
Rate of Decline of the Oriental White-Backed Vulture
Population in India Estimated from a Survey of
Diclofenac Residues in Carcasses of Ungulates
Rhys E. Green1,2*, Mark A. Taggart3,4, Kalu Ram Senacha5, Bindu Raghavan5, Deborah J. Pain2, Yadvendradev Jhala6, Richard Cuthbert2

1 Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom, 2 Royal Society for the Protection of
Birds, Sandy, United Kingdom, 3 School of Biological Sciences, Department of Plant and Soil Science, University of Aberdeen, Aberdeen, United
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The non-steroidal anti-inflammatory drug diclofenac is a major cause of the rapid declines in the Indian subcontinent of three
species of vultures endemic to South Asia. The drug causes kidney failure and death in vultures. Exposure probably arises
through vultures feeding on carcasses of domesticated ungulates treated with the drug. However, before the study reported
here, it had not been established from field surveys of ungulate carcasses that a sufficient proportion was contaminated to
cause the observed declines. We surveyed diclofenac concentrations in samples of liver from carcasses of domesticated
ungulates in India in 2004–2005. We estimated the concentration of diclofenac in tissues available to vultures, relative to that
in liver, and the proportion of vultures killed after feeding on a carcass with a known level of contamination. We assessed the
impact of this mortality on vulture population trend with a population model. We expected levels of diclofenac found in
ungulate carcasses in 2004–2005 to cause oriental white-backed vulture population declines of 80–99% per year, depending
upon the assumptions used in the model. This compares with an observed rate of decline, from road transect counts, of 48%
per year in 2000–2003. The precision of the estimate based upon carcass surveys is low and the two types of estimate were not
significantly different. Our analyses indicate that the level of diclofenac contamination found in carcasses of domesticated
ungulates in 2004–2005 was sufficient to account for the observed rapid decline of the oriental white-backed vulture in India.
The methods we describe could be used again to assess changes in the effect on vulture population trend of diclofenac and
similar drugs. In this way, the effectiveness of the recent ban in India on the manufacture and importation of diclofenac for
veterinary use could be monitored.
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INTRODUCTION
Populations of three species of vultures endemic to South Asia,

oriental white-backed vulture Gyps bengalensis, long-billed vulture G.

indicus and slender-billed vulture G. tenuirostris have collapsed since

the 1990s and are still declining rapidly [1–3]. As a result, they are

listed as critically endangered [4]. The non-steroidal anti-

inflammatory drug (NSAID) diclofenac has been identified as

a major cause of the population declines [2,5,6]. The drug is

widely used in the Indian subcontinent to treat inflammation, fever

and pain associated with disease and injury in domesticated

ungulates. Oriental white-backed vultures, African white-backed

vultures G. africanus and Eurasian griffon vultures G. fulvus died

from kidney failure within a few days of experimental treatment

with doses of diclofenac within the range likely to be encountered

by birds scavenging tissues from treated ungulates and showed

extensive visceral gout at post mortem [5,7]. Because susceptibility

to diclofenac poisoning is widespread within the phylogenetic tree

of the genus Gyps [8], the two other threatened South Asian species

G. indicus and G. tenuirostris are also likely to be susceptible, though

no experiments have yet been performed on them to check this.

Visceral gout and diclofenac residues in tissues have been found in

most carcasses of wild Gyps bengalensis and G. indicus from India,

Pakistan and Nepal examined since the decline began [5,6]; the

proportion affected being similar to that expected if diclofenac

poisoning was the only cause of the vulture decline [2].

The most probable way in which vultures are exposed to

diclofenac is by feeding upon carcasses of domesticated ungulates

that were treated with the drug shortly before death [2,9]. However,

until the study reported here, no large-scale surveys had been made

of the amount of diclofenac in tissues of ungulates available to

vultures. Until now, there has also been no method for estimating the

effect on vulture population trend of a given distribution of levels of

diclofenac contamination in samples taken from ungulate carcasses.

Hence, although the Drug Controller General (India) withdrew all

licences for the manufacture of diclofenac for veterinary use in 2006,

there is no accepted method for monitoring the effectiveness of this

ban in terms of its impact on vultures. In this paper, we describe

a method designed to fill this gap. We use a survey of diclofenac

concentrations in liver samples from carcasses of domesticated
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ungulates in India, reported in more detail elsewhere [10], to

estimate the trend of the oriental white-backed vulture population.

We compare these results with the rate of population change

measured using repeated counts of vultures on road transects.

RESULTS

Outline of the procedure for estimating the rate of

vulture population decline from measurements of

diclofenac in ungulate liver
We estimated the expected rate of decline of the vulture

population using a chain of calculations. The steps involved are

described below and are numbered as in Table 1, which is

intended as a guide to the logic of the procedure.

Step 1: Fitting a distribution model to the

measurements of diclofenac concentrations in

ungulate liver samples
We assumed that the livers of a proportion f of total sample of N

carcasses contained residues of diclofenac and that the remainder

(1-f) had no trace of the drug. Diclofenac concentrations dliver of

those samples with traces of the drug present were assumed to be

distributed according to some function with cumulative distribu-

tion function (cdf) U(dliver). Hence, the cdf of the distribution of

diclofenac concentration in all carcasses was taken to be

V(dliver) = 1+f (U(dliver)21). Diclofenac concentrations less than the

LOQ (0.01 mg kg21) could not be measured and the left-hand

side of the distribution of dliver was therefore veiled. Hence, we

fitted truncated (left-censored) versions of U(dliver) to the n

observations with measurable diclofenac from our 67 sampling

sites (Fig. 1), using a maximum-likelihood method [11] and the

NONLIN module of SYSTAT 5.03. We compared the fit of

truncated forms of two types of distribution to the .LOQ

measurements of diclofenac in liver; the log-normal distribution

and the complementary log-log distribution U(dliver) = 1-exp(-

exp(z(dliver)), where z(dliver) is a mth order polynomial, b0+b1

loge(dliver)+b2 (loge (dliver))
2…+bm (loge(dliver))

m. Having fitted each

of these distributions, we estimated f = n/N(12U(0.01)). None of

the distributions gave a significantly poor fit, according to the one-

sample Kolmogorov-Smirnov test (Table 2). However, the log-

normal distribution fitted the data significantly less well than any

of the complementary log-log models (likelihood-ratio tests,

P,0.05). The second order complementary log-log distributions

gave the lowest value of the Akaike Information Criterion (AIC),

but the third order model had a similar AIC value (Table 2). We

selected the third order model for use in later steps of the

procedure because it gave the lowest value of Kolmogorov-

Table 1. Logical structure of the method used to estimate the rate of population decline of the oriental white-backed vultures in
India.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step Description

1. Compare the fit of alternative models of the observed distribution of diclofenac concentrations dliver in liver samples taken from ungulate carcasses. Select
a suitable model with cdf, V(dliver).

2. Allow for the component of variation in diclofenac concentration in V(dliver) attributable to combined sampling and measurement errors by estimating the
variation in replicate measurements from different parts of the same liver.

3. Describe the relationship between the concentration of diclofenac in the liver dliver and that in other tissues from the same animal. Estimate the concentration
of diclofenac averaged across all the edible tissues of a carcass as a proportion of that measured in a sample of liver from the same animal, a’tot.

4. From the average meal size and body weight of oriental white-backed vultures, estimate the dose of diclofenac dvbw ingested per unit vulture body weight
from a single meal of mixed tissues from a carcass containing average concentration dcarc.

5. Fit a dose-response model with cdf J(dvbw) relating the proportion of oriental white-backed vultures that are killed by taking a single meal from
a contaminated carcass to dvbw.

6. Combine the results of steps 3, 4 and 5 to obtain a dose-response model with cdf K(dliver) relating the proportion of oriental white-backed vultures that are
killed by taking a single meal of mixed tissues from a contaminated ungulate carcass to the concentration of diclofenac in the liver dliver.

7. Integrate the product of the pdf of the distribution of ungulate liver concentration of diclofenac and the cdf of the dose-response model, v(dliver)K(dliver),
across the distribution of dliver to estimate the proportion of vultures killed per meal, averaged across all meals taken by the vulture population. This is
equivalent to the parameter C in the vulture population model of Green et al. [2].

8. Use the value of C and the model of Green et al. [2] to estimate the expected rate of decline of the vulture population.

9. Compare the expected rate of decline of the population of oriental white-backed vulture from ungulate carcass sampling in 2004–2005 with the rate
estimated from repeated road transect surveys of vulture numbers in a similar area in 2000–2003.

10. Estimate, from the observed and expected rates of population decline, the proportion of mortality in excess of that expected in a pre-decline stable vulture
population that is attributable to diclofenac poisoning.

doi:10.1371/journal.pone.0000686.t001..
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Figure 1. Locations of sites studied in India. Sites from which liver
samples were obtained from carcasses of domesticated ungulates in
2004–2005 for diclofenac assays are shown by circles (n = 67) and
centroids of 73 road transect surveys used to measure the population
trend of the oriental white-backed vulture in 2000–2003 are shown by
stars.
doi:10.1371/journal.pone.0000686.g001
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Smirnov’s D. Comparison of a cumulative plot of the data with the

fitted log-normal and third order complementary log-log distribu-

tion illustrates the relatively good fit of the latter model (Fig. 2).

Measurable levels of diclofenac were found in 10% of the samples

and the concentration exceeded 1 mg kg21 in 3.3% of samples.

The proportion of samples with diclofenac varied to a limited

extent geographically and according to the type of sampling sites

and ungulate species, age and sex, but these effects are examined

in detail in another paper [10].

To assess the effects of sampling error on the fitted values of the

parameters of complementary log-log distribution, for use in later

steps of the procedure, we generated 10,000 associated sets of

estimates of f, b0, b1, b2 and b3 by a bootstrap procedure. We

considered using sampling sites as units for bootstrapping.

However, 10 samples or fewer were collected at 42 of the 67

sites, whilst more than 100 samples were collected at 7 sites. For

this reason, we grouped the sites into 21 clusters with less variable

combined sample size by pooling data from neighbouring sites so

that each cluster included at least 25 samples. We then obtained

confidence intervals by drawing 10,000 bootstrap samples with

replacement, using clusters as the sampling units. Each bootstrap

sample consisted of data for all samples from 21 clusters drawn at

random, with replacement, from the 21 clusters in the actual

dataset. The distribution model was then fitted to each bootstrap

sample, as described above, and the associated sets of parameter

values were saved for use in subsequent stages of the analysis.

Step 2: Allowing for effects of within-liver sampling

and measurement errors on the variance of

observed concentrations of diclofenac in liver
Lack of precision in our measurements of diclofenac concentration

in liver would increase the apparent variation among samples

described by the functions U(dliver) and V(dliver). If the error was

sufficiently large, this difference in variance would affect our

estimates of the average proportion of vultures killed per meal in

Step 7, even if the proportion of samples contaminated and the

mean concentration remained the same. Hence, we performed

a one-way ANOVA to partition the variance of measurements of

diclofenac in six replicated liver samples from each of five cattle

into among-cow and within-cow components. Concentrations

were loge-transformed before analysis. We took the error mean

square as the variance of replicate measurements of the same liver.

The error mean square was 0.07228 (error sum of

squares = 1.807, error d.f. = 25). This is equivalent to a coefficient

of variation due to combined measurement error and within-liver

sampling error of 31% (exp(!0.07228) = 1.3085). This level of

variation is small relative to that observed among livers from

different animals in our larger sample. The log-normal distribution

fitted in Step 1 has a mean of 21.1522 and a standard deviation of

1.7670. Hence, the proportion of the variance described by the log-

normal form of U(dliver) that is attributable to within-liver sampling

error and measurement error is just 2% (0.07228/(1.76702)). The

standard deviation of the log-normal distribution after allowing for

within-liver sampling error and measurement error is 1.7464 (i.e.

!(1.7670220.07228)), which is sufficiently similar to the unadjusted

value of 1.7670 that we expect that adjustment would have

a negligible effect on the estimate of vulture population trend.

Therefore, we ignore this effect in subsequent steps. We do this

because, although we could readily make the adjustment to the log-

normal form of U(dliver) and V(dliver), it is not straightforward to do so

when using the complementary log-log distribution, which we

selected over the log-normal in Step 1 because of its superior fit to the

data. We check on the consequences of this decision in Step 7.

Step 3: Estimating the average concentration of

diclofenac in the whole carcass from the observed

value for liver
We wished to estimate the concentration of diclofenac, averaged

across the edible parts of an ungulate carcass available to vultures,

Figure 2. Cumulative distribution of diclofenac concentrations in
liver samples. The stepped line shows the observed cumulative
distribution of concentrations for 1,848 liver samples. Also shown is
the fitted cumulative log-normal distribution in which the mean of
loge-transformed values is 21.1522 and standard deviation is 1.7670
(thick curve). The thin curve is the fitted third order complementary
log-log model in which the cumulative probability is 0.8765+0.1235
(1–exp(-exp(0.3184+0.5415 loge(dliver)+0.05110 (loge (dliver))

2+0.005058
(loge(dliver))

3)).
doi:10.1371/journal.pone.0000686.g002

Table 2. Performance of models of the distribution of diclofenac concentrations measured in samples of liver tissue.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model Residual deviance Number of parameters AIC Kolmogorov-Smirnov D K-S P

log-normal 2888.96 2 2892.96 0.085 0.13

C L-L first order 2870.14 2 2874.14 0.054 .0.40

C L-L second order 2867.22 3 2873.22 0.048 .0.40

C L-L third order 2865.34 4 2873.34 0.042 .0.40

C L-L fourth order 2863.67 5 2873.67 0.045 .0.40

Only samples with concentrations above the LOQ (0.01 mg kg21) were included and all fitted distributions were truncated at the LOQ. The residual deviance, number of
fitted parameters, Akaike Information Criterion (AIC) and the maximum difference between observed and fitted cumulative distributions (D from the Kolmogorov-
Smirnov one sample test) are shown for each model. For the complementary log-log (C L-L) models, results are shown for first to fourth order polynomials.
doi:10.1371/journal.pone.0000686.t002..
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relative to that in the liver of the same animal. Because vultures

usually eat virtually all the soft tissues, knowing this conversion

factor allows us to calculate the average diclofenac concentration

in the food that vultures take from a carcass from that in the liver.

We first modelled the relationship between the diclofenac

concentration in a given tissue d and that in the liver of the same

animal dliver, using diclofenac analyses of paired samples of liver

and other tissues. Only data for which the concentration in liver

was above the limit of quantification (LOQ) were included in the

analysis. Inspection of log-log plots suggested that these relation-

ships were similar for different species and sample sources (Fig. 3),

so we ignored species and source in our analyses. We fitted the

model d = a dliver
k, where a and k are constants estimated from the

data, using a quasi-Newton maximum-likelihood (M-L) method in

the NONLIN module of SYSTAT 5.03.

We assumed that the differences between the natural logarithms

of observed and modelled values were normally distributed with

standard deviation v, which we also estimated. The M-L procedure

was preferred to ordinary linear least squares regression after log

transformation of d because some concentrations in tissues other

than liver were below the LOQ. The presence of ,LOQ

observations was handled in the M-L procedure by incorporating

into the model left-censoring of d at the appropriate LOQ value [11],

which varied according to the experiment and tissue [5,9].

The formulation of our model allows for the possibility that the

concentration of diclofenac in a given tissue, as a proportion of

that in liver, might not be a constant, but may vary with dliver. Only

if k = 1, would the expected value of d be a fixed proportion of dliver.

We made different assumptions about how a, k and v vary

among tissues in different models. Model fit was assessed using

residual deviance and AIC. Assuming that parameters a or v had

the same value for all tissues resulted in models with relatively poor

fit (Models B and D compared with Model A; Table 3), so we fitted

these parameters separately for each tissue. Assuming that k had

the same value for all tissues did not result in markedly poorer fit

than when it was estimated separately for all four tissues (Model C

compared with Model A). The estimated common value of k from

Model C was 1.0432, which suggested that taking k = 1 would be

a reasonable further simplification. Model E, which has tissue-

specific values of a and v and k = 1, performs similarly to Models C

and A and has the lowest AIC value of all the models we assessed.

Hence, we prefer this model, which treats the concentration of

diclofenac in a tissue as a fixed proportion of that in the liver.

The value a for a given tissue, is the geometric mean of the

relative concentration of diclofenac in that tissue, as a proportion

of that for liver from the same animal. To convert observed liver

concentrations from carcasses into estimates of diclofenac

concentration in each tissue, we require estimates of the arithmetic

mean relative concentration a’. We calculated these by the method

proposed by Rothery [12], as a’ = exp(loge(a)+0.5v2). Relative

concentrations calculated in this way for intestine, fat, kidney and

muscle are shown in Table 4. The average concentration of

diclofenac across all of the edible parts of the carcass a’tot, relative

to that of liver, was calculated from these relative concentrations in

each tissue and the composition of the carcass (Table 4). The

average carcass composition of cattle and water buffalo were taken

from ref. 9. We used a Monte Carlo procedure to obtain 95%

confidence limits for a’tot. We generated 10,000 pairs of random

normal deviates for each tissue and used them and the variance-

covariance matrix provided by SYSTAT to calculate 10,000

associated pairs of values of a and v for each tissue. For each

replicate, we then calculated a’tot, as described above. We ranked

the 10,000 a’tot values and took the bounds of the central 9,500

values as the 95% confidence limits.

The concentration of diclofenac was highest in kidney and

lowest in muscle (Table 4). Averaging across all soft tissues, the

arithmetic mean concentration of diclofenac in the whole of the

edible carcass was 38% of that in the liver.

Step 4: Relationship between diclofenac

concentration in ungulate liver and the dose per

unit vulture body weight ingested by oriental white-

backed vultures
Following ref. 13, we assumed that a free-living wild oriental

white-backed vulture requires an average daily food intake 0.341

kg of ungulate tissue. Hence, the amount of food ingested per meal

is 0.341 F kg for a vulture feeding at intervals of F days. A vulture

feeding on an average mixture of edible tissues from a carcass with

a liver diclofenac concentration dliver would ingest 0.341 a’tot F dliver

mg of diclofenac per meal. Given that the average weight of an

oriental white-backed vulture is 4.75 kg [13], the dose of

diclofenac ingested per unit vulture body weight dvbw is given by

(0.341 a’tot F dliver)/4.75.

Step 5: Model of dose-dependent mortality of

oriental white-backed vultures
We used experimental data for captive oriental white-backed

vultures from ref. 5 to fit a probit dose-response model relating the

proportion of birds killed by diclofenac to the dose of the drug

administered per unit vulture body weight. We assumed that the

natural logarithm of the lethal dose of diclofenac in mg kg21 of

vulture body weight is specified by a normal distribution with

mean m and standard deviation s. Hence, the cdf of this normal

distribution J(dvbw) describes the probability of death after eating

a contaminated meal that results in a dose per unit vulture body

weight dvbw. Models were fitted by a maximum-likelihood method

using the NONLIN module of SYSTAT 5.03. We used two

versions of the model, which were fitted with and without data

from an outlier; a vulture coded Gb11 which died with visceral

gout after apparently receiving a very low dose of diclofenac (see

ref. 7). We calculated confidence limits using the same Monte Carlo

procedure as described in Step 3. We took the bounds of the central

9,500 values as the 95% confidence limits. The fitted mean m and

standard deviation s of the natural logarithm of the lethal dose of

diclofenac in mg kg21 of vulture body weight were 22.3273 (95%

confidence limits 23.5715 to 21.0865) and 1.8870 (0.5807 to

3.0795) respectively with Gb11 included and 21.4934 (22.1274 to

20.86123) and 0.8675 (0.3348 to 1.3744) respectively with Gb11

excluded. The two versions of the model are illustrated in Fig. 4.

Step 6: Vulture mortality rate per meal in relation to

diclofenac concentration in the liver of the ungulate

eaten and the interval between meals
Steps 3, 4 and 5 were used in combination to specify the

relationship between the probability of death of a vulture per meal

and the concentration of diclofenac in the liver of the ungulate

from which a meal of mixed tissues was taken. This relationship is

the cdf of a normal distribution K(dliver) with standard deviation s,

from Step 5, and a mean given by m-loge(0.341 a’tot F dliver/4.75),

where a’tot is from Step 3 and m is from Step 5. The back-

transformed median lethal dose in liver from this calculation, for

vultures feeding on the whole carcass, was 1.81 mg kg21 (for

feeding interval F = 2) or 1.21 mg kg21 (for F = 3), if the outlier

Gb11 was used in fitting the dose-response model, and 4.16 mg

kg21 and 2.77 mg kg21 respectively if Gb11 was excluded.

Vultures and Diclofenac
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Step 7: Average vulture death rate per meal
The average proportion of vultures dying from diclofenac

poisoning per meal if they feed from carcasses with a distribution

of diclofenac concentrations in liver with cdf V(dliver) is given by the

integral, with respect to dliver, of the product v(dliver)K(dliver), for

a given interval F between meals, where v(dliver) is the probability

density function (pdf). This death rate per meal C is equivalent to

the parameter C in the vulture population model of Green et al.

[2]. In that paper, C was defined as the proportion of carcasses

that contained sufficient diclofenac to cause the death of all

vultures that fed. We obtained confidence limits for C by repeating

all the calculations described above using each of the 10,000

bootstrap or Monte Carlo replicate estimates of the parameter sets

for each step and taking the central 9,500 values of the resulting

estimates of C as 95% confidence limits. The estimated death rate

per meal was 2.66% (for feeding interval F = 2) or 3.23% (for

F = 3) if the outlier Gb11 was used in fitting the dose-response

model, and 0.86% and 1.37% if Gb11 was excluded (Table 5).

Although the log-normal model of the distribution of diclofenac

values did not fit the data particularly well, it gave estimates for the

death rate per meal that were similar to those for the

complementary log-log distribution. For the log-normal, C was

2.59% (for F = 2) or 3.13% (for F = 3) if the outlier Gb11 was used

in fitting the dose-response model, and 0.99% or 1.40% if Gb11

Figure 3. Relationship of diclofenac concentration in selected tissues to that in liver from the same ungulate. Log-log plots are shown of the
concentration of diclofenac in intestine, fat, kidney and muscle against that in the liver. Symbols denote ungulate species and data source: open
diamonds-Bos indicus, Experiment 1 [9]; circles-Bos indicus, Indian carcass dumps; squares-Bos taurus, Experiment 2; triangles-Bos taurus, Experiment 3;
grey diamond–Bubalus bubalis, [5]. Lines show results from the fitted Model E, in which the geometric mean concentration in the selected tissue is
assumed to be a fixed proportion of the concentration in liver (k = 1, see text).
doi:10.1371/journal.pone.0000686.g003
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was excluded. Using the version of the log-normal distribution

with its standard deviation adjusted to allow for the effect of

combined within-liver sampling and measurement error (see Step

2) gave very similar results to those from the unadjusted log-

normal (2.58, 3.12, 0.97 and 1.38% respectively for the four values

cited earlier). Hence, our decision in Step 2 to ignore within-liver

sampling error and measurement error as having a negligible

effect on subsequent calculations is justified.

Step 8: Vulture population trend estimated from

diclofenac concentrations in ungulate liver samples
We used the vulture population model from ref. 2 to estimate the

expected annual rate of change of the oriental white-backed

vulture population in 2004–2005 from the C values derived from

observed levels of diclofenac contamination of ungulate carcasses

in our sample. Following ref. 2, we took 0.90 and 0.97 as the

bounds of the likely range for the pre-decline annual adult survival

rate S0 and used values of 2 and 3 days as the interval between

meals F. Values of the other parameters in the model are as used

by Green et al. [2]. Confidence intervals were obtained as in Step

7. We expect high rates of population decline (.98% per year)

when the dose-response model includes the outlier Gb11, whereas

lower rates of decline (80–83% per year) are expected when Gb11

is excluded (Table 5).

Step 9: Population trends of the oriental white-

backed vulture in India from road transect counts
We estimated the average population trend from transect counts in

2000–2003 by fitting a log-linear Poisson regression model in

GLIM with vulture count as the dependent variable, transect

modelled as a factor and years elapsed since 2000 as a covariate

[2]. The annual rate of population decline, as a percentage, was

calculated as 100 (1–exp(g)), where g is the regression coefficient for

count on elapsed years from the fitted regression model.

Confidence intervals were obtained by drawing 10,000 bootstrap

samples, using transects as the sampling units for bootstrapping

purposes. Each bootstrap sample consisted of data from all years

for 73 transects drawn at random, with replacement, from the 73

eligible transects in the real dataset. The regression model was

then fitted to each bootstrap sample, as described above, and the

central 9,500 estimates were taken to define the 95% confidence

limits of the rate of population decline.

The average rate of change of oriental white-backed vultures,

averaged over the period 2000–2003 was a decline of 48% per year

(95% confidence limits 34–62%). This is a much lower rate of decline

than those (98–99% per year) calculated from diclofenac levels in

carcasses in Step 8 using the dose-response model that included the

datum from the outlier Gb11. We tested the significance of the

difference between population trend estimates from the carcass suvey

and road transects by using as the P value the proportion of

bootstrap/Monte Carlo replicates in which the difference between

the two types of estimate was of opposite sign to that from the point

estimates. This indicated that the rate of decline derived from carcass

surveys was significantly higher (P,0.021; Table 5). However, when

the dose-response model fitted after excluding Gb11 is used in Step

8, the rates of decline obtained from carcass surveys were more

similar (80–83% decline per year) to the rate calculated from road

transect data and there was no significant difference between the two

types of estimate (P.0.10; Table 5).

Step 10: Was diclofenac poisoning the main or sole

cause of the vulture population decline?
We assumed that the vulture population decline might have been

caused by a combination of diclofenac poisoning and some other

unknown factors that were not operating, at least to the same

extent, before the decline started, such that the additional daily

mortality rate for diclofenac poisoning and the unknown factors

together is A. We call A the excess mortality. We estimated A from

the rate of vulture population decline measured using the road

transect data (Step 9) for a specified value of S0 and F = 1, using the

method used by Green et al. [2] to estimate the value of C required

to produce the observed declines. We then calculated the

percentage of excess mortality caused by diclofenac as Ediclo = 100

loge(1-C)/(F loge(1-A)), using the estimates of C for values of F and

other conditions set out in Step 8. Ediclo was constrained to equal

100 when the estimate exceeded 100. Confidence intervals were

calculated as in steps 7 and 8. We took the proportion of

bootstrap/Monte Carlo replicates in which Ediclo.50 to indicate

the level of support for diclofenac being the main cause of the

vulture decline and the proportion with Ediclo = 100 as the level of

support for diclofenac being the sole cause of the decline.

For all versions of the population model examined, our best

estimate is that diclofenac poisoning was the sole cause of the

Table 3. Comparison of five models of the relationship
between diclofenac concentration in a specified tissue and
the concentration in liver from the same animal.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model Model specification
Residual
deviance

Number of
parameters AIC

a k v

A T T T 1227.33 12 1251.33

B C T T 1281.24 9 1299.24

C T C T 1232.12 9 1250.12

D T T C 1248.36 9 1266.36

E T 1 T 1233.63 8 1249.63

The parameters a, k and v (see text) are either assumed to vary among tissues
(T) or to have a common value across all four tissues (C). In Model E the
parameter k is set to the value 1 for all tissues. The residual deviance, number of
fitted parameters and Akaike Information Criterion (AIC) are shown for each
model. Models with the lowest AIC have reasonable fit without requiring the
estimation of many parameters.
doi:10.1371/journal.pone.0000686.t003..
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Table 4. Arithmetic mean concentration of diclofenac in
tissues, as a proportion of that in liver from the same animal a’
(see text).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tissue(s)
Relative
concentration 95% C.L.

Proportion of
carcass

Intestine 0.7446 0.2476–2.1596 0.1681

Fat 0.3984 0.1144–1.2984 0.2001

Kidney 1.1772 0.6492–2.1455 0.0056

Liver 1.0000 n/a 0.0208

Muscle 0.2372 0.0500–1.3003 0.6054

Edible carcass 0.3759 0.2042–1.0717 1.0000

The arithmetic mean concentration of diclofenac averaged across the edible
parts of the entire carcass a’tot is also shown. This was calculated by assuming
that the proportion of the carcass composed of the different tissues is as
indicated in the right hand column. Monte Carlo 95% confidence limits for the
relative concentrations are shown.
doi:10.1371/journal.pone.0000686.t004..
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decline (Table 5). After taking into account the various sources of

uncertainty in the estimates, the level of support for this hypothesis

exceeded 84%. Support for the hypothesis that diclofenac

poisoning was the main cause of the decline exceeded 92%.

DISCUSSION
Our results indicate that the level of diclofenac contamination

found in carcasses of domesticated ungulates available to vultures

in India in 2004–2005 was sufficient to account for the observed

decline of the oriental white-backed vulture population, measured

using road transect data in 2000–2003. The hypothesis that an

unknown major cause of mortality, in addition to diclofenac,

contributed to the vulture declines is not supported by our analysis

because the estimated rate of population decline from the carcass

surveys was higher than that estimated from road transects counts.

This difference was statistically significant if the outlier in the dose-

response data was included, but not if the datum for this bird was

excluded.

Although the difference was not statistically different if the

outlier was excluded, we estimated a substantially more rapid rate

of population decline from ungulate carcass surveys than from

vulture counts. There are several reasons to expect a real

difference in this direction. The pattern of geographical variation

in vulture abundance in recent years is likely to have been different

from that of diclofenac contamination. If vultures declined to

a greater extent prior to 2000 in areas with high levels of

diclofenac use, this would lead to lower exposure and rate of

population decline in 2000–2003 than if vultures were uniformly

distributed across our study area, as is assumed by our method.

Furthermore, carcass sampling began more than a year after the

road transect surveys ended. The use of diclofenac, and hence

carcass contamination, may well have increased during this time

and this would make the rate of population decline estimated from

carcass surveys appear higher than that from road transects.

A further reason to expect a higher rate of decline from our

ungulate carcass surveys than from counts is the source of the

relationship we used between vulture mortality and diclofenac

dose. We used information from experiments conducted in

Pakistan on birds taken into captivity within four years of the

first use of diclofenac as a veterinary medicine in that country

[3,5]. However, the transect count estimate of vulture population

trend in India used counts made in 2003–2004, which is 6–9 years

after the probable first veterinary use of diclofenac in India in

about 1994. The oriental white-backed vulture population in India

is estimated to have declined by 96% by 2000 [1], so there is likely

to have been strong selection, acting over a longer period than in

Pakistan, for those vultures least likely to succumb to diclofenac

poisoning. The effect of using a dose-response relationship derived

from experiments on birds from a population with only short-term

exposure (Pakistan) to diclofenac to estimate impact on a popula-

tion exposed for a longer period (India) may have been to

overestimate both mortality from a given dose and decline rate.

Finally, our estimates ignore the fact that vultures feed on

carcasses of wild as well as domesticated ungulates. Because the

former do not contain diclofenac residues, this will lead us to

overestimate death rate per meal and population decline rate.

However, there are very large numbers of domesticated ungulates

in India, relative to those of wild ungulates. Even in the Gir Forest

(Gujarat, India), an area with above average densities of wild

ungulates, 93% of ungulate carcasses available to vultures were of

domesticated species [14]. Hence, we think that the error caused

by this omission is unlikely to be large.

A weakness of our study is that we cannot be certain that our

samples of ungulate carcasses were representative of those at which

oriental white-backed vultures obtained their food during the

period over which their rate of population decline was measured.

This might lead to bias in either direction. Given the difficulty of

defining a population of potential vulture foraging sites from which

a random sample might be drawn, the current rarity of vultures in

India and the lack of previous quantitative studies of the relative

use of different types of foraging sites, we cannot see how this

deficiency could be overcome. Our sampling sites were of types for

which there is anecdotal evidence of vultures obtaining food, were

widely distributed geographically, and there was no obvious way in

which sampling was biased towards locations or animals with an

atypically high probability of diclofenac treatment. Hence, we

Figure 4. Relationship between the proportion of oriental white-
backed vultures treated experimentally with diclofenac that died
and the dose of diclofenac administered per unit vulture body
weight. Plotted points are proportions killed for each of five bins of
dose, with 95% exact binomial confidence limits (vertical lines). Bins
include 6, 4, 2, 10, and 2 birds respectively (ranked from lowest to
highest dose). The thick curve is the fitted probit model relating
mortality rate to log dose. Thin curves show the envelope enclosing the
central 9,500 of 10,000 Monte Carlo replicate values. The upper panel
shows results of analysis of all data. The lower panel excludes the datum
for an outlier (vulture Gb11) from the lowest dose bin, which died even
though it apparently received an extremely low dose of diclofenac. Data
are from Table 2 of Oaks et al. [5].
doi:10.1371/journal.pone.0000686.g004
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think that there is unlikely to be substantial bias in our estimates

for this reason.

The relationship of vulture mortality from kidney failure to the

dose of diclofenac ingested differed markedly according to whether

or not the datum from a single outlier from the experiments

reported by Oaks et al. [5] was included in the calculation. This

had a large effect on the estimate of the expected rate of vulture

population decline, which was much more rapid if the outlier was

included. For reasons considered in detail by Swan et al. [7], it is

not clear whether this observation should be included or not.

However, our conclusion about whether the level of diclofenac

contamination of ungulate carcasses is sufficient to account for the

vulture decline does not depend upon which version of the dose-

response model is used.

The low precision of our estimate of vulture population trend

reduces the practical value of our method for monitoring the likely

effect on vultures of future changes in diclofenac prevalence to

some extent. However, analyses of the sensitivity of the precision of

the population trend estimate to the precision of the estimates of

parameters used in its calculation (not shown) indicate that lack of

precision in defining the relationship between vulture mortality and

dose made a large contribution to the low precision of the trend

estimate. Captive populations of oriental white-backed vultures are

now too small and essential for conservation breeding programmes

for any new lethal experiments to be performed to refine the

estimates defining the dose-response relationship. Nonetheless, if it is

assumed that the dose-response relationship will change relatively

slowly over time, then the bias introduced by error in the dose-

response estimates can be taken to be similar in each repeated future

trend estimate. This argument also applies to several of the other

steps in our calculation. Hence, our method can be used to estimate

changes in population trend with considerably better precision than

that of the individual point estimates.

Our conclusions resemble those of a study that used completely

different methods. Gilbert et al. [3], working in Pakistan, used

clusters of oriental white-backed vulture deaths in time and space

to estimate the number of point sources of high exposure, probably

corresponding to carcasses containing lethal levels of diclofenac,

encountered per unit time by vultures from a colony. This rate was

combined with an estimate of the number of carcasses consumed

by the colony to calculate the proportion of carcasses used as food

that contained lethal levels of diclofenac. The range of proportions

of lethally contaminated carcasses estimated for the three colonies

studied was 1.4–3.0%, which exceeds the 0.4–0.7% of contam-

inated carcasses calculated by Green et al. [2] as being needed to

cause the observed rate of decline of this vulture population. This

four-fold difference is probably due to an important difference

between the two studies in the definition of a lethally contaminated

carcass. The clustering method used by Gilbert et al. detects any

carcass that caused the death of a substantial number of vultures,

but such a carcass need not necessarily kill all the birds that fed

from it. Only 40–80% of vultures are likely to be killed by taking

a large meal (1.023 kg) from the carcass of a cow given a standard

veterinary dose of diclofenac immediately before its death [9].

Hence, it seems unlikely that many of the contaminated carcasses

detected by Gilbert et al. killed even the majority of the vultures

that fed from them. The effect of a contaminated carcass in their

study would therefore be substantially less than that assumed in the

model of Green et al. [2], who defined a lethally contaminated

carcass as one which killed all the vultures that fed from it: all

other carcasses being assumed to kill no vultures. Hence, both our

present study in India and that of Gilbert et al. in Pakistan indicate

that the level of diclofenac contamination of ungulate carcasses is

broadly similar to that expected if diclofenac poisoning was the

sole cause of the declines.

In 2006, legal measures were introduced by the Government of

India to prevent the manufacture and importation of diclofenac

for veterinary use and hence reduce the exposure of wild vultures

to the drug. Similar steps are being taken in Nepal and Pakistan.

Our study relates to the situation in 2004–2005 before this ban

was introduced. If the ban results in a rapid decline to zero in the

prevalence of diclofenac in ungulate carcasses then this study will

prove to have been largely superfluous because there will be no

possibility of a continuing negative impact of diclofenac on

vultures. However, such a rapid resolution of this problem seems

unlikely for several reasons. The ban applies to manufacture and

importation for veterinary use, but not for use in human medicine,

which is widespread. It is probable that formulations intended for

humans will be used to treat ungulates. The ban does not cover the

sale of existing stocks of veterinary diclofenac, the magnitude of

Table 5. Estimates of death rate per meal C of oriental white-backed vultures, the annual rate of decline of the vulture population
and the percentage of excess vulture mortality that is attributable to diclofenac poisoning E, based upon concentrations of
diclofenac in liver samples taken from ungulate carcasses.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model specification
Death rate per meal
C % Annual rate of decline %

% of excess mortality
caused by diclofenac Ediclo

Percent support for
diclofenac as

Gb11
included? F S0 Estimate 95% C.L. Estimate 95% C.L.

Different from
road transects? P Estimate 95% C.L.

Main cause
of decline

Sole cause
of decline

Yes 2 0.90 2.66 0.40–5.72 99 57–100 0.018 100 100–100 99.4 98.2

Yes 2 0.97 2.66 0.40–5.72 99 53–100 0.021 100 100–100 99.5 97.9

Yes 3 0.90 3.23 0.56–6.45 98 54–100 0.014 100 100–100 99.6 98.6

Yes 3 0.97 3.23 0.56–6.45 98 51–100 0.016 100 100–100 99.5 98.4

No 2 0.90 0.86 0.07–3.11 81 19–100 0.136 100 19–100 93.7 86.4

No 2 0.97 0.86 0.07–3.11 80 14–100 0.156 100 17–100 92.9 84.4

No 3 0.90 1.37 0.19–4.05 83 28–99 0.100 100 40–100 95.9 90.0

No 3 0.97 1.37 0.19–4.05 82 23–99 0.114 100 35–100 95.4 88.6

A significance test of the difference between the rate of population decline estimated from diclofenac surveys and road transect counts of vultures and the level of
support (% of bootstrap/Monte Carlo replicates) for diclofenac poisoning being the main cause (.50% of excess mortality) or the sole cause (100% of excess mortality)
of the vulture decline are also shown. Results are given for calculations that used a dose-response model including and excluding an outlying datum (Gb11), for two
plausible values of the interval between meals F (days) and for the bounds of the likely range of pre-decline annual adult survival probability S0.
doi:10.1371/journal.pone.0000686.t005..
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which is not known. There may also be illegal manufacture and,

more probably, illegal importation. Finally, manufacture and

importation of other NSAIDs toxic to birds have not been banned

and it is possible that the use of these may increase and pose

a threat to vultures [15]. Given these possible obstacles to the rapid

removal of toxic NSAIDs from the food supply of vultures, we

suggest that the methods and results reported in this paper may

prove to be valuable in future. They provide a basis for estimating

the likely vulture population trend from surveys of diclofenac

prevalence, even in areas where vultures have disappeared or

declined to such low levels that meaningful estimates of trend

cannot be obtained from counts. They also provide a baseline

prior to the ban with which future assessments can be compared.

We recommend that surveys of contamination of ungulate

carcasses with diclofenac and other NSAIDs be undertaken at

regular intervals and analyses made of the likely impact on vulture

populations. Such a programme will establish whether the legal

measures and other actions, such as encouragement of the use of

the alternative NSAID meloxicam [16], have diminished the risk

to vultures sufficiently to allow wild populations to recover or

successful re-introductions to be made using captive stocks.

MATERIALS AND METHODS

Sampling of livers from domesticated ungulate

carcasses and measurement of diclofenac

concentration
Between May 2004 and June 2005, liver samples from 1,848

carcasses of domesticated ungulates (Bos indicus, B. taurus,. Bubalus

bubalis, Ovis aries, Capra hircus, Equus caballus and Camelus sp.) were

collected from 67 sites (Fig. 1). Most sampling sites were carcass

dumps managed by local government corporations, co-operatives

and private companies or individuals and cattle welfare charities, but

15% of samples were collected from slaughterhouses. The latter were

included in the survey because, although some of the meat from

slaughtered animals is consumed by humans, a substantial quantity

of offal and poor quality meat is disposed of on carcass dumps and

therefore becomes available to vultures. A few carcasses (n = 7) were

found singly in the countryside and alongside roads.

Samples were gathered opportunistically where it was possible

to obtain access and permission easily. Hence, although the sites

sampled were not necessarily a representative sample of all

locations at which tissue from domesticated ungulates was

available to vultures, we did not consciously select sites based on

any criteria that we believe are likely to lead to an atypical

prevalence of diclofenac-treated animals. At all sites except one,

every carcass that arrived during the visit was sampled. Hence,

there was no possibility of bias within these sites with respect to the

species, age, sex or condition of the dead animals sampled. At one

site, where 61 samples were obtained, the large numbers of

carcasses arriving did not permit all to be sampled and young,

prime and mature adults were selected.

Representative samples of liver were taken and temporarily

stored on ice prior to freezing. Diclofenac was extracted with

acetonitrile and its concentration determined by LC-ESI/MS

(liquid chromatography-electrospray ionisation mass spectrome-

try). ). The limit of quantification (LOQ) for this technique (back

calculated to wet tissue concentration) was 0.01 mg kg21. Full

details of sample collection, species, age and sex composition,

storage, analysis protocols and the precision of estimates are given

elsewhere [10].

Diclofenac concentration in ungulate tissues relative

to that in the liver of the same animal
The data for these analyses came from previous studies in which

samples of liver and other tissues were available from the same

animal. Diclofenac measurements from intestine, kidney and

muscle (5, 6 and 6 animals respectively) paired with those for liver

samples from the same Indian humped cattle were taken from

Experiment 1 of Green et al. [9]. Measurements for fat, kidney and

muscle paired with those for liver samples from European cattle

taken from Experiment 2 (16, 16 and 14 animals respectively) and

Experiment 3 (8 animals for each tissue) of ref. 9. We also used

measurements for kidney paired with those for liver samples from

three Indian humped cattle from carcass dumps in India and kidney

and muscle samples from a domesticated water buffalo analysed by

Oaks et al. [5]. Except for the carcass dump animals, all samples

came from ungulates injected with diclofenac experimentally. Details

of the sources of the samples from experiments and methods of

diclofenac analysis are given elsewhere [5,9].

Population trends of the oriental white-backed

vulture in India
We used information drawn from 397 vulture counts made in

2000, 2002 and 2003 along 155 road transects distributed widely

in India, apart from the southern Deccan peninsula, and surveyed

in at least two years (93, 155 and 149 transects totalling 11,183,

18,978 and 18,553 km in road length surveyed in 2000, 2002 and

2003 respectively). Methods and transects are described elsewhere

[1], although the network of transects was subsequently expanded.

Transects on which no birds were recorded in any year did not

contribute information to the estimate of trend, so only the 73

transects on which oriental white-backed vultures were recorded in

at least one year were selected for further analysis (Fig. 1)
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