Journal of Stochastic Analysis

Volume 2 | Number 1

March 2021

Rate of Convergence in the Central Limit Theorem for iid Pareto Variables

Claas Becker
Hochschule RheinMain, 65022 Wiesbaden, Germany, claas.becker@hs-rm.de
Manuel Bohnet
Hochschule RheinMain, 65022 Wiesbaden, Germany, manuel_bohnet@web.de
Sarah Kummert
Hochschule RheinMain, 65022 Wiesbaden, Germany, sarah.kummert@gmx.de

Follow this and additional works at: https://digitalcommons.Isu.edu/josa
Part of the Analysis Commons, and the Other Mathematics Commons

Recommended Citation

Becker, Claas; Bohnet, Manuel; and Kummert, Sarah (2021) "Rate of Convergence in the Central Limit Theorem for iid Pareto Variables," Journal of Stochastic Analysis: Vol. 2 : No. 1 , Article 3.
DOI: 10.31390/josa.2.1.03
Available at: https://digitalcommons.Isu.edu/josa/vol2/iss1/3

RATE OF CONVERGENCE IN THE CENTRAL LIMIT THEOREM FOR IID PARETO VARIABLES

CLAAS BECKER*, MANUEL BOHNET, AND SARAH KUMMERT

Abstract

We estimate the rate of convergence in the central limit theorem for a sequence of iid Pareto variables X_{k} with shape parameter r. If $r \leq 4$, $E\left(\left|X_{1}\right|^{3}\right)=\infty$ and the Berry-Esseen theorem cannot be applied. In these cases the rate of convergence is very slow and can be expressed as a function of r.

1. Introduction

Let $\left(X_{k}\right)_{k \in \mathbb{N}}$ be a sequence of iid random variables with mean μ and variance σ^{2}. By the central limit theorem, the standardized random sums

$$
Z_{n}=\frac{1}{\sqrt{n \sigma^{2}}} \sum_{k=1}^{n}\left(X_{k}-\mu\right)
$$

converge weakly to the standard normal distribution. The rate of convergence can be measured in terms of

$$
\left\|F_{n}-\Phi\right\|_{\infty}=\sup _{x \in \mathbb{R}}\left\{\left|F_{n}(x)-\Phi(x)\right|\right\}
$$

where F_{n} is the cumulative distribution function of Z_{n} and Φ is the cumulative distribution function of the standardized normal distribution. It is well known that without further assumptions on the distribution of the X_{k}, the rate of convergence cannot be faster than $1 / \sqrt{n}$, see [3], p. 448 .

If $E\left(\left|X_{1}\right|^{3}\right)<\infty$, then, by the Berry-Esseen theorem,

$$
\left\|F_{n}-\Phi\right\|_{\infty} \leq \frac{C E\left(\left|X_{1}\right|^{3}\right)}{\sigma^{3} \sqrt{n}}
$$

In recent years, significant progress has been made to obtain sharp estimates for the constant C, see [2], [4], [5] and the references therein.

In this paper, we focus on iid random variables with a Pareto distribution. Their probability density function is given by

$$
f(x)= \begin{cases}(r-1) x_{\min }^{r-1} x^{-r}, & x \geq x_{\min }>0 \tag{1.1}\\ 0, & \text { otherwise }\end{cases}
$$

Received 2020-11-29; Accepted 2021-1-21; Communicated by the editors.
2010 Mathematics Subject Classification. Primary 60F05, Secondary 60E99.
Key words and phrases. Pareto distribution, central limit theorem, Berry-Esseen theorem.

* Corresponding author.
with shape parameter $r>1$ and location parameter $x_{\text {min }}$. We are interested in tail behaviour and therefore, for simplicity, put $x_{\min }=1$.

If $r \leq 4, E\left(\left|X_{1}\right|^{3}\right)=\infty$ and the Berry-Esseen theorem cannot be applied. For the same reason, an Edgeworth expansion does not work. Instead, we rely on the technique of truncated moments.

2. The Truncation Method

For each X_{k}, we take any $\hat{\tau}_{k}, \tau_{k}>0$ and define the truncated random variables

$$
\bar{X}_{k}=X_{k} \cdot 1_{]-\hat{\tau}_{k}, \tau_{k}[} \quad \text { and } \quad X_{k}^{\prime}=X_{k}-\bar{X}_{k} .
$$

The following theorem is due to Feller [1].
Theorem 2.1. Let $\left(X_{k}\right)_{k \in \mathbb{N}}$ be a sequence of mutually independent random variables. We assume $E\left(X_{k}\right)=0$ and $E\left(X_{k}^{2}\right)=\sigma_{k}^{2}<\infty$ for all $k \in \mathbb{N}$. Put

$$
\begin{array}{lr}
\beta_{k}^{\prime}=E\left({X_{k}^{\prime}}^{2}\right) & b^{\prime}=\beta_{1}^{\prime}+\ldots+\beta_{n}^{\prime} \\
\gamma_{k}=E\left(\left|\bar{X}_{k}\right|^{3}\right) & c=\gamma_{1}+\ldots+\gamma_{n} \\
s^{2}=\sigma_{1}^{2}+\ldots+\sigma_{n}^{2} . &
\end{array}
$$

Then

$$
\begin{equation*}
\left\|F_{n}-\Phi\right\|_{\infty} \leq 6\left(\frac{c}{s^{3}}+\frac{b^{\prime}}{s^{2}}\right) \tag{2.1}
\end{equation*}
$$

where F_{n} is the cumulative distribution function of the standardized sum

$$
\frac{1}{\sqrt{s^{2}}} \sum_{k=1}^{n} X_{k}
$$

Note that the dependency on n is hidden in the constants b^{\prime}, c and s^{2}.

3. Rate of Convergence

Theorem 3.1. Assume that $\left(Y_{k}\right)_{k \in \mathbb{N}}$ are iid Pareto with shape parameter $r>3$ and location parameter $x_{\min }=1$. We put $\mu=E\left(Y_{n}\right), X_{n}=Y_{n}-\mu$ and $\sigma^{2}=$ $E\left(X_{k}^{2}\right)$. Let F_{n} denote the cumulative distribution function of

$$
Z_{n}=\frac{1}{\sqrt{n \sigma^{2}}} \sum_{k=1}^{n} X_{k}
$$

Then there exist constants $c_{1}, c_{2}, c_{3}>0$ such that the asymptotic behaviour ${ }^{1}$ of the bound in inequality (2.1) is given by

$$
\left\|F_{n}-\Phi\right\|_{\infty} \leq 6\left(\frac{c}{s^{3}}+\frac{b^{\prime}}{s^{2}}\right) \sim \begin{cases}c_{1} n^{\frac{1}{2}(3-r)}, & 3<r<4 \\ c_{2} n^{-\frac{1}{2}} \ln n, & r=4 \\ c_{3} n^{-\frac{1}{2}}, & r>4\end{cases}
$$

[^0]Proof. We have

$$
\mu=E\left(Y_{k}\right)=\frac{r-1}{r-2} \quad \text { and } \quad E\left(Y_{k}^{2}\right)=\frac{r-1}{r-3} .
$$

The probability density function of X_{k} is

$$
f(x)= \begin{cases}(r-1)(x+\mu)^{-r}, & x \geq 1-\mu \\ 0, & \text { otherwise }\end{cases}
$$

Since the shifted Pareto distributions have support in the interval [$1-\mu, \infty[$, we can use symmetric truncation $\bar{X}_{k}=X_{k} \cdot 1_{]-\tau_{k}, \tau_{k}[}$. We try the ansatz

$$
\tau_{k}=k^{\alpha} \text { with } \alpha>0
$$

The main challenge is to choose α in such a way that both terms $\frac{c}{s^{3}}$ and $\frac{b^{\prime}}{s^{2}}$ in inequality (2.1) decay sufficiently fast.
(1) The case $3<r<4$:

We compute β_{k}^{\prime} and γ_{k}. A simple computation shows that

$$
\begin{align*}
\beta_{k}^{\prime}=E\left({X_{k}^{\prime}}^{2}\right) & =(r-1) \int_{\tau_{k}}^{\infty} x^{2}(x+\mu)^{-r} \mathrm{~d} x \\
& =(r-1) \int_{\tau_{k}+\mu}^{\infty}(x-\mu)^{2} x^{-r} \mathrm{~d} x \\
& =-(r-1)\left(\frac{\tilde{\tau}_{k}^{3-r}}{3-r}-2 \mu \frac{\tilde{\tau}_{k}^{2-r}}{2-r}+\mu^{2} \frac{\tilde{\tau}_{k}^{1-r}}{1-r}\right) \tag{3.1}
\end{align*}
$$

with the abbreviation $\tilde{\tau}_{k}=\tau_{k}+\mu$. Therefore

$$
\left.\begin{array}{c}
b^{\prime}=\sum_{k=1}^{n} \beta_{k}^{\prime} \leq-(r-1) \sum_{k=1}^{n}\left(\frac{\tilde{\tau}_{k}^{3-r}}{3-r}+\mu^{2} \frac{\tilde{\tau}_{k}^{1-r}}{1-r}\right) . \\
\gamma_{k}= \\
=-2\left(\left|\bar{X}_{k}\right|^{3}\right) \\
 \tag{3.2}\\
\quad+(r-1)\left(\frac{\mu^{4-r}}{4-r}-3 \mu \frac{\mu^{3-r}}{3-r}+3 \mu^{2} \frac{\mu^{2-r}}{2-r}-\mu^{3} \frac{\mu^{1-r}}{1-r}\right) \\
4-r
\end{array} 3 \mu \frac{\tilde{\tau}_{k}^{3-r}+1}{3-r}+3 \mu^{2} \frac{\tilde{\tau}_{k}^{2-r}+1}{2-r}-\mu^{3} \frac{\tilde{\tau}_{k}^{1-r}+1}{1-r}\right) .
$$

Therefore the following inequality holds

$$
c=\sum_{k=1}^{n} \gamma_{k} \leq(r-1) \sum_{k=1}^{n}\left(\frac{\tilde{\tau}_{k}^{4-r}}{4-r}-3 \mu \frac{\tilde{\tau}_{k}^{3-r}}{3-r}-\mu^{3} \frac{\tilde{\tau}_{k}^{1-r}}{1-r}\right)+n(r-1)\left(\theta_{1}-2 \theta_{2}\right)
$$

with constants

$$
\theta_{1}=\frac{1}{4-r}-3 \mu \frac{1}{3-r}-\mu^{3} \frac{1}{1-r} \quad \text { and } \quad \theta_{2}=3 \mu^{2} \frac{\mu^{2-r}}{2-r}
$$

Using $\tilde{\tau}_{k}=\tau_{k}+\mu=k^{\alpha}+\mu$, we arrive at the inequalities

$$
\tilde{\tau}_{k}^{4-r} \leq 3 k^{\alpha(4-r)} \quad \tilde{\tau}_{k}^{3-r} \leq k^{\alpha(3-r)} \quad \tilde{\tau}_{k}^{1-r} \leq k^{\alpha(1-r)}
$$

Therefore

$$
\begin{aligned}
c+s b^{\prime} \leq & (r-1)\left(\frac{3}{4-r} \sum_{k=1}^{n} k^{\alpha(4-r)}-\frac{3 \mu}{3-r} \sum_{k=1}^{n} k^{\alpha(3-r)}-\frac{\mu^{3}}{1-r} \sum_{k=1}^{n} k^{\alpha(1-r)}\right) \\
& +n(r-1)\left(\theta_{1}-2 \theta_{2}\right) \\
& -s(r-1)\left(\frac{1}{3-r} \sum_{k=1}^{n} k^{\alpha(3-r)}+\frac{\mu^{2}}{1-r} \sum_{k=1}^{n} k^{\alpha(1-r)}\right) .
\end{aligned}
$$

Note that s is not a constant since $s^{2}=\sum_{k=1}^{n} \sigma^{2}=n \sigma^{2}$. Approximating integrals by Riemann sums, we have

$$
\sum_{k=1}^{n-1} k^{\alpha(4-r)} \leq \int_{1}^{n} x^{\alpha(4-r)} \mathrm{d} x=\frac{n^{\alpha(4-r)+1}-1}{\alpha(4-r)+1}
$$

If $\alpha \neq-\frac{1}{3-r}$, we have

$$
\sum_{k=2}^{n} k^{\alpha(3-r)} \leq \int_{1}^{n} x^{\alpha(3-r)} \mathrm{d} x=\frac{n^{\alpha(3-r)+1}-1}{\alpha(3-r)+1}
$$

Analogously, if $\alpha \neq-\frac{1}{1-r}$, we obtain

$$
\sum_{k=2}^{n} k^{\alpha(1-r)} \leq \int_{1}^{n} x^{\alpha(1-r)} \mathrm{d} x=\frac{n^{\alpha(1-r)+1}-1}{\alpha(1-r)+1}
$$

Combining these inequalities, we arrive at

$$
\begin{aligned}
6 \frac{c+s b^{\prime}}{s^{3}} \leq & \frac{6 \beta_{1}}{\sigma^{3}}\left(3 \frac{n^{\alpha(4-r)-\frac{1}{2}}-n^{-\frac{3}{2}}}{\beta_{2}}+3 \frac{n^{\alpha(4-r)-\frac{3}{2}}}{4-r}-3 \mu \frac{n^{\alpha(3-r)-\frac{1}{2}}-n^{-\frac{3}{2}}}{\beta_{3}}\right. \\
& -n^{-\frac{3}{2}} \frac{3 \mu}{3-r}-\mu^{3} \frac{n^{\alpha(1-r)-\frac{1}{2}}-n^{-\frac{3}{2}}}{\beta_{4}}-n^{-\frac{3}{2}} \frac{\mu^{3}}{1-r}+n^{-\frac{1}{2}}\left(\theta_{1}-2 \theta_{2}\right) \\
& \left.-\sigma \frac{n^{\alpha(3-r)}-n^{-1}}{\beta_{3}}-\sigma \frac{n^{-1}}{3-r}-\sigma \mu^{2} \frac{n^{\alpha(1-r)}-n^{-1}}{\beta_{4}}-\sigma \frac{n^{-1} \mu^{2}}{1-r}\right)
\end{aligned}
$$

with constants

$$
\begin{array}{ll}
\beta_{1}=r-1 & \beta_{2}=\alpha(4-r)^{2}+4-r \\
\beta_{3}=\alpha(3-r)^{2}+3-r & \beta_{4}=\alpha(1-r)^{2}+1-r
\end{array}
$$

It turns out that, as $n \rightarrow \infty$, only the two terms containing $n^{\alpha(4-r)-\frac{1}{2}}$ and $n^{\alpha(3-r)}$ ultimately determine the rate of convergence. For fast convergence of the first term, it would be best to put $\alpha=0$. But for $\alpha=0$ the second term does not converge at all. Comparing the exponents in both terms, we find that $\alpha=\frac{1}{2}$ is optimal. This choice for α is consistent with the restrictions $\alpha \neq-\frac{1}{3-r}$ and $\alpha \neq-\frac{1}{1-r}$ which we made before.

A review of our previous computations in the cases $\alpha=-\frac{1}{3-r}$ and $\alpha=-\frac{1}{1-r}$ shows that the term containing $n^{\alpha(4-r)-\frac{1}{2}}$ does not vanish. Therefore these choices for α do not improve the asymptotic estimate.
(2) The case $r>4$:

Equations (3.1) and (3.2) also hold in this case. We arrive at the inequalities

$$
\begin{gathered}
b^{\prime}=\sum_{k=1}^{n} \beta_{k}^{\prime} \leq-(r-1) \sum_{k=1}^{n}\left(\frac{\tilde{\tau}_{k}^{3-r}}{3-r}+\mu^{2} \frac{\tilde{\tau}_{k}^{1-r}}{1-r}\right) \\
c=\sum_{k=1}^{n} \gamma_{k} \leq(r-1) \sum_{k=1}^{n}\left(-3 \mu \frac{\tilde{\tau}_{k}^{3-r}}{3-r}-\mu^{3} \frac{\tilde{\tau}_{k}^{1-r}}{1-r}\right)+n(r-1)\left(\bar{\theta}_{1}-2 \bar{\theta}_{2}\right)
\end{gathered}
$$

with constants

$$
\begin{aligned}
\bar{\theta}_{1} & =\frac{3 \mu}{r-3}+\frac{\mu^{3}}{r-1} \\
\bar{\theta}_{2} & =\frac{\mu^{4-r}}{4-r}+3 \mu^{2} \frac{\mu^{2-r}}{2-r} .
\end{aligned}
$$

With the inequalities

$$
\tilde{\tau}_{k}^{3-r} \leq k^{\alpha(3-r)} \quad \text { and } \quad \tilde{\tau}_{k}^{1-r} \leq k^{\alpha(1-r)}
$$

we arrive at

$$
\begin{aligned}
c+s b^{\prime} \leq & (r-1)\left(-\frac{3 \mu}{3-r} \sum_{k=1}^{n} k^{\alpha(3-r)}-\frac{\mu^{3}}{1-r} \sum_{k=1}^{n} k^{\alpha(1-r)}\right) \\
& +n(r-1)\left(\bar{\theta}_{1}-2 \bar{\theta}_{2}\right) \\
& -s(r-1)\left(\frac{1}{3-r} \sum_{k=1}^{n} k^{\alpha(3-r)}+\frac{\mu^{2}}{1-r} \sum_{k=1}^{n} k^{\alpha(1-r)}\right) .
\end{aligned}
$$

Again, approximating integrals by Riemann sums, we obtain, if $\alpha \neq-\frac{1}{3-r}$ and $\alpha \neq-\frac{1}{1-r}$

$$
\begin{aligned}
& \sum_{k=2}^{n} k^{\alpha(3-r)} \leq \int_{1}^{n} x^{\alpha(3-r)} \mathrm{d} x=\frac{n^{\alpha(3-r)+1}-1}{\alpha(3-r)+1} \\
& \sum_{k=2}^{n} k^{\alpha(1-r)} \leq \int_{1}^{n} x^{\alpha(1-r)} \mathrm{d} x=\frac{n^{\alpha(1-r)+1}-1}{\alpha(1-r)+1} .
\end{aligned}
$$

This leads to the inequality

$$
\begin{aligned}
6 \frac{c+s b^{\prime}}{s^{3}} \leq & \frac{6 \beta_{1}}{\sigma^{3}}\left(-3 \mu \frac{n^{\alpha(3-r)-\frac{1}{2}}-n^{-\frac{3}{2}}}{\beta_{3}}-\frac{3 \mu n^{-\frac{3}{2}}}{3-r}-\mu^{3} \frac{n^{\alpha(1-r)-\frac{1}{2}}-n^{-\frac{3}{2}}}{\beta_{4}}\right. \\
& -\frac{\mu^{3} n^{-\frac{3}{2}}}{1-r}+n^{-\frac{1}{2}}\left(\bar{\theta}_{1}-2 \bar{\theta}_{2}\right) \\
& \left.-\sigma \frac{n^{\alpha(3-r)}-n^{-1}}{\beta_{3}}-\sigma \frac{n^{-1}}{3-r}-\sigma \mu^{2} \frac{n^{\alpha(1-r)}-n^{-1}}{\beta_{4}}-\sigma \frac{n^{-1} \mu^{2}}{1-r}\right)
\end{aligned}
$$

with constants β_{1}, β_{3}, and β_{4} as before.
It is the term containing $n^{-\frac{1}{2}}$ that determines the rate of convergence. We can, for instance, put $\alpha=1$ which is in line with the conditions $\alpha \neq-\frac{1}{3-r}$ and $\alpha \neq-\frac{1}{1-r}$.
A review of our previous computations in the cases $\alpha=-\frac{1}{3-r}$ and $\alpha=-\frac{1}{1-r}$ shows that the term containing $n^{-\frac{1}{2}}$ does not vanish. Therefore these choices for α do not improve the asymptotic estimate.
(3) The case $r=4$:

In this case we have

$$
\beta_{k}^{\prime}=3\left(\tilde{\tau}_{k}^{-1}-\mu \tilde{\tau}_{k}^{-2}+\frac{\mu^{2}}{3} \tilde{\tau}_{k}^{-3}\right) \leq 3\left(\tilde{\tau}_{k}^{-1}+\frac{\mu^{2}}{3} \tilde{\tau}_{k}^{-3}\right)
$$

with $\tilde{\tau}_{k}=\tau_{k}+\mu$ as before.
$\gamma_{k}=\int_{-\infty}^{\infty}|y|^{3} 3(y+\mu)^{-4} 1_{\left[1-\mu, \tau_{k}\right]}(y) \mathrm{d} y \leq 9 \mu+\mu^{3}+3\left(\ln \tilde{\tau}_{k}+3 \mu \tilde{\tau}_{k}^{-1}+\frac{\mu^{3}}{3} \tilde{\tau}_{k}^{-3}\right)$
where no attempt at sharp estimates for constants has been made. With the inequalities

$$
\ln \tilde{\tau}_{k} \leq \alpha \ln k+\ln 3 \quad \tilde{\tau}_{k}^{-1} \leq k^{-\alpha} \quad \tilde{\tau}_{k}^{-3} \leq k^{-3 \alpha}
$$

we obtain

$$
\begin{aligned}
c+s b^{\prime} \leq & 3 \alpha \sum_{k=1}^{n} \ln k+9 \mu \sum_{k=1}^{n} k^{-\alpha}+\mu^{3} \sum_{k=1}^{n} k^{-3 \alpha}+n(3 \ln 3+\theta) \\
& +3 s \sum_{k=1}^{n} k^{-\alpha}+s \mu^{2} \sum_{k=1}^{n} k^{-3 \alpha}
\end{aligned}
$$

with the constant $\theta=9 \mu+\mu^{3}$. It is the sum containing $\ln k$ that makes the case $r=4$ different. Approximating integrals by Riemann sums, we have, if $\alpha \neq 1$ and
$\alpha \neq \frac{1}{3}$,

$$
\begin{aligned}
& \sum_{k=1}^{n-1} \ln k \leq \int_{1}^{n} \ln x \mathrm{~d} x=n \ln n-n+1 \\
& \sum_{k=2}^{n} k^{-\alpha} \leq \int_{1}^{n} x^{-\alpha} \mathrm{d} x=\frac{n^{1-\alpha}-1}{1-\alpha} \\
& \sum_{k=2}^{n} k^{-3 \alpha} \leq \int_{1}^{n} x^{-3 \alpha} \mathrm{~d} x=\frac{n^{1-3 \alpha}-1}{1-3 \alpha}
\end{aligned}
$$

Using the equation $s^{2}=\sum_{k=1}^{n} \sigma^{2}=n \sigma^{2}$, we obtain the inequality

$$
\begin{aligned}
& 6 \frac{c+s b^{\prime}}{s^{3}} \\
\leq & \frac{6}{\sigma^{3}}\left(3 \alpha\left(\ln n\left(n^{-\frac{1}{2}}+n^{-\frac{3}{2}}\right)-n^{-\frac{1}{2}}+n^{-\frac{3}{2}}\right)+9 \mu\left(\frac{n^{-\frac{1}{2}-\alpha}-n^{-\frac{3}{2}}}{1-\alpha}+n^{-\frac{3}{2}}\right)\right. \\
& +\mu^{3}\left(\frac{n^{-\frac{1}{2}-3 \alpha}-n^{-\frac{3}{2}}}{1-3 \alpha}+n^{-\frac{3}{2}}\right)+n^{-\frac{1}{2}}(3 \ln 3+\theta) \\
& \left.+3 \sigma\left(\frac{n^{-\alpha}-n^{-1}}{1-\alpha}+n^{-1}\right)+\sigma \mu^{2}\left(\frac{n^{-3 \alpha}-n^{-1}}{1-3 \alpha}+n^{-1}\right)\right)
\end{aligned}
$$

If we want the term containing $\ln n n^{-\frac{1}{2}}$ to vanish, we have to put $\alpha=0$. However, in this case the term $n^{-\alpha}$ does not converge any more. Therefore the choice $\alpha=\frac{1}{2}$ is optimal.

A review of our computations shows that in the cases $\alpha=1$ and $\alpha=\frac{1}{3}$ the term containing $\ln n n^{-\frac{1}{2}}$ does not vanish so that the estimate is not improved.

4. Concluding Remarks

If $r \leq 3$, the variance of the Pareto distribution is infinite and the formulation of the central limit theorem in terms of standardized sums is not possible.

In the case $3<r<4, E\left(\left|X_{1}\right|^{3}\right)=\infty$ and convergence is slower than in the Berry-Esseen theorem. Note that the bound in theorem 3.1 is a monotonously decreasing function of r. As r approaches 3 from above, the rate of convergence can be arbitrarily slow. For instance, in the case $r=3.5$, the rate of convergence is proportional to $n^{-\frac{1}{4}}$. Of course, using this methodology, we have just obtained upper bounds. However, we have done extensive computer simulations that indicate that the rate of convergence in this case is indeed proportional to $n^{-\frac{1}{4}}$. Though we have taken great care of numerical inaccuracies, computer simulations should always be taken with caution.

The case $r=4$ is borderline because for $r \leq 4 E\left(\left|X_{1}\right|^{3}\right)=\infty$, but for $r>4$ $E\left(\left|X_{1}\right|^{3}\right)<\infty$. For $r>4$ but close to 4 , the rate of convergence is faster than for $r=4$. Conversely, for $r<4$ but close to 4 , the rate of convergence is slower than
for $r=4$. This is true because for large n

$$
n^{-\frac{1}{2}} \ln n \leq n^{-\frac{1}{2}+\epsilon}
$$

since $\lim _{n \rightarrow \infty} \frac{\ln n}{n^{\epsilon}}=0$, which can be seen by applying l'Hôpital's rule.
If $r>4, E\left(\left|X_{1}\right|^{3}\right)<\infty$, and our estimate in theorem 3.1 gives the same rate of convergence as the Berry-Esseen theorem.

References

1. Feller, W.: On the Berry-Esseen Theorem, Z. Wahrscheinlichkeitstheorie verw. Gebiete 10 (1968), 261-268.
2. Shevtsova, I.: On the absolute constants in the Berry-Esseen type inequalities for identically distributed summands, arXiv:1111.6554v1.
3. Shiryaev, A. N.: Probability, Vol. 1, 3rd ed., Springer, 2016.
4. Tyurin, I. S.: On the accuracy of the Gaussian approximation, Dokl. Math. 80 (2009), no. 3, 840-843, https://doi.org/10.1134/S1064562409060155.
5. Tyurin, I. S.: Refinement of the upper bounds of the constants in Lyapunov's theorem, Russ. Math. Surv. 65 (2010), no. 3, 586-588.

Claas Becker: Hochschule RheinMain, 65022 Wiesbaden, Germany
Email address: claas.becker@hs-rm.de
Manuel Bohnet: Hochschule RheinMain, 65022 Wiesbaden, Germany
Email address: manuel_bohnet@web.de
Sarah Kummert: Hochschule RheinMain, 65022 Wiesbaden, Germany
Email address: sarah.kummert@gmx.de

[^0]: $1_{a_{n}} \sim b_{n}$ iff $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$

