro-
cessor).

In much previous work concerning hard-real-time
scheduling on multiprocessors, it has been assumed
that all processors are identical. However, scheduling
theorists distinguish between at least three different
kinds of multiprocessor machines:

Identical parallel machines: These are multipro-
cessors in which all the processors are identical,
in the sense that they have the same computing
power.

Uniform parallel machines: By contrast, each
processor in a uniform parallel machine is char-
acterized by its own computing capacity, with
the interpretation that a job that executes on
a processor of computing capacity s for t time
units completes s× t units of execution. (Observe
that identical parallel machines are a special
case of uniform parallel machines, in which the
computing capacities of all processors are equal.)

Unrelated parallel machines: In unrelated parallel
machines, there is an execution rate ri,j associated
with each job-processor ordered pair (Ji, Pj), with

the interpretation that job Ji completes (ri,j × t)
units of execution by executing on processor Pj for
t time units.

Real-time scheduling theorists have extensively
studied uniprocessor hard-real-time scheduling; re-
cently, steps have been taken towards obtaining a bet-
ter understanding of hard-real-time scheduling on iden-
tical multiprocessors (see, e.g., [4, 12, 11, 3, 1]). How-
ever, not much is known about hard-real-time schedul-
ing on uniform or unrelated multiprocessors. While
it may be argued that the unrelated parallel machines
model is a theoretical abstraction of little significance
to the designers of real-time systems, we believe that
the uniform parallel machines model is a very rele-
vant one for modelling many actual application sys-
tems. There are several reasons for this:

• The existence of this model gives application sys-
tem designers the freedom to use processors of
different speeds, rather than constraining them
to always use identical processors. In fact, uni-
form multiprocessor platforms are already com-
mercially available – for instance the Compaq Al-
phaServer GS series (specifically the series GS 160
& GS 320 – see, e.g., [8]) supports mixed processor
speeds with up to 32 mixed processors.

• Even when all the processors available are identi-
cal, they may not all be exclusively available for
the execution of the real-time periodic tasks, but
may be required to devote a certain fraction of
their computing capacity to some other (non real-
time) tasks. Each such processor can be modelled
by another of lower computing capacity, with this
computing capacity indicative of the fraction of its
actual computing capacity that can be devoted to
periodic tasks.

• As new and faster processors become available,
one may choose to improve the performance of a
system by upgrading some of its processors. If the
only model we have available is the identical mul-
tiprocessors model, we must necessarily replace all
the processors simultaneously. With the uniform
parallel machines model, we can however choose
to replace just a few of the processors, or indeed
simply add some faster processors while retaining
all the previous processors.



Partitioned and global scheduling. In designing
scheduling algorithms for multiprocessor environments,
one can distinguish between at least two distinct ap-
proaches. In partitioned scheduling, all jobs gener-
ated by a task are required to execute on the same
processor. Global scheduling, by contrast, permits
task migration (i.e., different jobs of an individual task
may execute upon different processors) as well as job-
migration: an individual job that is preempted may
resume execution upon a processor different from the
one upon which it had been executing prior to preemp-
tion.

It has been proven by Leung and Whitehead [9] that
the partitioned and global approaches to static-priority
scheduling on identical multiprocessors are incompara-
ble, in the sense that (i) there are task systems that
are feasible on m identical processors under the parti-
tioned approach but for which no priority assignment
exists which would cause all jobs of all tasks to meet
their deadlines under global scheduling on the same
m processors; and (ii) there are task systems that are
feasible on m identical processors under the global ap-
proach, but which cannot be partitioned into m distinct
subsets such that each individual partition is unipro-
cessor static-priority feasible. This result of Leung and
Whitehead [9] provides a very strong motivation to
study both the partitioned and the non-partitioned ap-
proaches to static-priority multiprocessor (identical as
well as uniform) scheduling, since it is provably true
that neither approach is strictly better than the other.

In [2], the rate-monotonic scheduling of periodic
real-time task systems upon identical multiprocessor
platforms was studied. A utilization bound was de-
rived such that any periodic task system with cumula-
tive utilization no larger than this bound is guaranteed
to be successfully scheduled by Algorithm RM upon
an identical multiprocessor platform (this result is de-
scribed in Section 2). In a sense, the results of [2] are a
logical extension to the results concerning uniprocessor
rate-monotonic scheduling. In this paper, we carry this
logical progression one step further, by further gener-
alizing the multiprocessor machine model. That is, we
study the rate-monotonic scheduling of periodic task
systems upon uniform multiprocessor platforms: mul-
tiprocessors which may be comprised of processors of
different computing capacities. As in [2], we derive suf-
ficient conditions for determining whether any periodic
task system is successfully scheduled by Algorithm RM

upon a given uniform multiprocessor platform.
The remainder of this paper is organized as follows.

In Section 2, we provide the background necessary for
understanding the results that follow. In Section 3, we
derive our sufficient RM-feasibility test for periodic task
systems upon uniform multiprocessors. We conclude in
Section 4 with a summary of the results presented here.

2. Model and background

In this section, we (i) introduce some definitions
and formal notation concerning scheduling upon uni-
form multiprocessor platforms, and (ii) present without
proof previously-published results that will be used in
this paper.

Periodic task systems. A periodic task τi =
(Ci, Ti) is characterized by two parameters – an exe-
cution requirement Ci and a period Ti – with the in-
terpretation that the task generates a job at each inte-
ger multiple of Ti, and each such job has an execution
requirement of Ci execution units, and must complete
by a deadline equal to the next integer multiple of Ti.
We assume that preemption is permitted – an execut-
ing job may be interrupted, and its execution resumed
later, with no loss or penalty. A periodic task system
consists of several independent such periodic tasks that
are to execute on a specified preemptive processor ar-
chitecture. Let τ = {τ1, τ2, . . . , τn} denote a periodic
task system. For each task τi, define its utilization
Ui to be the ratio of τi’s execution requirement to its
period: Ui

def= Ci/Ti. We define the cumulative utiliza-
tion U(τ) of periodic task system τ (often, the word
“cumulative” is dropped and this is called simply the
utilization of τ) to be the sum of the utilizations of all
tasks in τ : U(τ) def=

∑
τi∈τ Ui. Furthermore, we define

the maximum utilization Umax(τ) of periodic task sys-
tem τ to be the largest utilization of any task in τ :
Umax(τ) def= maxτi∈τ Ui.

Without loss of generality, we assume that Ti ≤ Ti+1

for all i, 1 ≤ i < n; i.e., the tasks are indexed according
to period.

In this paper, we assume that our model allows for
job preemptions and interprocessor migrations for free
— i.e., a job executing on a processor may be inter-
rupted at any instant and its execution resumed later
on the same or a different processor with no cost or
penalty. In actual systems (particularly in distributed



systems), these assumptions are often not valid: in par-
ticular, interprocessor migration incurs a cost since the
run-time state of the executing task must also be mi-
grated to the destination processor. Nevertheless, we
can easily bound from above the maximum number of
such interprocessor migrations that any individual job
will have to undergo; the total cost of all such migra-
tions can be amortized among the individual jobs by
“charging” each job for a certain number of such mi-
grations (i.e., by inflating each job’s execution require-
ment by an appropriate amount). In this manner, we
abstract away the effects of interprocessor migrations
from our formal model.

Our model forbids job-level parallelism – at any in-
stant in time, each job may be executing upon at most
one processor.

Uniform multiprocessors. In contrast to identical
multiprocessors (in which all processors are assumed
to be equally powerful), each processor in a uniform
multiprocessor machine is characterized by a speed or
computing capacity, with the interpretation that a job
executing on a processor with speed s for t time units
completes (s × t) units of execution. It is convenient
to define some notation with respect to uniform multi-
processors.

Definition 1 Let π denote a uniform multiproces-
sor platform.

• The number of processors comprising π is denoted
by m(π).

• For all i, 1 ≤ i ≤ m(π), the speed (the comput-
ing capacity) of the i’th-fastest processor in π is
denoted by si(π), i.e., the speeds are indexed in a
non-increasing manner.

• The total computing capacity of all the processors

in π is denoted by S(π): S(π) def=
m(π)∑
i=1

si(π).

In scheduling theory, a scheduling algorithm is said
to be work conserving (equivalently, to not use inserted
idle time), if it is the case that the algorithm never idles
a processor while there is some active job awaiting ex-
ecution which may legally execute upon this processor.
With respect to uniform multiprocessor platforms, we
need a somewhat stronger notion of work-conservation:

not only should no processor be idled while there are
jobs awaiting execution, but if there are fewer active
jobs than processors available at any instant in time,
then it is the slowest processors that is idled. This
notion is formalized in the following definition:

Definition 2 (Greedy scheduling algorithm.) A
uniform multiprocessor scheduling algorithm is said
to be greedy if it satisfies all three of the following
conditions.

1. It never idles a processor when there are jobs
awaiting execution.

2. If it must idle some processor (because fewer active
jobs are available than processors), then it idles
the slowest processors. That is, if it is the case
that at some instant t the j’th-slowest processor is
idled, then the k’th-slowest processor is also idled
at that instant t, for all k > j.

3. It always executes higher-priority jobs upon faster
processors. That is, if the j’th-slowest processor is
executing job J at time t, it must be the case that
the priority of J is no smaller than the priorities
of the jobs (if any) executing on the k’th slowest
processor, for all k > j.

In the remainder of this paper, we will assume that
Algorithm RM is implemented in a greedy manner upon
uniform multiprocessors.

We now define two important additional parameters
of uniform multiprocessor platforms; as we will see later
in this paper, these parameters succinctly capture the
characteristics of uniform multiprocessors that are par-
ticularly relevant in determining whether a task system
is successfully scheduled upon the platform by Algo-
rithm RM.

Definition 3 (λ and µ)

For any uniform multiprocessor platform π, we define
a parameter λ(π) as follows:

λ(π) def=
m(π)
max
i=1

{∑m(π)
j=i+1 sj(π)

si(π)

}
(1)

For any uniform multiprocessor platform π, we define
a parameter µ(π) as follows:

µ(π) def=
m(π)
max
i=1

{∑m(π)
j=i sj(π)
si(π)

}
(2)



Parameters λ(π)and µ(π) of a uniform multipro-
cessor system π intuitively measure the “degree” by
which π differs from an identical multiprocessor plat-
form. More specifically, λ(π) = (m− 1) and µ(π) = m

if π is comprised of m identical processors, and both
become progressively smaller as the speeds of the pro-
cessors differ from each other by greater amounts; in
the extreme, if si(π) >> si+1(π) for all i, then λ(π)
approaches zero and µ(π) approaches one.

Real-time job instances. At times, we find it con-
venient to represent a real-time system using a model
that is somewhat more general than the periodic task
model. We will then assume that a hard-real-time in-
stance is modelled as a collection of independent jobs.
Each job Jj = (rj , cj , dj) is characterized by an ar-
rival time rj , an execution requirement cj , and a dead-
line dj , with the interpretation that this job needs to
execute for cj units over the interval [rj , dj). (Thus,
the periodic task τi = (Ci, Ti) generates an infinite se-
quence of jobs with parameters (k · Ti, Ci, (k + 1) · Ti),
k = 0, 1, 2, . . .; in the remainder of this paper, we will
sometimes use the symbol τ itself to denote the infi-
nite set of jobs generated by the tasks in periodic task
system τ .)

Definition 4 (W(A, π, I, t).) Let I denote any col-
lection of jobs, and π any uniform multiprocessor plat-
form. For any algorithm A and time instant t ≥ 0,
let W (A, π, I, t) denote the amount of work done by al-
gorithm A on jobs of I over the interval [0, t), while
executing on π.

The following theorem was proved in [7]; we will be
using it later in this paper.

Theorem 1 (From [7]) Let πo and π denote uniform
multiprocessor platforms. Let Ao denote any uniform
multiprocessor scheduling algorithm, and A any greedy
uniform multiprocessor scheduling algorithm. If the
following condition is satisfied by platforms πo and π:

S(π) ≥ S(πo) + λ(π) · s1(πo) (3)

then for any collection of jobs I and any time-instant
t ≥ 0,

W (A, π, I, t) ≥ W (Ao, πo, I, t) . (4)

3. RM-feasibility upon uniform proces-

sors

For any scheduling algorithm A and any processor
platform π, we say that τ is A-feasible upon π if τ

meets all deadlines when scheduled upon π by algo-
rithm A. We say τ is feasible upon π if it can be
scheduled to meet all deadlines upon π by an optimal
algorithm. In this section, we obtain sufficient condi-
tions for determining whether any periodic task system
is RM-feasible upon any given uniform multiprocessor
platform.

Consider a periodic task system τ and a uniform
multiprocessor platform π, and suppose that τ and π

satisfy the following relationship:

S(π) ≥ 2 · U(τ) + µ(π) · Umax(τ) (5)

Let us consider the RM-scheduling of τ upon π.
Without loss of generality, assume that ties are bro-

ken by Algorithm RM such that τi has greater priority
than τi+1 for all i, 1 ≤ i < n. Notice that whether
jobs of τk meet their deadlines under Algorithm RM

depends only upon the jobs generated by the tasks
{τ1, τ2, . . . , τk}, and are completely unaffected by the
presence of the tasks τk+1, . . . , τn. For k = 1, 2, . . . , n,
let us define the task-set τ (k) as follows:

τ (k) def= {τ1, τ2, . . . , τk}.

We now present three lemmas that characterize the
scheduling of periodic task system τ on uniform multi-
processors, and which lead up to our major result that
any periodic task system τ satisfying Condition 5 is
RM-feasible upon π. For each k, Lemma 1 below iden-
tifies a uniform multiprocessor platform πo upon which
τ (k) is feasible — while it is not relevant to our purpose
here, this πo is the “minimal” (i.e., least powerful) plat-
form upon which τ (k) is feasible. Using this lemma and
Theorem 1, we are able to conclude (Lemma 2) that for
any π satisfying Condition 5, the total work done on
jobs of τ (k) by any time instant t by Algorithm RM

executing upon π is at least t times the cumulative uti-
lization of τ (k) (intuitively, this means that RM while
executing τ (k) on platform π never “falls behind” with
respect to the total amount of work done). These two
lemmas together allow us to derive Lemma 3, which
concludes that all jobs of τ (k) will meet their deadlines
in the RM-generated schedule upon π. Proofs of Lem-
mas 1 and 2 are provided here; however the proof of



Lemma 3 is considerably longer and is hence omitted
due to space considerations. A proof of Lemma 3 may
be found in the journal version of this paper [5].

Lemma 1 Task system τ (k) is feasible on a uniform
multiprocessor platform πo satisfying the conditions

1. S(πo) = U(τ (k)), and

2. s1(πo) = Umax(τ (k)).

Proof: Set πo equal to a uniform multiprocessor con-
sisting of k processors, with computing capacities equal
to C1/T1, C2/T2, . . ., Ck/Tk respectively. It is easy
to see that τ (k) is feasible upon this πo: an optimal
scheduling algorithm opt would simply schedule each
task exclusively upon the processor that has computing
capacity equal to that task’s utilization.

Lemma 2 For all k ≥ 1 and all for all t ≥ 0,

W (RM, π, τ (k), t) ≥ t ·

 k∑
j=1

Uj

 (6)

Proof Sketch: Recall that we are assuming that π

and τ satisfy Condition 5. Since(
2 · U(τ) ≥ 2 · U(τ (k)) ≥ U(τ (k))

)
and (µ(π) ≥ λ(π)) ,

we may conclude that

S(π) ≥ 2 · U(τ) + µ(π) · Umax(τ) (By Cond 5)

i.e. S(π) ≥ U(τ (k)) + λ(π) · Umax(τ (k)) (7)

From Inequality 7, Condition 3 and Lemma 1 above,
and the fact that Algorithm RM is greedy, it follows
that

W (RM, π, τ (k), t) ≥ W (opt, πo, τ
(k), t)

where πo and opt are as described in the proof of
Lemma 1. However,

W (opt, πo, τ
(k), t) =

 k∑
j=1

Uj

 ;

and Inequality 6 thus follows directly from Theorem 1.

The proof of the following lemma may be found
in [5].

Lemma 3 All jobs of τk meet their deadlines when
τ (k) is scheduled upon π using Algorithm RM.

Theorem 2 Given a periodic task system τ and a uni-
form multiprocessor platform π,

S(π) ≥ 2 · U(τ) + µ(π) · Umax(τ)

is a sufficient condition for ensuring that τ is RM-
feasible upon π.

Proof: When τ and π satisfy the condition of the
theorem (which is exactly Condition 5), it follows from
Lemma 3 that Algorithm RM schedules τ (k) in such a
manner that all jobs of the lowest-priority task τk com-
plete by their deadlines. The correctness of Theorem 2
immediately follows, by induction on k.

We can apply Theorem 2 to identical multiproces-
sors to obtain a result similar to a result in [2]:

Corollary 1 Any periodic task system in which each
task’s utilization is no more than one-third, and the
sum of the utilizations of all the tasks is no more than
m/3, is successfully scheduled by Algorithm RM upon
m unit-capacity processors.

Proof: Let τ denote the periodic task system: by
the antecedents of the corollary, U(τ) ≤ m/3 and
Umax(τ) ≤ 1/3. Let π denote an m-processor identi-
cal multiprocessor platform comprised of unit-capacity
processors; by definition,

µ(π) def=
m(π)
max
i=1

{∑m(π)
j=i sj(π)
si(π)

}
=

{m

1

}
= m .

By Theorem 2, τ is RM-feasible upon π if

S(π) ≥ 2 · U(τ) + µ(π) · Umax(τ)

≡
(

m ≥ 2 · m

3
+ m · 1

3

)
≡ (m ≥ m) ,

which is true.

4. Conclusions

Our contribution in this paper can be summarized
as follows: we have obtained here the first non-trivial
feasibility test for a static-priority scheduling algorithm
that adopts a global approach to task allocation upon
uniform multiprocessors. That is, we have studied the



behaviour of Algorithm RM — one such previously-
defined [10, 2] static-priority global scheduling algo-
rithm — upon uniform multiprocessor platforms. We
have obtained simple sufficient conditions for determin-
ing whether any given periodic task system will be suc-
cesfully scheduled by Algorithm RM upon a given uni-
form multiprocessor platform.

References

[1] Anderson, J., and Srinivasan, A. Early
release fair scheduling. In Proceedings of the
EuroMicro Conference on Real-Time Systems
(Stockholm, Sweden, June 2000), IEEE Computer
Society Press, pp. 35–43.

[2] Andersson, B., Baruah, S., and Jansson, J.

Static-priority scheduling on multiprocessors. In
Proceedings of the IEEE Real-Time Systems Sym-
posium (December 2001), IEEE Computer Society
Press, pp. 193–202.

[3] Aydin, H., Mejia-Alvarez, P., Melhem, R.,

and Mosse, D. Optimal reward-based schedul-
ing of periodic real-time tasks. In Proceedings of
the Real-Time Systems Symposium (Phoenix, AZ,
December 1999), IEEE Computer Society Press.

[4] Baruah, S., Cohen, N., Plaxton, G., and

Varvel, D. Proportionate progress: A notion of
fairness in resource allocation. Algorithmica 15, 6
(June 1996), 600–625.

[5] Baruah, S., and Goossens, J. Rate-monotonic
scheduling on uniform multiprocessors. IEEE
Transactions on Computers. Accepted for pub-
lication.

[6] Dertouzos, M. Control robotics : the procedu-
ral control of physical processors. In Proceedings
of the IFIP Congress (1974), pp. 807–813.

[7] Funk, S., Goossens, J., and Baruah, S. On-
line scheduling on uniform multiprocessors. In
Proceedings of the IEEE Real-Time Systems Sym-
posium (December 2001), IEEE Computer Society
Press, pp. 183–192.

[8] Gharachorloo, K., Sharma, M., Steely, S.,

and Doren, S. V. Architecture and design of
AlphaServer GS320. ACM SIGPLAN Notices 35,
11 (Nov. 2000), 13–24.

[9] Leung, J., and Whitehead, J. On the com-
plexity of fixed-priority scheduling of periodic,
real-time tasks. Performance Evaluation 2 (1982),
237–250.

[10] Liu, C., and Layland, J. Scheduling algorithms
for multiprogramming in a hard real-time environ-
ment. Journal of the ACM 20, 1 (1973), 46–61.

[11] Moir, M., and Ramamurthy, S. Pfair schedul-
ing of fixed and migrating tasks on multiple re-
sources. In Proceedings of the Real-Time Systems
Symposium (Phoenix, AZ, December 1999), IEEE
Computer Society Press.

[12] Phillips, C. A., Stein, C., Torng, E., and

Wein, J. Optimal time-critical scheduling via
resource augmentation. In Proceedings of the
Twenty-Ninth Annual ACM Symposium on The-
ory of Computing (El Paso, Texas, 4–6 May 1997),
pp. 140–149.


