

Rate Performance Objectives of Multi-hop Wireless Networks

Bozidar Radunovic joint work with Jean-Yves Le Boudec

Laboratory for computer Communication and Applications phone: + 41 21 693.6634; fax: +41 21 693.6610 {bozidar.radunovic, jean-yves.leboudec}@epfl.ch http://lcawww.epfl.ch

Outline

- I. Introduction and problem statement
- II. Model of ad-hoc network

- III. Our findings
- IV. Conclusions

I. Introduction

• Goal: design MAC and routing protocol for given network technology.

Q: What performance objective to use?

- Performance objectives in multi-hop wireless networks:
 - Rate based objectives (802.11, UWB, CDMA)
 - Energy based objectives (sensor networks)
 - Combined
- We focus on rate-based objectives

Rate-based Performance Objectives

- Total capacity: maximize sum of rates of all flows
- Max-min fairness: a rate of a flow cannot be increased at the expense of a flow with an already smaller rate.
- **Proportional fairness:** maximize sum of logs of rates of all flows.
- **Transport rate** of a flow = rate * distance All above metrics applicable to transport capacities
- We can also define metrics corresponding to these objectives, when evaluating performance rather than designing network.

Efficiency and Fairness

- Antagonism between efficiency and fairness
- Maximizing total capacity is unfair (like in wired networks)
- Max-min fairness is inefficient (unlike wired networks)

Q: Given a network technology, what design objective to use to make a compromise between efficiency and fairness?

Performance Indices

- Q: How to quantify efficiency and fairness?
- Efficiency index of rate allocation \mathbf{f} : $\sum \mathbf{f}_i / \sum \mathbf{f}_i^*$ where \mathbf{f}^* is rate allocation that maximizes total capacity.
- Fairness index of rate allocation \mathbf{f} : $\cos^2(\alpha)$ where α is angle between \mathbf{f} and max-min fair allocation \mathbf{f}_{mmf} when MMF rates are equal, this coincides with Jain fairness index.

II. Model of Ad-hoc Wireless Network

- Physical model properties
- MAC protocol
- Routing protocol and traffic flows
- Power control

Physical Model Properties

- Point-to-point links: no broadcast, relay channels, multi-user detection
- Constant and positive attenuation h_{ij} between any two points i,j
- Interference allowed, no collisions.
- Signal-to-noise ratio at the receiver of link *l*: ratio of received power over white noise plus interference of other transmitters.
- Rate r(SNR) is strictly increasing function.

MAC Protocol

• Schedule consists of several slots, each of length a_n . In each slot, nodes have different power allocations p_n .

$$\alpha_1, \mathbf{p}_1 \quad \alpha_2, \mathbf{p}_2 \quad \alpha_3, \mathbf{p}_3 \quad \alpha_4, \mathbf{p}_4 \quad \dots$$

- In each slot, node achieves rate \mathbf{x}_n as a function of SNR and corresponding coding.
- Long term average rate is average rate over all slots

$$\overline{\mathbf{x}} = \sum_{n} \mathbf{a}_{n} \mathbf{x}_{n}$$

• We assume ideal control plane – no protocol overhead

Routing Protocol and Traffic Flows

- Traffic demand is described by end-to-end flows.
- Each flow is unicast of multicast.
- Each flow is mapped to one path (single-path routing) or more paths (multi-path routing)
- Mathematical formulation of constraints on average rates:

$$f = Fy, x = Ry$$

 $F_{f,p} = 1$ if path p belongs to flow f, else 0 $R_{p,l} = 1$ if path p uses link l, else 0

Power Constraint

- **Peak power constraint**: maximum power of a symbol in a codebook. Integrated in model trough rate function.
- **Transmission power constraint** P^{MAX}: average power of transmission in given slot. Corresponds to average power of codebook used.
- Long term average transmission power constraint P^{MAX} avg: average power dissipated over the schedule.

 It corresponds to battery lifetime:

$$T_{lifetime} = E_{battery} / (P^{MAX}_{avg} u)$$

u - fraction of time node has data to send

Optimization Problem

- **Input constraints** (due to technology and user preferences): transmission power constraint, rate function, attenuation
- Given network topology and traffic matrix, we have set of feasible rates and set of feasible transport rates.
- Q: for each performance objective, find optimal end-to-end rates on given feasible rates and feasible transport rates set.
- Non-convex optimization heuristic needed sometimes.

III. Finding 1: Max-min Fairness is inefficient

- Theorem: Max-min fair rate allocation on arbitrary network, without battery lifetime constraint, has all rates equal.
- Theorem: Max-min fair transport rate allocation have all transport rates equal.

Result on Max-Min Fair Allocation is due to Solidarity Property

- *Solidarity property* a set has solidarity property if one can always trade value of one coordinate for other coordinate.
- MMF allocation on set with solidarity has all coordinates equal.
- Not all convex sets have solidarity property.
- Feasible set of rates of wireless network has solidarity property; Feasible set of transport rates also has solidarity property.

Example **without** solidarity property: Feasible set of wired network

Application to 802.11 Network

Actual rates of all flows in the example: 1 Mb/s!

- All nodes have equal probability to gain access to channel
- All nodes have packets of equal sizes: slower nodes take more time to send packet.
- System is essentially max-min fair
- Conclusion: All nodes will have the same average rate, regardless of coding used

Phenomenon is not due to physical layer choice, but due to choice of design objective.

III. Finding 2: Maximizing Total (Transport) Capacity is Grossly Inefficient

- **Theorem:** Asymptotic results on maximizing (transport) capacity
 - when power constraint P^{MAX} goes to infinity, only the most efficient flows will have positive rate; the rates of other flows will be zero.
 - The same hold for maximizing transport rates –
 transport rates and rates of inefficient flows will be zero.

III. Finding 3: Proportional Fairness is Good Compromise

IV. Conclusions

- We analyzed three rate-based performance objectives: max. total capacity, max-min fairness, proportional fairness
- We defined a general model of wireless network, that incorporates most of the existing networks.
- Our findings on the general model:
 - Total capacity is unfair metric, especially for large power constraints; longer and inefficient flows get small or zero rate.
 - Max-min fairness is inefficient metric. Under no battery lifetime constraints, all flows get the same rate, that is the rate of the most inefficient flows.
 - Proportional fairness maintains fairness while increasing efficiency. It is robust to changes in power constraints. It is the optimal performance objective.

Future Work

- Incorporate power into the metric, rather then in constraint.
- Inspect influence of random fading on the results.