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1. Introduction. The object of this paper is to study the rate of growth of real-

valued nonoscillatory solutions of

V + 2(0 \vV sgn y = 0 (1.1)

where q(t) is nonnegative and continuous on [0, °°) and y is any real number satisfying

0 < y < 1. (These assumptions on q(t) and y will be implicitly assumed throughout.)

There are necessary and sufficient conditions for the existence of nonoscillatory solutions

y(t) of (1.1) satisfying either lim(_.„ y(t) = a ^ Oorlim(-,„ (y(t)/(t) = a ^ 0 (cf. Sec. 2).

Our main purpose, then, is to discuss other possible types of nonoscillatory solutions,

for example, solutions which grow like a fractional power of t. Very little is known about

such solutions. We will give criteria for the existence of such solutions and also a criterion

for a certain type of "dichotomy" which may occur.

All solutions of (1.1) exist on [0, <») as follows from a theorem of Wintner (Hartman

[5]). By definition, a solution of (1) is said to be oscillatory if it has arbitrarily large

zeros; i.e., if T > 0, then there is a t > T such that y{t) = 0. If there is a T > 0 such

that y(t) 5^ 0 for t > T, then y(t) is called nonoscillatory.

Note that if y is the quotient of odd integers, Eq. (1.1) takes the form

y + q(t)yy = 0. (1.2)

Even without this restriction Eq. (1.1) has the property that if y(t) is a solution —y(t)

is also a solution. This clearly simplifies the discussion of nonoscillatory solutions of (1.1)

because they can always be assumed to be nonnegative and then (1.1) takes the form (1.2).

2. Preliminaries. In this section we state, for future reference, results which are

known or easily proved.

Theorem 2.1. All solutions of (1.1) are oscillatory if and only if

J syq(s) ds = °° .

This was first proved by Belohorec [3]. A very short proof of the sufficiency

of /" syq(s) ds = «= is given in [7]. Necessity will follow from the next theorem which is

analogous to a result of Moore and Nehari [10] for y > 1.
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Theorem 2.2. If f" syq(s) ds < «>, then Eq. (1.1) has a solution y(t) with a positive

zero which satisfies lim,-. (y(t)/t) = a where 0 < a < °°.

Proof. Let y(t) be a solution of (1.1) such that y(t0) = 0 and y(t0) > 0. Then y(t) <

y{t0)(t — to), t > t0 as long as y{t) is positive (since y{t) is concave). Therefore in some

interval to the right of t0 , we have, by integrating (1.1) (which simplifies to (1.-2)),

y(t0) < y(t) + y(toy f (* ~ t0)yq(s) ds.

y(t0) < y(t) + y(to)^ syq(s) ds/{yito))1"^ ■

If we now take y(t0) so large that 2 J," syq(s) ds < (y(t0)y~y, we will have y(ta) < y(t) +

\y{t0) or \y(to) < 2/(0- This is true as long as y(t) > 0. Therefore it is true for t > t0.

Since y(t) is then nonincreasing, we see that lim,^„ y(t) > \y(ta) > 0. This proves

the theorem.

Theorem 2.3. (1.1) has a solution y(t) satisfying lim,_.„ y(t)/t — a > 0 if and only

if J" syq(s) ds < 0°.

Theorem 2.4. (1.1) has a solution y(t) satisfying lim,_„ y(t) = a > 0 if and only

if J" sq(s) ds < oo .

Proof. Sufficiency of the condition J" sq(s) ds < oo is proved, for example, in [6]-

Necessity is easily established as follows. Suppose that y{t) is an eventually positive

nonoscillatory solution of (1.1). Suppose that y(t) > 0, y(t) > 0 for t > t0 . Note that

y must be eventually positive since y is eventually nonpositive. Multiplying (1.1) by

t/yy and integrating by parts gives

JjKO. _ (y(0Y y + I" sy^ ds + k + I" (s) ds = 0
(y(t))y 1-7 J«. yy+ J>.

If /'„ sl(s) ds —> oo as t —> oo; we must also have y(t) —* <*> as t —* oo. This proves the

theorem.

Remark. Theorem 2.3 and Theorem 2.4 are actually true as stated for all y > 0,

including the linear case, although different proofs are required for y > 1.

Remark. It was shown above that if J" syq(s) ds < <*>, there are nonoscillatory

solutions which grow like t and which moreover have a positive zero. Theorem 2.4

then raises the question, if J" sq(s) ds < oo, do there exist bounded nonoscillatory

solutions with a positive zero? For the Emden-Fowler equation, i.e., q(t) = t', the answer

is yes as was shown by Sansone [12]. For the general Eq. (1.1) this is an open question.

For the case y > 1, the question of nonoscillatory solutions with zeros is discussed

in [10] and [11].
3. Rate of growth of nonoscillatory solutions. The preceding section was concerned

with nonoscillatory solutions which either are bounded or grow like t. The present

section is motivated by the observation (Bellman [2]) that the Emden-Fowler equation

y + t'yy = 0 (3.1)
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has the solution y(t) = ct" where

<r + 2 ^ _ J (a + 2)(a + 7 + l)V^-»

1 — 7 ' \ (7 — l)2 /

Here we assume that a + 7 + 1 < 0 since otherwise all solutions of (3.1) are oscillatory.

If tr < —2, all nontrivial solutions are either bounded or grow like t (as will be shown

below). If a = — 2, then c = 0. Therefore we assume a > — 2. Thus c > 0 and 0 < w < 1

and there exists a nonoscillatory solution which grows like a fractional power of t.

The question then which we want to consider is under what conditions Eq. (1.1) has

nonoscillatory solutions which are neither bounded nor grow like t. The first step in this

direction is a lower bound for the nonoscillatory solutions.

Theorem 3.1. If (Belohorec [4])

lim inf f f g(s) ds > 0
t —• 00 J t

for some 0 < /3 < 1, and if y(t) is an eventually positive nonoscillatory solution of (1.1),

then there is a c > 0 such that

2/(0 > ct"-*)/a-y) (3.2)

for sufficiently large t.
The above discussion of the Emden-Fowler equation (3.1) shows that (3.2) is sharp.

We know from Sec. 2 that if there are any nonoscillatory solutions at all, then there are

nonoscillatory solutions which grow like t. Thus it is certainly impossible to find an

upper bound for all nonoscillatory solutions which is analogous to the lower bound

given by Theorem 3.1. However, it is possible to establish the existence of a nonoscillatory

solution which grows no faster than a specified fractional power of t. To do this we use

the theory of subfunctions. The following lemma is a special case of a theorem

of Schrader [13] (see also Jackson [9, Theorem 7.4]).

Lemma 3.1. Suppose that there exist functions <t>(t), \p(t) 1 C2[a, ®), a > 0, such that

$ + q(l)<t>y > 0 (lower solution) and $ + q{t)\py < 0 (upper solution) and also 0 < 4>{t) <

\p(t) for t > a. Then there is a solution y{t) of (1.1) such that <j>(t) < y{t) < \p(t) for t > a.

Theorem 3.2. If q(t) satisfies 0 < k^' < q(t) < k2f" for t > t0 , where k2 > 0,

— 2 < /3t < /32 < —1 — 7, then there exists a positive nonoscillatory solution y(t) of (1.1)

which satisfies

Cit"' < 2/(0 < c2t°", t > t0 ,

if kt > 0, where

a,
0, + 2 / k< y/"-T)

\a,(l — a,-)/
i = 1.2.

1 - 7 '

If k 1 = 0, then there exists a solution y(t) of (1.1) satisfying c2C 5= 2/(0 < c2t°".

Proof. Let <t>(t) = Cyt"' if kx > 0 and 4>(t) = c2t%' if k = 0, and let \p(t) = c2t?'. Since

0 < cxi < a2 , </>(0 < «K0 f°r t > t0 . Clearly \p(t) is an upper solution and 4>(t) a lower

solution for (1.1). Therefore by Lemma 3.1 there exists a solution 2/(0 of (1.1) such that

0(0 < 2/(0 < iKO for t > t0 .
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Remark. Better results can be obtained by assuming stronger conditions on q(t),

for example, if q(t) = W( 1 + a(0) where |a(0| + |<a(OI < At~', c > 0. See [1].

Corollary 3.1. If q(t) < fcr<T+3)/2, k > 0, t > t0 , then there is a nonoscillatory

solution y(t) of (1.1) such that 0 < 2/(0 < ctl/2 where c is given in the theorem.

Nonoscillatory solutions y{t) which satisfy 0 < y(t) < ctU2 have a special significance

as is indicated in the next theorem.

Theorem 3.3. Suppose y, (t) is a nonoscillatory solution of (1.1) which is positive

on [<0 , 00) and such that

1

/
ds = co .

(yMY
Let y2(t) be any other nonoscillatory solution of (1.1) which is positive on[t0, ). Then either

(i) 2/2(0 < fci2/i(0> t > t0 , some > 0

or

(ii) y2(t) > k2yi(t) f'u ds (yi(s))2, sufficiently large t, some fc2 > 0.

Proof. The proof is based on the transformation

r' 1
y(t) = y,(t)u(x), x = Jt ( (s))—2ds, (3-3)

which transforms (1.1) into

u" + f(x)(|«|T sgn u — u) = 0, ' = , (3.4)

where /(x) = (yi(t)y+3q(t). Thus the ^-interval [<0 , 00) corresponds to the z-interval

[0, 00). Clearly f(x) > 0 for x > 0. For positive nonoscillatory solutions (3.4) is equivalent

to

u" + f(x)(u7 — u) = 0.

The solution yi(t) of (1.1) corresponds to the solution ut(x) = 1 of (3.4). Let y2(t)

correspond to u2(x). We will consider several different possibilities.

1. Suppose 0 < w2(0) < 1. If u2(x) < 1 for x > 0 then (i) holds. Suppose u2(x0) = 1

where x0 is the first such point. Then u2(x0) > 0 (since u(x) = 1 is the unique solution

satisfying u(x0) = 1, u'(x0) = 0). Thus there is an xl > x0 such that u2(x,) > 1 and

u^Xi) > 0. Then u'2'(x,) > 0. Therefore u2' > 0, u2 > 0, u2 > 1 for x > xx . Hence

u'2{x) > u'iix^) > 0 for x > Xi . Therefore u2{x) > (x — x,)u'2(xi) for x > Xi . Thus

u2(x) > k2x for large x. Thus (ii) holds.

2. Now suppose that w2(0) > 1. If u2{x) < 0 for x > 0, then u2(x) < u2(x0), x > 0,

and (i) holds. Otherwise proceed as in Case 1.

Corollary 3.2. If there is a positive nonoscillatory solution yi(t) of (1.1) satisfying

0 < ct" < yi(t) < dt", 0 < a < $ then every other positive nonoscillatory solution y2{t)

satisfies either y2(t) < kxta or

(i) 2/2W > kit1'", a 9^

/  1(ii) 2/2(0 > k2t1/2 log t, a = 2 •
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Corollary 3.3. If there are two positive nonoscillatory solutions 2/i(0> y2(t) of (1.1)

such that 0 < Citf" < y,(t) < d,tal, 0 < a, < §, i — 1, 2 then there are positive constants

kt and fc2 such that

ki < 2/i(0/2/2(0 <

for large t.

Corollary 3.4 (Belohorec [4]). If (1.1) has a bounded nonoscillatory solution,

then every other positive nonoscillatory solution is either bounded or else satisfies lim,_„

2/(0/' = a > 0 {and finite).

Proof. Recall that every positive nonoscillatory solution is nondecreasing. Let t/i(0

be a positive, bounded, nonoscillatory solution. If y2(t) is any other positive nonoscillatory

solution, then by Corollary 3.2 either y2(t) is bounded or y2(t) > k2t for some > 0.

Suppose the latter. Since lim,_„ y(t) exists and is finite for every nonoscillatory solution,

it is clear that lim,^„ y2(t) > 0. Therefore, by l'Hospital's rule lim(_o> y2(t)/t - a where

0 < a < 00.

Theorem 3.4. If /" sq(s) ds < °° and q(t) < 0, then every nontrivial solution y{t)

of (1.1) satisfies either lim,_.„ y(t) = a where a 9^ 0, ± °° or lim,_„ 2/(OA = & where

/3 5^ 0, ± °°.

Proof. This follows immediately from Corollary 3.4 and a nonoscillation theorem [6]

which states that under the hypotheses of Theorem 3.4 all nontrivial solutions of (1.1)

are nonoscillatory.

Remark. Many of the results in this paper have analogues for the case y > 1 (c.f.

Moore and Nehari [10]). However, analogues to Theorems 3.2 and 3.3 for the case y > 1

are not known. The techniques used to prove these two theorems do not work for y > 1.

However, the Emden-Fowler equation (3.1) has a solution of the form 2/(0 == c£",

0 < w < 1, for y > 1 as well as 0 < y < 1. Thus there should be an analogue at least

to Theorem 3.2, for the case y > 1.
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