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RATE OF CONVERGENCE OF THE SWENDSEN-WANG
DYNAMICS IN IMAGE SEGMENTATION PROBLEMS: A
THEORETICAL AND EXPERIMENTAL STUDY

ISABELLE GAUDRON

ABSTRACT. We study in this paper the convergence rate of the Swend-
sen-Wang dynamics towards its equilibrium law, when the energy be-
longs to a large family of energies used in image segmentation problems.
We compute the exponential equivalents of the transitions which control
the process at low temperature, as well as the critical constant which
gives its convergence rate. We give some theoretical tools to compare
this dynamics with Metropolis, and develop an experimental study in
order to calibrate both dynamics performances in image segmentation
problems.

INTRODUCTION

Image processing requires several important preliminary tasks, called low
level tasks, among which a crucial one is the segmentation of the image.
This problem has been very efficiently solved through probabilistic methods
(see Geman (1990) for a general presentation), including Markov Random
Fields models (for more details one can read Wang (1994) and Wang (1997)),
and from a more general point of view turns out to be a cost function mini-
mization problem. A large class of stochastic dynamics, such as Metropolis
relaxation, can then be used. However these dynamics are quite slow, and
their elementary moves do not seem well adapted to image segmentation
problems: it is very difficult to change the label of a whole region, which
can remain a long time misclassified, with the dynamics of Metropolis.

In the late 80’s, a dynamics in which the elementary objects were not the
single sites of the image but regions, has been proposed by Swendsen and
Wang to speed-up the convergence rate towards equilibrium for the Potts
model (Swendsen and Wang (1987), Sokal (1989)) near critical tempera-
ture. In this dynamics, auxiliary variables are introduced which allow us to
change in one single move the label of a whole region. Such a possibility
appears very attractive in image segmentation problems, and we refer here
to Besag and Green (1993) which discuss its current and future relevance
in Bayesian applications. We also refer to Besag et al. (1995) to have a
complete presentation of Bayesian Computation and Markov chains Monte
Carlo techniques. But, if careful studies of the speed-up of the convergence
rate towards equilibrium has been done for the Potts model and for the Ising
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260 ISABELLE GAUDRON

model with a constant external field (see for instance Martinelli (1992), Mar-
tinelli et al. (1991a) and Martinelli et al. (1991b)), an extensive comparison
in image segmentation problems has to be led.

This is the main object of this paper. The image segmentation energies
we will consider here are quite simple. They cover nevertheless a large class
of the energies used in image segmentation problems.

Our energies U are defined by

U)= Y boze, + 3 Diploy),

<i,j>€B i€S
where

e S is a finite set called the set of pixels or also the set of sites.

e [’ is the image to be segmented.

e 0 is an image of labels, i.e. ¢ belongs to A with A = {1,---,L}".

e B is a set of undirected bounds < i,7 > between pixels giving the
neighborhood relations.

e D; pis anon negative function, depending on the input image F around
the site i. Let [ be a label in {1,---, L}, and 7 be a site in S. The term
D; (1) will be small if the label [ is locally well adapted to the image
F, and large otherwise. It is built according to local characteristics of
the input image, such as grey level intensities, variances, or directional
contrasts, depending of the type of images or textures to be segmented.
This is usually a term which has to be carefully constructed.

This kind of energies has been already used in supervised image segmen-
tation problems, as in Graffigne (1987), or in other problems (Geman et al.
(1986), Herlin et al. (1992)) where we know the maximal number of labels
L in the image to be analyzed, and statistical features of each label, to be
able to build the functions D;.

In the Metropolis dynamics, a single site is allowed to change its label at
each step, whereas the Swendsen-Wang dynamics allows us to change the
labels of all sites in one step. As suggested before, it introduces auxiliary
variables and works on a state space X, larger than A:

X:{(U,n)EAX{O,l}B;V<i,j>€ B,o; # 0; = n;; = 1}.

Each configuration is then a couple whose first component is the image of
labels ¢, and the second one is an edges field separating pixels with different
labels. A nice characteristics of this dynamics is that the first marginal
of its equilibrium law is the equilibrium law of Metropolis. The problem
which has then to be faced here is to compare the dynamics of two processes
which have the same static behavior. Such a problem, partly because of
the high cardinality of the state spaces, is difficult. We will develop then
in this article different methods to tackle it. The first one is theoretical.
It is based on the approach of Freidlin and Wentzell (1984), in their study
of small perturbations of dynamical systems; we compute the exponential
equivalents of the transitions which control the process at low temperature,
and deduce that there exist, at least at low temperature, a class of energies
for which the Metropolis dynamics runs faster, and an other one where the
Swendsen-Wang dynamics is preferable. The frontier between these two
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RATE OF CONVERGENCE OF THE SWENDSEN-WANG DYNAMICS 261

classes of energies can not be practically computed, and this approach is a
priori relevant only at low temperature.

We will develop then experimental methods, which can also be applied
to other similar problems. These methods focus on different aspects of such
dynamics. The first one is relied to the quality of the results which are
obtained: the lowest energies reached in a given number of iterations, the
precision of such estimates, are computed. The second one estimates the
time spent under some interesting levels of energy. The last one tries to
understand the proper dynamical behaviors through the computation of ex-
cursions out of low energy levels. These methods are described in our last
and main part. Our experimental results calibrate more precisely in very
simple cases the range of energies where we should run the Swendsen-Wang
dynamics, the main fact being that we have not found any case which was
relevant in image segmentation problems and where the Swendsen-Wang dy-
namics gave better results. This study confirms the conclusions reached in
Gray (1994) and in Hurn and Jennison (1993). In the first paper, A. Gray
explains in detail how the Swendsen-Wang algorithm may be used to simu-
late certain types of posterior Gibbs distribution, and empirically compares
the behavior of the algorithm with that of Gibbs sampler, when applied to
image restoration problems. The paper shows in particular the importance
of the starting configuration. The paper of M. Hurn and C. Jennison fo-
cuses on the relative performances of Gibbs and Swendsen-Wang samplers
in MAP (maximum a posteriori) and MPM (marginal posterior modes) es-
timation, when applied to Ising models, either degraded or nondegraded
by additive pixel-wise independent Normal noise. Although both studies
concluded to disappointing performances of the Swendsen-Wang algorithm,
it was not clear that such conclusions were also relevant in the domain of
image segmentation, where the fundamental objects to tackle with are not
pixels but regions.

1. DESCRIPTION OF THE SWENDSEN-WANG DYNAMICS

Let us first recall that the Metropolis dynamics is an homogeneous Markov
chain (X,),en, with transition matrix Sg = (sg(0, p))s,pen,

o s3(0,p) = ﬁ exp(—B(U(p) — U(0o))*) if there exists ¢ in S such that

p; = o;, for all j # 4, and p; # o;.
e s3(0,p) = 0if there exist two sites ¢ and j in S such that o; # p; and
a; # pi.

o sg(0,0)=1— Zpig sg(o, p).

e The parameter 3 is strictly non negative and 37! is called a tempera-

ture.

The law of (3,,),>0 converges towards the Gibbs law Pj such that Pg(o) =
ZLﬁ exp(—pU(0)), where Zs is the partition function 3 ., exp(=8U(0)).
At low temperature, this Gibbs law loads uniformly the ground states:

_ ZCUU(U):Umin 50
(o3 U(@) = Upin I
Let us state now the notations we need to define and study the Swendsen-

Wang dynamics.

ﬁlim Pg = P, where P, and Uy, = inf U(0o).
— 00 [
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262 ISABELLE GAUDRON

NotaTioN 1.1. Let 3 be a strictly non negative parameter; we denote pg
the real valued number exp(—/).

Let z = (o,7n) be a configuration of X. We denote o(z) the image of labels
o, and n(z) the edges field n.

Let o € A; we denote n(o) the edges field associated to o satisfying: for all
<1,j >€ B, 0;, = o; if and only if n;; = 0. This field is the minimal edges
field associated with o.

Let n € {0,1}7; we call |n| the number of edges of n: |n| = > o<ij>eB Mij-
The minimal value of the energy U is denoted U,,;,.

Let (o, n) be a state of X, § the Kronecker delta, and D(c) =3
We define the following function ug from A x {0,1}? to R:

ug(o,n) = exp(=pD(a)) [ (Sny=080i=0, (1 = pg) + Psdniy=1). (1.1)
<1,j>€B

Let us remark here that ug(o,n) # 0 if and only if (o,n) € X, and that
for all configuration = (o,n) of X we have:

ieSDi(Fvgi)-

7|
o) = exp(- D (1~ ) (T2

Moreover, using (1.1), a straightforward computation gives that for any
o €A,

> uglo,n) = exp(—BU(0));

ne{0,1}5
so that
D ugla) = exp(—BU(0)) = Zs.
zeX gEA

Hence, considering ;—Z as a probability measure on X, we get that its mar-

ginal on A is exactly the Gibbs measure P3. We have to define now the
allowed moves of the Swendsen-Wang dynamics.

DEFINITION 1.2. Let n be an edges field on B. A subset (' of S is called a
connected component of n if and only if

e For all distinct sites ¢ and j in C, there exists a sequence of sites in C,
ig = 1,11, --, i = J,such that foralll € {0, -+  k—1} < i;,4;11 >€ B
and Niyigyy = 0.
e (' is a maximal subset of S which satisfies the previous condition.
Let us remark here that for any configuration & € X all the sites inside a
connected component of n(z) have the same label.

NoTaTION 1.3. Let n be an edges field on B. We denote C(n) the sets of the
connected components of n. If C' belongs to C(n), and if ¢ is a configuration
of A, o¢ will be the restriction of & to C.

DEFINITION 1.4. The transition graph G on X is a symmetric graph, with
vertices set X, where two distinct states z and y of X are neighbors if
o(z) = o(y) or if n(z) = n(y). The notation 2 — y means that the two
configurations z and y are mutual neighbors.

We can notice here that the graph G is a connected graph. Steps of
the Swendsen-Wang dynamics are of two types. Let us call 2 = (o,n) our
current configuration. We can compute a new edges field m as following.
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Let < 4,5 > be any bound of B. If o; # 0;, m;; is put to 1. Otherwise,
m;; is put to 1 with the probability exp(—/3), and to 0 with the probability
12 exp(=f).

We can also compute the connected components associated to n and ad-
just the labels of these regions. For each connected component C', we choose
a label lg in {1,---,L}, and compute A = > .~ (Ds(lc) — D;i(0;)). The
sites of (' receive then the label [ with the probability exp(—3A™T), where
xT is equal to sup(z,0). This informal description leads to the following
definition.

DerFINITION 1.5. The Swendsen-Wang dynamics is an homogeneous Markov
chain (Y,,)neny whose transition matrix is Qg = (¢g(z, y))»yex such that, if

T # Y,

L (@,y) if o(2) = a(y),
as(2,y) =4 LP(e,y) if n(z) = n(y),
0 otherwise,
where
a(2,y) = I1 P (1= pg) T,
<i,j>€B; o(x)i=0(z);
a — a\T +
q(ﬁz)(ac,y) _ H L_lp(ﬁD( (W)c)=Dlo(x)c))T
CeC(n(y))

As announced above, we can either create new bounds, and hence new
connected components, or update the label of each connected component.

We easily check that (g is reversible for the probability law on X, 75 = ;—Z,

whose marginal on the set A is the Gibbs law FPs. The Swendsen-Wang
dynamics is then a tool to simulate the Gibbs law Pg through 73. We have
to study now its convergence rate towards equilibrium and to compare it to
the convergence rate of the Metropolis dynamics.

2. CONVERGENCE RATE TOWARDS EQUILIBRIUM.

The law 75 is reversible for the transitions gg, and the Swendsen-Wang
process is irreducible and aperiodic. The transition matrix )z is diagonal-
izable then in an orthogonal basis of eigenvectors in L%(73); its eigenvalues
are real valued, and satisfy, when noted in decreasing order:

Let 2 be a state of X, (Y,,),>0 a Swendsen-Wang process starting from z,
and p? the law of V,,. If V' is a subset of X,

0 0V) = 7 (V) < oV Ay, 2.1

where p(3) = sup{A2(53), |[Amin(B)|}. We will derive the relations between
p(f3) and [ at low temperature from the study of the transition costs and of
their exponential equivalents.
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264 ISABELLE GAUDRON

LEMMA 2.1. Let z and y be two configurations such that qz(x,y) > 0. Then

UG

300 ﬁ = _V($7 y)7
where, if x # v,

_ | In()] = [n(o(2))] ifo(x)=0
Viey) = { Ycecin)P@y)o) = D(e(@)e)T  if n(x) = n(y).

Let x be a configuration of X . Let us denote U(z) = D(o(x))+|n(x)|. Then
a straightforward computation gives that

exp(= AT (#)) (1 = py) ")
> yex exp(=8U(y)) (1 - pp) )l
Let @ and y be two states of X such that qg(z,y) > 0. Then
Vie,y) +U(x) =V(y,2) + U(y).

This means that the function U, defined on X, is a potential function for
the transition costs V.

mg(x) =

Since our process is reversible and aperiodic in each irreducible class at
temperature zero, we have that A,,;,(3) does not tend towards —1 when 3
tends to infinity (Diaconis and Stroock (1991)). Applying results of Frei-
dlin and Wentzell (1984) which concern the exponential equivalents of the
eigenvalues A; (chapter 6, page 208), we have that limg_,. A2(3) = 1, ex-
cept in degenerated cases, where the Markov chain has only one irreducible
component at temperature zero. We deduce that p(5) = Ao(f) if § is large
enough.

Lemma 2.3 gives the relation between Ay and j.

DEFINITION 2.2. Let z and y be two states of X. We call path between
x and y any sequence of vertices g = x, 1, --,%r = ¥, such that for all
i1 €40,---,k—1}, gs(z;, zi41) > 0. The set of paths which join 2 to y will
be denoted C',.
LEMMA 2.3. There exists a strictly non negative constant K which does not
depend on (3 such that
exp(—pm
A2(f) <1 - #,

where

m=sup inf (sup(U(u)— U(y) — U(z) + Upin)- (2.2)
r#Yy vECzy uey
Proof. The first part of the proof is based on lemmas 4.1.4, 4.1.11 and the-
orem 4.1.13 stated in Deuschel and Mazza (1994) (pages 1031, 1033 and
1034).
Let u and v be two states in X such that ¢z(u,v) > 0. Let us define
A(u,v) = U(u) + V(u,v). For each path v we will denote e(7y) the set of its
edges, and Fvel(y) = max(y)ec(y) A, v). Set now

m = max( min Evel(y) + Ui — U(z) — U(y)).

z#y vE€Cay
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Since (g is reversible for the probability law 75 one has

exp(—fmh)
A2(p) <1 % .
We shall prove now that 7 is equal to this constant m(1).

Let z and y be two distinct states of X and v a path from x to y. We
always have that Evel(y) > sup,c, U(u). We claim that there exists a path
g from z to y such that Fvel(g) is equal to sup,¢, U(u) and to SUP ey Ulu),
and such that Evel(g) < Fvel(7).

Let (u,v) be an edge of v such that v = (o,n) and v = (o, m). Hence
A(u,v) = U(u) 4 |m| —|n(o)| which is greater than U(u) vV U(v). Let g, be
the path u — u; = (0,n(0)) — v. Then Evel(gu) = U(u) Vv U(v) > Uluy).
Hence the announced result is true in this case.

Let now (u,v) be an edge of v such that v = (o,n) and v = (p,n), and
Cq, Cq, -+ ,C be the connected components of n where p is different from
o ordered in such a way that

D(pcl) - D(Ucl) < D(IOC2) - D(UC2) <0 < D(pck) - D(Uck)'

Let us denote o9 = o, and oy, - - - , 0} the following images of labels:

N e ifieUig«

VEEL, ok orld) = { o(1) otherwisé.]_
Let us also denote u; = (o7, n), for all [ € {0,---,k}. Note here that uy is
equal to v. We replace the edge (u,v) with the path g, = (u, w1, -, ug),
and claim that Fvel(gy,) < A(u,v), that Evel(gy) = sup.e,,, U(z) and
Evel(gy,) = U(u) VU (v) . We easily check that Evel(gy,) = sup.¢,,, U(z),
and that A(u,v) > U(u) Vv U(v).
Now three cases may appear.
In the first case, D(o(v)c,) — D(o(u)c,) > 0. Hence, we deduce that
D(o(u)) < D(o1) < -+ < D(oy), and that Evel(gy,) = U(v).
In the second case, D(o(v))—D(ok—1) < 0. Hence we deduce that D(o(u))
D(oy) > --+> D(co(v)), and that Evel(g,,) = U(u).
In the third case we suppose that D(o(v)) — D(og—1) > 0 and that D(oy) —
D(o(u)) < 0. Hence Evel(gy,) = U(u) V U(v), and the proof is complete if
we build the path ¢ in replacing each edge (u,v) with the path g,,. O

v

Moreover, we have the exponential equivalence at low temperature:

o los( - M(8)

B—oo ﬁ
Let us recall here that we have similar results with the Metropolis dynam-
ics, if we replace U with U, Ui, with U, and the transition graph of
the Swendsen-Wang dynamics with the transition graph of the Metropolis
dynamics. The associated critical constant will be denoted m:

m =sup inf (sup(U(u) —U(y) — U(z) + Upin).

rHy vECzy uey

Let us first compare U and U.
e Forall z in X, U(z) > U(o(z)).
e For all z in X, U(x) = U(o(z)) if and only if n(z) = n(o(x)).
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266 ISABELLE GAUDRON

e A configuration z of X is a local minimum of U if and only if n(z) =
n(o(z)) and if o(z) is a local minimum of the function D.

e The energies U and U have the same minimal value. Let us denote
Xonin the set of global minimums of U:

Xmin ={(o,n(0)) € X;U(0(2)) = Upnin}-
The equilibrium law of the Swendsen-Wang process satisfies:

fin 7=
where 7 is the uniform measure on X,,;,. Translating the results obtained
with the Metropolis dynamics, we have the following convergence at low
temperature.
Let us denote V = {2 € X;U(o(2)) > E}, with &2 > U, and such that
{z € X;U(o(2)) = E} # 0. When the constant 77 is not equal to 0, the
rate of convergence of the Swendsen-Wang process to the ground states is

bounded by:

lim su inf sup log 2 (V)) < —
Hooplogn(ﬁ sup gy, (V) <

K- Umzn

—

3. COMPARISON OF THE SWENDSEN-WANG AND METROPOLIS
DYNAMICS

This comparison is based on the comparisons of their associated critical
constants m and m. This leads to a comparison of the convergence rates of
these dynamics which is relevant at low temperature only.

Let us recall first that the constant 7 is also equal to

77— sup inf sup(U(u) — U(o(y))),
l’eXminvyeXlocvx;éy ’Vecmy uey

where Xj,. = {z € X;Vy € X such that 2 — y, U(z) < U(y)}. An other
important fact is that 7 > 0 if and only if U has at least one local minimum
which is not in the same valley of energy as one of the global minimums.
We will focus in this section on the following family of energies:

Un(o) =hD(o)+ Z do,#0,, Where h > 0. (3.1)
<iu,j>€B

We recall here that the non negative function D is still equal to Y ;g D;(03).
Such family of energies is very often used in image segmentation problems,
where we usually try different smoothing rates: if we want to have a very
smooth result, i.e. to have quite large regions with smooth boundaries, we
run some relaxation steps with a small parameter h; if we want to have
a very precise segmentation, we would prefer a large parameter h. Let us
denote T the function such that
mi(h) = sup _inf sup (Up(u) = Un(@) = Un(y) + Unmin) »
r#Yy YECoy uey

and m the similar function for the Metropolis dynamics. Since these func-
tions m and ™ are both continuous, we have the following proposition.

ESAIM: P&S, JuLy 1997, VoL. 1, pp. 259-284



RATE OF CONVERGENCE OF THE SWENDSEN-WANG DYNAMICS 267

ProposITION 3.1. There exists a constant hg > 0 such that for all h < hg,
m(h) < m(h). If D has a minimal value which is obtained with a unique
and non constant image of labels o, there exists a constant hy > 0 such that

for all h > hy, m(h) > m(h).

Proof. Let h = 0. The set X,,;, is equal to {(c,0B);Vi,j € S o; = 0;},
where we denote 0p the null field of edges. The energy U has then L global
minimums whose first components are the constant images. The set X, is
equal to {(a,n(c)) € A x B}, Let 2 = (0,05) be a state of X,,;, and
y = (o(y),n(c(y))) be a state of Xj,..

e If y belongs to X,,;,, too, then z and y are neighbors and V (z,y) = 0.
e In the other case, let us consider the following path v from = to y:
xg = — a1 = (0,n(y)) = v2 = y, and compute U(u) — U(y) for each

u € . We easily check that sup,e.(U(u) — U(y)) = 0.

It follows then that 72(0) = 0.

The Metropolis constant m(0) is strictly non negative: the energy Up
has many strict local minimums. We end the proof of the first part of the
proposition with the continuity of the two functions 7 and m.

Let us prove now the second part of the proposition 3.1. For h large
enough, the energy U has a unique local and global minimum, for the graph
of Metropolis, which is equal to ¢. The minimal value of U is unique and
equal to @ = (g,n(a)). Let us consider the following configuration of X,
y = (o(y),0mB), with o(y) equal to a minimal constant image: for all site
i €8, 0(y) = L, where 33, Di(l) = infjeqr,... 1y 2 Di(j). Let v be a
path going from z to y. As ¢ is not a constant image, v has to contain a
configuration v = (o(u),n(u)), with o(u) constant and n(u) different from
0p; some edges of n(u) have to build a closed boundary. This fact gives us
that U(u) — U(y) > 2. It follows then that m(h) > 2, for h large enough. As
the two functions m and 7w are continuous, there exists hy > 0, such that

for all A > hy, m(h) < m(h). O

There exists then a wide domain of energies where we are sure that we
have a better rate of convergence with the Metropolis dynamics than with
the Swendsen-Wang dynamics. We should now estimate the domain where
it is preferable to run the Swendsen-Wang dynamics than the Metropolis
one. First of all we should answer the following question: is the domain
[0, ho] large enough to contain some h such that U, has a global minimum
which is not a constant image? If it is not the case, it will be always worse
to run the Swendsen-Wang dynamics than the Metropolis one to reach the
ground states of U in practical cases of image segmentation. We have no
general answer to such a question, but we have run some simulations of these
two dynamics in a very simple case.

4. EXPERIMENTAL STUDY

4.1. FRAMEWORK AND PURPOSES

In all this section our goal is to compare the behaviors of Metropolis
and Swendsen-Wang dynamics, when they are applied on a wide range of
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energies, on quite large images, and at many temperatures. This comparison
will be led when both dynamics are run with the same fixed number of
iterations. We call iteration, or step, of the dynamics of Metropolis, one
sweep of all sites of an image. An iteration of the Swendsen-Wang dynamics
is also defined as a sweep of all sites of an image; it is cut into two steps. In
the first step, we update the edges field; in the second step, we compute the
associated connected components, and choose their new labels.

We will particularly focus our attention on three points. We will first
look at the lowest energies reached by each dynamics. We will then com-
pare their energy distributions, and compute some interesting quantiles. We
will compare at last their dynamical behaviors, when both processes are at
equilibrium (or when we can not at least discriminate their static behaviors),
and derive from this comparison indications about their energy landscapes.

The energies we will work with belong to the family described in the
equation (3.1), with the four nearest neighbors system. The second term of
the energy D(o) is very simple and easy to build

D(0) = Dr(o) =Y bs.2R;,
1€ES

where the image R = (R;)ies can be interpreted as the result of a prior esti-
mate of the segmentation, based on a local classification of the pixels which
does not take into account the spatial relationships between neighbors. We
think that even if this second term is too rough to give good segmentations,
it gives relevant conclusions about the comparison of the Metropolis and
Swendsen-Wang dynamics.

The energy Uy will then provide us with smooth segmentations close to
R. The value of the parameter i will be adjusted according to the expected
smoothness of the result: a small value of h will provide us with a high
regularization (note that if h is close to zero, the energy ground states are
constant images, and are of no interest for image segmentation problems);
if h is large, our segmented image will be very close to R.

4.2. ENERGIES BASED ON SYNTHETIC IMAGES

We have built several binary images R, of size 100 by 100, and present
here some significant and generic results obtained with three of them. The
first image R; is a perfect segmented image, and provides us with a family
of energies where we know what are the ground states, and some important
local minimums. We will see that even in such an easy case, starting from
a random image, the Swendsen-Wang dynamics has some problems to find
the right segmentation. The second one, denoted Rg, is the realization of
a 2D Ising model with no external field at low temperature, to study the
behaviors of both dynamics when we want to segment images with wide
regions which have no linear boundaries, and where holes of misclassified
pixels appear. The third one, called Rs, is a noisy half white and black
image; we also know in this case what is the expected segmentation.

For each second term Dpg, we have run both dynamics with five different
temperatures (3 belongs to {0.7,1,2,3,5}), and with several parameters
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h which belong to a domain where the energy ground states are smooth
versions of the prior classification R.

For each experiment, we have first run 1000 steps of both dynamics,
starting from random noise. We have kept the final configuration and dis-
carded the 999 first images. These 1000 steps seem to be sufficient to reach
equilibrium for the Metropolis dynamics at all temperatures, and for the
Swendsen-Wang dynamics only at median or high temperatures (8 < 2).

Let Xf’h’l’ﬁ be the final configuration obtained with Metropolis and
Xf’h’z’ﬁ the final configuration obtained with Swendsen-Wang. We have
then run 4000 steps of each dynamics and computed the energy U of each
configuration. Let us denote (Xf’h’l’ﬁ)lgigooo the 4000 configurations of
Metropolis and (X R’h’2’5)1<i<4000 the configurations of Swendsen-Wang and
let us compare their energies.

4.2.1. LOWEST ENERGIES REACHED BY BOTH DYNAMICS.
Let k, R and the type j of the dynamics be fixed and let us call v =
(R,h,7). For each sequence (Xy’ﬁ

"")1<i<a000 we have computed the mini-

mal energy reached ULl = minj <;<4000 U(Xf’ﬁ)7 the mean energy TP =
(4000)~' "M% U (X ’ﬁ)7 and the standard deviation. We have also com-
puted the energies of the two constant images Uypize and Upjeer and of the
image R, the two first images being at least local minima of both graphs in
the domain where lives h. In each following table we have reported U,pite,
Ublack7 Up and the lowest energy reached among all different temperatures

U;;Lm = ming U, We have also reported the set B of the inverse tempera-

tures 3 for which U;;Lm is reached. The bold typed parameter  corresponds

to values for which Uy, = minges Uu’ﬁ is reached. The reported standard
deviation is associated to this bold typed parameter.

Ficure 1. Left: first image Rp; right: best result obtained
with Swendsen-Wang for h = 0.1 and g = 2.

In the first case (see table I and figure 1), Uypite = Upiack = 5000h, and
U(R1) = 200. The global minimum is a non constant image for » > 0.04.
When h is equal or larger than 4, the Metropolis energy landscape has no
strict local minimum (in this case, m(4) is equal to 0).

The second image (see figure 2), denoted Ry, is the realization of a Markov
random field of energy Z<i7j> do,#0,, With 3 large.

The third image (see figure 3), denoted Rs, is a half white and black image
I° corrupted with an independent noise W as follows: Rs(i) = I28w,=0 +
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Ficure 2. Examples of segmented images of lowest energy,
associated with the second image Rg. Up-left: Second image
Ry; up-middle: Metropolis with k = 0.5 and 3 = 5; up-right:
Metropolis with A~ = 1 and 8 = 5. Down-middle: Swendsen-
Wang with A = 0.5 and 8 = 2; down-right: Swendsen-Wang
with h = 1 and 8 = 2. Results obtained with the two dy-
namics are very close from a qualitative point of view, even

if (A]mm(Met) is slightly smaller than (Afmm(SW)

Ficure 3. Left: image Rgs; Right: best result obtained by
Swendsen-Wang on Rz with A = 0.1 and 3 = 2.

(1 — I9)éw,=1, for all site i in S, where the W; are i.i.d. random variables
such that P(W; = 1) = 0.1, and P(W; = 0) = 0.9. In table III we have
reported the energy of the perfect corresponding segmented image I°.

In all our experiments, the energies observed with both dynamics at high
and sometimes median temperatures (5 < 2) are very similar (we have sim-
ilar mean energies, standard deviations, and lowest energies). When tem-
perature becomes too low, these dynamics have different quantitative and
qualitative behaviors. The energies of Metropolis configurations are getting
smaller and smaller, whereas the energies of Swendsen-Wang configurations

ESAIM: P&S, JuLy 1997, VoL. 1, pp. 259-284



RATE OF CONVERGENCE OF THE SWENDSEN-WANG DYNAMICS 271

are much larger than they were at § = 2. The best results of the Swendsen-
Wang dynamics are quite always obtained with g = 2. At low temperature,
Swendsen-Wang stays in local minima, and can not create easily boundaries
to change the structure of the connected components of the image: it has
to pay a high price whereas it does not know if it would be able to decrease
the energy. For instance it is very difficult for this dynamics to move the
boundary of a region at low temperature, or to break a region into several
pieces.

h 0.05 0.1 0.5 4
Uwhite = Uplact | 250 500 2500 20 000
U(Ry) 200 200 200 200
Metropolis
Unin 200.05 | 200 200 200
Jé; 5 5 2,3,511,2,3,5
Utows 202.85 | 201.28 [ 200.19 | 200
Std 1.29 0.87 0.34 0
Swendsen-Wang
Unin 233.3 |226.60 | 200 200
J¥ 2 2 2 1,2,3
Ulow 272.76 | 256.25 | 218.98 |  200.02
Std 12.49 | 10.25 | 7.85 0.35

TABLE I. Results obtained with the first image R;. For
h = 4, the energy U has no local minimum in the graph
of Metropolis, this explains why Metropolis reaches R; after
a few steps and stays in this state for g > 3.

h 0.1 0.5 1 1.5 2 4
Uphite | 9517 | 2578.5 | 5517 8275.5 | 11 034 | 22068
Ubtaer | 448.3 | 2241.5 | 4483 6724.5 8966 17932
U(R3) | 1908 | 1908 1980 1908 1908 1908

Metropolis
Upin | 377.3 | 721 1023 1278.5 1504 1908
Jé; 3 5 5 5 3,5 2,3, 5

Uiow |394.65|726.63 | 1025.36 | 1281.98 | 1504.36 | 1908.13
Std 15.21 | 2.02 1.43 1.42 0.64 0.39
Swendsen-Wang
Unin | 478.1 | 757 1046 1305 1523 1924
Iv] 2 2 2 2 2 2
Ui |510.17 | 783.25 | 1074.61 | 2535.57 | 1544.76 | 1961.8
Std 11.64 | 8.77 9.76 |2079.64 | 8.03 29.7

TABLE II. Results obtained with the second image R;.
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h 0.1 0.5 1 4
Uwhite | 495.8 | 2479 4958 | 19832
Ublaer | 504.2 | 2521 5042 | 20168
U(Rs) | 3605 3605 3605 3605
U(I% | 199.2 596 1092 4068
Metropolis
Upin | 199.2 596 1092 3605

Jé; 3,5 | 2,3,5]23,5]| 3,5
Ulow | 199.31 | 596.04 | 1092.11 | 3605.2
Std 0.46 0.24 0.35 0.53
Swendsen-Wang

Upin | 215.2 596 1092 3637

3 2 2 2 2
Ul | 239.5 | 614.675 | 1108.1 | 3710.3
Std | 9.2 8 7 45.2

TABLE II1. Results obtained with the third image Rs.

We also see in tables I, IT and I1I that the lowest energies reached by the
Swendsen-Wang dynamics are higher than the lowest energies reached by
Metropolis. Even when the Swendsen-Wang dynamics reaches the minimal
energy, the standard deviation is worse than with the Metropolis dynamics
(we have to recall here that the minimal energy is reached by at a lower
temperature for Metropolis than for Swensen-Wang).

4.2.2. COMPARISON OF THE ENERGY DISTRIBUTIONS.

We have shown yet that the Metropolis dynamics reached ground states
at many temperatures, whereas the Swendsen-Wang dynamics was very of-
ten trapped in local minimums at low temperature. Since the Swendsen-
Wang dynamics always obtains its best results with § = 2, we focus from
now on both dynamics at this inverse temperature. We limit our study
to the cases where global minimums were reached or nearly reached. Let
us look at the energy distributions of both sequences, and denote Ul =
(U(Xf’h’l’ﬁ)hgigz;ooo and U? = (U(Xf’h’z’ﬁ)hgigooo-

Each following figure shows both distributions and cumulative distribu-
tion functions of U' (in solid line) and U? (in dashed line), as well as inter-
esting quantiles. The main fact is that both distributions are similar, and
can not be discriminated when h = 0.5 or 1, confirming the fact that both
dynamics seem to be at equilibrium.

This shows that if we have to work at a median temperature we will obtain
similar results with both dynamics. If we want to reach ground states with
a very precise value, which means that we have to work at low temperature,
we should run the Metropolis dynamics, which appears much more robust.
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Metropolis Cumulative distribution functions
3 1
0.8 /
® ® 4
82 S06 /
o =
c Q /
9] =l /
0%1 gos4
E = /
0.2 /

Z

7
0
200 220 240 260 200 220 240 260

energy energy
Swendsen-Wang
3
®
» 2
2
2
[}
3
g1
0
200 220 240 260
energy

Quantiles 0.8 0.9 | 0.95
Metropolis 225.7 1 229.9 | 232.9
Swendsen-Wang | 226.2 | 230.6 | 233.9

FIGURE 4. Distributions of U! (in solid line) and U? (in

dashed line), with h = 0.5, 3 =2, and R = R;.

Metropolis Cumulative distribution functions
25 1 =
7/
/
2 0.8 /
R ® /
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5] 3 /
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energy energy
Swendsen-Wang
25
2
®
815
o
=
[}
2 1
L
0.5
0
750 800 850
energy
Quantiles 0.8 0.9 0.95
Metropolis 791.7 | 796.5 | 800.6
Swendsen-Wang | 791.1 | 795.9 | 800.5

FIGURE 5. Distributions of U' and U?, with h = 0.5, 8 = 2,

and R = Rs.
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Metropolis Cumulative distribution functions
3 1
0.8
EN o
8% 506
o =
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[} =}
%1 go4
B 02
0 0
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energy
Swendsen-Wang
3
®
» 2
2
2
[}
3
g1
0
580 600 620 640 660
energy
Quantiles 0.8 0.9 | 0.95
Metropolis 621.4 | 625.6 | 629.0
Swendsen-Wang | 621.2 | 625.0 | 629.1

FIGURE 6. Distributions of U' and U? when h = 0.5, 8 = 2
and R = Rs.

4.2.3. COMPARISON OF THE ENERGY LANDSCAPES.

What happens at this median temperature % gives us significant informa-
tions about the proper dynamical behaviors of these Markov chains. More
precisely, we focus here on the energy landscape nearby interesting subsets
of A, i.e. sets of low energy states, and work with the complete processes U'
and U? (and not only with their distributions). A simple way to proceed is
to look at the excursions out of these low energy level sets. Long excursions
will denote the existence of a barrier of high energy in the neighborhood of
these sets.

Let us denote V! = {0 € A;U(0) < (14 €)Upin}, and V2 = {z €
X;U(o(2)) < (14€)Upin}. Let us consider the Metropolis (resp. Swendsen-
Wang) Markov chain starting from V! (resp. V,?) with its equilibrium law.
Let 7} = inf{i > 0; X!/, € V.'} be the return time associated with Me-
tropolis and 72 = inf{7 > 0; X22+1 € V2} be the return time associated with
Swendsen-Wang. We have estimated their distributions for small values of
¢. They have similar means (we are at equilibrium)!, but look very differ-
ent: 71 has median values whereas the Swendsen-Wang process has quite a
lot of short excursions and always a few long ones. This implies that the
variance of 72 is always much larger than the variance of 1. The existence
of long excursions also means that at low temperature, the Swendsen-Wang

process will take a long time to reach a ground state if it does not start from

et us recall here that E V(Tv) = Tr(lv) for an irreducible Markov chain, starting from

V' with its equilibrium law =, and where 7v is the return time in V.
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Metropolis Cumulative distribution functions
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FiGure 7. Distributions of U' and U? when R = R, and
4 = 2; top: h=0.1; bottom: h= 1. Let us notice here that
these distributions are quite different when h = 0.1, i.e. with
a high regularization rate and non constant global minimums;
this confirms the fact that in this case Metropolis performs
better (see table II). This difference disappears when h in-
creases.

the neighborhood of a global minimum (we see such a phenomenon in our
experiments).

We show the different results we have obtained with ¢ = 5%, with values
of h for which static results were similar for both dynamics, in the figures
8, 9 and 10. The number of the return time lies on the z-axis, and its value
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on the y-axis. After each figure, we express the mean value, denoted 7, and
the empirical variance, denoted var(r).

Metropolis
80 T T
5,60
[=4
o
S40f
4
3
o
5 20+
0 L f |
0 50 100 150 200 250 300 350 400 450

Excursion number

Swendsen-Wang
T T T

200

Excursion length
S o

o o

T T

o
o
T

T (IR

0 50 100 150 200 250 300 350 400
Excursion number

T | var(r)
Met. | 9.13 | 96.21
SW. |[7.21| 570.1

F1iGURrE 8. Return times of Metropolis and Swendsen-Wang
for h = 0.5, Ry, and ¢ = 5%.

Metropolis
8 T
g6 1
f=4
k)
sS4 ]
(2]
5
3
w2
0 | | | | |
0 500 1000 1500 2000 2500 3000
Excursion number
Swendsen-Wang
20 T T

Excursion length
- —
o (%

T T

o
T

I N N N I
0 500 1000 1500 2000 2500 3000 3500
Excursion number

T | var(r)
Met. | 1.34 | 0.62
SW. |[1.30 | 3.455

FIGURE 9. Return times of Metropolis and Swendsen-Wang
for h = 0.5, Ry, and ¢ = 5%.
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We have also estimated, for the inverse temperature § = 2 and for

h € {0.5,1}, the autocorrelation functions of the two processes U! and
1 1 2 2

U2, e, pl(t) = ZEEDEEI) ang pp ) = ZEUDEEI) The
autocorrelation function of the Swendsen-Wang process has a much slower
decrease than Metropolis (see figures 11 and 12). This also confirms the
fact that Swendsen-Wang has a slower rate of convergence to equilibrium
than Metropolis. One can read Sokal (1989) to have a quite complete idea
on the relations between the autocorrelation function and the convergence
rate of a Markov process to equilibrium in the reversible case. We also refer
to Gaudron and Trouvé (1996) in which we study the integrated autocor-
relation times of a Markov chain at low temperature with no reversibility
assumption.

Metropolis
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0 500 1000 1500 2000 2500 3000 3500 4000
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T T T

-
o

Excursion length
S
T
L

o
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| | | | L .
0 500 1000 1500 2000 2500 3000 3500 4000
Excursion number

T var(r)
Met. | 1.109 | 0.14
S.W. [ 1.101 | 0.2736

F1GURE 10. Return times of Metropolis and Swendsen-Wang
for h = 0.5, R3, and ¢ = 5%.
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Autocorrelation functions
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Ficure 11. Autocorrelation functions of the energy of the
Metropolis and Swendsen-Wang processes for h = 0.5 and
3 = 2. Top: Ry; bottom: R,.
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Ficure 12. Autocorrelation functions of the energy of the
Metropolis and Swendsen-Wang processes for h = 0.5, § =2
and Rs.

4.3. COMPARISON WHEN THE GROUND STATES ARE CONSTANT IMAGES

We focus in this part on the energies U, with a small value of h, i.e.
with a high regularization term. Although such family of energies is of no
interest in image segmentation problems (ground states are constant images
in such a case), this study will help us to answer some questions about the
value of the threshold hg which satisfies: Vh < hg, T(h) < m(h). In all our
experiments, the fact that the energy ground states were constant images
did not appear to be sufficient to assure that the Swendsen-Wang dynamics
had a higher rate of convergence than Metropolis. In fact, the Swendsen-
Wang process behavior seems better than the Metropolis behavior for very
small values of 1 (h < 0.001), and worse as soon as h > 0.01 (see tables IV
and V).

We have also estimated return times of the two dynamics for A = 0.001,
and we have noticed that both return times had very similar distributions.
Let us recall here that Swendsen-Wang seemed more efficient than Metrop-
olis for such a small value of h. Hence we can deduce that the study of
some return times distributions is a very useful tool to compare different
Markovian dynamics. In particular, the existence of long excursions out of
sets of low energy states at a median temperature will give a very slow rate
of convergence to equilibrium at low temperature.
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h 0.001 | 0.01 | 0.02
Uihite = Usiack 5 50 100
U(Ry) 200 200 200
Metropolis
Unnin 5 50 100
3 2.3,5/2,3,5/2,3,5
Uiow 5.002 | 50.002 | 104.16
Std 0.08 | 12.98 | 8.5
Swendsen-Wang
Unnin 5 243.88 | 247.88
i 2.3,5| 2 2
Ut 5 | 280.05 | 282.06
Std 0 10.75 | 10.67

TABLE IV. Results obtained with the first image R;.

h 0.001 | 0.01 0.02 0.05
Uwhite | 5.517 | 55.17 | 110.34 | 275.85
Uplack | 4.483 | 44.83 | 89.66 | 224.15
U(R3) | 1908 | 1908 | 1908 | 1908
Metropolis

Upin | 4.483 | 44.83 | 89.66 | 272.1
3 2,3 [2,3,5| 2,3 5
Ul | 4.90 | 44.83 | 90.09 | 275.43
Std | 1.22 | 0.08 | 1.24 | 1.31

Swendsen-Wang
Upin | 4.483 | 238.11 | 333.9 | 394.05
5 12,35 2 2 2
Uppw | 4.49 | 274.92 | 386.97 | 443.56
Std 0.07 | 13.92 | 26.7 | 25.2

TABLE V. Results obtained with the second image Rj.
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F1GURE 13. Return times of Metropolis and Swendsen-Wang
for h = 0.001, § = 2, Ry, and € = 100% (the minimal energy
is very small). Let us notice that both return times have
here similar distributions: in this case (which has no inter-
est for image segmentation problems), the Swendsen-Wang
dynamics is very efficient.

4.4, SEGMENTATION OF A REAL IMAGE

We will show here some results obtained with a real image of size 256 x 256,
which is composed of four different textures (?) . The energy we work with
is Un(0) = 3¢ v Ooito; + W) ics00,#R,, Where < i,j >€ B if and
only if |i — j| = 1, and where R is our prior unsupervised segmentation we
have computed according to local statistical characteristics of the image.
This energy is too simple to solve such a problem: a realistic second term
would involve a kind of distance between statistical characteristics of the
different textures. Anyway, the quantitative and qualitative comparisons of
the convergence rates of Metropolis and Swendsen-Wang dynamics would
lead to similar conclusions.

The experiment is the following: we start from the first segmented image
R, and run n; simulations of the Metropolis dynamics and ny simulations
of the Swendsen-Wang dynamics. Let us remark that R is here a local mini-
mum for the Swendsen-Wang transition graph: this dynamics has to increase
its energy quite a long time, before being able to decrease it. Hence its sta-
bilization time is much longer than the stabilization time of Metropolis, and
this explains why we have taken n, much larger than ny. On figure 14, we
show the initial image to be segmented, as well as the first segmentation
based on statistical features of the textures. The image of smallest energy
obtained with the Swendsen-Wang dynamics is quite close from the image
obtained with the Metropolis dynamics, but after much more steps.

?We thank very much Professor C. Craffigne who has kindly provided us with this
image.
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FIGURE 14. Left: original image; right: prior segmentation R.
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Ficure 15. Experiments with A = 0.5, and 8 = 2. Up-
left: Metropolis energy values; up-right: segmented image
of lowest energy obtained with Metropolis dynamics. Down-
left: Swendsen-Wang energy values; down-right: segmented
image of lowest energy obtained with Swendsen-Wang dy-
namics. Note that the Swendsen-Wang dynamics has not
reached equilibrium at the last step of Metropolis.
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5. CONCLUSION

We have theoretically stated in this article that we should better run
Swendsen-Wang than Metropolis for energies with a large regularization
term, and that we should run Metropolis when the regularization term is
very small. In our experiments we have tried to calibrate what was the
meaning of small and large.

The first point which has appeared in all our experiments is that we shall
not run the Swendsen-Wang dynamics at too low temperatures: we have
always obtained the best results with 5 ~ 2, i.e. at a median temperature.
For p = 3 or § = 5 the Swendsen-Wang dynamics gets trapped in the
neighborhood of local minimums of the energy. We can also notice here
that results obtained with Swendsen-Wang are very sensitive to this choice
of temperature.

In a second step, we have studied more precisely the Swendsen-Wang and
Metropolis dynamics at this median temperature § = %, in significant cases
for image segmentation problems (i.e. h = 0.5 or 1), and when stationarity
seemed to be reached. We have computed and compared the distributions
of the excursions out of sets of low energy. In all cases, these distributions
were very different: the Swendsen-Wang dynamics has always very short
excursions and a few very long ones, whereas the excursions of Metropolis
have a median length.

This behavior at a median temperature explains what happens at low
temperature: the Swendsen-Wang state space seems to have deeper cycles,
standing not too far from sets of low energy, than the Metropolis state space.
At a median temperature, it stays quite a long time in these cycles, but can
still get out of them. When the temperature decreases, it gets trapped in
them. We also think that the qualitative properties of such excursions is a
very efficient and helpful way to compare Markovian dynamics.

The main disappointing conclusion is that we did not find any interesting
case for the image segmentation problem, which means that the global min-
imums of the energy are not constant images, where the Swendsen-Wang
dynamics provided us with better results than the Metropolis dynamics.

Hence we do not believe that the Swendsen-Wang dynamics is interesting
to be run by alone for image segmentation problems. Nevertheless it may
be interesting to follow a mixed strategy, and we refer here to the current
thesis work of O. Cherif (CMLA) who builds an effective image segmenta-
tion algorithm, partly based on the Swendsen-Wang dynamics, and to Hurn
(1995) who considers adaptative strategies in a classification task in confocal
fluorescence microscopy.
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