
 Open access  Proceedings Article  DOI:10.1109/ISIT.2006.262077

Rate Region of the Quadratic Gaussian Two-Encoder Source-Coding Problem
— Source link 

Aaron B. Wagner, Saurabha Rangrao Tavildar, Pramod Viswanath

Institutions: University of Illinois at Urbana–Champaign

Published on: 09 Jul 2006 - International Symposium on Information Theory

Topics: Gaussian, Gaussian process, Distortion, Encoder and Covariance

Related papers:

 Multiterminal Source Coding

 The rate-distortion function for source coding with side information at the decoder

 Gaussian multiterminal source coding

 Noiseless coding of correlated information sources

 The rate-distortion function for the quadratic Gaussian CEO problem

Share this paper:    

View more about this paper here: https://typeset.io/papers/rate-region-of-the-quadratic-gaussian-two-encoder-source-
500trz3039

https://typeset.io/
https://www.doi.org/10.1109/ISIT.2006.262077
https://typeset.io/papers/rate-region-of-the-quadratic-gaussian-two-encoder-source-500trz3039
https://typeset.io/authors/aaron-b-wagner-31cq4h59jz
https://typeset.io/authors/saurabha-rangrao-tavildar-4vqsv0emd4
https://typeset.io/authors/pramod-viswanath-49f72k3dc9
https://typeset.io/institutions/university-of-illinois-at-urbana-champaign-1mpdu76r
https://typeset.io/conferences/international-symposium-on-information-theory-2tznmny2
https://typeset.io/topics/gaussian-1fh7u769
https://typeset.io/topics/gaussian-process-34bs350f
https://typeset.io/topics/distortion-22ct09ud
https://typeset.io/topics/encoder-15olagr2
https://typeset.io/topics/covariance-280ocyct
https://typeset.io/papers/multiterminal-source-coding-140xf2gn4v
https://typeset.io/papers/the-rate-distortion-function-for-source-coding-with-side-15w82p0ta1
https://typeset.io/papers/gaussian-multiterminal-source-coding-23khvc5jd9
https://typeset.io/papers/noiseless-coding-of-correlated-information-sources-1djhi1n5q2
https://typeset.io/papers/the-rate-distortion-function-for-the-quadratic-gaussian-ceo-5pkc2v4618
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/rate-region-of-the-quadratic-gaussian-two-encoder-source-500trz3039
https://twitter.com/intent/tweet?text=Rate%20Region%20of%20the%20Quadratic%20Gaussian%20Two-Encoder%20Source-Coding%20Problem&url=https://typeset.io/papers/rate-region-of-the-quadratic-gaussian-two-encoder-source-500trz3039
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/rate-region-of-the-quadratic-gaussian-two-encoder-source-500trz3039
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/rate-region-of-the-quadratic-gaussian-two-encoder-source-500trz3039
https://typeset.io/papers/rate-region-of-the-quadratic-gaussian-two-encoder-source-500trz3039


Rate Region of the Quadratic Gaussian

Two-Encoder Source-Coding Problem

Aaron B. Wagner∗, Saurabha Tavildar†, and Pramod Viswanath‡

June 19, 2007

Abstract

We determine the rate region of the quadratic Gaussian two-encoder

source-coding problem. This rate region is achieved by a simple archi-

tecture that separates the analog and digital aspects of the compression.

Furthermore, this architecture requires higher rates to send a Gaussian

source than it does to send any other source with the same covariance.

Our techniques can also be used to determine the sum rate of some gen-

eralizations of this classical problem. Our approach involves coupling the

problem to a quadratic Gaussian “CEO problem.”

Keywords: multiterminal source coding, vector quantization, Gaussian
sources, rate region, worst-case source, remote source, CEO problem.

1 Introduction

This paper addresses the quadratic Gaussian two-encoder source-coding prob-
lem, the setup for which is depicted in Fig. 1. Two encoders observe different
components of a memoryless, Gaussian, vector-valued source. The encoders,
without cooperating, compress their observations and send messages to a single
decoder over rate-constrained, noiseless channels. The decoder attempts to re-
produce both observations, subject to separate constraints on the time-averaged
expected squared error of the two estimates. We seek to determine the set of
rate pairs (R1, R2) that allow us to meet a given pair of target distortions. We
call this set the rate region. Of course, this problem can also be formulated for
general sources and distortion measures. Our focus on the quadratic Gaussian
case is motivated by its fundamental nature, its importance in applications, and
its well-known extremal properties.
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This problem is naturally viewed as a quadratic Gaussian version of Slepian
and Wolf’s problem [1]. Slepian and Wolf studied the problem in which the
source is discrete and the decoder must reproduce it with negligible probability
of error. Their celebrated result characterizes the rate region for this setup. One
consequence of this characterization is that permitting the encoders to cooperate
or view each other’s observations does not offer any advantage, at least as far
as the sum rate is concerned.

There is a natural way to harness Slepian and Wolf’s result in the Gaussian
setting. Each encoder first vector quantizes (VQs) its observation using a Gaus-
sian test channel as in single-encoder rate-distortion theory. This results in two
correlated digital messages, which are suitable for compression via Slepian-Wolf
encoding. The decoder decodes the quantized values and estimates the source
by computing a conditional expectation. This approach separates the analog
and digital aspects of the compression, as shown in Fig. 2.

Our main result is an explicit characterization of the rate region for this
problem. This result has three notable consequences:

(i) The architecture depicted in Fig. 2 is optimal.

(ii) This architecture requires higher rates to send a Gaussian source than it
does to send any other source with the same covariance. In particular, a
Gaussian source has the smallest rate region for a given covariance.

(iii) Unlike in the Slepian-Wolf problem, here decentralized encoding requires
a strictly higher rate compared to centralized encoding.

The problem of determining the rate region for this setup has been open
for some time [2]. Early work [2, 3] used the architecture described above to
prove an inner bound. Zamir and Berger [4] showed that this inner bound
is asymptotically tight in the low-distortion regime, even if the source is not
Gaussian. Oohama [5] determined the rate region for the problem in which only
one of the two distortion constraints is present. By interpreting this problem
as a relaxation of the original problem, he obtained an outer bound for the
latter. He showed that this outer bound, when combined with the inner bound,
determines a portion of the boundary of the rate region. As a result of his work,
showing that the inner bound is tight in the sum rate suffices to complete the
characterization of the rate region. This is shown in the present paper.

Our approach is to lower bound the sum rate of a given code in two different
ways. The first way amounts to considering the rate required by a hypothetical
centralized encoder that achieves the same error covariance matrix as the code.
The second way is to establish a connection between this problem and the
quadratic Gaussian “CEO problem,” for which the rate region is already known.
For some codes, the cooperative bound may be tighter. For others, the CEO
bound may be tighter. Taking the maximum of the two lower bounds yields a
composite lower bound that is sufficiently strong to prove the desired result.

The next section contains a precise formulation of the problem and a state-
ment of our main result, Theorem 1. In Section 3, we describe the separation-
based compression architecture. There we also discuss the worst-case property
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of the Gaussian distribution. We provide the necessary background on the CEO
problem and some other preliminaries to the converse proof in Section 4. The
converse proof itself is contained in Section 5. In Section 6, we show how the
converse proof technique can be used to determine the rate region for a more
general version of the problem in which the decoder aims to reproduce certain
linear combinations of the source components. In Section 7, we show how the
proof technique can be extended to handle the case of more than two sources, if a
certain symmetry condition holds. Section 8 contains some concluding remarks.

We use the following notation. Boldface, lower case letters (µ) denote vec-
tors, while boldface, upper case letters (D) denote matrices. Lightface letters
(ρ, R) denote scalars. Whether a variable is deterministic or random should be
clear from the context.

2 Problem Formulation and Main Result

Let {(yn
1 (i), yn

2 (i))}n
i=1 be a sequence of independent and identically distributed

(i.i.d.) Gaussian zero-mean random vectors. Let

Ky =

[

1 ρ
ρ 1

]

denote the covariance matrix of (yn
1 (1), yn

2 (1)). We use yn
1 to denote

{yn
1 (i)}n

i=1,

yn
1 (j : k) to denote

{yn
1 (i)}k

i=j ,

yn(i) to denote (yn
1 (i), yn

2 (i)), yn to denote {(yn
1 (i), yn

2 (i))}n
i=1, etc. Analogous

notation will be used for other vectors that appear later.
The first encoder observes yn

1 , then sends a message to the decoder using a
mapping

f
(n)
1 : R

n 7→
{

1, . . . ,M
(n)
1

}

.

The second encoder operates analogously. The decoder uses the received mes-
sages to estimate both yn

1 and yn
2 using mappings

ϕ
(n)
j :

{

1, . . . ,M
(n)
1

}

×
{

1, . . . ,M
(n)
2

}

7→ R
n j = 1, 2.

Definition 1 (Quadratic Gaussian Two-Encoder Source Coding Prob-
lem). A rate-distortion vector (R1, R2, d1, d2) is strict-sense achievable if there

exists a block length n, encoders f
(n)
1 and f

(n)
2 , and a decoder (ϕ

(n)
1 , ϕ

(n)
2 ) such

that1

Rj ≥ 1

n
log M

(n)
j for all j in {1,2}, and

dj ≥ 1

n

n
∑

i=1

E
[

(

yn
j (i) − ŷn

j (i)
)2
]

for all j in {1,2},
(1)

1All logarithms in this paper are base two.
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where
ŷn

j = ϕ
(n)
j

(

f
(n)
1 (yn

1 ), f
(n)
2 (yn

2 )
)

j ∈ {1, 2}.

Let RD⋆ denote the set of strict-sense achievable rate-distortion vectors. We
define the set of achievable rate-distortion vectors to be the closure of RD⋆,
RD⋆. Let

R⋆(d1, d2) =
{

(R1, R2) : (R1, R2, d1, d2) ∈ RD⋆
}

.

We call R⋆(·, ·) the rate region for the problem. The (minimum) sum rate for
a given distortion pair (d1, d2) is defined to be

inf{R1 + R2 : (R1, R2) ∈ R⋆(d1, d2)}.

We note that there is no loss of generality in assuming that E[y2
1 ] = E[y2

2 ] =
1, since the observations and the estimates can be scaled to reduce the general
case to this one. By similar reasoning, we may assume that ρ ≥ 0, i.e., that the
observations of the two encoders are nonnegatively correlated. Since the two
extreme cases ρ = 0 and ρ = 1 can be handled using existing techniques, we
will assume throughout the remainder of the paper that 0 < ρ < 1.

We now define three sets that will be used to describe the rate region. Let

R⋆
1(d1) =

{

(R1, R2) : R1 ≥ 1

2
log+

[

1

d1

(

1 − ρ2 + ρ22−2R2

)

]}

,

where log+ x = max(log x, 0). Likewise, let

R⋆
2(d2) =

{

(R1, R2) : R2 ≥ 1

2
log+

[

1

d2

(

1 − ρ2 + ρ22−2R1

)

]}

.

Finally, let

R⋆
sum(d1, d2) =

{

(R1, R2) : R1 + R2 ≥ 1

2
log+

[

(1 − ρ2) β(d1, d2)

2d1d2

]}

,

where

β(d1, d2) = 1 +

√

1 +
4ρ2d1d2

(1 − ρ2)2
.

Later we will see that we can often interpret the the logarithm in the defi-
nition of R⋆

sum(·, ·) as a mutual information

1

2
log

|Ky|
|D∗| ,

where D∗ is the covariance matrix of the errors (y1 − ŷ1, y2 − ŷ2) in a sum-rate
optimal code. Throughout the paper we assume that all distortion constraints
(d1 and d2 in this case) are positive.

Theorem 1. For the Gaussian two-encoder source-coding problem,

R⋆(d1, d2) = R⋆
1(d1) ∩R⋆

2(d2) ∩R⋆
sum(d1, d2).
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An example of the rate region is shown in Fig. 3. The direct part of this
result was previously known and is discussed in the next section. It was also
previously known that the rate region was contained in the set R⋆

1(d1)∩R⋆
2(d2).

Our contribution is a proof that the rate region in contained in R⋆
sum(d1, d2).

This is provided in Sections 4 and 5. Sections 6 and 7 present some extensions
of this result to problems with more general distortion constraints and more
than two sources, respectively.

3 Direct Part and Worst-Case Property

Translating the architecture in Fig. 2 into an inner bound on the rate region is a
straightforward exercise in network information theory. Since proofs of similar
bounds are available [2, 6, 7, 8, 9], we provide only a high-level view of the proof
here.

Let U(d1, d2) denote the set of real-valued random variables u1 and u2 such
that

(i) u1 ↔ y1 ↔ y2 ↔ u2, meaning that u1, y1, y2, and u2 form a Markov chain
in this order2, and

(ii) E[(yj − E[yj |u])2] ≤ dj for j ∈ {1, 2}.

Then fix u in U(d1, d2) and a large integer n. By the proof of the point-to-point
rate-distortion theorem, the first vector quantizer can send I(y1;u1) bits per
sample to the first Slepian-Wolf encoder that convey a string un

1 that is jointly
typical with yn

1 with high probability. Likewise, the second vector quantizer can
use I(y2;u2) bits per sample to send its Slepian-Wolf encoder a string un

2 that
is jointly typical with yn

2 with high probability.
The Slepian-Wolf encoders could view the quantized strings un

1 and un
2 as

individual symbols from a digital source to be compressed [9]. They would then
accumulate many such symbols to compress. Alternatively, one can apply the
arguments behind the Slepian and Wolf theorem directly to un

1 and un
2 [2, 6, 7, 8].

Either way, the decoder can recover un
1 and un

2 so long as

R1 ≥ I(y1;u1|u2)

R2 ≥ I(y2;u2|u1)

R1 + R2 ≥ I(y;u).

The decoder can then in principle compute the minimum mean-squared error
(MMSE) estimate of yn given un, and (ii) above guarantees that this estimate
will comply with the distortion constraints. By a time-sharing argument, one
can show that the rate region is convex. This outlines the proof of the following
inner bound.

2This condition is sometimes called the “long Markov chain” [4].
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Proposition 1 (Berger-Tung Inner Bound [2, 3]). The separation-based
architecture achieves the rates

Ri(d1, d2) = {(R1, R2) : there exists u ∈ U(d1, d2) such that

R1 ≥ I(y1;u1|u2)

R2 ≥ I(y2;u2|u1)

R1 + R2 ≥ I(y;u)}.

(2)

In particular, the rate region contains the convex hull of this set.

It is unclear a priori how to compute this inner bound. A natural approach
is to place additional constraints on u to create a potentially smaller inner bound
that is amenable to explicit calculation. Let UG(d1, d2) denote the set of u in
U(d1, d2) such that uj has zero mean and unit variance for each j, and there
exists a random vector z such that

(i) For some constants c1 and c2 in [0, 1),

u1 = c1y1 + z1

u2 = c2y2 + z2,

(ii) z is Gaussian and its components are independent,

(iii) z is independent of y,

(v) E[(yj − E[yj |u])2] ≤ dj for all j in {1, 2}.

We will refer to a random vector u satisfying conditions (i)-(iii) as a distributed
Gaussian test channel or, when there is no ambiguity, as simply a test channel.
Note that the set of distributed Gaussian test channels is parametrized by c1

and c2.
Let

Ri
G(d1, d2) = {(R1, R2) : there exists u ∈ UG(d1, d2) such that

R1 ≥ I(y1;u1|u2)

R2 ≥ I(y2;u2|u1)

R1 + R2 ≥ I(y;u)}.

(3)

Lemma 1. The separation-based architecture achieves Ri
G(d1, d2), which satis-

fies
Ri

G(d1, d2) = R⋆
1(d1) ∩R⋆

2(d2) ∩R⋆
sum(d1, d2). (4)

This lemma is an immediate consequence of Proposition 1, except for the
equality in (4). Later, we state and prove a more general version of this equality
(Lemma 7 in Section 6). Since one can verify directly that R⋆

1(d1), R⋆
2(d2), and

R⋆
sum(d1, d2) are convex, it follows that Ri

G(d1, d2) is also convex. Thus, time
sharing will not enlarge this region. In the remainder of the paper, whenever we

6



consider the separation-based architecture, we will assume that u is a distributed
Gaussian test channel.

Theorem 1 and Lemma 1 together show that Ri
G(d1, d2) equals the rate

region. In particular, this implies that the separation-based scheme depicted in
Fig. 2 is an optimal architecture for this problem. We note that the quadratic-
Gaussian two-encoder source-coding problem is not unique in this respect. Prior
work has shown this architecture to be optimal for other important problems
as well [4, 6, 7, 8, 10, 11, 12].

In fact, the separation-based architecture achieves the rates

R⋆
1(d1) ∩R⋆

2(d2) ∩R⋆
sum(d1, d2)

even if the source is not Gaussian. Let {y̌n(i)}n
i=1 be a sequence of zero-mean

i.i.d. random vectors, not necessarily Gaussian, with covariance matrix Ky.
We consider the same source-coding problem as before, but with the alternate
source y̌ in place of y. Let Ři(d1, d2) denote the inner bound obtained from
Proposition 1.

Proposition 2. The separation-based architecture achieves the rates

R⋆
1(d1) ∩R⋆

2(d2) ∩R⋆
sum(d1, d2)

for the source y̌. That is, Ři(d1, d2) contains this set.

Proof. See Appendix A.

Theorem 1 and Proposition 2 together imply that the separation-based ar-
chitecture requires higher rates to send a Gaussian source than it does to send
any other source with the same covariance. In particular, a Gaussian source
has the smallest rate region for a given covariance matrix. This result is a two-
encoder extension of the well-known fact that a Gaussian source has the highest
rate-distortion function for a given variance [13, Ex. 9.7] (see Lapidoth [14] for
a stronger version).

4 Converse Preliminaries

Oohama [5] determined the rate region when only one of the two distortion
constraints is present

R⋆(d1, 1) = R⋆
1(d1)

R⋆(1, d2) = R⋆
2(d2).

As a consequence of his result, it follows that

R⋆(d1, d2) ⊆ R⋆
1(d1) ∩R⋆

2(d2). (5)

This outer bound is tight in a certain special case. Let DG denote the set of
matrices D such that

D−1 = K−1
y + Λ (6)
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for some diagonal and positive semidefinite matrix Λ. There is a one-to-one
correspondence between DG and the set of distributed Gaussian test channels.
Specifically, D is the covariance matrix of y − E[y|u], where u is a distributed
Gaussian test channel with

c2
j =

λj

1 + λj
j ∈ {1, 2}

and λ1 and λ2 are defined by

Λ =

[

λ1 0
0 λ2

]

.

As such, we will sometimes refer to D, or equivalently Λ, as a (distributed
Gaussian) test channel. Note that the mutual information between y and u can
be expressed in terms of D

I(y;u) = h(y) − h(y|u)

=
1

2
log
(

(2πe)2|Ky|
)

− 1

2
log
(

(2πe)2|D|
)

=
1

2
log

|Ky|
|D| .

Let diag(DG) denote the set of distortion pairs (d1, d2) such that there exists
a D in DG with top-left entry d1 and bottom-right entry d2. It is straightforward
to verify that (d1, d2) is in diag(DG) if and only if

max(d1, d2) ≤ min(1, ρ2 · min(d1, d2) + 1 − ρ2). (7)

The set diag(DG) is significant because if (d1, d2) is not in diag(DG), then the
rate region can be determined using existing results.

Lemma 2. If (d1, d2) is not in diag(DG), then

R⋆
1(d1) ∩R⋆

2(d2) ⊆ R⋆
sum(d1, d2).

In particular, the rate region equals

R⋆(d1, d2) = R⋆
1(d1) ∩R⋆

2(d2) ∩R⋆
sum(d1, d2).

The proof is given in Appendix B. In light of this lemma, Lemma 1, and
(5), it suffices to show that when (d1, d2) is in diag(DG),

R⋆(d1, d2) ⊆ R⋆
sum(d1, d2).

We show this in the next section.
Our proof uses a characterization of the sum rate of the quadratic Gaussian

CEO problem. In the two-encoder version of this problem, encoders 1 and 2
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observe y1 and y2, respectively, and then communicate with a single decoder as
in the original problem. But now y1 and y2 are of the form

y1 = a1x + n1

y2 = a2x + n2,

where x, n1, and n2 are independent and Gaussian, and the decoder estimates
x instead of y1 and y2. The distortion measure is again the average squared
error. This problem’s rate region was determined independently by Oohama [8]
and Prabhakaran, Tse, and Ramchandran [10]3. Their result shows that the
separation-based architecture is optimal for this problem.

For our purpose, we will find it more convenient to consider the problem
in which the decoder attempts to estimate µT y for some given vector µ. We
call this problem the µ-sum problem. For some values of µ, the µ-sum problem
can be coupled to a CEO problem. For these values of µ, it follows that the
separation-based architecture is optimal.

Lemma 3. The sum rate for the µ-sum problem with µ1 ·µ2 ≥ 0 and allowable
distortion d equals

inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µT Dµ ≤ d

}

. (8)

In Appendix C, we prove an extended version of this lemma that includes a
description of the entire rate region. Here we note some properties of DG and
the optimization problem (8). Recall that D is in DG if there exists a diagonal
and positive semidefinite matrix Λ such that

D−1 = K−1
y + Λ. (9)

This formula provides a convenient way of evaluating the off-diagonal entry of
D in terms of its diagonal entries and ρ. Let us write

D =

[

d1 θ
√

d1d2

θ
√

d1d2 d2

]

,

where θ ∈ (−1, 1). Equating the off-diagonal entries in (9) gives

θ

(1 − θ2)
√

d1d2

=
ρ

1 − ρ2
.

Since θ2 < 1, it follows that θ must be positive. But this quadratic equation in
θ has only one positive root

θ =

√

(1 − ρ2)2 + 4ρ2d1d2 − (1 − ρ2)

2ρ
√

d1d2

. (10)

3In fact, both works solved the problem for an arbitrary number of encoders, but this
generality is not needed at this point.
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Thus there is no other matrix in DG with top-left entry d1 and bottom-right
entry d2. Using (10), the determinant of D can be expressed in terms of d1 and
d2

|D| =
2d1d2

β(d1, d2)
, (11)

where β(·, ·) was defined in Section 2. The effect of the product d1d2 on θ is
shown in Fig. 4. As d1d2 tends to 1, θ converges to ρ and D converges to Ky.
On the other hand, as d1d2 tends to zero, θ also converges to zero, i.e., the
errors become asymptotically uncorrelated.

Next we show that every matrix in DG solves a µ-sum problem for some µ

with µ1 · µ2 > 0. This fact will be used in the proof of our main result.

Lemma 4. Let

D∗ =

[

d1 θ∗
√

d1d2

θ∗
√

d1d2 d2

]

be in DG, and let

µ∗ =

[ √
d2√
d1

]

. (12)

Then D∗ is sum-rate optimal for the µ∗-sum problem, i.e.,

1

2
log

|Ky|
|D∗| = inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µ∗T

Dµ∗ ≤ µ∗T
D∗µ∗

}

.

The proof is deferred to Appendix D. It is helpful to note that if the diagonal
entries of D∗ are equal, then the coordinates of µ∗ will also be equal. This
fact makes the proofs that follow somewhat simpler when the two distortion
constraints, d1 and d2, are equal. As such, the reader is encouraged to keep this
case in mind as we turn to the proof of the main result.

5 Proof of the Main Result

Recall that we may restrict attention to the case in which (d1, d2) is in diag(DG).
Let us now fix one such distortion pair; we will suppress dependence on (d1, d2)
in what follows. Let D∗ denote the element of DG whose top-left and bottom-
right entries are d1 and d2, respectively.

Definition 2. For θ ∈ (−1, 1), let

Dθ =

[

d1 θ
√

d1d2

θ
√

d1d2 d2

]

,

and define

Rcoop(θ) =
1

2
log+ |Ky|

|Dθ|
=

1

2
log+ 1 − ρ2

(1 − θ2)d1d2
.

Let µ∗ be the vector defined in (12). Then let

Rsum(θ) = inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µ∗T

Dµ∗ ≤ µ∗T
Dθµ

∗

}

.
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The next lemma is central to the proof of our main result.

Lemma 5. If (R1, R2, d1, d2) is strict-sense achievable, then

R1 + R2 ≥ inf
θ∈(−1,1)

max (Rcoop(θ), Rsum(θ)) . (13)

Proof. By hypothesis there exists a code (f
(n)
1 , f

(n)
2 , ϕ

(n)
1 , ϕ

(n)
2 ) satisfying (1).

Then

n(R1 + R2) ≥ H
(

f
(n)
1 (yn

1 ), f
(n)
2 (yn

2 )
)

= I
(

yn; f
(n)
1 (yn

1 ), f
(n)
2 (yn

2 )
)

= h(yn) − h
(

yn
∣

∣

∣
f

(n)
1 (yn

1 ), f
(n)
2 (yn

2 )
)

, (14)

where h(·) denotes differential entropy. But

h(yn) =
n

2
log
[

(2πe)2|Ky|
]

(15)

and

h
(

yn
∣

∣

∣f
(n)
1 (yn

1 ), f
(n)
2 (yn

2 )
)

=

n
∑

i=1

h
(

yn(i)
∣

∣

∣f
(n)
1 (yn

1 ), f
(n)
2 (yn

2 ),yn(1 : i − 1)
)

≤
n
∑

i=1

h
(

yn(i) − ŷn(i)
∣

∣

∣f
(n)
1 (yn

1 ), f
(n)
2 (yn

2 )
)

≤
n
∑

i=1

h (yn(i) − ŷn(i)) ,

since conditioning reduces entropy. Let D̂i denote the covariance matrix of
yn(i) − ŷn(i)

D̂i = E
[

(yn(i) − ŷn(i)) (yn(i) − ŷn(i))
T
]

,

and let

D̂ =
1

n

n
∑

i=1

D̂i

denote the error covariance matrix of the code. We may assume that ϕ
(n)
1

and ϕ
(n)
2 are MMSE estimators, in which case Theorem 9.6.5 in Cover and

Thomas [15] implies that

h (yn(i) − ŷn(i)) ≤ 1

2
log
[

(2πe)2|D̂i|
]

.

11



Applying the concavity of log-det [15, Theorem 16.8.1], we have

1

n
h
(

yn
∣

∣

∣
f

(n)
1 (yn

1 ), f
(n)
2 (yn

2 )
)

≤ 1

n

n
∑

i=1

1

2
log
[

(2πe)2|D̂i|
]

≤ 1

2
log
[

(2πe)2|D̂|
]

.

Combining this inequality with (14) and (15) gives

R1 + R2 ≥ 1

2
log+ |Ky|

|D̂|
. (16)

Now
h
(

yn
∣

∣

∣
f

(n)
1 (yn

1 ), f
(n)
2 (yn

2 )
)

> −∞

by (14). Thus D̂ must be nonsingular and hence positive definite. Let us write
it as

D̂ =

[

d̂1 θ̂
√

d̂1d̂2

θ̂
√

d̂1d̂2 d̂2

]

,

where d̂1 ≤ d1, d̂2 ≤ d2, and θ̂ is in (−1, 1). Define

φ =
θ̂
√

d̂1d̂2√
d1d2

,

and note that φ is in (−1, 1). Then

Dφ − D̂ =

[

d1 − d̂1 0

0 d2 − d̂2

]

.

Since d̂1 ≤ d1 and d̂2 ≤ d2, it follows that Dφ − D̂ is positive semidefinite, i.e.,

D̂ � Dφ. In particular, |D̂| ≤ |Dφ| [16, Corollary 7.7.4]. This implies

R1 + R2 ≥ 1

2
log+ |Ky|

|Dφ|
= Rcoop(φ). (17)

Next observe that

E

[

(

µ∗T yn(i) − µ∗T ŷn(i)
)2
]

= µ∗T
D̂iµ

∗.

In particular,

1

n

n
∑

i=1

E

[

(

µ∗T yn(i) − µ∗T ŷn(i)
)2
]

= µ∗T
D̂µ∗ ≤ µ∗T

Dφµ∗,

i.e., this code achieves distortion µ∗T Dφµ∗ for the µ∗-sum problem. Lemma 3
then implies that

R1 + R2 ≥ Rsum(φ).

12



Combining this with (17) gives

R1 + R2 ≥ max(Rcoop(φ), Rsum(φ)).

The conclusion follows by taking the infimum over φ in (−1, 1).

The next step is to evaluate the infimum in (13). Examples of Rcoop(·) and
Rsum(·) are shown in Fig. 5. We show that these two functions always intersect
at the correlation coefficient of D∗, and at this point, they equal the min-max.

Lemma 6.

inf
θ∈(−1,1)

max (Rcoop(θ), Rsum(θ)) = Rcoop(θ∗)

= Rsum(θ∗)

=
1

2
log

|Ky|
|D∗|

=
1

2
log+

[

(1 − ρ2) β(d1, d2)

2d1d2

]

.

Proof. Let us write D∗, the matrix in DG with diagonal entries (d1, d2), as

D∗ =

[

d1 θ∗
√

d1d2

θ∗
√

d1d2 d2

]

.

Then observe that since θ∗ > 0, if θ ≥ θ∗, we have

max(Rcoop(θ), Rsum(θ)) ≥ Rcoop(θ) ≥ Rcoop(θ∗) =
1

2
log

|Ky|
|D∗| .

On the other hand, if θ ≤ θ∗, then since Rsum(·) is nonincreasing,

max(Rcoop(θ), Rsum(θ)) ≥ Rsum(θ) ≥ Rsum(θ∗) =
1

2
log

|Ky|
|D∗| ,

where we have used the fact that D∗ solves the µ∗-sum problem. It follows that

inf
θ∈(−1,1)

max(Rcoop(θ), Rsum(θ)) = Rcoop(θ∗) = Rsum(θ∗) =
1

2
log

|Ky|
|D∗| .

We conclude the proof by invoking the formula for the determinant of a matrix
in DG (11).

Proof of Theorem 1. As discussed in Section 4, it suffices to show that

R⋆(d1, d2) ⊆ R⋆
sum(d1, d2).

Lemmas 5 and 6 together imply that if the rate-distortion vector (R1, R2, d1, d2)
is strict-sense achievable and (d1, d2) is in diag(DG), then

R1 + R2 ≥ 1

2
log+

[

(1 − ρ2) β(d1, d2)

2d1d2

]

. (18)

13



On the other hand, Lemma 2 implies this inequality if (R1, R2, d1, d2) is strict-
sense achievable and (d1, d2) in not in diag(DG). It follows that (18) holds
whenever (R1, R2, d1, d2) is strict-sense achievable. Since the right-hand side is

continuous in (d1, d2), this implies that if the point (R1, R2, d1, d2) is in RD⋆,
then (18) again holds. This implies the desired conclusion.

5.1 Reprise

The argument used in the converse proof can be summarized as follows. Since
the distortion constraints only constrain the magnitude of the individual er-
rors, and not their correlation, we view the determination of the sum-rate as
an implicit minimization over all possible error covariance matrices, subject to
upper bounds on the diagonal elements. We then lower bound the sum rate for
each possible error covariance matrix using two approaches. First, we consider
the rate needed by a centralized encoder to achieve the given error covariance
matrix. Second, we use the existing characterization of the rate region for the
CEO problem to solve the µ-sum problem for some µ vectors. This solution is
then used to lower bound the sum rate of the problem under study for a given
error covariance matrix. The first bound is most effective when the correlation
between the errors is large. The second bound is most effective when the corre-
lation is small. We therefore form a composite bound by taking the maximum
of these two lower bounds. The argument is illustrated in Figs. 5 and 6. Note
that both of the lower bounds are needed.

6 The M -sums Problem

Consider next a generalization of the classical problem in which the decoder
attempts to estimate µT

j y for a given set of vectors µ1, . . . ,µJ . We may assume
without loss of generality that these vectors are distinct and have unit norm.

Define the matrix
M = [µ1 µ2 · · ·µJ ]

consisting of the column vectors µ1, . . . ,µJ side-by-side. The problem is then
to reproduce the vector MT y subject to separate constraints on the average
squared error of each component. We call this the M -sums problem. Note
that the classical quadratic Gaussian two-encoder source coding problem can
be viewed as an instance of the M -sums problem with M equal to the identity
matrix. We will show that the techniques used to solve that problem can be used
to solve the general M -sums problem if the vectors µ1, . . . µJ satisfy a certain
condition. Specifically, we will require that the product of the two coordinates
of each vector is nonnegative

µj1 · µj2 ≥ 0 ∀j ∈ {1, . . . , J}. (19)

This condition is satisfied if and only for each j either both coordinates of µj are
nonnegative or both are nonpositive. From a source-coding perspective, these

14



two cases are essentially equivalent, so for simplicity we will assume that the
components of µj are nonnegative for each j.

The condition in (19) depends on our standing assumption that 0 < ρ < 1.
If ρ is negative, then the condition in (19) becomes

µj1 · µj2 ≤ 0 ∀j ∈ {1, . . . , J}. (20)

Note that either way, the condition includes the case when M is the identity
matrix, i.e., the classical version of the problem.

6.1 Main Result

In this section, we use R⋆
j (dj) to denote the rate region of the µj-sum problem

with distortion constraint dj . Let R⋆
sum(d1, . . . , dJ ) denote the minimum sum

rate for the M -sums problem achieved by the separation-based scheme

R⋆
sum(d1, . . . , dJ )

= inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µT

j Dµj ≤ dj ∀j ∈ {1, . . . , J}
}

.

Then let R⋆
sum(d1, . . . , dJ ) denote the set of rate pairs whose sum is at least

R⋆
sum(d1, . . . , dJ )

R⋆
sum(d1, . . . , dJ ) = {(R1, R2) : R1 + R2 ≥ R⋆

sum(d1, . . . , dJ )}.

In terms of these sets, the separation-based architecture achieves the following
inner bound.

Lemma 7. For the M -sums problem, the separation-based architecture achieves
the rates

R⋆
sum(d1, . . . , dJ ) ∩

J
⋂

j=1

R⋆
j (dj).

The proof is elementary but somewhat involved and is given in Appendix E.
The main result of this section is the following theorem that shows that this
inner bound equals the rate region.

Theorem 2. The rate region of the M -sums problem equals

R⋆
sum(d1, . . . , dJ ) ∩

J
⋂

j=1

R⋆
j (dj). (21)

The proof parallels that of Theorem 1. In particular, we use functions similar
to Rcoop(·) and Rsum(·). The details are given in Appendix F.

By mimicking the proof of Proposition 2, one can show that the separation-
based architecture achieves the rates in (21) even if the source is not Gaussian.
Theorem 2 then implies that, as with the classical version of the problem, the
separation-based inner bound and the rate region are both smallest for a Gaus-
sian source.
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6.2 The Remote-source Problem

As an application of Theorem 2, consider the remote-source version of the orig-
inal problem. Here the encoders’ observations are viewed as an underlying
source, ỹ, plus additive noise

y1 = ỹ1 + n1

y2 = ỹ2 + n2

where ỹ, n1, and n2 are independent and Gaussian. We assume these random
variables have zero mean and

E[ỹ2
1 ] = σ2

1 ≤ 1

E[ỹ2
2 ] = σ2

2 ≤ 1

E[ỹ1ỹ2] = ρ

E[n2
1] = 1 − σ2

1

E[n2
2] = 1 − σ2

2

so that y has covariance matrix Ky. The aim is to reproduce ỹ1 and ỹ2 subject
to distortion constraints d1 and d2, respectively. A partial characterization of
the rate region for this problem was obtained by Oohama [17]. By coupling this
problem to an M -sums problem, we can determine the rate region completely.

Corollary 1. The rate region for the remote-source problem with distortion con-
straints d1 and d2 equals the rate region for the M -sums problem with distortion
constraints d1 − γ1 and d2 − γ2, where

M =
1

1 − ρ2

[

σ2
1 − ρ2 ρ(1 − σ2

2)
ρ(1 − σ2

1) σ2
2 − ρ2

]

= [µ1 µ2]

and

γ1 =
(σ2

1 − ρ2)(1 − σ2
1)

1 − ρ2

γ2 =
(σ2

2 − ρ2)(1 − σ2
2)

1 − ρ2
.

Proof. Standard calculations show that E[ỹ1|y] = µT
1 y, and in particular, ỹ1

can be written
ỹ1 = µT

1 y + ñ1,

where ñ1 is Gaussian, independent of y, and has mean zero and variance γ1.
Then for any random variable u such that ỹ ↔ y ↔ u, we have

E[(ỹ1 − E[ỹ1|u])2] = E[(ỹ1 − µT
1 y + µT

1 y − E[ỹ1|u])2]

= E[(ñ1 + µT
1 y − E[µT

1 y|u])2]

= γ1 + E[(µT
1 y − E[µT

1 y|u])2]. (22)
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Now consider a pair of encoders, f
(n)
1 and f

(n)
2 . Since the source is i.i.d., for any

time i,

ỹ(i) ↔ y(i) ↔ (f
(n)
1 (yn

1 ), f
(n)
2 (yn

2 )).

Thus by (22),

E
[

(ỹ1(i) − E[ỹ1(i)|f (n)
1 (yn

1 ), f
(n)
2 (yn

2 )])2
]

= γ1 + E[(µT
1 y(i) − E[µT

1 y(i)|f (n)
1 (yn

1 ), f
(n)
2 (yn

2 )])2].

By averaging both sides of this equation over time, we see that any encoder that
achieves distortion d1 for ỹ1 must achieve distortion d1 − γ1 for µT

1 y. Likewise,
any encoder that achieves distortion d2 for ỹ2 must achieve distortion d2 − γ2

for µT
2 y. The conclusion follows.

Observe that this proof does not require the assumption that 0 < ρ < 1, only
that ρ2 < 1. If 0 < ρ < 1, then µ1 and µ2 satisfy the condition in (19). On the
other hand, if −1 < ρ < 0, then µ1 and µ2 satisfy the condition in (20). Since
the cases ρ = 0, ρ = −1, and ρ = 1 can be solved using existing techniques, the
rate region for the remote source problem is solved for any value of ρ.

7 Many Sources

Our technique can be used to determine the sum rate for more than two sources
if a certain symmetry condition holds. Suppose now that there are L jointly
Gaussian sources, y1, . . . , yL, with covariance matrix

Ky =











1 ρ · · · ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ · · · 1











for some 0 < ρ < 1. That is, the source components are Gaussian, exchangeable,
and positively correlated. We assume that the sources are separately encoded, as
shown in Fig. 9, and that L distortion constraints are imposed on the individual
reproductions

dℓ ≥
1

n

n
∑

i=1

E[(yn
ℓ (i) − ŷn

ℓ (i))2] for all ℓ in {1, . . . , L}.

The separation-based scheme yields an inner bound on the rate region, and in
particular, an upper bound on the sum rate. As in the case of two sources, let
DG denote the set of matrices D such that

D−1 = K−1
y + Λ
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for some diagonal and positive semidefinite matrix Λ. The sum rate achieved
by the separation-based scheme is then

inf

{

1

2
log

|Ky|
|D| : D ∈ DG and eT

ℓ Deℓ ≤ dℓ ∀ ℓ ∈ {1, . . . , L}
}

, (23)

where eℓ denotes the vector with one in position ℓ and zero elsewhere. By
following the proof of Theorem 1, one can show that this sum rate is optimal if
the distortion constraints d1, . . . , dL are equal.

Theorem 3. If d1 = d2 = · · · = dL = d, then the separation-based architecture
is sum-rate optimal. In particular, the sum rate is given by (23). Furthermore,
in this case the infimum in (23) is achieved by a D in DG of the form

D−1 = K−1
y + λI,

for some λ ≥ 0.

The proof is given in Appendix G. As with the M -sums problem, it is
possible to mimic Proposition 2 and show that the separation-based architecture
achieves the sum rate in (23) even if the source is not Gaussian. It follows
that the Gaussian source has the largest sum rate among all exchangeable and
positively correlated sources when all of the distortion constraints are equal.

8 Concluding Remarks

We determined the rate region of the quadratic Gaussian two-encoder source-
coding problem. This result implies that a simple architecture that separates
the analog and digital aspects of the compression is optimal, and that this
architecture requires higher rates to send a Gaussian source than it does to send
any other source with the same covariance. We also described how our proof
technique can be extended to determine the sum rate of some generalizations of
this problem. We now comment on two aspects of our results.

8.1 An Extremal Result

One consequence of our main result is that there is no loss of optimality in
using Gaussian auxiliary random variables in the separation-based inner bound.
More precisely, the regions Ri(d1, d2) and Ri

G(d1, d2) defined in (2) and (3) are
equal. In particular, these two regions have the same sum rate. Thus to the
optimization problem

minimize I(y;u)

subject to u1 ↔ y1 ↔ y2 ↔ u2

E[(yj − E[yj |u])2] ≤ dj j ∈ {1, 2}
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we can add the constraint

(y,u) is jointly Gaussian

without changing the optimal value. The same is true, of course, of the opti-
mization problem

maximize h(y|u)

subject to u1 ↔ y1 ↔ y2 ↔ u2

E[(yj − E[yj |u])2] ≤ dj j ∈ {1, 2}.

This is akin to the well-known fact that the Gaussian distribution maximizes
entropy for a given covariance. But this result is more subtle in that the con-
ditional covariance of y given u is not fixed, and by using non-Gaussian u, one
can potentially realize conditional covariances that are unattainable with Gaus-
sian distributions. Evidently the entropy-maximizing property of the Gaussian
distribution more than compensates for its smaller set of achievable conditional
covariances.

Using Theorem 2, it is possible to generalize this result to allow distortion
constraints on linear combinations of the source variables y1 and y2. It is also
possible to prove a multi-letter version of this result by first proving a multi-
letter version of the inner bound, in which several source symbols are treated as
a single “supersymbol.” Whether one can prove any of these extremal results
without reference to the source-coding setup that is the subject of this paper is
an interesting open question.

8.2 Source Augmentation

The most noteworthy aspect of our proof is the random variable x that we
add to the source y in Appendix C to solve the µ-sum problem. Unlike other
more typical auxiliary random variables, x does not represent a component
of the code. Rather, it is used to aid the analysis by inducing conditional
independence among the observations, which allows us to couple our problem
to a CEO problem. Of course, there are many random variables that will induce
conditional independence. The role of Lemma 4 is to identify the best one.

This technique of augmenting the source to induce conditional independence
has proven useful in other contexts as well. Ozarow [18] used it to prove the
converse for the Gaussian two-descriptions problem. Wang and Viswanath [19]
used it to determine the sum rate for the Gaussian vector multiple-descriptions
problem with individual and central decoders. Wagner and Anantharam [11, 12]
used it to prove an outer bound for the discrete multiterminal source-coding
problem.

Recently, we have generalized the CEO result to sources whose correlation
satisfies a certain tree condition [20]. This suggests an approach for general-
izing the results in this paper. Specifically, one could potentially augment the
source to couple a given distributed source coding problem to this tree problem
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instead of the more restrictive CEO problem. Determining whether this revised
approach yields stronger results is a worthwhile question for future research.

Acknowledgment

We wish to thank Venkat Anantharam and Jun Chen for helpful discussions.
We would also like to thank the anonymous reviewers for carefully checking the
manuscript and suggesting many improvements.

A Proof of Proposition 2

Let (R1, R2) be a rate pair in

R⋆
1(d1) ∩R⋆

2(d2) ∩R⋆
sum(d1, d2).

By Lemma 1, there exists a u in UG(d1, d2) such that

R1 ≥ I(y1;u1|u2)

R2 ≥ I(y2;u2|u1)

R1 + R2 ≥ I(y;u).

Now u can be expressed as

u1 = c1y1 + z1

u2 = c2y2 + z2

for some coefficients c1 and c2 in [0, 1), where z1, z2, and y are independent and
z is Gaussian. Now construct auxiliary random variables ǔ1 and ǔ2 for the true
source via

ǔ1 = c1y̌1 + z1

ǔ2 = c2y̌2 + z2

with z independent of y̌. Note that the Markov condition

ǔ1 ↔ y̌1 ↔ y̌2 ↔ ǔ2

is satisfied and that (y̌, ǔ) and (y,u) have the same second-order statistics.
Thus the error in the linear minimum mean-squared error estimate of y̌j given
ǔ, LMMSE(y̌j |ǔ), equals the error in the linear minimum mean-squared error
estimate of yj given u,

LMMSE(y̌j |ǔ) = LMMSE(yj |u) j ∈ {1, 2}.

But
E[(y̌j − E[y̌j |ǔ])2] ≤ LMMSE(y̌j |ǔ) j ∈ {1, 2},
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and for jointly Gaussian random variables, the linear minimum mean-squared
error estimate is also the conditional expectation. Since u is in UG(d1, d2), this
implies

E[(y̌j − E[y̌j |ǔ])2] ≤ dj j ∈ {1, 2}.
It follows that ǔ is in U(d1, d2). Next, we show that (R1, R2) satisfies

R1 ≥ I(y̌1; ǔ1|ǔ2)

R2 ≥ I(y̌2; ǔ2|ǔ1)

R1 + R2 ≥ I(y̌; ǔ).

To prove this, it suffices to show that

I(y1;u1|u2) ≥ I(y̌1; ǔ1|ǔ2)

I(y2;u2|u1) ≥ I(y̌2; ǔ2|ǔ1)

I(y;u) ≥ I(y̌; ǔ). (24)

By symmetry, it suffices to prove the last two inequalities. Let

α2 =
E[u1u2]

E[u2
1]

.

Then we have

I(y̌2; ǔ2|ǔ1)
(a)
= h(ǔ2|ǔ1) − h(ǔ2|y̌2)

(b)
= h(ǔ2 − α2ǔ1|ǔ1) − h(z2)

(c)

≤ h(ǔ2 − α2ǔ1) − h(z2)

(d)

≤ h(u2 − α2u1) − h(z2)

(e)
= I(y2;u2|u1),

where

(a) follows from the Markov condition ǔ2 ↔ y̌2 ↔ ǔ1,

(b) follows because differential entropy is invariant to shifts,

(c) follows because conditioning reduces differential entropy,

(d) follows from the fact that u has the same covariance as ǔ, and the Gaussian
distribution maximizes differential entropy for a given variance, and

(e) follows because steps (c) and (d) are tight if (y̌, ǔ) is Gaussian.
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We can prove (24) via similar reasoning

I(y̌; ǔ) = h(ǔ) − h(ǔ|y̌)

= h(ǔ) − h(z)

≤ h(u) − h(z)

= I(y;u).

It follows that the rate pair (R1, R2) belongs to Ři(d1, d2).

B Converse for a Special Case

Proof of Lemma 2. The conclusion is easily verified if min(d1, d2) ≥ 1, so as-
sume instead that min(d1, d2) < 1. Without loss of generality, let us assume
that d1 = min(d1, d2). Then by (7), we must have

ρ2d1 + 1 − ρ2 < d2.

If this holds, then

R⋆
sum(d1, ρ

2d1 + 1 − ρ2) ⊆ R⋆
sum(d1, d2).

But one can verify directly that

R⋆
sum(d1, ρ

2d1 + 1 − ρ2) =

{

(R1, R2) : R1 + R2 ≥ 1

2
log

1

d1

}

.

Now via calculus one can show that if (R1, R2) is in R⋆
1(d1) then R1 and R2

must satisfy

R1 + R2 ≥ 1

2
log

1

d1
.

It follows that
R⋆

1(d1) ⊆ R⋆
sum(d1, d2).

In particular, we have

R⋆
1(d1) ∩R⋆

2(d2) = R⋆
1(d1) ∩R⋆

2(d2) ∩R⋆
sum(d1, d2).

The result then follows from (5) and Lemma 1.

C The µ-sum Problem

In this appendix, we determine the rate region for the µ-sum problem if µ

satisfies µ1 · µ2 ≥ 0. If µ1 · µ2 = 0, then the rate region has already been
determined by Oohama [5], so we shall assume that µ1 · µ2 > 0.
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We begin by noting that if µ and the allowable distortion are both scaled
by the same factor, then the rate region remains unchanged. We may therefore
assume that µ is normalized. In particular, we may assume that

µ1 · µ2 =
γ2

ρ
· SNR1 · SNR2 (25)

where

SNR1 =
ρ

1 − ρ2

(

µ1

µ2
+ ρ

)

(26)

SNR2 =
ρ

1 − ρ2

(

µ2

µ1
+ ρ

)

(27)

and

γ−1 = 1 + SNR1 + SNR2. (28)

This normalization is convenient because, as we shall see, it admits a particularly
simple coupling to a CEO problem.

Lemma 8. Suppose the vector µ satisfies µ1·µ2 > 0 and the normalization (25).
Then the rate region for the µ-sum problem with allowable distortion d equals

{

(R1, R2) : there exist r1 ≥ 0, r2 ≥ 0 such that

R1 ≥ 1

2
log+

[

1

d + γ
(1 + SNR2(1 − 2−2r2))−1

]

+ r1

R2 ≥ 1

2
log+

[

1

d + γ
(1 + SNR1(1 − 2−2r1))−1

]

+ r2

R1 + R2 ≥ 1

2
log+

[

1

d + γ

]

+ r1 + r2

1

d + γ
≤ 1 +

2
∑

j=1

SNRj(1 − 2−2rj )

}

.

(29)

In particular, the sum rate equals

inf

{

1

2
log+

[

1

d + γ

]

+ r1 + r2 : r1 ≥ 0, r2 ≥ 0, and

1 +

2
∑

j=1

SNRj

(

1 − 2−2rj
)

≥ 1

d + γ

}

,

(30)

or, equivalently, by

inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µT Dµ ≤ d

}

. (31)

Furthermore, the infimum in (31) is achieved by a unique feasible D.
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Proof. Let

aj =

(

SNRj

1 + SNRj

)1/2

j ∈ {1, 2}. (32)

Clearly a1 < 1 and a2 < 1. Using (26) and (27), one can verify that a1a2 = ρ.
It follows that a1 and a2 are each contained in (ρ, 1). Let x, n1, and n2 be
independent zero-mean Gaussian random variables with

E[x2] = 1

E[n2
j ] = 1 − a2

j j ∈ {1, 2}.

Since (a1x + n1, a2x + n2) has covariance matrix Ky, we can couple these vari-
ables to y to create a CEO problem

y1 = a1x + n1

y2 = a2x + n2.
(33)

The SNR notation is justified by the fact that

SNRj =
a2

j

1 − a2
j

=
Var(ajx)

Var(nj)
j ∈ {1, 2}.

Now starting with (25), we have

µ1 · µ2 =
√

µ1µ2 ·
γ√
ρ
·
√

SNR1SNR2.

Substituting for SNR1 and SNR2 and rearranging gives

µ1 = γ ·
√

ρµ1 + ρ2µ2

µ2 + ρµ1
· µ2 + ρµ1

(1 − ρ2)µ2
.

But
µ2 + ρµ1

(1 − ρ2)µ2
= 1 + SNR1 =

1

1 − a2
1

and
√

ρµ1 + ρ2µ2

µ2 + ρµ1
= a1.

Thus

µ1 = γ · a1 ·
1

1 − a2
1

= γ · SNR1

a1
.

Similarly,

µ2 = γ · SNR2

a2
.
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Now using the fact that a1a2 = ρ, we have

[a1 a2] · K−1
y =

1

1 − ρ2
[a1 − ρa2 a2 − ρa1]

=
1

1 − a2
1a

2
2

[

a2
1 − a2

1a
2
2

a1

a2
2 − a2

1a
2
2

a2
2

]

.

Substituting for a1 and a2 using (32), this gives

[a1 a2] · K−1
y =

[

γSNR1

a1

γSNR2

a2

]

.

Thus

E[x|y] = γ

(

SNR1
y1

a1
+ SNR2

y2

a2

)

.

It follows that
E[x|y] = µT y,

and in particular, x can be written

x = µT y + ñ,

where ñ is Gaussian, independent of y, and has variance

1 − [a1 a2] · K−1
y ·

[

a1

a2

]

= 1 −
[

γSNR1

a1

γSNR2

a2

] [

a1

a2

]

= γ.

Then for any random variable u such that x ↔ y ↔ u, by a calculation similar
to (22), we have

E[(x − E[x|u])2] = γ + E[(µT y − E[µT y|u])2]. (34)

As in the proof of Corollary 1, it follows that any code that achieves distortion d
for the µ-sum problem must achieve distortion d + γ for the CEO problem (33)
and vice versa. The characterization of the rate region in (29) and the sum rate
in (30) now follow from existing results on the CEO problem [8, 10]. To show
that (31) equals (30), we first show that (30) can be rewritten as

inf

{

1

2
log

[

1 +

2
∑

j=1

SNRj(1 − 2−2rj )

]

+ r1 + r2 : r1 ≥ 0, r2 ≥ 0, and

1 +

2
∑

j=1

SNRj

(

1 − 2−2rj
)

≥ 1

d + γ

}

.

(35)

To see this, note that the two optimization problems differ only in the objective,
and both objectives are increasing functions of r1 and r2. Now if d > 1−γ, then
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both infima are zero. On the other hand, if d ≤ 1−γ, then in both problems, we
may assume without loss of generality that the constraint is met with equality

1 +

2
∑

j=1

SNRj

(

1 − 2−2rj
)

=
1

d + γ
.

But if the constraint is met with equality, then the two objectives are equal.
Thus the two optimization problems are equivalent.

Let u be a distributed Gaussian test channel such that

x ↔ y ↔ u.

If we define
rj = I(yj ;uj |x) j ∈ {1, 2},

then a standard calculation shows that

E[(x − E[x|u])2] =



1 +

2
∑

j=1

SNRj

(

1 − 2−2rj
)





−1

.

Thus the expression in (35) equals

inf
{

I(x;u) + I(y1;u1|x) + I(y2;u2|x) : (x,y,u) are jointly Gaussian,

x ↔ y ↔ u

u1 ↔ y1 ↔ y2 ↔ u2

E[(x − E[x|u])2] ≤ d + γ
}

.

(36)

Now since (y1, u1) ↔ x ↔ (y2, u2) and x ↔ y ↔ u, we have

I(x;u) + I(y1;u1|x) + I(y2;u2|x) = I(x;u) + I(y;u|x)

= I(x,y;u)

= I(y;u). (37)

Applying (34) again, we can write the infimum in (36) as

inf
{

I(y;u) : (y,u) are jointly Gaussian,

u1 ↔ y1 ↔ y2 ↔ u2

E[(µT y − E[µT y|u])2] ≤ d
}

,

which equals

inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µT Dµ ≤ d

}

. (38)
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Now since

1 +
2
∑

j=1

SNRj

(

1 − 2−2rj
)

is strictly concave, it follows that the infimum in (30) is achieved by a unique
feasible point. This in turn implies that the infimum in (35) is achieved by a
unique feasible point. By the equivalence between the feasible points in (35)
and (38) it follows that the infimum in (38) is also achieved by a unique feasible
point.

D Every D∗ Solves a µ-sum Problem

Proof of Lemma 4. Without loss of generality, we may assume that µ∗ has been
scaled so that it satisfies the normalization (25). Then the sum rate for the µ∗-
sum problem with allowable distortion

d∗ := µ∗T
D∗µ∗

is given by

inf

{

1

2
log

[

1

d∗ + γ

]

+ r1 + r2 : r1 ≥ 0, r2 ≥ 0, and

1 +

2
∑

j=1

SNRj

(

1 − 2−2rj
)

≥ 1

d∗ + γ

}

,

(39)

where SNR1, SNR2, and γ were defined in equations (26) through (28). The
remainder of the proof consists of three parts:

(I ) We identify candidate optimizers for (39), r∗1 and r∗2 , in terms of D∗.

(II ) We show that r∗1 and r∗2 achieve the infimum in (39).

(III ) We show that at r∗1 and r∗2 , the objective

1

2
log

[

1

d∗ + γ

]

+ r∗1 + r∗2

equals
1

2
log

|Ky|
|D∗| .

Part I. Since D∗ is in DG, there exists λ∗

1 ≥ 0 and λ∗

2 ≥ 0, such that

D∗−1
= K−1

y +

[

λ∗

1 0
0 λ∗

2

]

. (40)
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Our candidate optimizers are then

r∗j =
1

2
log

(

1 +
λ∗

j

1 + SNRj

)

j ∈ {1, 2}. (41)

This formula can be understood as follows. Since D∗ is in DG, there exists a
distributed Gaussian test channel u∗ such that Cov(y|u∗) = D∗. Now u∗ can
be written

uj =

√

λ∗

j

1 + λ∗

j

· yj + zj j ∈ {1, 2}

where z is an independent Gaussian vector with covariance matrix

[

(1 + λ∗

1)
−1 0

0 (1 + λ∗

2)
−1

]

.

As in the previous appendix, let

aj =

(

SNRj

1 + SNRj

)1/2

j ∈ {1, 2}

and let x, n1, and n2 be zero mean Gaussian random variables with

E[x2] = 1

E[n2
j ] = 1 − a2

j j ∈ {1, 2}.

Then couple these variables to (y,u∗) such that

y1 = a1x + n1

y2 = a2x + n2

and x ↔ y ↔ u∗. It then follows that

r∗j =
1

2
log
(

1 + λ∗

j (1 − a2
j )
)

= I(yj ;u
∗

j |x).

Part II. Next we show that r∗1 and r∗2 solve the optimization problem (39).
Since the optimization problem is convex, it suffices to show that r∗1 and r∗2
satisfy the Karush-Kuhn-Tucker (KKT) conditions [21, Section 5.5.3]. The La-
grangian for this optimization problem is

L(r1, r2, ν)

=
1

2
log

[

1

d∗ + γ

]

+ r1 + r2 − ν



1 +

2
∑

j=1

SNRj(1 − 2−2rj ) − 1

d∗ + γ



 .
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Thus it suffices to show that

22r∗j = ν∗
SNRj ∀j ∈ {1, 2} (42)

1 +

2
∑

j=1

SNRj(1 − 2−2r∗j ) ≥ 1

d∗ + γ
(43)

for some ν∗ ≥ 0. To show (42), note that from (40),

D∗ = (1 − ρ2)

[

1 + (1 − ρ2)λ∗

1 −ρ
−ρ 1 + (1 − ρ2)λ∗

2

]−1

. (44)

Then define
s∗j = 1 + (1 − ρ2)λ∗

j j ∈ {1, 2}. (45)

Since

D∗ =

[

d1 θ∗
√

d1d2

θ∗
√

d1d2 d2

]

,

it follows from (44) that
d1

d2
=

s∗2
s∗1

.

Thus

SNR1 =
ρ

1 − ρ2

(√

s∗1
s∗2

+ ρ

)

(46)

SNR2 =
ρ

1 − ρ2

(√

s∗2
s∗1

+ ρ

)

. (47)

Combining (41) and (45), we have

s∗j = (1 − ρ2)(1 + SNRj)(2
2r∗j − 1) + 1.

Thus (42) is equivalent to

s∗j − 1

(1 − ρ2)(1 + SNRj)
+ 1 = ν∗

SNRj ∀ j ∈ {1, 2} (48)

But by using (46) and (47), one can verify that this pair of conditions holds if

ν∗ =
1 − ρ2

ρ

s∗1s
∗

2 + ρ
√

s∗1s
∗

2

ρ(s∗1 + s∗2) +
√

s∗1s
∗

2(1 + ρ2)
.

This establishes (48) and hence (42). Now as in the previous appendix we have

E[(x − E[x|u∗])2] =



1 +

2
∑

j=1

SNRj(1 − 2−2r∗j )





−1

= γ + E[(µ∗T y − E[µ∗T y|u∗])2]

= γ + µ∗T
D∗µ∗

= γ + d∗.
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This establishes (43) and the optimality of r∗1 and r∗2 .
Part III. It only remains to show that

1

2
log

[

1

d∗ + γ

]

+ r∗1 + r∗2 =
1

2
log

|Ky|
|D∗| .

Observe that the left-hand side equals

I(x;u∗) +

2
∑

j=1

I(yj ;u
∗

j |x).

Repeating the argument in (37), we have

I(x;u∗) +

2
∑

j=1

I(yj ;u
∗

j |x) = I(y;u∗) =
1

2
log

|Ky|
|D∗| .

E Achievability for M -sums

Before proving Lemma 7, we examine some of the properties of the constituent
regions R⋆

j (dj). Without loss of generality, we focus on R⋆
1(d1).

Let h1(·) denote the function whose epigraph is R⋆
1(d1)

R⋆
1(d1) = {(R1, R2) : R2 ≥ h1(R1)},

which may equal infinity for some R1. Note that h1(·) is nonincreasing. Since
R⋆

1(d1) is closed and convex, h1(·) must be continuous on its effective domain
[22, Theorems 7.1 and 10.1]. Thus h1(·) is closed and proper [22].

For R1 in the effective domain of R1, let ∂h1(R1) denote the subdifferential
of h1(·) at R1

∂h1(R1) = {s : h1(R) ≥ h1(R1) + s(R − R1) ∀ R}.

Note that ∂h1(R1) can be interpreted geometrically as the set of slopes of all
supporting lines at R1. From standard results in convex analysis [22, Section 24],
∂h1(R1) is the interval between the left and right derivatives of h1(·) at R1. The
graph of ∂h1(·),

{(R, s) : s ∈ ∂h1(R)}
resembles the graph of a nondecreasing function, except that any jump disconti-
nuities have been “filled in” with vertical segments. As such, ∂h1(·) is monotonic
in the sense that if R1 ≤ R̃1 then s ≤ s̃ for any s in ∂h1(R1) and s̃ in ∂h1(R̃1).

We now partition the effective domain of h1(·) into three parts. Let

W = {R1 : max(∂h1(R1)) < −1}
X = {R1 : min(∂h1(R1)) ≤ −1 ≤ max(∂h1(R1))}
Y = {R1 : −1 < min(∂h1(R1)) < 0}
Z = {R1 : ∂h1(R1) = {0}}.
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These intervals are depicted in Fig. 7. We call W the steep part of R⋆
1(d1) and

Y and Z the shallow part. Some of these intervals might be empty in some
cases. Note that the sum rate decreases as one moves left-to-right in W and
increases as one moves left-to-right in Y and Z.

Next we associate each point R1 in the effective domain of h1(·) with a test
channel that meets the µ1 distortion constraint with equality. Since (R1, h1(R1))
is on the boundary of R⋆

1(d1), it must be on the boundary of the contrapoly-
matroid of some test channel D satisfying µT

1 Dµ1 = d1. Suppose first that R1

is in W . Then R⋆
1(d1) has a supporting line with slope s < −1 at (R1, h1(R1)).

Since the contrapolymatroid associated with D is contained in R⋆
1(d1), this

contrapolymatroid must also be supported by a line with slope s < −1 at
(R1, h1(R1)). This implies that (R1, h1(R1)) is on the vertical portion of the
boundary of this contrapolymatroid.

In fact, by the definition of h1(·), (R1, h1(R1)) must be the left corner point
of the contrapolymatroid of this test channel. We then associate R1 with the
unique test channel whose left corner point is (R1, h1(R1)). Likewise, to ev-
ery R1 in Y , we associate the unique test channel whose right corner point is
(R1, h1(R1)).

If Z is nonempty then X ∪ Y is bounded. In this case, as R1 → supX ∪ Y ,
the associated test channels will converge to a test channel D. We associate
this test channel with all R1 in Z.

If R1 is in X, then R⋆
1(d1) is supported at (R1, h1(R1)) by a line with slope

−1. This implies that (R1, h1(R1)) is sum-rate optimal. We then associate all
R1 in X with the unique test channel that is sum-rate optimal (see Lemma 8).

Note that the end-points of the interval X must correspond to the corner
points of the sum-rate optimal contrapolymatroid. It follows that the associated
test-channels vary continuously with R1 over the entire effective domain of h1(·).
The test channels also vary monotonically in the sense that if R1 ≤ R̃1 and Λ
and Λ̃ are the associated test channels, then

Λ = Λ̃ +

[

−λ1 0
0 λ2

]

for some nonnegative numbers λ1 and λ2. Note that for each test channel that
meets the distortion constraint with equality, at least one of its corner points
must be on the boundary of R⋆

1(d1).
Now consider a second vector, µ2, and suppose that µ2 weights y2 more

heavily than µ1 does
µ22

µ21
>

µ12

µ11
. (49)

Next we show that as one moves left-to-right along the boundary of R⋆
1(d1), the

distortion that the associated test channels induce on µT
2 y is nondecreasing.

Lemma 9. Suppose R1 ≤ R̃1, and let D and D̃ be the associated test channels.
Then

µT
2 Dµ2 ≤ µT

2 D̃µ2. (50)
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Proof. Define Λ and Λ̃ by

D−1 = K−1
y + Λ

D̃
−1

= K−1
y + Λ̃.

Since R1 ≤ R̃1, we know that

Λ = Λ̃ +

[

−λ1 0
0 λ2

]

for some nonnegative numbers λ1 and λ2. Then

D−1 = D̃
−1

+

[

−λ1 0
0 λ2

]

.

Furthermore, we know that

µT
1 Dµ1 = µT

1 D̃µ1 = d1.

To establish (50), we will show that

0 ≤ µT
2 D̃µ2µ

T
1 Dµ1 − µT

1 D̃µ1µ
T
2 Dµ2. (51)

Write

D̃
−1

=

[

a −b
−b c

]

,

where a, b, and c are nonnegative. Then

D̃ =
1

ac − b2

[

c b
b a

]

D =
1

(a − λ1)(c + λ2) − b2

[

c + λ2 b
b a − λ1

]

A tedious but straightforward calculation shows that the expression on the right-
hand side of (51) equals

(λ1c + aλ2)(µ
2
11µ

2
22 − µ2

12µ
2
21) + 2b(λ1µ12µ22 + λ2µ11µ21)(µ11µ22 − µ12µ21)

(ac − b2)((a − λ1)(c + λ2) − b2)

which is nonnegative because |D| > 0, |D̃| > 0, and

µ11µ22 − µ12µ21 > 0

by (49).

From the proof, we can see that if the inequality in (49) is reversed, then
the inequality in (50) is also reversed.
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We now turn to the proof that

R⋆
sum(d1, . . . , dJ ) ∩

J
⋂

j=1

R⋆
j (dj)

is achievable. Recall that R⋆
sum(d1, . . . dJ) is defined as

R⋆
sum(d1, . . . , dJ ) = {(R1, R2) : R1 + R2 ≥ R⋆

sum(d1, . . . , dJ )}

where

R⋆
sum(d1, . . . , dJ )

= inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µT

j Dµj ≤ dj ∀ j ∈ {1, . . . , J}
}

.

We begin by showing that this infimum is achieved.

Lemma 10. There exists a D∗ in DG such that

µT
j D∗µj ≤ dj ∀j ∈ {1, . . . , J}

and

1

2
log

|Ky|
|D∗| = inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µT

j Dµj ≤ dj ∀j ∈ {1, . . . , J}
}

.

Proof. Let D̃ by any matrix in DG that satisfies the distortion constraints. The
infimum is then upper bounded by

1

2
log

|Ky|
|D̃|

.

Now the set of D ∈ DG such that

µT
j Dµj ≤ dj ∀j ∈ {1, . . . , J}

1

2
log

|Ky|
|D| ≤ 1

2
log

|Ky|
|D̃|

,

is compact, and the objective is continuous, so the infimum is achieved.

Proof of Lemma 7. Recall we are assuming that the vectors µ1, . . . ,µJ are dis-
tinct and have norm one. We may also assume without loss of generality that
they have been ordered so that their first coordinates are decreasing

µ11 > µ21 > · · · > µJ1

which implies that their second coordinates are increasing

µ12 < µ22 < · · · < µJ2.
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Let
hj(R1) = inf{(R2 : (R1, R2) ∈ R⋆

j (dj)} j ∈ {1, . . . , J}
and

hsum(R1) = inf{(R2 : (R1, R2) ∈ R⋆
sum(d1, d2, . . . , dJ )}

denote the functions whose epigraphs are the constituent regions. The corre-
sponding function for the intersection is given by

h(R1) = max(h1(R1), . . . , hJ (R1), hsum(R1)).

To show that the intersection is achievable, is suffices to show that for each R1

for which h(R1) < ∞, (R1, hj(R1)) is achievable for some j or (R1, hsum(R1))
is achievable.

By Lemma 10, there exists a D∗ in DG that is sum-rate optimal within this
class

µT
j D∗µj ≤ dj ∀j ∈ {1, . . . , J}

1

2
log

|Ky|
|D∗| = inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µT

j Dµj ≤ dj ∀j ∈ {1, . . . , J}
}

.

Let A denote the set of constraints that are active at D∗

A = {j : µT
j D∗µj = dj},

which must be nonempty. Let i denote the largest element of A. Thus the µi

sum is the one that weights y2 most heavily of all of the sums whose constraints
are active at D∗.

Consider the contrapolymatroid region associated with D∗. We shall show
that the right corner point of this region is on the boundary of R⋆

i (di). Since D∗

achieves the µi constraint with equality, either the left corner point or the right
corner point (or both) of its contrapolymatroid region must lie on the boundary
of R⋆

i (di). Suppose it is only the left corner point that lies on the boundary
of R⋆

i (di). This corner point would then have to lie on the steep part of the
boundary (W ) of R⋆

i (di). Consider moving a small amount to the right along
the boundary of R⋆

i (di). Since the distortion for µj varies continuously as we
move along the boundary of R⋆

i (di) for each j, for a sufficiently small movement,
none of the distortion constraints in Ac will be violated. At the same time, by
Lemma 9, none of the distortion constraints in A will be violated either.

Thus we can strictly reduce the sum rate without violating any of the distor-
tion constraints. This contradicts the assumption that D∗ is sum-rate optimal
within the class DG. Hence it must be the right corner point, (Rc

1, R
c
2), of the

contrapolymatroid that is on the boundary of R⋆
i (di), as shown in Fig. 8.

Next consider starting at this corner point and moving to the right along
the boundary of R⋆

i (di). By Lemma 9, the µj constraint will remain satisfied
for all j ≤ i. If, as we move to the right, the µk constraint is never satisfied
with equality for all k > i, then it follows that the shallow portion of R⋆

i (di) to
the right of (Rc

1, R
c
2) is achievable.
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If the µk distortion constraint becomes active for some k > i, then there ex-
ists a point (R̃1, R̃2) on the boundary of R⋆

i (di) whose associated test channel D̃

meets both the µi and µk distortion constraints with equality

µT
i D̃µi = di

µT
k D̃µk = dk.

Since (R̃1, R̃2) is on the shallow portion of the boundary of R⋆
i (di), (R̃1, R̃2)

must be the right corner point of the contrapolymatroid region associated with
D̃. Now at least one of the corner points of D̃ must be on the boundary of
R⋆

k(dk). By Lemma 9, the boundary of R⋆
k(dk) must be below that of R⋆

i (di)

to the left of R̃1. It follows that it must be the right corner point of D̃, i.e.,
(R̃1, R̃2), that is on the boundary of R⋆

k(dk). We then move to the right along the
boundary of R⋆

k(dk), repeating the above process as necessary as new constraints
become active. This shows that for each R1 ≥ Rc

1, (R1, hj(R1)) is achievable
for some j.

An analogous procedure can be followed starting with the left corner point
of the contrapolymatroid associated with D∗. Finally, between these two corner
points, (R1, hsum(R1)) is achievable.

F Converse for M -sums

We show in this appendix that the rate region for the M -sums problem is
contained in

R⋆
sum(d1, . . . , dJ ) ∩

J
⋂

j=1

R⋆
j (dj).

Since the rate region is clearly contained in ∩J
j=1R⋆

j (dj), we only need to show
that it is contained in R⋆

sum(d1, . . . , dJ ). That is, we must show that the sum
rate is lower bounded by

R⋆
sum(d1, . . . , dJ )

= inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µT

j Dµj ≤ dj ∀j ∈ {1, . . . , J}
}

.

By Lemma 10, this infimum is achieved by some D∗ in DG. If D∗ = Ky, then
R⋆

sum(d1, . . . , dJ ) = 0 and our task is trivial. Suppose therefore that D∗ 6= Ky.
Then D∗ must meet at least one of the distortion constraints with equality.
If D∗ meets exactly one distortion constraint with equality, then the converse
is relatively simple, because in this case R⋆

sum(d1, . . . , dJ ) contains R⋆
j (dj) for

some j.

Lemma 11. Suppose there exists D∗ in DG that is sum-rate optimal within
this class and meets exactly one of the distortion constraints with equality, i.e.,
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µT
i D∗µi = di and µT

j D∗µj < dj for all j 6= i. Then the sum rate for the
M -sums problem is

1

2
log

|Ky|
|D∗| = R⋆

sum(d1, . . . , dJ ).

Proof. It suffices to show that D∗ is sum-rate optimal for the µi-sum problem
with distortion di. Recall that one of the corner points of D∗ lies on the bound-
ary of the µi-sum rate region. If this point is not sum-rate optimal, then it is
possible to move a small distance along the boundary of R⋆

i (di) and strictly de-
crease the sum rate. Since the distortion associated with µj varies continuously
as we move along this boundary for each j, it follows that a sufficiently small
movement will not violate any of the distortion constraints. This contradicts the
assumption that D∗ is sum-rate optimal for the M -sums problem within the
class DG. It follows that D∗ is sum-rate optimal for the µi-sum problem.

It also happens that R⋆
sum(d1, . . . , dJ ) contains R⋆

j (dj) for some j when there
is an optimizing D∗ on the “boundary” of DG. Let D◦

G denote the set of D in
DG such that

D−1 = K−1
y + Λ

for some diagonal and positive definite Λ. Let ∂D = DG −D◦

G, which is the set
of those D ∈ DG such that D−1 − K−1

y is singular.

Lemma 12. Suppose there exists a D∗ 6= Ky in ∂DG that is sum-rate optimal
within the class DG. Then the sum rate for the M -sums problem is given by

1

2
log

|Ky|
|D∗| = R⋆

sum(d1, . . . , dJ ).

Proof. As in the previous proof, it suffices to show that for some i, D∗ is sum-
rate optimal for the µi-sum problem with distortion di. Now D∗ can be written

D∗ = (K−1
y + Λ)−1,

where Λ is diagonal, positive semidefinite, singular, and nonzero. Without loss
of generality, we may assume that Λ is of the form

Λ =

[

λ1 0
0 0

]

for some λ1 > 0. Let A denote the set of constraints that are active at D∗

A = {j : µT
j D∗µj = dj}.

Let i denote the constraint in A that weights y1 most heavily

i = arg max
j∈A

µj1

µj2
.
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We will show that D∗ is sum-rate optimal for the µi-sum problem with dis-
tortion di. Now D∗ is associated with a point (R1, 0) on the boundary of the
µi-sum rate region. If this point is not sum-rate optimal for this problem, then
it is possible to move a small distance to the left along the boundary of R⋆

i (di)
and strictly decrease the sum rate. Since the distortion associated with µj

varies continuously as one moves along this boundary, for a sufficiently small
movement, none of the constraints in Ac will be violated. On the other hand, by
Lemma 9, none of the constraints in A will be violated either. This contradicts
the assumption that D∗ is sum-rate optimal for the M -sums problem within the
class DG. It follows that D∗ is sum-rate optimal for the µi-sum problem.

The previous two lemmas allows us to focus on the case in which there exists
an optimizing D∗ in D◦

G that meets at least two of the distortion constraints with
equality. Our proof in this case parallels the proof of Theorem 1. In particular,
we introduce a nonnegative vector µ∗ such that D∗ is sum-rate optimal for the
µ∗-sum problem.

Lemma 13. Suppose D∗ ∈ D◦

G is sum-rate optimal within the class DG

µT
j D∗µj ≤ dj ∀j ∈ {1, . . . , J}

1

2
log

|Ky|
|D∗| = inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µT

j Dµj ≤ dj ∀j ∈ {1, . . . , J}
}

.

(52)

Let A denote the set of constraints that are active at D∗

A = {j : µT
j D∗µj = dj}.

If |A| ≥ 2, then there exists i, j in A, i 6= j, and a nonnegative vector µ∗ such
that

1. D∗ is sum-rate optimal for the µ∗-sum problem

1

2
log

|Ky|
|D∗| = inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µ∗T

Dµ∗ ≤ µ∗T
D∗µ∗

}

2. M−1
2 µ∗ is nonnegative, where

M2 =
[

µi µj

]

.

Proof. Any D ∈ DG can be written

D−1 = K−1
y + Λ

for some diagonal and positive semidefinite matrix Λ. Thus the optimization
problem in (52) can be written

min
1

2
log

|K−1
y + Λ|
|K−1

y |
subject to µT

j (K−1
y + Λ)−1µj ≤ dj j ∈ {1, . . . , J},
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where Λ ranges over all diagonal and positive semidefinite matrices. By hy-
pothesis, this optimization problem is solved by

Λ∗ = D∗−1 − K−1
y .

Unfortunately, Λ∗ may not be regular [23, p. 309] for this optimization problem.
This is an issue because the KKT conditions may not hold at a local minimum
that is not regular [23, Example 3.1.1]. We proceed by using a generalization
of the KKT conditions called the Fritz John conditions [23, Sec. 3.3.5]. The
difference between the Fritz John conditions and the KKT conditions is that
the Fritz John conditions include a scalar for the objective in addition to the
multipliers for the constraints. The Lagrangian for this optimization problem is

1

2
log

|K−1
y + Λ|
|K−1

y |
−

J
∑

j=1

νj(dj − µT
j (K−1

y + Λ)−1µj) −
2
∑

j=1

νJ+je
T
j Λej ,

where the second summation handles the constraint that Λ must be positive
semidefinite. Write

D∗ =

[

d∗1 θ∗
√

d∗1d
∗

2

θ∗
√

d∗1d
∗

2 d∗2

]

.

By differentiating the Lagrangian with respect to the two diagonal entries of
Λ and using the calculations in Appendix H, we can express the Fritz John
conditions [23, Prop. 3.3.5] as

ν∗

0d∗1 =

J
∑

j=1

ν∗

j (µT
j D∗e1)

2 + ν∗

J+1

ν∗

0d∗2 =

J
∑

j=1

ν∗

j (µT
j D∗e2)

2 + ν∗

J+2

for some ν∗

0 , . . . , ν∗

J+2 that are nonnegative but not all zero. Now since D∗ ∈ D◦

G

by hypothesis, the constraint that Λ be positive semidefinite is not active at
Λ∗. By complimentary slackness, this implies that ν∗

J+1 = ν∗

J+2 = 0. Also by
complimentary slackness, ν∗

j = 0 if j /∈ A, so

ν∗

0d∗1 =
∑

j∈A

ν∗

j (µT
j D∗e1)

2

ν∗

0d∗2 =
∑

j∈A

ν∗

j (µT
j D∗e2)

2.

Now if ν∗

0 were equal to zero, then we would have

∑

j∈A

ν∗

j

[

(µT
j D∗e1)

2 + (µT
j D∗e2)

2
]

= 0. (53)
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Since µj is unit-norm for all j by assumption, (µT
j D∗e1)

2 + (µT
j D∗e2)

2 must
be positive for all j. Thus (53) would imply that ν∗

j = 0 for all j in A.
But this would contradict the condition that at least one of the dual variables
ν∗

0 , . . . , ν∗

J+2 is nonzero. It follows that ν∗

0 is positive and

d∗1 =
∑

j∈A

ν∗

j

ν∗

0

(µT
j D∗e1)

2

d∗2 =
∑

j∈A

ν∗

j

ν∗

0

(µT
j D∗e2)

2.

Thus (d∗

1, d
∗

2) lies in the convex cone formed by the points

((µT
j D∗e1)

2, (µT
j D∗e2)

2) j ∈ A.

By Carathéodory’s theorem for convex cones [22, Corollary 17.1.2], there exists
i, j in A, i 6= j, such that (d∗

1, d
∗

2) lies in the convex cone of those two points
alone

d∗1 = ν̃i(µ
T
i D∗e1)

2 + ν̃j(µ
T
j D∗e1)

2

d∗2 = ν̃i(µ
T
i D∗e2)

2 + ν̃j(µ
T
j D∗e2)

2.
(54)

Let M2 denote the 2 x 2 matrix

M2 =
[

µi µj

]

.

By swapping the roles of µi and µj if necessary, we may assume that |M 2| > 0.
Let

µ∗ =

[ √

d∗2
√

d∗1

]

.

By Lemma 4, D∗ is sum-rate optimal for the µ∗-sum problem, so it only remains
to show that M−1

2 µ∗ is nonnegative.
Consider the matrix

D̃ =

[

(µT
i D∗e1)

2 (µT
j D∗e1)

2

(µT
i D∗e2)

2 (µT
j D∗e2)

2

]

.

In terms of the components of D∗ and M2, the determinant of D̃ is

|D̃| = (µi1d
∗

1 + µi2θ
∗
√

d∗1d
∗

2)
2(µj1θ

∗
√

d∗1d
∗

2 + µj2d
∗

2)
2

− (µj1d
∗

1 + µj2θ
∗
√

d∗1d
∗

2)
2(µi1θ

∗
√

d∗1d
∗

2 + µi2d
∗

2)
2.

By expanding the products and using the fact that |M 2| > 0, one can show
that |D̃| > 0. In particular, the conditions in (54) can be written as

[

ν̃i

ν̃j

]

= D̃
−1
[

d∗1
d∗2

]

=
1

|D̃|

[

(µT
j D∗e2)

2 −(µT
j D∗e1)

2

−(µT
i D∗e2)

2 (µT
i D∗e1)

2

] [

d∗1
d∗2

]

.
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Since ν̃i and ν̃j are nonnegative, this implies that

d∗1(µ
T
j D∗e2)

2 ≥ d∗

2(µ
T
j D∗e1)

2 (55)

d∗2(µ
T
i D∗e1)

2 ≥ d∗

1(µ
T
i D∗e2)

2. (56)

Now (55) can be written

√

d∗1(µj1θ
∗
√

d∗1d
∗

2 + µj2d
∗

2) ≥
√

d∗2(µj1d
∗

1 + µj2θ
∗
√

d∗1d
∗

2).

This can be rearranged to show that

µj2

√

d∗2 ≥ µj1

√

d∗1. (57)

Likewise, (56) implies
µi1

√

d∗1 ≥ µi2

√

d∗2. (58)

Now

M−1
2 µ∗ =

1

µi1µj2 − µi2µj1

[

µj2 −µj1

−µi2 µi1

] [ √

d∗2
√

d∗1

]

=
1

µi1µj2 − µi2µj1

[

µj2

√

d∗2 − µj1

√

d∗1
µi1

√

d∗1 − µi2

√

d∗2

]

which is component-wise nonnegative due to (57), (58), and the nonnegativity
of det(M2).

Lemma 14. Suppose (R1, R2, d1, . . . , dJ ) is strict-sense achievable and there
exists a D∗ in D◦

G that is sum-rate optimal within the class DG and meets at
least two of the distortion constraints with equality. Then

R1 + R2 ≥ 1

2
log

|Ky|
|D∗| = R⋆

sum(d1, . . . , dJ ).

Proof. We give an abbreviated proof due to the similarity to the proofs of Lem-
mas 5 and 6. From Lemma 13, there exists two constraint vectors µi and µj ,
i 6= j, and a nonnegative vector µ∗ such that

(i) µT
i D∗µi = di

(ii) µT
j D∗µj = dj

(iii) D∗ is sum-rate optimal for the µ∗-sum problem, and

(iv) M−1
2 µ∗ is nonnegative, where

M2 = [µi µj ].
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For θ in (−1, 1), let

D̃θ =

[

di θ
√

didj

θ
√

didj dj

]

.

Also define

R̃coop(θ) =
1

2
log+ |Ky||M2|2

|D̃θ|
and

R̃sum(θ)

= inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µ∗T

Dµ∗ ≤ µ∗T
M−T

2 D̃θM
−1
2 µ∗

}

.

Now fix some code that achieves (R1, R2, d1, . . . , dJ ). Let zn(i) denote the
decoder’s estimate of MT

2 yn(i), which we may assume is the conditional expec-
tation of MT

2 yn(i) given the received messages. Let

D̃ =
1

n

n
∑

i=1

E
[

(MT
2 yn(i) − zn(i))(MT

2 yn(i) − zn(i))T
]

denote the average covariance matrix of MT
2 yn − zn. Then

D̂ = M−T
2 D̃M−1

2

is the error covariance matrix for the estimate of the source, yn. As in the proof
of Lemma 5, D̂ must be positive definite, and the sum rate of the code must
satisfy (c.f. (16))

R1 + R2 ≥ 1

2
log+ |Ky|

|D̂|

=
1

2
log+ |Ky||M2|2

|MT
2 D̂M2|

=
1

2
log+ |Ky||M2|2

|D̃|
.

In particular, D̃ must also be positive definite. Let us write it as

D̃ =





d̃i θ̃
√

d̃id̃j

θ̃
√

d̃id̃j d̃j





where d̃i ≤ di, d̃j ≤ dj , and θ̃ ∈ (−1, 1). Now define

φ =
θ̃
√

d̃id̃j
√

didj

,
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and note that φ is in (−1, 1). Then D̃ � D̃φ, so it follows that

R1 + R2 ≥ 1

2
log+ |Ky||M2|2

|D̃φ|
= R̃coop(φ).

On the other hand,

1

n

n
∑

i=1

E[(µ∗T yn(i) − µ∗T
M−T

2 zn(i))2] = µ∗T
M−T

2 D̃M−1
2 µ∗

≤ µ∗T
M−T

2 D̃φM−1
2 µ∗,

i.e., this code achieves distortion µ∗T M−T
2 D̃φM−1

2 µ∗ for the µ∗-sum problem.
Lemma 3 then implies that

R1 + R2 ≥ R̃sum(φ).

It follows that

R1 + R2 ≥ inf
θ∈(−1,1)

max(R̃coop(θ), R̃sum(θ)). (59)

Now let
D̃

∗

= MT
2 D∗M2,

which must have diagonal entries di and dj , respectively. Let us write D̃
∗

as

D̃
∗

=

[

di θ̃∗
√

didj

θ̃∗
√

didj dj

]

.

Note that we must have θ̃∗ ∈ (0, 1) since D̃
∗

is positive definite and both M 2

and D∗ have positive entries. For θ ≥ θ̃∗, we have

max(R̃coop(θ), R̃sum(θ)) ≥ R̃coop(θ) ≥ R̃coop(θ̃∗) =
1

2
log+ |Ky||M2|2

∣

∣

∣D̃
∗
∣

∣

∣

=
1

2
log+ |Ky|

|D∗| .

Since both components of M−1
2 µ∗ are nonnegative, it follows that

µ∗T
M−T

2 D̃θM
−1
2 µ∗

is nondecreasing in θ, which implies that R̃sum(·) is nonincreasing. Thus if
θ ≤ θ̃∗,

max(R̃coop(θ), R̃sum(θ)) ≥ R̃sum(θ) ≥ R̃sum(θ̃∗).

But

R̃sum(θ̃∗) = inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µ∗T

Dµ∗ ≤ µ∗T
M−1

2 D̃
∗

M−1
2 µ∗

}
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and
M−T

2 D̃
∗

M−1
2 = D∗.

Since D∗ solves the µ∗-sum problem, this implies

R̃sum(θ̃∗) =
1

2
log

|Ky|
|D∗| .

It follows that

inf
θ∈(−1,1)

max(R̃coop(θ), R̃sum(θ)) =
1

2
log

|Ky|
|D∗| .

Combining this with (59) yields the desired conclusion.

We are now in a position to complete the proof of Theorem 2.

Proof of Theorem 2. We only need to show that the rate region is contained in
R⋆

sum(d1, . . . , dJ ). Lemmas 11, 12, and 14 together imply that if

(R1, R2, d1, . . . , dJ )

is strict-sense achievable, then

R1 + R2 ≥ inf

{

1

2
log

|Ky|
|D| : D ∈ DG and µT

i Dµi ≤ dj ∀j ∈ {1, . . . , J}
}

.

(60)
It is readily verified that the right-hand side is lower-semicontinuous in d1, . . . , dJ .
It follows that (60) also holds if (R1, R2, d1, . . . , dJ ) are achievable. This implies
the desired conclusion.

G Converse for Many Sources

In this appendix we prove Theorem 3. Recall we are assuming that the covari-
ance matrix Ky has the form

Ky =











1 ρ · · · ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ · · · 1











.

for some 0 < ρ < 1 and all of the distortion constraints are equal to d. Our goal
is to show that the minimum sum rate, R⋆

sum(d), equals

inf

{

1

2
log

|Ky|
|D| : D ∈ DG and eT

ℓ Deℓ ≤ d ∀ ℓ ∈ {1, . . . , L}
}

,

and that this infimum is achieved by a D ∈ DG of the form

D−1 = K−1
y + λI (61)
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for some λ ≥ 0. The conclusion is obvious if d ≥ 1, so we will assume that
0 < d < 1. Using the matrix inversion lemma [24, p. 50], the matrix inversions
in (61) can be computed explicitly

D =
1 − ρ

1 + λ(1 − ρ)

[

I +
ρ11T

1 − ρ + λ(1 − ρ)(1 − ρ + ρL)

]

. (62)

It follows that there is a unique D ∈ DG of the form in (61) with all of the
diagonal entries equal to d. Let us call this matrix D∗. Note that D∗ must be
of the form

D∗ = d











1 θ∗ · · · θ∗

θ∗ 1 . . . θ∗

...
...

. . .
...

θ∗ θ∗ · · · 1











(63)

for some θ∗ > 0. Since D∗ must be positive definite, it follows that θ∗ < 1.
Now the inequalities

R⋆
sum(d) ≤ inf

{

1

2
log

|Ky|
|D| : D ∈ DG and eT

ℓ Deℓ ≤ d ∀ℓ ∈ {1, . . . , L}
}

≤ 1

2
log

|Ky|
|D∗|

are clear, so it suffices to show that

1

2
log

|Ky|
|D∗| ≤ R⋆

sum(d).

For θ in (−1/(L − 1), 1) let

Dθ = d











1 θ · · · θ
θ 1 . . . θ
...

...
. . .

...
θ θ · · · 1











and note that Dθ is positive definite for each θ. Then define

Rcoop(θ) =
1

2
log+ |Ky|

|Dθ|
=

1

2
log+ |Ky|

dL(1 − θ)L−1(1 − θ + Lθ)
.

Next consider the problem of reproducing the sum of the sources, 1T y, at
the decoder. By following the proof of Lemma 8, one can show that this problem
is equivalent to the CEO problem

yℓ = x + nℓ ℓ ∈ {1, . . . , L}

where x, n1, . . . , nL are zero-mean, Gaussian, and independent, and x has vari-
ance ρ. It follows from existing results that the separation-based scheme achieves
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the entire rate region, and in particular it is sum-rate optimal [8, 10]. Thus the
sum rate for the 1-sum problem with distortion constraint 1T Dθ1 is given by

Rsum(θ) := inf

{

1

2
log

|Ky|
|D| : D ∈ DG and 1T D1 ≤ 1T Dθ1

}

. (64)

In fact, the CEO results imply that the infimum in (64) will be achieved by a
D ∈ DG of the form in (61). In particular, we have

Rsum(θ∗) =
1

2
log

|Ky|
|D∗| . (65)

Lemma 15. If (R1, . . . , RL, d, . . . , d) is strict-sense achievable, then

L
∑

ℓ=1

Rℓ ≥ inf
θ∈(−1/(L−1),1)

max(Rcoop(θ), Rsum(θ)). (66)

Proof. By hypothesis, there exists a code (f
(n)
1 , . . . , f

(n)
L , ϕ

(n)
1 , . . . , ϕ

(n)
L ) such

that

Rℓ ≥
1

n
log M

(n)
ℓ for all ℓ in {1, . . . , L}

d ≥ 1

n

n
∑

i=1

E[(yn
ℓ (i) − ŷn

ℓ (i))2] for all ℓ in {1, . . . , L}.

From this code, we construct a new code with block length N := L! ·n by time-
sharing among all L! permutations of the sources. For this new code, the rates
are symmetric

1

L

L
∑

ℓ=1

Rℓ ≥
1

N
log M

(N)
ℓ for all ℓ in {1, . . . , L}

and

d ≥ 1

N

N
∑

i=1

E[(yN
ℓ (i) − ŷN

ℓ (i))2] for all ℓ in {1, . . . , L}.

Let

D̂ =
1

N

N
∑

i=1

E[(yN (i) − ŷN (i))(yN (i) − ŷN (i))T ]

denote the error covariance matrix of the code. By the symmetry of the time
sharing, D̂ must have the form

D̂ = d̂











1 φ · · · φ
φ 1 . . . φ
...

...
. . .

...
φ φ · · · 1










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for some d̂ ≤ d. Following the calculation at the beginning of the proof of
Lemma 5, one can show that D̂ is positive definite, which implies that −1/(L−
1) < φ < 1, and

L
∑

ℓ=1

Rℓ ≥
1

2
log+ |Ky|

|D̂|
.

But D̂ � Dφ, so this implies

L
∑

ℓ=1

Rℓ ≥
1

2
log

|Ky|
|Dφ|

= Rcoop(φ). (67)

Since the code has error covariance matrix D̂, the distortion it achieves for the
1-sum problem is at most 1T D̂1 ≤ 1T Dφ1. It follows that

L
∑

ℓ=1

Rℓ ≥ Rsum(φ).

Combining this with (67) gives

L
∑

ℓ=1

Rℓ ≥ max(Rsum(φ), Rcoop(φ)).

The conclusion follows by taking the infimum over φ in (−1/(L − 1), 1)

Next we evaluate the infimum in (66). Recall that θ∗ is defined by (63).

Lemma 16.

inf
θ∈(−1/(L−1),1)

max(Rcoop(θ), Rsum(θ)) =
1

2
log

|Ky|
|D∗| .

Proof. By differentiating, one can verify that Rcoop(·) is nondecreasing on (0, 1).
Then if θ ≥ θ∗, we have

max(Rcoop(θ), Rsum(θ)) ≥ Rcoop(θ) ≥ Rcoop(θ∗) =
1

2
log

|Ky|
|D∗| .

On the other hand, if θ ≤ θ∗, then since Rsum(·) is nonincreasing

max(Rcoop(θ), Rsum(θ)) ≥ Rsum(θ) ≥ Rsum(θ∗) =
1

2
log

|Ky|
|D∗| ,

where we have used (65).

Theorem 3 now follows from a continuity argument similar to the one used
in the proof of Theorem 1.
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H Derivatives

Let D(λ1, λ2) denote the matrix in DG defined by

D(λ1, λ2) =

(

K−1
y +

[

λ1 0
0 λ2

])−1

.

In this appendix we compute the derivatives of

log |D(λ1, λ2)|

and
µT D(λ1, λ2)µ

with respect to λ1 and λ2. Write

Λ =

[

λ1 0
0 λ2

]

.

Then

∂ log |D(λ1, λ2)|
∂λ1

= − lim
δ→0

log |K−1
y + Λ + δe1e

T
1 | − log |K−1

y + Λ|
δ

= − lim
δ→0

log |I + δe1e
T
1 D(λ1, λ2)|

δ

= − lim
δ→0

log(1 + δeT
1 D(λ1, λ2)e1)

δ

= − log(e)eT
1 D(λ1, λ2)e1.

Similarly,
∂ log |D(λ1, λ2)|

∂λ2
= − log(e)eT

2 D(λ1, λ2)e2.

Also

∂µT D(λ1, λ2)µ

∂λ1

= lim
δ→0

µT
(

(

K−1
y + Λ + δe1e

T
1

)−1 − (K−1
y + Λ)−1

)

µ

δ

= − lim
δ→0

µT
(

D(λ1, λ2)e1(1 + δeT
1 D(λ1, λ2)e1)

−1eT
1 D(λ1, λ2)

)

µ

= −(µT D(λ1, λ2)e1)
2

where to obtain the second equation we have used the matrix inversion lemma.
Similarly,

∂µT D(λ1, λ2)µ

∂λ2
= −(µT D(λ1, λ2)e2)

2.
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Figure 1: The two-encoder source-coding problem.
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Figure 2: A natural architecture that separates the analog and digital aspects
of the compression.
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Figure 3: The rate region for ρ = 0.9 and d1 = d2 = 0.05.
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Figure 4: Dependence of the product d1d2 on the error correlation coefficient θ
for ρ = 0.9.

51



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
2

3

4

5

6

7

8

9

10

θ

B
it

s
p
er

sa
m

p
le

Rcoop(θ)

Rsum(θ)

Figure 5: Rcoop(·) and Rsum(·) for the case ρ = 0.9 and d1 = d2 = 0.05. The
plot for Rsum(·) was generated using the convex optimization formulation of the
sum rate for the µ-sum problem given in Appendix C. The circled point at
which the two functions intersect is the min-max and equals the sum rate.
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