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Abstract

Caching in the World Wide Web is based on two critical
assumptions: that a significant fraction of requests reac-
cess resources that have already been retrieved; and that
those resources do not change between accesses.

We tested the validity of these assumptions, and their
dependence on characteristics of Web resources, includ-
ing access rate, age at time of reference, content type,
resource size, and Internet top-level domain. We also
measured the rate at which resources change, and the
prevalence of duplicate copies in the Web.

We quantified the potential benefit of a shared proxy-
caching server in a large environment by using traces
that were collected at the Internet connection points for
two large corporations, representing significant numbers
of references. Only 22% of the resources referenced in
the traces we analyzed were accessed more than once,
but about half of the references were to those multiply-
referenced resources. Of this half, 13% were to a re-
source that had been modified since the previous traced
reference to it.
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We found that the content type and rate ofaccess have
a strong influence on these metrics, the domain has a
moderate influence, and size has littleeffect. In addition,
we studied other aspects of the rate of change, including
semantic differences such as the insertion or deletion of
anchors, phone numbers, and email addresses.

1 Introduction

The design and evaluation of Web server caches, and es-
pecially of caching proxy servers, depends on the dy-
namics both of client reference patterns and of the rate
of change of Web resources. Some resources are ex-
plicitly indicated as uncacheable, often because they are
dynamically generated. Other resources, though appar-
ently cacheable, may change frequently. When a re-
source does change, the extent of the change can affect
the performance of systems that usedelta-encodingsto
propagate only the changes, rather than full copies of
the updated resources [2, 12, 16]. The nature of the
change is also relevant to systems that notify users when
changes to a page have been detected (e.g., AIDE [7]
or URL-minder [17]): one would like to have a metric
of how “interesting” a change is. One example of an
interesting change is the insertion of a new anchor (hy-
perlink) to another page.

A number of recent studies have attempted to character-
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ize the World Wide Web in terms of content (e.g., [4,
22]), performance (e.g., [20]), or caching behavior
(e.g., [11]). These studies generally use one of two ap-
proaches to collect data, either “crawling” (traversing a
static Web topology), or analyzing proxy or server logs.
Data collected using a crawler does not reflect the dy-
namic rates of accesses to Web resources. Data collected
by analyzing logs can provide dynamicaccess informa-
tion, such as access times and modification dates (al-
though most existing servers and proxies provide meager
log information, at best, and dynamically generated data
will not typically include modification information).

To quantify the rate, nature, and extent of changes to
Web resources, we collected traces at the Internet con-
nections for two large corporate networks, including the
full contents of request and response messages. One of
these traces, obtained over 17 days at the gateway be-
tween AT&T Labs–Research and the external Internet,
consists of 19 Gbytes of data. The other trace, obtained
over 2 days at the primary Internet proxy for Digital
Equipment Corporation, was collected by modifying the
proxy software to record HTTP messages for selected
URLs; it amounts to 9 Gbytes of data. The traces used
in our study have been described elsewhere [16] and are
discussed in greater detail in Section 2.

Our trace collection and analysis were motivated by sev-
eral questions. A primary issue was the potential benefit
of delta-encoding and/or compression to reduce band-
width requirements, a study of which was presented sep-
arately [16]. Here we address other aspects of the rate
of change. When possible, we consider how the met-
ric is affected by variables such as frequency of access,
content type, resource size, site, or top-level domain
(TLD)1. We answer questions such as:

� How frequently are resources reaccessed? The fre-
quency of reaccess is essential to the utility of
caching and delta-encoding.

� What fraction of requests access a resource that has
changed since the previous request to the same re-
source? If the fraction is high, simple caching may
prove much less useful than a scheme that can take
advantage of delta-encodings.

� How “old” are resources when accessed, i.e., what

1We use Bray's classification of TLDs [4], such as educational,
commercial, government, regional, and so on.

is the difference between the reference time and the
last-modified time? The age of resources can be
an important consideration in determining when to
expire a possibly stale copy [11].

� For those references yielding explicit modification
timestamps, how much time elapses between modi-
fications to the same resource, and how do the mod-
ification rate and access rate of a resource interact?
If a cache can detect modifications at regular in-
tervals, it can use that information to improve data
consistency.

� How much duplication is there in the Web? When
one requests resourceX, how often does one get
something identical to resourceY, either on the
same host or another one? Examples of such du-
plication include explicit mirrors and cases where
a particular resource, such as an image, has been
copied and made available under many URLs. The
rate of duplication may be important to the success
of protocols such as the proposed “HTTP Distribu-
tion and Replication Protocol” (DRP) [19], which
would use content signatures, such as an MD5
checksum, to determine whether the content of a
resource instance is cachedunder a different URL.

� Can we detect and exploit changes in seman-
tically distinguishable elements of HTML doc-
uments, including syntactically marked elements
such as anchors and other interresource references
(i.e., HREF tags), and untagged elements such as
telephone numbers and email addresses?

Our analyses show that over a period of over two weeks,
many resources were never modified, others were mod-
ified often, and a significant fraction were modified at
least once between each traced access. The rate of
change depends on many factors, particularly content
type but also TLD. On the other hand, the size of a re-
source does not appear to affect modification rates. A
significant fraction of resources overlap within or be-
tween sites (i.e., different URLs refer to identical bod-
ies). Our analysis of semantically distinguishable el-
ements showed that some elements, such as telephone
numbers, are relatively stable across versions; others,
such as image references, are more likely to change from
one version to another and in some cases are replaced
completely on a regular basis.

Douglis, et al. USITS'97
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The rest of this paper is organized as follows. Section 2
describes our traces. Section 3 elaborates on the metrics
we have considered and reports our results. Section 4
discusses related work, and Section 5 concludes.

2 Traces

Both the Digital and AT&T traces stored full-content re-
sponses for a collection of outgoing HTTP requests from
a corporate community. They did not log non-HTTP re-
sponses, and the AT&T trace also omitted HTTP trans-
fers from a port other than the default HTTP port 80
(these constituted less than 1% of the data).

The AT&T trace was collected by monitoring pack-
ets through the AT&T Labs–Research firewall. All re-
sources were logged, enabling us to consider the ef-
fects of content-type on the AT&T reference stream.
The trace consists of 950,000 records from 465 distinct
clients accessing 20,400 distinct servers and referencing
474,000 distinct URLs.

The Digital trace was gathered by a proxy server that
passed requests through a corporate firewall. The proxy
did not cache resources, though clients could. Due to
storage constraints, the trace software filtered out re-
sources with a set of extensions that suggested binary
content, such as images and compressed data. Most,
but not all, logged resources were textual data such as
HTML.

Due to space constraints, we present results only for the
AT&T trace. The restrictions on content-type in the Dig-
ital trace made it less useful for some of our analyses,
but where we could obtain comparable results from both
traces, we found them quite similar. The results from the
Digital trace are available in an extended version of this
paper [8].

3 Results

The following subsections correspond to the metrics dis-
cussed in the first section. Figure 1 provides a graphical
representation of several of the attributes and their re-
lationships to each other. Our metrics are derived from

normalized time

0.0 0.2 0.4 0.6 0.8 1.0

ref
mod
no change
change
first full body

Figure 1: Visualization of the access stream for one
resource. Thex-axis represents a fraction of the pe-
riod from the earliest last-modified timestamp for the
resource until the latest reference to it. Each metric is
spread across they-axis (refer to the legend, and to the
text for a detailed explanation.)

these attributes. For a particular resource, we consider a
stream of accesses to it and the information available for
each access. For status-200 responses (which return the
body of the resource) and status-304 responses (which
indicate that the resource has not changed since a previ-
ous time, provided in the request), we examine several
attributes:

Request timesThe number of requests, and the time
between each requests, is shown by the� marks
in Figure 1.

Modification times The vast majority of status-200 re-
sponses (79%) contained last-modified timestamps
(+ marks in Figure 1). When no last-modified in-
formation was available but the content changed,
we assumed the resource was dynamically gener-
ated at the time of the request, and used theDate

response header (or the timestamp of the local host
if no Date header was provided).

Ages For those resources with a last-modified times-
tamp, the age2 of a resource is the difference be-

2Note that this use ofagediffers from the HTTP/1.1 terminology,
where a responseAge header indicates how long a response has been

Douglis, et al. USITS'97
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tween the request time and the last-modified time.
Otherwise, it is 0. In Figure 1, the age of each ref-
erence (� marks in Figure 1) is the difference be-
tween the timestamp of the reference and the modi-
fication timestamp immediately below or to the left
of the reference.

Modification intervals To determine the interval be-
tween modifications, we must first detect modifi-
cations. The last-modified timestamp is not al-
ways present, and when it is present, it sometimes
changes even when the response body does not.
Therefore, we detect changes by comparing the
bodies of two successive responses for a resource.
The first time a full-body response is received, we
cannot tell whether it has changed (r marks in
Figure 1). Subsequent references are indicated as
“no change” (x) or “change” (�). For those modi-
fied responses with a last-modified timestamp, the
time between two differing timestamps indicates a
lower bound on the rate of change: the resource
might have changed more than once between the
observed accesses. If a modified response lacks
a last-modified timestamp, then we assume that it
changed at the time the response was generated.
Again, the resource might have changed more than
once between the observed accesses.

Statistics

In the following subsections, we present informa-
tion about references and ages that span large time
intervals—as much as108 seconds (3.1 years) and
higher. To focus on the trends across a wide time range,
the graphs show the probability distributions with a log-
arithmic scale on thex-axis; they-axis remains on a lin-
ear scale to emphasize the most common values. While
a cumulative distribution function shows the probability
that a value is less thanx, it cannot clearly emphasize the
most common values. Such values become more appar-
ent when using a probability density of thelogarithmof
the data. Coupled with a logarithmic scale on thex-axis,
plotting the density of the logarithm of the data facili-
tates direct comparisons between different parts of the
graphs based on the area under the curve and is appro-
priate when using a logx-axis.

cached [9].

time (in sec.) between access to same URL
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Figure 2: Density of time between accesses to the same
resource, for all records in the AT&T trace. Time is
shown on a log scale. Standard time units are shown
across the top of the graph.

As we show later, content type bears on several of these
statistics. Table 1 shows the distribution of the content
types in the AT&T trace, as a fraction of unique re-
sources and of all responses. In some cases a resource
appeared with different content types over time, in which
case the content type of the resource in our studies was
determined by choosing the type that it appeared as most
frequently. In terms of requests, images contributed to
69% of all accesses, and 64% of all resources. HTML
accounted for just a fifth ofaccesses and about a quarter
of resources. Application/octet-stream resources, which
are arbitrary untyped data used by applications such as
Pointcast, accounted for most of the rest of theaccesses
and resources. In terms of bytes transferred, GIFs con-
tributed a relatively low amount of traffic for the number
of accesses or resources, while all other content types
contributed a greater share. (See [16] for additional
statistics about content types.)

3.1 Access Rate

Figure 2 plots the density of the time between accesses
to each resource for the AT&T trace. There are a number
of peaks, with the most prominent ones corresponding to
intervals of one minute and one day. The mean interar-
rival time was 25.4 hours with a median of 1.9 hours

Douglis, et al. USITS'97
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Content Accesses Resources
type % by count % by bytes % by count % by bytes
image/gif 57 36 48 18
text/html 20 21 24 33
image/jpeg 12 24 16 28
app'n/octet-stream 8 13 9 13
all others 2 6 3 8

Table 1: Content type distribution of the AT&T trace. Percentages do not sum to100% due to rounding.

and a standard deviation of 49.6 hours. The huge dif-
ference between the median and the mean indicates that
the mean is extremely sensitive to outliers. The mean
of the data after applying a log-transform3 gives a much
better indication of where the weight of the probability
distribution is. For this graph, the “transformed” mean
is 1.6 hours.

Of the 474,000 distinctresourcesaccessed in the AT&T
trace, 105,000 (22%) were retrieved in a way that
demonstrated repeated access: either multiple full-body
status-200 responses, or at least one status-304 response
that indicated that a client had cached the resource pre-
viously. A much higher portion ofreferences(49%)
demonstrated repeated access.

3.2 Change Ratio

We define thechange ratiofor a resource as the ratio
of new instances to total references, as seen in the trace
(i.e., the change ratio is the fraction of references to a
resource that yield a changed instance). Overall we see
that many resources are modified infrequently, but many
more are modified often, and 16.5% of the resources that
were accessed at least twice were modified every time
they were accessed. Relative to all responses that were
accesses more than once 13% had been changed since
the previous traced reference to it. Yet considering all
responses for which we could determine whether the re-
source was modified (either a status-304 response or a
status-200 response that followed a previous status-200
response), 15.4% of responses reflected a modified re-
source.

Figure 3(a) graphs the cumulative fraction of resources
that are at or below a given change ratio, orga-
nized by content type. Images almost never changed,
while application/octet-stream resources almost al-

3The log-transform of a set of data is exp(mean(log(data))).

ways changed. Fortext/html, slightly over half the re-
sources never changed, and most of the rest changed on
each access after the first. However, this apparent high
rate of change results largely from resources that were
accessed just two or three times. Figure 3(b) shows just
HTML resources, clustered by access count, and indi-
cates that there is much more variation among the re-
sources that were accessed six or more times, and that
only about a fifth of those resources were modified on
every access.

3.3 Age

Figure 4 presents density plots of the age of each re-
source when it is received, for those resources provid-
ing a last-modified timestamp. It omits resources for
which the modification date is the access time, such
as dynamically-generated data and particularly a large
number ofapplication/octet-stream resources. The
results are clustered in several ways:

a. Resources are clustered by number of references.
The most frequently referenced resources have the
highest clustering of age, around the period of 10
days to 10 months. The curves are generally sim-
ilar, indicating that the frequency of access does
not have a large effect on age, although the most
frequently accessed resources have a higher peak
followed by a shorter tail (indicating somewhat
younger responses overall).

b. Resources are clustered by content type, with
application/octet-stream having a shape similar
to the most frequent URLs in (a), since they con-
tribute most of the references to the most frequently
accessed resources. HTML responses are newer
than the other types, with a mean of 1.8 months and
a median of 12.8 days. This compares to a mean

Douglis, et al. USITS'97
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(b) HTML only, by number of references.

Figure 3: Cumulative distribution of change ratio for the AT&T trace.

of 3.8 months and median of 63.9 days forgif re-
sources, for example.

c. Resources are clustered by size. Here, there is not a
large distinction between sizes, although the small-
est resources tend to be somewhat older than oth-
ers. This is unsurprising since there are many small
images that are essentially static.

d. Resources are clustered by TLD, using Bray's cat-
egorization [4]. This clustering reduced the 20,400
host addresses to 13,300 distinct sites (such as a
campus, or the high-order 16 bits of an IP address
for numeric addresses). Educational sites serve
resources that are noticeably older than other do-
mains. Note that 17% of responses had noHost

header; currently, these fall into the “other” cate-
gory, and show some periodicity at an interval of 1
day.

Previously, Bestavros [3] and Gwertzmann and
Seltzer [11] found that more popular resources changed
less often than others. As described next in Section 3.4,
we found that when a resource changed, its frequency
of change was greater the more often it was accessed.
This result suggested that in our trace, morepopular
resources might change more frequently rather than

less. Figure 5 plots the mean age of resources, cate-
gorizing them into less frequently accessed resources
(1–20 references) and more frequentlyaccessed ones.
Considering all content types (Figure 5(a)), more
frequently accessed resources are clearlyyounger than
less frequently accessed ones. Focussing on HTML
(Figure 5(b)), the difference is even more pronounced.

The differences between our results and the earlier stud-
ies are striking, but they may be explained by consid-
ering the environments studied. The earlier studies re-
ported on servers at Boston University and Harvard Uni-
versity (the educational TLD), while we looked at ev-
erything accessed by a community of users. A num-
ber of resources, such as “tickers” that update con-
stantly changing information, were accessed frequently
and changed on (nearly) each access.

3.4 Modification Rate

Figure 6 presents density plots of the time between last-
modified timestamps for the AT&T trace, when a re-
source has changed. Figure 6(a) clusters the modifi-
cation intervals by the number of accesses to each re-
source, demonstrating that, of the resources that change,
the most frequently accessed resources have the shortest
intervals between modification. (Naturally, since we are
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(a) Grouped by reference count.

time (in sec.) between access and last modified
pr

ob
ab

ili
ty

 d
en

si
ty

10^-1 10^1 10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9

0.
0

0.
1

0.
2

0.
3

0.
4

1sec 1min 1hour 1day 1mo 1year

html
gif
jpeg
octet-stream

(b) Grouped by content type.
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(c) Grouped by size (in bytes).
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(d) Grouped by top-level domain (TLD).

Figure 4: Density plot of age of resources, clustered by various metrics, for the AT&T trace. Times are shown on a
log scale.
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(a) All content types.
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(b) HTML only.

Figure 5: Density plot of age of resources, focussing on frequently accessed resources, for the AT&T trace. Times
are shown on a log scale.
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(a) Grouped by reference count.
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Figure 6: Density plot of the time between last-modified timestamps, clustered by reference count and content type,
for the AT&T trace. Times are shown on a log scale.
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limited to observing modification times when resources
are accessed, we cannot tell whether there are resources
that are changing frequently but being accessed no more
than once during the trace interval.)

The peaks in Figure 6(a) appear at somewhat intuitive
intervals: 1 minute, 15 minutes, 1 hour, and 1 day. As
the number of references increases, one is more likely
to observe updates with fixed periodicity, such as the
peak at 15 minutes for resources that are accessed 51
or more times. Also, the probability density falls off af-
ter 10 days, which is largely due to the 17-day duration
of our trace and the need to observe two different last-
modified dates.

Figure 6(b) clusters the modification intervals by content
type, and indicates that HTML resources that are modi-
fied at all will change more often than more static con-
tent types such as images. Some of these are the “tick-
ers” mentioned above that are updated at 15-minute in-
tervals. We also observe the effect of Pointcast (serving
resources of typeapplication/octet-stream), which
has a one-hour update interval. Some images and HTML
pages change daily, which may be partly due to the effect
of advertisements and regular updates.

3.5 Duplication

Our content-based analysis required that we compute
checksums of the content of each instance of each re-
source, in order to determine when changes occurred. In
the process, we found some interesting phenomena: in
particular, that 146,000 (18%) of the full-body responses
in the AT&T trace that resulted in a new instance of a
particular resource were identical to at least one other
instance of adifferentresource. There are several com-
mon causes for this:

1. Multiple URLs may refer to a single server and re-
turn the same content. Most commonly this over-
lap is due to some form of unique session-identifier
embedded within the URL. In one case alone, there
were 443 distinct URLs that referred to the same
content on the same host.

2. The same body may be replicated on multiplehosts,
usually as an explicit “mirror,” or an image that has
been copied to reside with the HTML resources that
embed it. The “Netscape Now” icon, the “blue rib-

bon” campaign, and various site-rating logos are
examples of this.

3. Different resources may be used to convey informa-
tion, for instance to inform a server of the origin of
the link.

Figure 7(a) plots a cumulative distribution of the fre-
quency of replication. Most bodies that are replicated
appear just twice, but six appear over 400 times. Fig-
ure 7(b) plots the number of distinct hosts appearing in
the set of resources for each replicatedbody, and shows
that some appear just once (all replicas are served by the
same host) while others follow the dashed line that in-
dicates an equal number: every replica is served by a
different host.

At first glance, the extent of replication suggests that a
mechanism to identify replicas might serve to improve
the effectiveness of caching. However, most of the re-
sources are accessed multiple times and a traditional
cache would eliminate many of the references to them.
Of the rest, many are uncacheable and would need to
be retrieved on each access regardless. Thus, the benefit
of identifying duplicates would be to reduce the storage
demands of the cache (not generally a large problem in
today's environments) and to eliminate one access from
each but the first host that serves the resource.

3.6 Semantic differences between instances

We define a semantically interesting item to be a recog-
nizable pattern that occurs reasonably often in the con-
text of Web pages. For example, telephone numbers (in
various guises) are one class of pattern. Across instances
of a Web page, changes in telephone numbers may be
of interest. The manner in which we recognize seman-
tically interesting patterns, referred to asgrinking (for
“grok and link”), is part of another project [14]; we con-
centrate here on the rate of change of semantically inter-
esting items.

Using the AT&T trace, we looked for the following
classes of patterns: HREFs (hyperlinks), IMGs (image
references), email addresses, telephone numbers, and
URL strings that occur in the body of a Web page. Be-
cause each of these forms can occur in many different
ways, we probably did not recognize every occurrence.
For example, a preliminary study [14] found over twenty
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Figure 7: Duplication of instances in the AT&T trace.

different variations of North American telephone num-
ber syntax.

More importantly, we cannot always assert a string
matching one of these patterns is indeed a telephone
number. For example, it is possible that the string “202-
456-1111” is not actually a telephone number, although
it is likely to be one, especially if the phrase “White
House” appears in the same page. While we currently
use a context-independent technique to recognize pat-
terns, one could enhance the reliability of recognition by
using the context surrounding the pattern. We would be
more confident of a pattern suspected to be a telephone
number if the string “phone”, “telephone”, or “tel” oc-
curs in the surrounding context.

Grinking only makes sense for text files, which greatly
reduced the number of responses we had to analyze.
Also, we decided to look at only the first ten instances
of a resource, since later changes are likely to follow the
same behavior. We looked at 29846 instances of 8655
different resources. 55% of these resources were refer-
enced twice; 71% were referenced three times or fewer;
90% were referenced 9 times or fewer. Table 2 presents
the number of instances that had no recognizable forms
of a particular type, such as HREFs.

For each instance of each resource we computed the se-
mantic change by looking at the addition and deletions

of forms. We define thechurn for a given form as the
fraction of occurrences of that form that change between
successive instances of a resource. For example, if an
instance of a resource has eight telephone numbers, and
the next instance of that resource changes four of those
telephone numbers, then the churn is 50%. We com-
puted a churn value for each instance of a resource that
contained the given form (except for the first one seen in
the trace), then averaged the result over all instances, in-
cluding the first. The results are in Table 3, which shows,
for each class of form, the fraction of original occur-
rences of that form (as a percentage) that experienced a
given amount of churn. For example, 1.5% of the recog-
nized email addresses changed between instances in at
least 75% of the cases.

As shown in Table 3, 5% of IMG references changed
totally between instances, while fully qualified (10-digit)
phone numbers changed the least. In 98% of the cases,
when 10-digit telephone numbers were present, they did
not change at all between instances.

These results are not too surprising. The stability of
forms like telephone numbers may be useful in other
contexts. In the future, we would like to compare the
semantic difference between instances against a bitwise
delta-encoding. Such a measure would tell us if the in-
stances differonly in recognizably meaningful ways.
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Form Instances Percent
HREF 7720 25.9
IMG 8331 27.9
Email 23795 79.7
10-digit phone 27531 92.2
7-digit phone 23788 79.7

Table 2: Number of instances which had no forms recognized

Churn HREF IMG Email 10-digit Phone 7-digit Phone
100% 3.3 4.7 1.4 0.9 3.2
� 75% 5.6 6.2 1.5 1.0 4.9
� 50% 9.7 12.6 2.1 1.4 6.3
� 25% 17.8 24.6 2.6 1.6 7.1

0% 41.2 48.6 96.5 98.0 90.2

Table 3: Percentage of instances having a given value of “churn” in semantically recognized forms.

3.7 Additional Statistics

We analyzed the packet traces to compute statistics on a
number of issues beyond the issue of the rate of change.
In particular, we were interested in the presence of in-
formation in the HTTP request or response headers that
would affect the cachability of resources: modification
timestamps, authentication, cookies, pragmas, or expi-
ration timestamps. Of the 820,000 status-200 responses,
650,000 (79.4%) contained last-modified times, with-
out which browsers and proxy-caching servers will gen-
erally not cache a resource. Surprisingly,136,000 re-
sponses (16.5%) involved cookies, while 48,500 (5.9%)
had some form of explicit disabling of the cache, nearly
all of which are from aPragma: no-cache directive.

4 Related work

One can gather data from a number of sources, both
static (based on crawling) and dynamic (based on user
accesses). Viles and French [20] studied the avail-
ability and latency of a set of servers that were found
through web-crawling, primarily to ascertain when ma-
chines were accessible and how long it took to contact
them. Woodruff, et al [22] used the Web crawler for the
Inktomi [13] search engine to categorize resources based
on such attributes as size, tags, and file extensions. For
HTML documents, they found a mean document size of

4.4 Kbytes. Bray [4] similarly used the Open Text In-
dex [18] to analyze a large set of resources. He found
an mean resource size of 6.5 Kbytes and a median of
2 Kbytes. Bray's study primarily focussed on the rela-
tionshipsbetweenresources, e.g. the number of inbound
and outbound links.

Our traces representdynamicaccesses, so the sizes of re-
sources that are actually retrieved by a set of hosts is ex-
pected to be different from the set of all resources found
by a web-crawler. In our AT&T trace, the mean was
nearly 8 Kbytes, with a median of 3.3 Kbytes. Our Dig-
ital proxy trace showed a mean of less than 7 Kbytes,
and a median of 4.0 Kbytes. The response-body size
differences between our two traces is due to the omis-
sion of certain content types from the Digital trace; these
content-types show a larger mean, and a larger variance,
than the included types [16].

Several studies have considered dynamicaccesses,
though they have not considered the frequency or extent
of modifications. Cunha et al. [6] instrumented NCSA
Mosaic to gather client-based traces. Those traces were
then used to consider document type distributions, re-
source popularity, andcaching policies. Williams et
al. [21] studied logs from several environments to eval-
uate policies governing the removal of documents from
a cache. Like us, they used logs from proxy-caching
servers as well astcpdump, but they examined head-
ers only. They noted that dynamic documents that are
presently uncacheable could be used to transmit the
differences between versions. This idea was devel-

Douglis, et al. USITS'97



Rate of Change 12

oped in more detail in WebExpress [12] and “optimistic
deltas” [2]. A later study by Mogul et al. [16] quan-
tified the potential benefits of delta-encoding and com-
pression, using the same traces as we used for this paper.
Arlitt and Williamson used server logs from several sites
to analyze document types and sizes, frequency of ref-
erence, inter-reference times, aborted connections, and
other metrics [1]. Here we considered many of the same
issues, from the perspective of a collection of clients
rather than a relatively small number of servers.

Kroeger et al. [15] recently studied the potential for
caching to reduce latency, using simulations based on
traces of request and response headers. They found that
even an infinite-size proxy cache could eliminate at most
26% of the latency in their traces, largely because of
the same factors we observed: many URLs are accessed
only once, and many are modified too often for caching
to be effective.

Gribble and Brewer [10] studied traces from a large col-
lection of clients at U.C. Berkeley, gathered via a packet-
sniffer like the one used for our AT&T trace. They ex-
amined a largely different set of metrics, such as access
rates, locality of reference, and service response times.

Broder, et al. [5] analyze thesyntacticsimilarity of files,
using a web-crawler to create “sketches” of all accessi-
ble resources on the Web. These sketches can be used to
find resources that are substantially similar. Such an ap-
proach might be an efficient way to find near-duplicates
to which our work on semantic differences (and our pre-
vious work on delta-encoding [16]) is best applied.

5 Conclusions and Future Work

We have used live traces of two large corporate com-
munities to evaluate the rate and nature of change of
Web resources. We found that many resources change
frequently, and that the frequency of access, age since
last modified, and frequency of modification depend on
several factors, especially content type and top-level do-
main, but not size.

Our observations suggest limits on the utility of simple
Web caches. The assumptionsupon which most current
Web caching is based, locality of reference and stability
of value, are only valid for a subset of the resources in
the Web. Designers of advanced Web caches must con-

front the high rate-of-change in the Web, if they are go-
ing to provide significant latency or bandwidth improve-
ments over existing caches.

In addition to the rate-based analysis, we performed se-
mantic comparisons to multiple versions of textual doc-
uments and found that some entities such as telephone
numbers are remarkably stable across versions. Seman-
tic comparisons may prove useful in conjunction with
notification tools [7, 17] as well as search engines, di-
rectories, and other Web services.

We are collecting a significantly larger trace dataset, to
verify our conclusions here. We also intend to perform
an extended semantic-difference study to locate minor
changes in otherwise-identical web pages. We plan to
investigate whether rate-of-change metrics can identify
cases where it might be useful to pre-compute and cache
delta-encodings at the server, and where prefetching of
resources or delta-encodings might be beneficial.
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