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RATE OF CONVERGENCE IN THE CENTRAL LIMIT

THEOREM FOR IID PARETO VARIABLES

CLAAS BECKER*, MANUEL BOHNET, AND SARAH KUMMERT

Abstract. We estimate the rate of convergence in the central limit theorem
for a sequence of iid Pareto variables Xk with shape parameter r. If r ≤ 4,
E(|X1|3) = ∞ and the Berry-Esseen theorem cannot be applied. In these
cases the rate of convergence is very slow and can be expressed as a function
of r.

1. Introduction

Let (Xk)k∈N be a sequence of iid random variables with mean µ and variance
σ2. By the central limit theorem, the standardized random sums

Zn =
1√
nσ2

n∑
k=1

(Xk − µ)

converge weakly to the standard normal distribution. The rate of convergence can
be measured in terms of

‖Fn − Φ‖∞ = sup
x∈R
{ |Fn(x)− Φ(x)| }

where Fn is the cumulative distribution function of Zn and Φ is the cumulative
distribution function of the standardized normal distribution. It is well known that
without further assumptions on the distribution of the Xk, the rate of convergence
cannot be faster than 1/

√
n , see [3], p.448.

If E(|X1|3) <∞, then, by the Berry-Esseen theorem,

‖Fn − Φ‖∞ ≤
CE(|X1|3)

σ3
√
n

.

In recent years, signi�cant progress has been made to obtain sharp estimates for
the constant C, see [2], [4], [5] and the references therein.

In this paper, we focus on iid random variables with a Pareto distribution.
Their probability density function is given by

f(x) =

{
(r − 1) xr−1min x

−r, x ≥ xmin > 0

0, otherwise
(1.1)
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with shape parameter r > 1 and location parameter xmin. We are interested in
tail behaviour and therefore, for simplicity, put xmin = 1.

If r ≤ 4, E(|X1|3) = ∞ and the Berry-Esseen theorem cannot be applied. For
the same reason, an Edgeworth expansion does not work. Instead, we rely on the
technique of truncated moments.

2. The Truncation Method

For each Xk, we take any τ̂k, τk > 0 and de�ne the truncated random variables

X̄k = Xk · 1]−τ̂k,τk[ and X ′k = Xk − X̄k .

The following theorem is due to Feller [1].

Theorem 2.1. Let (Xk)k∈N be a sequence of mutually independent random vari-
ables. We assume E(Xk) = 0 and E(X2

k) = σ2
k <∞ for all k ∈ N. Put

β′k = E(X ′k
2
) b′ = β′1 + . . .+ β′n

γk = E(|X̄k|3) c = γ1 + . . .+ γn

s2 = σ2
1 + . . .+ σ2

n .

Then

‖Fn − Φ‖∞ ≤ 6
( c

s3
+
b′

s2

)
(2.1)

where Fn is the cumulative distribution function of the standardized sum

1√
s2

n∑
k=1

Xk .

Note that the dependency on n is hidden in the constants b′, c and s2.

3. Rate of Convergence

Theorem 3.1. Assume that (Yk)k∈N are iid Pareto with shape parameter r > 3
and location parameter xmin = 1. We put µ = E(Yn), Xn = Yn − µ and σ2 =
E(X2

k). Let Fn denote the cumulative distribution function of

Zn =
1√
nσ2

n∑
k=1

Xk.

Then there exist constants c1, c2, c3 > 0 such that the asymptotic behaviour1 of
the bound in inequality (2.1) is given by

‖Fn − Φ‖∞ ≤ 6
( c

s3
+
b′

s2

)
∼


c1 n

1
2 (3−r), 3 < r < 4

c2 n
− 1

2 lnn, r = 4

c3 n
− 1

2 , r > 4.

1an ∼ bn i� limn→∞
an
bn

= 1
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Proof. We have

µ = E(Yk) =
r − 1

r − 2
and E(Y 2

k ) =
r − 1

r − 3
.

The probability density function of Xk is

f(x) =

{
(r − 1) (x+ µ)−r, x ≥ 1− µ
0, otherwise.

Since the shifted Pareto distributions have support in the interval [1− µ,∞[ , we
can use symmetric truncation X̄k = Xk · 1]−τk,τk[ . We try the ansatz

τk = kα with α > 0 .

The main challenge is to choose α in such a way that both terms c
s3 and b′

s2 in
inequality (2.1) decay su�ciently fast.

(1) The case 3 < r < 4:

We compute β′k and γk. A simple computation shows that

β′k = E(X ′k
2
) = (r − 1)

∫ ∞
τk

x2 (x+ µ)−r dx

= (r − 1)

∫ ∞
τk+µ

(x− µ)2 x−r dx

= −(r − 1)
( τ̃3−rk

3− r
− 2µ

τ̃2−rk

2− r
+ µ2 τ̃

1−r
k

1− r

)
(3.1)

with the abbreviation τ̃k = τk + µ. Therefore

b′ =

n∑
k=1

β′k ≤ −(r − 1)

n∑
k=1

( τ̃3−rk

3− r
+ µ2 τ̃

1−r
k

1− r

)
.

γk = E(|X̄k|3)

= −2(r − 1)
( µ4−r

4− r
− 3µ

µ3−r

3− r
+ 3µ2 µ

2−r

2− r
− µ3 µ

1−r

1− r

)
+(r − 1)

( τ̃4−rk + 1

4− r
− 3µ

τ̃3−rk + 1

3− r
+ 3µ2 τ̃

2−r
k + 1

2− r
− µ3 τ̃

1−r
k + 1

1− r

)
(3.2)

Therefore the following inequality holds

c =

n∑
k=1

γk ≤ (r − 1)

n∑
k=1

( τ̃4−rk

4− r
− 3µ

τ̃3−rk

3− r
− µ3 τ̃

1−r
k

1− r

)
+ n(r − 1) (θ1 − 2θ2)

with constants

θ1 =
1

4− r
− 3µ

1

3− r
− µ3 1

1− r
and θ2 = 3µ2 µ

2−r

2− r
.
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Using τ̃k = τk + µ = kα + µ, we arrive at the inequalities

τ̃4−rk ≤ 3kα(4−r) τ̃3−rk ≤ kα(3−r) τ̃1−rk ≤ kα(1−r) .

Therefore

c+ sb′ ≤ (r − 1)
( 3

4− r

n∑
k=1

kα(4−r) − 3µ

3− r

n∑
k=1

kα(3−r) − µ3

1− r

n∑
k=1

kα(1−r)
)

+n(r − 1)(θ1 − 2θ2)

−s(r − 1)
( 1

3− r

n∑
k=1

kα(3−r) +
µ2

1− r

n∑
k=1

kα(1−r)
)
.

Note that s is not a constant since s2 =
∑n
k=1 σ

2 = nσ2. Approximating integrals
by Riemann sums, we have

n−1∑
k=1

kα(4−r) ≤
∫ n

1

xα(4−r) dx =
nα(4−r)+1 − 1

α(4− r) + 1
.

If α 6= − 1
3−r , we have

n∑
k=2

kα(3−r) ≤
∫ n

1

xα(3−r) dx =
nα(3−r)+1 − 1

α(3− r) + 1
.

Analogously, if α 6= − 1
1−r , we obtain

n∑
k=2

kα(1−r) ≤
∫ n

1

xα(1−r) dx =
nα(1−r)+1 − 1

α(1− r) + 1
.

Combining these inequalities, we arrive at

6
c+ sb′

s3
≤ 6β1

σ3

(
3
nα(4−r)−

1
2 − n− 3

2

β2
+ 3

nα(4−r)−
3
2

4− r
− 3µ

nα(3−r)−
1
2 − n− 3

2

β3

−n− 3
2

3µ

3− r
− µ3 n

α(1−r)− 1
2 − n− 3

2

β4
− n− 3

2
µ3

1− r
+ n−

1
2 (θ1 − 2θ2)

−σn
α(3−r) − n−1

β3
− σ n−1

3− r
− σµ2n

α(1−r) − n−1

β4
− σn

−1µ2

1− r

)
with constants

β1 = r − 1 β2 = α(4− r)2 + 4− r
β3 = α(3− r)2 + 3− r β4 = α(1− r)2 + 1− r .

It turns out that, as n→∞, only the two terms containing nα(4−r)−
1
2 and nα(3−r)

ultimately determine the rate of convergence. For fast convergence of the �rst term,
it would be best to put α = 0. But for α = 0 the second term does not converge at
all. Comparing the exponents in both terms, we �nd that α = 1

2 is optimal. This

choice for α is consistent with the restrictions α 6= − 1
3−r and α 6= − 1

1−r which we
made before.
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A review of our previous computations in the cases α = − 1
3−r and α = − 1

1−r shows

that the term containing nα(4−r)−
1
2 does not vanish. Therefore these choices for

α do not improve the asymptotic estimate.

(2) The case r > 4:

Equations (3.1) and (3.2) also hold in this case. We arrive at the inequalities

b′ =

n∑
k=1

β′k ≤ −(r − 1)

n∑
k=1

( τ̃3−rk

3− r
+ µ2 τ̃

1−r
k

1− r

)

c =

n∑
k=1

γk ≤ (r − 1)

n∑
k=1

(
−3µ

τ̃3−rk

3− r
− µ3 τ̃

1−r
k

1− r

)
+ n(r − 1)(θ̄1 − 2θ̄2)

with constants

θ̄1 =
3µ

r − 3
+

µ3

r − 1

θ̄2 =
µ4−r

4− r
+ 3µ2 µ2−r

2− r
.

With the inequalities

τ̃3−rk ≤ kα(3−r) and τ̃1−rk ≤ kα(1−r)

we arrive at

c+ sb′ ≤ (r − 1)
(
− 3µ

3− r

n∑
k=1

kα(3−r) − µ3

1− r

n∑
k=1

kα(1−r)
)

+n(r − 1)(θ̄1 − 2θ̄2)

−s(r − 1)
( 1

3− r

n∑
k=1

kα(3−r) +
µ2

1− r

n∑
k=1

kα(1−r)
)
.

Again, approximating integrals by Riemann sums, we obtain, if α 6= − 1
3−r and

α 6= − 1
1−r

n∑
k=2

kα(3−r) ≤
∫ n

1

xα(3−r) dx =
nα(3−r)+1 − 1

α(3− r) + 1

n∑
k=2

kα(1−r) ≤
∫ n

1

xα(1−r) dx =
nα(1−r)+1 − 1

α(1− r) + 1
.
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This leads to the inequality

6
c+ sb′

s3
≤ 6β1

σ3

(
−3µ

nα(3−r)−
1
2 − n− 3

2

β3
− 3µn−

3
2

3− r
− µ3n

α(1−r)− 1
2 − n− 3

2

β4

−µ
3n−

3
2

1− r
+ n−

1
2 (θ̄1 − 2θ̄2)

−σn
α(3−r) − n−1

β3
− σ n−1

3− r
− σµ2n

α(1−r) − n−1

β4
− σn

−1µ2

1− r

)

with constants β1, β3, and β4 as before.
It is the term containing n−

1
2 that determines the rate of convergence. We

can, for instance, put α = 1 which is in line with the conditions α 6= − 1
3−r and

α 6= − 1
1−r .

A review of our previous computations in the cases α = − 1
3−r and α = − 1

1−r
shows that the term containing n−

1
2 does not vanish. Therefore these choices for

α do not improve the asymptotic estimate.

(3) The case r = 4:

In this case we have

β′k = 3
(
τ̃−1k − µτ̃−2k +

µ2

3
τ̃−3k

)
≤ 3
(
τ̃−1k +

µ2

3
τ̃−3k

)
with τ̃k = τk + µ as before.

γk =

∫ ∞
−∞
|y|3 3 (y + µ)−4 1[1−µ,τk[(y) dy ≤ 9µ+ µ3 + 3

(
ln τ̃k + 3µτ̃−1k +

µ3

3
τ̃−3k

)
where no attempt at sharp estimates for constants has been made. With the
inequalities

ln τ̃k ≤ α ln k + ln 3 τ̃−1k ≤ k−α τ̃−3k ≤ k−3α

we obtain

c+ sb′ ≤ 3α

n∑
k=1

ln k + 9µ

n∑
k=1

k−α + µ3
n∑
k=1

k−3α + n(3 ln 3 + θ)

+3s

n∑
k=1

k−α + sµ2
n∑
k=1

k−3α

with the constant θ = 9µ+ µ3. It is the sum containing ln k that makes the case
r = 4 di�erent. Approximating integrals by Riemann sums, we have, if α 6= 1 and
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α 6= 1
3 ,

n−1∑
k=1

ln k ≤
∫ n

1

lnx dx = n lnn− n+ 1

n∑
k=2

k−α ≤
∫ n

1

x−α dx =
n1−α − 1

1− α
n∑
k=2

k−3α ≤
∫ n

1

x−3α dx =
n1−3α − 1

1− 3α
.

Using the equation s2 =
∑n
k=1 σ

2 = nσ2, we obtain the inequality

6
c+ sb′

s3

≤ 6

σ3

(
3α
(
lnn

(
n−

1
2 + n−

3
2

)
− n− 1

2 + n−
3
2

)
+ 9µ

(n− 1
2−α − n− 3

2

1− α
+ n−

3
2

)
+µ3

(n− 1
2−3α − n− 3

2

1− 3α
+ n−

3
2

)
+ n−

1
2 (3 ln 3 + θ)

+3σ
(n−α − n−1

1− α
+ n−1

)
+ σµ2

(n−3α − n−1
1− 3α

+ n−1
))

.

If we want the term containing lnnn−
1
2 to vanish, we have to put α = 0. However,

in this case the term n−α does not converge any more. Therefore the choice α = 1
2

is optimal.
A review of our computations shows that in the cases α = 1 and α = 1

3 the term

containing lnnn−
1
2 does not vanish so that the estimate is not improved. �

4. Concluding Remarks

If r ≤ 3, the variance of the Pareto distribution is in�nite and the formulation
of the central limit theorem in terms of standardized sums is not possible.

In the case 3 < r < 4, E(|X1|3) = ∞ and convergence is slower than in the
Berry-Esseen theorem. Note that the bound in theorem 3.1 is a monotonously
decreasing function of r. As r approaches 3 from above, the rate of convergence
can be arbitrarily slow. For instance, in the case r = 3.5, the rate of convergence is
proportional to n−

1
4 . Of course, using this methodology, we have just obtained up-

per bounds. However, we have done extensive computer simulations that indicate
that the rate of convergence in this case is indeed proportional to n−

1
4 . Though

we have taken great care of numerical inaccuracies, computer simulations should
always be taken with caution.

The case r = 4 is borderline because for r ≤ 4 E(|X1|3) = ∞, but for r > 4
E(|X1|3) <∞. For r > 4 but close to 4, the rate of convergence is faster than for
r = 4. Conversely, for r < 4 but close to 4, the rate of convergence is slower than
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for r = 4. This is true because for large n

n−
1
2 lnn ≤ n− 1

2+ε

since limn→∞
lnn
nε = 0, which can be seen by applying l'Hôpital's rule.

If r > 4, E(|X1|3) <∞, and our estimate in theorem 3.1 gives the same rate of
convergence as the Berry-Esseen theorem.
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