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1. Introduction. Let W(0,∞) be the class of functions f which are locally integrable

on (0,∞) and are of polynomial growth as t → ∞, that is, for some positive r , there

holds f(t) = O(tr ) as t → ∞. The Durrmeyer variant Ṽn of the Baskakov operators

associates to each function f ∈W(0,∞) the series

Ṽn(f ;x)= (n−1)
∞∑
k=0

pn,k(x)
∫∞

0
pn,k(t)f (t)dt, x ∈ [0,∞), (1.1)

where

pn,k(x)=
(
n+k−1
k

)
xk(1+x)−n−k (1.2)

is the Baskakov basis function. Note that (1.1) is well defined, for n ≥ r +2, provided

that f(t) = O(tr ) as t → ∞. The operators (1.1) were first introduced by Sahai and

Prasad [9]. They termed these operators as modified Lupaş operators. In 1991, Sinha et

al. [10] improved and corrected the results of [9] and denoted Ṽn as modified Baskakov

operators. The rate of convergence of the operators (1.1) on functions of bounded

variation was studied in [8, 11].

We mention that Agrawal and Thamer [2] considered the variant

Mn(f ;x)= (n−1)
∞∑
k=1

pn,k(x)
∫∞

0
pn,k−1(t)f (t)dt+(1+x)−nf(0) (1.3)

of the operators (1.1) and studied its properties in subsequent papers [3, 4, 5]. See also

[1]. The rate of convergence of the operators discussed by Agrawal and Thamer was

studied by the first author in [7].
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For each function f ∈ W(0,∞) and α ≥ 1, we consider the Bézier–type Baskakov-

Durrmeyer operators Ṽn,α as

Ṽn,α(f ;x)= (n−1)
∞∑
k=0

Q(α)n,k(x)
∫∞

0
pn,k(t)f (t)dt, (1.4)

where

Q(α)n,k(x)= Jαn,k(x)−Jαn,k+1(x),

Jn,k(x)=
∞∑
j=k
pn,j(x).

(1.5)

It is obvious that Ṽn,α are positive linear operators and Ṽn,α(1;x) = 1. In the special

case α= 1, the operators Ṽn,α reduce to the operators Ṽn ≡ Ṽn,1. Some basic properties

of Jn,k are as follows:

(i) Jn,k(x)−Jn,k+1(x)= pn,k(x) (k= 0,1,2, . . .);
(ii) J′n,k(x)=npn+1,k−1(x) (k= 1,2,3, . . .);

(iii) Jn,k(x)=n
∫ x
0 pn+1,k−1(t)dt (k= 1,2,3, . . .);

(iv) 0< ···< Jn,k+1(x) < Jn,k(x) < ···< Jn,1(x) < Jn,0(x)≡ 1 (x > 0);

(v) Jn,k is strictly increasing on [0,∞).
In this paper, we study the rate of convergence for the new sequence of operators

(1.4), for functions f of bounded variation. Our result essentially generalizes and im-

proves the results of [8, 11]. Furthermore, we find the limit of the sequence Ṽn,α(f ;x)
for bounded locally integrable functions f having a discontinuity of the first kind at

x ∈ (0,∞).

2. The main results. As a main result, we derive the following estimate on the rate

of convergence.

Theorem 2.1. Assume that f ∈W(0,∞) is a function of bounded variation on every

finite subinterval of (0,∞). Furthermore, let α≥ 1, λ > 2, and x ∈ (0,∞) be given. Then,

for each r ∈N, there exists a constantM(f ,α,r ,x) such that for sufficiently large n, the

Bézier–type Baskakov-Durrmeyer operators Ṽn,α satisfy the estimate∣∣∣∣Ṽn,α(f ;x)−
[

1
α+1

f(x+)+ α
α+1

f(x−)
]∣∣∣∣

≤ α(10+11x)
2
√
nx(1+x)

∣∣f(x+)−f(x−)∣∣
+ 2αλ(1+x)+x

nx

n∑
k=1

x+x/√k∨
x−x/√k

(
gx
)+M(f ,α,r ,x)

nr
,

(2.1)

where

gx(t)=


f(t)−f(x−) (0≤ t < x),
0 (t = x),
f (t)−f(x+) (x < t <∞),

(2.2)

and
∨b
a(gx) is the total variation of gx on [a,b].
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Remark 2.2. The exponent r in the O-term of (2.1) can be chosen arbitrary large.

As an immediate consequence of Theorem 2.1, we obtain in the special case α = 1

the following estimate which improves the results of [8, 11].

Corollary 2.3. Under the assumptions of Theorem 2.1, there holds, for sufficiently

large n, ∣∣∣∣Ṽn(f ;x)− 1
2

[
f(x+)+f(x−)]∣∣∣∣

≤ (10+11x)
2
√
nx(1+x)

∣∣f(x+)−f(x−)∣∣
+ 2λ(1+x)+x

nx

n∑
k=1

x+x/√k∨
x−x/√k

(
gx
)+M(f ,1,r ,x)

nr
,

(2.3)

where gx is defined as in Theorem 2.1.

Theorem 2.4. Let x ∈ (0,∞). If f ∈ L(0,∞) has a discontinuity of the first kind at x,

then

lim
n→∞ Ṽn,α(f ;x)= 1

α+1
f(x+)+ α

α+1
f(x−). (2.4)

3. Auxiliary results. In order to prove our main result, we will need the following

lemmas. Throughout the paper, for each real x, let ψx(t)= t−x.

Lemma 3.1 (see [6]). Let {ξi}∞i=1 be a sequence of independent and identically dis-

tributed random variables with finite variance such that the expectation E(ξi) = a1 ∈
R≡ (−∞,∞), and the variance V(ξi)= b2

1 > 0. Assume that E|ξi−a1|3 <∞. Then there

exists a constant c with 1/
√

2π < c < 0.82 such that, for all n= 1,2,3, . . . and all t ∈R,∣∣∣∣∣P
(

1
b1
√
n

n∑
k=1

(
ξi−a1

)≤ t)− 1√
2π

∫ t
−∞
e−u

2/2du

∣∣∣∣∣≤ c E
∣∣ξi−a1

∣∣3

√
nb3

1

. (3.1)

Lemma 3.2 (see [10]). For each fixed x ∈ [0,∞) and m ∈ N0, the central moments

Ṽn(ψmx ;x) of the Baskakov-Durrmeyer operators (1.1) satisfy

Ṽn
(
ψmx ;x

)=O(n−	(m+1)/2
) (n �→∞). (3.2)

In particular,

Ṽn(1;x)= 1, Ṽn
(
ψ2
x ;x

)= 2(n−1)x(1+x)
(n−2)(n−3)

+ 2(1+2x)2

(n−2)(n−3)
. (3.3)

Remark 3.3. Note that, given any λ > 2 and any x > 0, for all n sufficiently large,

we have the estimate

Ṽn
(
ψ2
x ;x

)
<
λx(1+x)

n
. (3.4)
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Lemma 3.4 (see [13]). For all x > 0 and n,k∈N, there holds

Jαn,k(x)pn,k(x)≤Q(α)n,k(x)≤αpn,k(x) <
α
√

1+x√
2enx

. (3.5)

Throughout, let

Kn,α(x,t)= (n−1)
∞∑
k=0

Q(α)n,k(x)pn,k(t), (3.6)

λn,α(x,y)=
∫ y

0
Kn,α(x,t)dt. (3.7)

With this definition, for each function f ∈ W(0,∞), there holds, for all sufficiently

large n,

Ṽn,α(f ;x)=
∫∞

0
Kn,α(x,t)f (t)dt. (3.8)

Note that, in particular,

λn,α(x,∞)=
∫∞

0
Kn,α(x,u)du= 1. (3.9)

Lemma 3.5. For each λ > 2 and, for all sufficiently large n, there exist, for all x ∈
(0,∞),

λn,α(x,y)=
∫ y

0
Kn,α(x,t)dt ≤ λαx(1+x)n(x−y)2 (0≤y <x), (3.10)

1−λn,α(x,z)=
∫∞
z
Kn,α(x,t)dt ≤ λαx(1+x)n(z−x)2 (x < z <∞). (3.11)

Proof. First we prove (3.10). There holds∫ y
0
Kn,α(x,t)dt ≤

∫ y
0
Kn,α(x,t)

(x−t)2
(x−y)2dt

≤ (x−y)−2Ṽn,α
(
ψ2
x ;x

)
≤α(x−y)−2Ṽn,1

(
ψ2
x ;x

)
,

(3.12)

where we applied Lemma 3.4. Now (3.10) is a consequence of Remark 3.3. The proof of

(3.11) is similar.

Lemma 3.6 (see [13]). Let {ξi}∞i=1 be a sequence of independent random variables with

the same geometric distribution

P
(
ξ1 = k

)= ( x
1+x

)k 1
1+x (k∈N), (3.13)

where x > 0 is a parameter. Then,

E
(
ξ1
)= x, E

(
ξ1−Eξ1

)2 = x(1+x), E
∣∣ξ1−Eξ1

∣∣3 ≤ 3x(1+x)2. (3.14)
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Lemma 3.7. For all x ∈ (0,∞) and k= 0,1,2, . . . , there hold

∣∣Jαn,k(x)−Jαn−1,k+1(x)
∣∣≤ α(10+11x)

2
√
nx(1+x) , (3.15)

∣∣Jαn,k(x)−Jαn−1,k(x)
∣∣≤ α(10+11x)

2
√
nx(1+x) . (3.16)

Proof. First we prove (3.15). Proceeding along the lines of [8, Lemma 2.8] and [12],

it is easily checked that

∣∣Jn,k(x)−Jn−1,k+1(x)
∣∣≤ 2(0.82)E

∣∣ξ1−Eξ1

∣∣3

√
n
(
x(1+x))3/2 + x√

2πnx(1+x)

≤ 2(0.82)·3x(1+x)2√
n
(
x(1+x))3/2 + x

2
√
nx(1+x)

≤ 10+11x
2
√
nx(1+x) ,

(3.17)

where we used Lemmas 3.1 and 3.6. Application of the inequality |aα−bα| ≤α|a−b|,
for 0≤ a, b ≤ 1, and α≥ 1 yields (3.15). The proof of (3.16) is similar.

4. Proofs of the main results

Proof of Theorem 2.1. Our starting point is the identity

f(t)= 1
α+1

f(x+)+ α
α+1

f(x−)+
(

sign(t−x)+ α−1
α+1

)
f(x+)−f(x−)

2

+gx(t)+δx(t)
(
f(x)− f(x+)+f(x−)

2

)
,

(4.1)

where δx(t)= 1 (t = x) and δx(t)= 0 (t ≠ x) (see [12, Equation (28)]). Since Ṽn,α(δx ;x)=
0, we conclude that

∣∣∣∣Ṽn,α(f ;x)−
[

1
α+1

f(x+)+ α
α+1

f(x−)
]∣∣∣∣

≤ 1
2

∣∣∣∣Ṽn,α(sign(t−x);x)+ α−1
α+1

∣∣∣∣∣∣f(x+)−f(x−)∣∣+∣∣Ṽn,α(gx ;x
)∣∣. (4.2)

First, we obtain

Ṽn,α
(
sign(t−x);x)= (n−1)

∞∑
j=0

Q(α)n,j (x)
(∫∞

x
pn,j(t)dt−

∫ x
0
pn,j(t)dt

)

= (n−1)
∞∑
j=0

Q(α)n,j (x)
(∫∞

0
pn,j(t)dt−2

∫ x
0
pn,j(t)dt

)

= 1−2(n−1)
∞∑
j=0

Q(α)n,j (x)
∫ x

0
pn,j(t)dt.

(4.3)
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Using

k∑
j=0

pn−1,j(x)= (n−1)
∫∞
x
pn,k(t)dt, (4.4)

we conclude that

Ṽn,α
(
sign(t−x);x)= 1−2

∞∑
j=0

Q(α)n,j (x)
(

1−
j∑
k=0

pn−1,k(x)
)

=−1+2
∞∑
k=0

pn−1,k(x)
∞∑
j=k
Q(α)n,j (x)

=−1+2
∞∑
k=0

pn−1,k(x)Jαn,k(x)

(4.5)

since
∑∞
j=0Q

(α)
n,j (x)= 1. Therefore, we obtain

Ṽn,α
(
sign(t−x);x)+ α−1

α+1
= 2

∞∑
k=0

pn−1,k(x)Jαn,k(x)−
2

α+1

∞∑
k=0

Q(α+1)
n−1,k(x) (4.6)

since
∑∞
k=0Q

(α+1)
n−1,k(x)= 1. By the mean value theorem, it follows that

Q(α+1)
n−1,k(x)= Jα+1

n−1,k(x)−Jα+1
n−1,k+1(x)= (α+1)pn−1,k(x)γαn,k(x), (4.7)

where Jn−1,k+1(x) < γn,k(x) < Jn−1,k(x). Hence,

Ṽn,α
(
sign(t−x);x)+ α−1

α+1
= 2

∞∑
k=0

pn−1,k(x)
(
Jαn,k(x)−γαn,k(x)

)
, (4.8)

where

Jαn,k(x)−Jαn−1,k(x) < J
α
n,k(x)−γαn,k(x) < Jαn,k(x)−Jαn−1,k+1(x). (4.9)

Lemma 3.7 implies that∣∣∣∣Ṽn,α(sign(t−x);x)+ α−1
α+1

∣∣∣∣≤ α(10+11x)√
nx(1+x) for x ∈ (0,∞). (4.10)

In order to complete the proof of the theorem, we need an estimate of Ṽn,α(gx ;x). We

use the integral representation (3.8) and decompose [0,∞) into three parts as follows:

Ṽn,α
(
gx ;x

)= (∫ x−x/√n
0

+
∫ x+x/√n
x−x/√n

+
∫∞
x+x/√n

)
Kn,α(x,t)gx(t)dt

= I1+I2+I3, say.
(4.11)

We start with I2. For t ∈ [x−x/√n,x+x/√n], we have

∣∣gx(t)∣∣≤ x+x/√n∨
x−x/√n

(
gx
)
, (4.12)
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and therefore

∣∣I2∣∣≤ x+x/√n∨
x−x/√n

(gx)≤ 1
n

n∑
k=1

x+x/√k∨
x−x/√k

(
gx
)
. (4.13)

Next we estimate I1. Let y = x−x/√n. Using integration by parts with (3.7), we have

I1 =
∫ y

0
gx(t)dtλn,α(x,t)= gx(y)λn,α(x,y)−

∫ y
0
λn,α(x,t)dtgx(t). (4.14)

Since |gx(y)| = |gx(y)−gx(x)| ≤
∨x
y(gx), we conclude that

∣∣I1∣∣≤ x∨
y

(
gx
)
λn,α(x,y)+

∫ y
0
λn,α(x,t)dt

(
−
x∨
t

(
gx
))
. (4.15)

Since y = x−x/√n≤ x, (3.10) implies that

∣∣I1∣∣≤ λαx(1+x)n(x−y)2
x∨
y

(
gx
)+ λαx(1+x)

n

∫ y
0

1
(x−t)2dt

(
−
x∨
t

(
gx
))
. (4.16)

Integrating the last term by parts, we get

∣∣I1∣∣≤ λαx(1+x)n

(
x−2

x∨
0

(
gx
)+2

∫ y
0

∨x
t
(
gx
)

(x−t)3 dt
)
. (4.17)

Replacing the variable y in the last integral by x−x/√n, we obtain

∫ x−x/√n
0

x∨
t

(
gx
)
(x−t)−3dt =

n−1∑
k=1

∫ x/√k
x/
√
k+1

x∨
x−t

(
gx
)
t−3dt

≤ 1
2x2

n∑
k=1

x∨
x−x/√k

(
gx
)
.

(4.18)

Hence,

∣∣I1∣∣≤ 2λα(1+x)
nx

n∑
k=1

x∨
x−x/√k

(
gx
)
. (4.19)

Finally, we estimate I3. We let

g̃x(t)=
gx(t) (0≤ t ≤ 2x),

gx(2x) (2x < t <∞) (4.20)
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and divide I3 = I31+I32, where

I31 =
∫∞
x+x/√n

Kn,α(x,t)g̃x(t)dt,

I32 =
∫∞

2x
Kn,α(x,t)

[
gx(t)−gx(2x)

]
dt.

(4.21)

With y = x+x/√n, the first integral can be written in the form

I31 = lim
R→+∞

{
gx(y)

[
1−λn,α(x,y)

]+ g̃x(R)[λn,α(x,R)−1
]

+
∫ R
y

[
1−λn,α(x,t)

]
dtg̃x(t)

}
.

(4.22)

By (3.11), we conclude that

|I31| ≤ λαx(1+x)n
lim
R→+∞

{ ∨y
x
(
gx
)

(y−x)2 +
∣∣g̃x(R)∣∣
(R−x)2 +

∫ R
y

1
(t−x)2dt

( t∨
x

(
g̃x
))}

= λαx(1+x)
n

{ ∨y
x
(
gx
)

(y−x)2 +
∫ 2x

y

1
(t−x)2dt

( t∨
x

(
gx
))}

.

(4.23)

In a similar way as above we obtain

∫ 2x

y

1
(t−x)2dt

( t∨
x

(
gx
))≤ x−2

2x∨
x

(
gx
)− ∨y

x
(
gx
)

(y−x)2 +x
−2
n−1∑
k=1

x+x/√k∨
x

(
gx
)

(4.24)

which implies the estimate

∣∣I31

∣∣≤ 2λα(1+x)
nx

n∑
k=1

x+x/√k∨
x

(
gx
)
. (4.25)

We proceed with I32. By assumption, there exists an integer r such that f(t) =O(t2r )
as t→∞. Thus, for a certain constant M > 0, depending only on f , x, and r , we have

∣∣I32

∣∣≤M(n−1)
∞∑
k=0

Q(α)n,k(x)
∫∞

2x
pn,k(t)t2rdt

≤αM(n−1)
∞∑
k=0

pn,k(x)
∫∞

2x
pn,k(t)t2rdt,

(4.26)

where we used Lemma 3.4. Obviously, t ≥ 2x implies t ≤ 2(t−x) and it follows that

∣∣I32

∣∣≤ 22rαM(n−1)
∞∑
k=0

pn,k(x)
∫∞

0
pn,k(t)(t−x)2rdt = 22rαMṼn

(
ψ2r
x ;x

)
. (4.27)
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By Lemma 3.2, the central moments of the Baskakov-Durrmeyer operators (1.1) satisfy

Ṽn(ψ2r
x ;x)=O(n−r )(n→∞), and we obtain

I32 =O
(
n−r

)
(n �→∞). (4.28)

Collecting the estimates (4.13), (4.19), (4.25), and (4.28) yields with regard to (4.11)

∣∣Ṽn,α(gx ;x
)∣∣≤ 2λα(1+x)+x

nx

n∑
k=1

x+x/√k∨
x−x/√k

(
gx
)+O(n−r ) (n �→∞). (4.29)

Finally, combining (4.2), (4.10), and (4.29), we obtain (2.1). This completes the proof

of Theorem 2.1.

Proof of Theorem 2.4. Since the function ψ2
x given by ψ2

x(t) = (t − x)2 is of

bounded variation on every finite subinterval of [0,∞), we deduce from Theorem 2.1

that, for all x ∈ (0,∞),

lim
n→∞ Ṽn,α

(
ψ2
x ;x

)= 0. (4.30)

If f ∈ L∞(0,∞), then gx defined as in (2.2) is also bounded and is continuous at the

point x. By the Korovkin theorem, we conclude that

lim
n→∞ Ṽn,α

(
gx ;x

)= gx(x)= 0. (4.31)

Therefore, the right-hand side of inequality (4.2) tends to zero asn→∞. This completes

the proof of Theorem 2.4.
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