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Abstract— A rateless code—i.e., a rate-compatible family of
codes—has the property that codewords of the higher rate codes
are prefixes of those of the lower rate ones. A perfect family
of such codes is one in which each of the codes in the family is
capacity-achieving. We show by construction that perfect rateless
codes with low-complexity decoding algorithms exist for additive
white Gaussian noise channels. Our construction involves the
use of layered encoding and successive decoding, together with
a repetition and dithering technique. As an illustration of our
framework, we design a practical three-rate code family. We
further construct rich sets of near-perfect rateless codeswithin
our architecture that require either significantly fewer layers or
lower complexity than their perfect counterparts. Variations of
the basic construction are also discussed.

Index Terms— Incremental redundancy, rate-compatible punc-
tured codes, hybrid ARQ (H-ARQ), static broadcasting.

I. I NTRODUCTION

T HE design of effective “rateless” codes has received re-
newed strong interest in the coding community, motivated

by a number of emerging applications. Such codes have a
long history, and have gone by various names over time,
among them incremental redundancy codes, rate-compatible
punctured codes, hybrid ARQ type II codes, and static broad-
cast codes [3], [4], [9]–[12], [14], [18], [19], [24]. This paper
focuses on the design of such codes for average power limited
additive white Gaussian noise (AWGN) channels. Specifically,
we develop techniques for mapping standard good single-rate
codes for the AWGN channel into good rateless codes.

From a purely information theoretic perspective the problem
of rateless transmission is well understood; see Shulman [23]
for a comprehensive treatment. Indeed, for channels having
one maximizing input distribution, a codebook drawn indepen-
dently and identically distributed (i.i.d.) at random fromthis
distribution will be good with high probability, when truncated
to (a finite number of) different lengths. Phrased differently,
in such cases random codes are rateless codes.

Constructing good codes that also have computationally
efficient encoders and decoders requires more effort. A re-
markable example of such codes forerasurechannels are the
recent Raptor codes of Shokrollahi [22], which build on the
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LT codes of Luby [2], [13]. An erasure channel model (for
packets) is most appropriate for rateless coding architectures
anchored at the application layer, where there is little or no
access to the physical layer.

Apart from erasure channels, there is a growing interest in
exploiting rateless codes closer to the physical layer, where
AWGN models are more natural; see, e.g., [25] and the
references therein. Surprisingly little is known about what is
possible in this realm. Recent work [8], [17] applies Raptor
codes to binary-input AWGN channels (among others), where
it is shown that no degree distribution allows Raptor codes to
approach capacity simultaneously at different signal to noise
ratios (SNRs). Another line of work is based on puncturing of
low-rate capacity-approaching codes such as turbo and LDPC
codes [1], [9], [15], [18], [19], [25]. When iterative decoding
is used, however, a balance must be struck between the
performance at different rates. That is, improving performance
at one rate comes at the expense of the performance at other
rates. Beyond this issue, binary codes themselves may be
“nearly” capacity achieving only at low SNR.

In this paper, motivated by a host of emerging wireless
applications, we work at the physical layer with an associated
AWGN channel model, rather than with an erasure model.
And as such, our focus is on that part of the network where
traditional hybrid ARQ research has been aimed. The rateless
codes that result are efficient, practical, and can operate at
rates of multiple b/s/Hz.

We show that the successful techniques employed to
construct low-complexity codes for the standard AWGN
channel—such as those arising out of turbo and low-density
parity check (LDPC) codes—can be leveraged to construct
rateless codes. Specifically, we develop an architecture in
which a single codebook designed to operate at a single SNR is
used in a straightforward manner to build a rateless codebook
that operates at many SNRs.

The encoding in our architecture exploits three key ingredi-
ents: layering, dithering, and repetition. By layering, wemean
the creation of a code by a linear combination of subcodes.
By dithering we mean the use of multiplicative pre- and post-
processing by known sequences. Finally, by repetition, we
mean the use of simple linear redundancy in which each
copy has a different complex gain. We show that with the
appropriate combination of these ingredients, if the base codes
are capacity-achieving, so will be the resulting rateless code.

In addition to achieving capacity in our architecture, we
seek to ensure that if the base code can be decoded with low
complexity, so can the rateless code. As we will see, this
is accomplished by imposing the constraint that the layered
encoding be successively decodable—i.e., that the layers can
be decoded one at a time, treating as yet undecoded layers as
noise.

http://arxiv.org/abs/0708.2575v1
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Hence, our main result is the construction of capacity-
achieving, low-complexity rateless codes, i.e., ratelesscodes
constructed from layering, dithering, and repetition, that are
successively decodable.

The paper is organized as follows. In Section II we introduce
the channel and system model. In Section III we motivate
and illustrate our construction with a simple special-case
example. In Section IV we develop our general construction
and show that within it exist perfect rateless codes for at least
some ranges of interest, and in Section V we develop and
analyze specific instances of our codes generated numerically.
In Section VI, we show that within the constraints of our
construction rateless codes for any target ceiling and range
can be constructed that are arbitrarily close to perfect in an
appropriate sense. In Section VII we describe some potentially
useful variations on our basic construction, and their key
properties. Finally, Section VIII contains some concluding
remarks.

II. CHANNEL AND SYSTEM MODEL

The codes we construct are designed for a complex AWGN
channel

ym = αxm + zm, m = 1, 2, . . . , (1)

where α is a channel gain,1 xm is a vector of ofN input
symbols,ym is the vector of channel output symbols, and
zm is a noise vector ofN i.i.d. complex, circularly-symmetric
Gaussian random variables of varianceσ2, independent across
blocksm = 1, 2, . . . . The channel input is limited to average
power P per symbol. In our model, the channel gainα and
noise varianceσ2 are known a priori at the receiver but not at
the transmitter.2

The block lengthN has no important role in the analysis
that follows. It is, however, the block length of the base code
used in the rateless construction. As the base code performance
controls the overall code performance, to approach channel
capacityN must be large.

The encoder transmits a messagew by generating a se-
quence of code blocks (incremental redundancy blocks)x1(w),
x2(w), . . . . The receiver accumulates sufficiently many re-
ceived blocksy1, y2, . . . to recoverw. The channel gainα
may be viewed as a variable parameter in the model; more
incremental redundancy is needed to recoverw when α is
small than whenα is large.

An important feature of this model is that the receiver
always starts receiving blocks from indexm = 1. It does not
receive an arbitrary subsequence of blocks, as might be the
case if one were modeling a broadcast channel that permits
“tuning in” to an ongoing transmission; discussion of such a
scenario is deferred to Section VII.

We now define some basic terminology and notation. Unless
noted otherwise, all logarithms base 2, all symbols denote
complex quantities, and all rates are in bits per complex
symbol (channel use), i.e., b/s/Hz. We use·T for transpose

1See Section VIII for a discussion regarding more general models for α.
2An equivalent model would be a broadcast channel in which a single

encoding of a common message is being sent to a multiplicity of receivers,
each experiencing a different SNR.

and · † for Hermitian (conjugate transpose) operators. Vectors
and matrices are denoted using bold face, random variables
are denoted using sans-serif fonts, while sample values use
regular (serif) fonts.

We define theceiling rateof the rateless code as the highest
rate R at which the code can operate, i.e., the effective rate
if the message is decoded from the single received blocky1;
hence, a message consists ofNR information bits. Associated
with this rate is an SNRthreshold, which is the minimum SNR
required in the realized channel for decoding to be possible
from this single block. This SNR threshold can equivalentlybe
expressed in the form of a channel gain threshold. Similarly,
if the message is decoded fromm ≥ 2 received blocks,
the corresponding effective code rate isR/m, and there is
a corresponding SNR (and channel gain) threshold. Thus, for
a rateless encoding consisting ofM blocks, there is a sequence
of M associated SNR thresholds.

Finally, as in the introduction, we refer to the code out
of which our rateless construction is built as thebase code,
and the associated rate of this code as simply thebase code
rate. At points in our analysis we will assume that a good
base code is used in the code design, i.e., that the base code
is capacity-achieving for the AWGN channel, and thus has
the associated properties of such codes. This will allow us to
distinguish losses due to the code architecture from those due
to the choice of base code.

III. M OTIVATING EXAMPLE

To develop initial insights, we construct a simple low-
complexity perfect rateless code that employs two layers of
coding to support a total of two redundancy blocks.

We begin by noting that for the case of a rateless code with
two redundancy blocks the channel gain|α| may be divided
into three intervals based on the number of blocks needed for
decoding. Letα1 and α2 denote the two associated channel
gain thresholds. When|α| ≥ |α1| decoding requires only one
block. When|α1| > |α| ≥ |α2| decoding requires two blocks.
When |α2| > |α| decoding is not possible. The interesting
cases occur when the gain is as small as possible to permit
decoding. At these threshold values, for one-block decoding
the decoder sees

y1 = α1x1 + z1, (2)

while for two-block decoding the decoder sees

y1 = α2x1 + z1, (3)

y2 = α2x2 + z2. (4)

In general, given any particular choice of the ceiling rate
R for the code, we would like the resulting SNR thresholds
to be a low as possible. To determine lower bounds on these
thresholds, let

SNRm = P |αm|2/σ2, (5)

and note that the capacity of the one-block channel is

I1 = log(1 + SNR1), (6)

while for the two-block channel the capacity is

I2 = 2 log(1 + SNR2) (7)
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bits per channel use. A “channel use” in the second case
consists of a pair of transmitted symbols, one from each block.

In turn, since we deliver the same message to the receiver
for both the one- and two-block cases, the smallest values of
|α1| and |α2| we can hope to achieve occur when

I1 = I2 = R. (8)

Thus, we say that the code isperfectif it is decodable at these
limits.

We next impose that the construction be alayeredcode, and
that the layers besuccessively decodable.

Our layering constraint means that we require the transmit-
ted blocks to be linear combinations of two base codewords
c1 ∈ C1 andc2 ∈ C2

3:

x1 = g11c1 + g12c2, (9)

x2 = g21c1 + g22c2. (10)

Base codebookC1 has rateR1 and base codebookC2 has
rate R2, where R1 + R2 = R, so that total rate of the
two codebooks equals the ceiling rate. We assume for this
example that both codebooks are capacity-achieving, so that
the codeword components are i.i.d. Gaussian. Furthermore,for
convenience, we scale the codebooks to have unit power, so
the power constraint instead enters through the constraints

|g11|2 + |g12|2 = P, (11)

|g21|2 + |g22|2 = P. (12)

Finally, the successive decoding constraint in our system
means that the layers are decoded one at a time to keep
complexity low (on order of the base code complexity).
Specifically, the decoder first recoversc2 while treatingc1

as additive Gaussian noise, then recoversc1 usingc2 as side
information.

We now show that perfect rateless codes are possible within
these constraints by constructing a matrixG = [gml] so that
the resulting code satisfies (8). Finding admissibleG is simply
a matter of some algebra: in the one-block case we need

R1 = Iα1
(c1; y1|c2) (13)

R2 = Iα1
(c2; y1), (14)

and in the two-block case we need

R1 = Iα2
(c1; y1, y2|c2) (15)

R2 = Iα2
(c2; y1, y2). (16)

The subscriptsα1 and α2 are a reminder that these mutual
information expressions depend on the channel gain, and the
scalar variables denote individual components from the input
and output vectors.

While evaluating (13)–(15) is straightforward, calculating
the more complicated (16), which corresponds to decoding
c2 in the two-block case, can be circumvented by a little
additional insight. In particular, whilec1 causes the effec-
tive noise in the two blocks to be correlated, observe that

3In practice, the codebooksC1 andC2 should not be identical, though they
can for example be derived from a common base codebook via scrambling.
This point is discussed further in Section VII-B.

a capacity-achieving code requiresx1 and x2 to be i.i.d.
Gaussian. Asc1 andc2 are Gaussian, independent, and equal
in power by assumption, this occurs only if the rows ofG

are orthogonal. Moreover, the power constraintP ensures that
these orthogonal rows have the same norm, which implies that
G is a scaled unitary matrix.

The unitary constraint has an immediate important conse-
quence: the per-layer ratesR1 andR2 must be equal:

R1 = R2 = R/2. (17)

This occurs because the two-block case decomposes into two
parallel orthogonal channels of equal SNR. We will see in the
next section that a comparable result holds for any number of
layers.

From the definitions of SNR1 andI1 [cf. (5) and (6)], and
the equalityI1 = R (8), we find that

P |α1|2/σ2 = 2R − 1. (18)

Also, from (13) and (17), we find that

|g11|2|α1|2/σ2 = 2R/2 − 1. (19)

Combining (18) and (19) yields

|g11|2 = P
2R/2 − 1

2R − 1
=

P

2R/2 + 1
. (20)

The constraint thatG be a scaled unitary matrix, together with
the power constraintP , implies

|g12|2 = P − |g11|2 (21)

|g21|2 = P − |g11|2 (22)

|g22|2 = |g11|2, (23)

which completely determines the squared modulus of the
entries ofG.

Now, the mutual information expressions (13)–(16) are
unaffected by applying a common complex phase shift to any
row or column ofG, so without loss of generality we take the
first row and first column ofG to be real and positive. For
G to be a scaled unitary matrix,g22 must then be real and
negative. We have thus shown that, if a solution to (13)–(16)
exists, it must have the form

G =

[

g11 g12

g21 g22

]

=

√

P

2R/2 + 1

[

1 2R/4

2R/4 −1

]

. (24)

Conversely, it is straightforward to verify that (13)–(16)are
satisfied with this selection. Thus (24) characterizes the (es-
sentially) unique solutionG.

In summary, we have constructed a 2-layer, 2-block perfect
rateless code from linear combinations of codewords drawn
from equal-rate codebooks. Moreover, decoding can proceed
one layer at a time with no loss in performance, provided
the decoder is cognizant of the correlated noise caused by
undecoded layers. In the sequel we consider the generalization
of our construction to an arbitrary number of layers and
redundancy blocks.
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Fig. 1. A rateless code construction with 4 layers and 3 blocks of redundancy.
Each block is a weighted linear combination of the (N -element) base
codewordsc1, c2, . . . , c4, wheregml, the (m, l)th element ofG, denotes
the weight for layerl of block m.

IV. RATELESSCODES WITH LAYERED ENCODING AND

SUCCESSIVEDECODING

The rateless code construction we pursue is as follows
[7]. First, we choose the range (maximum numberM of
redundancy blocks), the ceiling rateR, the number of layersL,
and finally the associated codebooksC1, . . . , CL. We assume
a priori that theL base codebooks all have equal rateR/L;
this assumption turns out to be necessary when constructing
perfect rateless codes withM = L, and in any case has the
advantage of allowing the codesbooks for each layer to be
derived from a single base code.

Given codewordscl ∈ Cl, l = 1, . . . , L, the redundancy
blocksx1, . . . , xM take the form







x1

...
xM






= G







c1

...
cL






, (25)

whereG is an M × L matrix of complex gains and where
xm for eachm andcl for eachl are row vectors of lengthN .
The power constraint enters by limiting the rows ofG to have
squared normP and by normalizing the codebooks to have
unit power. Note that with this notation, themth row of G

are the weights used in constructing themth redundancy block
from theL codewords.4 In the sequel we usegml to denote the
(m, l)th entry ofG andGm,l to denote the upper-leftm× l
submatrix ofG.

An example of this layered rateless code structure is de-
picted in Fig. 1. Each redundancy block contains a repetition
of the codewords used in the earlier blocks, but with a different
complex scaling factor. The code structure may therefore be
viewed as a hybrid of layering and repetition. Note that, absent
assumptions on the decoder, the order of the layers is not
important.

In addition to the layered code structure, there is additional
decoding structure, namely that the layered code be succes-
sively decodable. Specifically, to recover the message, we first

4The lth column ofG also has a useful interpretation. In particular, one can
interpret the construction as equivalent to a “virtual” code-division multiple-
access (CDMA) system withL users, each corresponding to one layer of the
rateless code. With this interpretation, the signature (spreading) sequence for
the lth virtual user is thelth column ofG.

decodecL, treatingG
[

cT
1 · · · cT

L−1

]T
as (colored) noise,

then decodecL−1, treating G
[

cT
1 · · · cT

L−1

]T
as noise,

and so on. Thus, our aim is to selectG so that capacity is
achieved for any numberm = 1, . . . , M of redundancy blocks
subject to the successive decoding constraint.

Both the layered repetition structure (25) and the suc-
cessive decoding constraint impact the degree to which we
can approach a perfect code. Accordingly, we examine the
consequences of each in turn.

We begin by examining the implications of the layered
repetition structure (25). When the number of layersL is at
least as large as the number of redundancy blocksM , such
layering does not limit code performance. But whenL < M ,
it does. In particular, whenever the numberm of redundancy
blocks required by the realized channel exceedsL, there is
necessarily a gap between the code performance and capacity.
To see this, observe that (25) with (1), restricted to the first
m blocks, defines a linearL-input m-output AWGN channel,
the capacity of which is at most

I ′m =







m log
(

1 + |α|2P
σ2

)

for m ≤ L,

L log
(

1 + m
L

|α|2P
σ2

)

for m > L.
(26)

Only for m ≤ L does this match the capacity of a general
m-block AWGN channel, viz.,

Im = m log

(

1 +
|α|2P

σ2

)

. (27)

Ultimately, for m > L the problem is that anL-fold linear
combination cannot fill all degrees of freedom afforded by the
m-block channel.

An additional penalty occurs when we combine the layered
repetition structure with the requirement that the code be rate-
less. Specifically, forM > L, there is no choice of gain matrix
G that permits (26) to be met with equalitysimultaneouslyfor
all m = 1, . . . , M . A necessary and sufficient condition for
equality is that the rows ofGm,L be orthogonal form ≤ L
and the columns ofGm,L be orthogonal form > L. This
follows because reaching (26) form ≤ L requires that the
linear combination ofL codebooks create an i.i.d. Gaussian
sequence. In contrast, reaching (26) form > L requires that
the linear combination inject theL codebooks into orthogonal
subspaces, so that a fractionL/m of the available degrees
of freedom are occupied by i.i.d. Gaussians (the rest being
empty).

Unfortunately, the columns ofGm,L cannot be orthogonal
simultaneously for allm > L. That would entail the construc-
tion of orthogonalm-dimensional vectors (with nonzero en-
tries) that remain orthogonal when truncated to their firstm−1
dimensions, an obvious impossibility. Thus (26) determines
only a lower bound on the loss due to the layering structure
(25). Fortunately, the additional loss encountered in practice
turns out to be quite small, as we demonstrate numerically as
part of the next section.

Our lower bound on loss incurred by the use of insufficiently
many layers is readily obtained by comparing (26) and (27).
Specifically, given a choice of ceiling rateR for the rateless
code, (26) implies that for rateless codes constructed using
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TABLE I

LOSSES|α′

m|/|αm| IN DB DUE TO LAYERED STRUCTURE IMPOSED ON A

RATELESS CODE OF CEILING RATER = 5 B/S/HZ, AS A FUNCTION OF THE

NUMBER OF LAYERSL AND REDUNDANCY BLOCKS m.

Redundancy blocksm
2 3 4 5 6 7 8 9 10

L = 1 5.22 6.77 7.50 7.92 8.20 8.40 8.54 8.65 8.74
L = 2 0.00 1.55 2.28 2.70 2.98 3.17 3.32 3.43 3.52
L = 3 0.00 0.00 0.73 1.16 1.43 1.63 1.77 1.88 1.97
L = 4 0.00 0.00 0.00 0.42 0.70 0.90 1.04 1.15 1.24
L = 5 0.00 0.00 0.00 0.00 0.28 0.47 0.62 0.73 0.82
L = 6 0.00 0.00 0.00 0.00 0.00 0.20 0.34 0.45 0.54
L = 7 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.26 0.35
L = 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.20
L = 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09

linear combinations ofL base codes, the smallest channel gain
α′

m for which it’s possible to decode withm blocks is

|α′
m|2 =

{

(

2R/m − 1
)

σ2

P for m ≤ L,
(

2R/L − 1
)

L
m

σ2

P for m > L.
(28)

By comparison, (27) implies that without the layering con-
straint the corresponding channel gain thresholdsαm are

|αm|2 =
(

2R/m − 1
) σ2

P
. (29)

The resulting performance loss|α′
m|/|αm| caused by the

layered structure as calculated from (28) and (29) is shown in
dB in Table I for a target ceiling rate ofR = 5 bits/symbol.
For example, if an application requiresM = 10 redundancy
blocks, a 3-layer code has a loss of less than 2 dB atm = 10,
while a 5-layer code has a loss of less than 0.82 dB atm = 10.

As Table I reflects—and as can be readily verified—for a
fixed number of layersL and a fixed base code rateR/L,
the performance loss|α′

m|/|αm| attributable to the imposition
of layered encoding grows monotonically with the number of
blocksm, approaching the limit

|α′
∞|2
|α∞|2

=
2R/L − 1

(R/L) ln 2
. (30)

Thus, in applications where the number of incremental redun-
dancy blocks is very large, it’s advantageous to keep the base
code rate small. For example, with a base code rate of 1/2
bit per complex symbol (implemented, for example, using a
rate-1/4 binary code) the loss due to layering is at most 0.78
dB, while with a base code rate of 1 bit per complex symbol
the loss is at most 1.6 dB.

We now determine the additional impact the successive
decoding requirement has on our ability to approach capacity,
and more generally what constraints it imposes onG. We
continue to incorporate the power constraint by taking the rate-
R/L codebooksC1, . . . , CL to have unit power and the rows
of G to have squared normP . Since our aim is to employ
codebooks designed for (non-fading) Gaussian channels, we
make the further assumption that the codebooks have constant
power, i.e., that they satisfy the per-symbol energy constraint
E
[

|cl,n(w)|2
]

≤ 1 for all layers l and time indicesn =
1, . . . , N , where the expectation is taken over equiprobable

messagesw ∈ {1, . . . , 2NR/L}. Additional constraints on
G will now follow from the requirement that the mutual
information accumulated through any blockm at each layerl
be large enough to permit successive decoding.

Concretely, suppose we have received blocks1, . . . , m.
Let the optimal threshold channel gainαm be defined as in
Section III, i.e., as the solution to [cf. (27)]

R = m log
(

1 + (|αm|2/σ2)P
)

. (31)

Suppose further that layersl+1, . . . , L have been successfully
decoded, and define







v1

...
vm






= αmGm,l







c1

...
cl






+







z1

...
zm






(32)

as the received vectors without the contribution from layers
l + 1, . . . , L.

Then, following standard arguments, with independent
equiprobable messages for each layer, the probability of de-
coding error for layerl can made vanishingly small with
increasing block length only if the mutual information between
input and output is at least as large as the rateR/L of the code
Cl. That is, successive decoding requires

R/L ≤ (1/N)I(cl; y1, . . . , ym | cL
l+1) (33)

= (1/N)I(cl; v1, . . . , vm) (34)

≤ log
det(I + (|αm|2/σ2)Gm,lG

†
m,l)

det(I + (|αm|2/σ2)Gm,l−1G
†
m,l−1

)
, (35)

where I is an appropriately sized (m × m) identity matrix.
The inequality (35) relies on the assumption that the code-
books have constant power, and it holds with equality if the
components ofc1, . . . , cl are i.i.d. Gaussian.

Our ability to chooseG to either exactly or approximately
satisfy (35) for all l = 1, . . . , L and eachm = 1, . . . , M
determines the degree to which we can approach capacity. It
is straightforward to see that there is no slack in the problem;
(35) can be satisfied simultaneously for alll andm only if the
inequalities are all met with equality. Beyond this observation,
however, the conditions under which (35) may be satisfied are
not obvious.

Characterizing the set of solutions forG whenL = M = 2
was done in Section III (see (24)). Characterizing the set of
solutions whenL = M = 3 requires more work. It is shown
in Appendix I that, when it exists, a solutionG must have the
form

G =
√

x− 1 ·




√
x + 1

√

x2(x + 1)
√

x4(x + 1)
√

x3(x + 1) ejθ1

√
x5 + 1 ejθ2

√

x(x + 1)
√

x2(x3 + 1) ejθ3

√

x(x3 + 1) ejθ4

√
x3 + 1



 (36)

wherex = 2R/6 and whereejθi , i = 1, . . . , 4 are complex
phasors. The desired phasors—or a proof of nonexistence—
may be determined from the requirement thatG be a scaled
unitary matrix. Using this observation, it is shown in Ap-
pendix I that a solutionG exists and is unique (up to complex
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conjugate) for allR ≤ 3(log(7 + 3
√

5) − 1) ≈ 8.33 bits per
complex symbol, but no choice of phasors results in a unitary
G for larger values ofR.

For example, using (36) withR = 6 bits/symbol we find
that:

P = 63, α1 = 1, α2 =
√

1/9, α3 =
√

1/21

G =





√
3

√
12

√
48√

24
√

33ejθ1

√
6ejθ2√

36
√

18ejθ3

√
9ejθ4





where

θ1 = arccos
−5

2
√

22
, θ2 = 2π − arctan 3

√
7,

θ3 = − arctan
√

7, θ4 = π − arctan
√

7/3.

For M > 3 the algebra becomes daunting, though we
conjecture that exact solutions and hence perfect ratelesscodes
exist for all L = M , for at least some nontrivial values ofR.

For L < M perfect constructions cannot exist. As devel-
oped earlier in this section, even if we replace the optimum
threshold channel gainsαm defined via (31) with suboptimal
gains determined by the layering bound (26), viz.,

R =







m log
(

1 + |αm|2P
σ2

)

for m ≤ L,

L log
(

1 + m
L

|αm|2P
σ2

)

for m > L,
(37)

it is still not possible to satisfy (35). However, one can come
close to satisfying (35) in such cases. While the associated
analysis is nontrivial, such behavior is easily demonstrated
numerically, which we show as part of the next section.

V. NUMERICAL EXAMPLES

In this section, we consider numerical constructions both
for the caseL = M and for the caseL < M . Specifically,
we have experimented with numerical optimization methods
to satisfy (35) for up toM = 10 redundancy blocks, using the
threshold channel gainsαm defined via (37) in place of those
defined via (31) as appropriate when the number of blocksM
exceeds the number of layersL.

For the caseL = M , for each ofM = 2, 3, . . . , 10, we
found constructions withR/L = 2 bits/symbol that come
within 0.1% of satisfying (35) subject to (31), and often the
solutions come within 0.01%. This provides powerful evidence
that perfect rateless codes exist for a wide range of parameter
choices.

For the caseL < M , despite the fact that there do not
exist perfect codes, in most cases of interest one can come
remarkably close to satisfying (35) subject to (37). Evidently
mutual information for Gaussian channels is quite insensitive
to modest deviations of the noise covariance away from a
scaled identity matrix.

As an example, Table II shows the rate shortfall in meeting
the mutual information constraints (35) for anL = 3 layer
code with M = 10 redundancy blocks, and a target ceiling

TABLE II

PERCENT SHORTFALL IN RATE FOR A NUMERICALLY-OPTIMIZED

RATELESS CODE WITHM = 10 BLOCKS, L = 3 LAYERS, AND A CEILING

RATE OF R = 5 B/S/HZ.

Redundancy blocksm
1 2 3 4 5 6 7 8 9 10

l = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
l = 2 0.00 0.28 1.23 1.46 1.39 0.44 0.59 0.48 0.16 0.23
l = 3 0.00 0.29 1.23 1.48 1.40 0.43 0.54 0.51 0.15 0.23

rateR = 5. The associated complex gain matrix is

G =

































1.4747 2.6277 4.6819
3.5075 3.7794 ej2.0510 2.1009 e−j1.9486

4.0648 3.1298 e−j0.9531 2.1637 ej2.5732

3.2146 3.1322 ej3.0765 3.2949 ej0.9132

3.2146 3.3328 e−j1.6547 3.0918 e−j1.4248

3.2146 3.1049 ej0.9409 3.3206 ej2.8982

3.2146 3.3248 ej1.2506 3.1004 e−j0.2027

3.2146 3.0980 e−j1.4196 3.3270 ej1.9403

3.2146 3.2880 e−j2.9449 3.1394 e−j1.9243

3.2146 3.1795 ej0.7839 3.2492 ej0.3413

































.

The worst case loss is less than 1.5%; this example is typical
in its efficiency.

The total loss of the designed code relative to a perfect
rateless code is, of course, the sum of the successive decoding
and layered encoding constraint losses. Hence, the losses in
Table II and Table I are cumulative. As a practical matter,
however, whenL < M , the layered encoding constraint loss
dwarfs that due to the successive decoding constraint: the
overall performance loss arises almost entirely from the code’s
inability to occupy all available degrees of freedom in the
channel. Thus, this overall loss can be estimated quite closely
by comparing (27) and (26), or, equivalently, (31) and (37).
Indeed this is reflected in our example, where the loss of
Table I dominates over that of Table II.

VI. EXISTENCE OFNEAR-PERFECTRATELESSCODES

While the closed-form construction ofperfectrateless codes
subject to layered encoding and successive decoding becomes
more challenging with increasing code rangeM , the contruc-
tion of codes that are at least nearly perfect is comparatively
straightforward. In the preceding section, we demonstrated
this numerically. In this section, we prove this analytically. In
particular, we construct rateless codes that are arbitrarily close
to perfect in an appropriate sense, provided enough layers
are used. We term these near-perfect rateless codes. The code
construction we present will be applicable to arbitrarily large
M and will also allow for simpler decoding than the MMSE
decoder employed in the preceding development.

A. Encoding

Our near-perfect rateless code construction [5] is a slight
generalization of that used in Section IV. Specifically, as
(25) indicates, in our approach to perfect constructions we
made each redundancy block a linear combination of the base
codewords, where the weights are the corresponding row of
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the combining matrixG. This means that each individual
symbol of a particular redundancy block is, therefore, a linear
combination of the corresponding symbols in the respective
base codewords, with the combining matrix being the same
for all such symbols.

By contrast, in this section, we allow the combining matrix
to vary from symbol to symbol in the construction of each
redundancy block, and use the additional degrees of freedom
in the code design to simplify the analysis—at the expense of
some slightly more cumbersome notation. In particular, using
cl(n) and xm(n) to denote thenth elements of codewordcl

and redundancy blockxm, respectively, we have [cf. (25)]






x1(n)
...

xM (n)






= G(n)







c1(n)
...

cL(n)






, n = 1, 2, . . . , N. (38)

The value ofM plays no role in our development and may
be taken arbitrarily large. Moreover, as before, the power
constraint enters by limiting the rows ofG(n) to have a
squared normP and by normalizing the codebooks to have
unit power.

It suffices to restrict our attention toG(n) of the form

G(n) = P⊙D(n), (39)

whereP is anM ×L (deterministic) power allocation matrix
with entries

√
pm,l that do not vary within a block,

P =







√
p1,1 . . .

√
p1,L

...
. . .

...√
pM,1 . . .

√
pM,L






, (40)

andD(n) is a (random) phase-only “dither” matrix of the form

D(n) =







d1,1(n) · · · d1,L(n)
...

. . .
...

dM,1(n) · · · dM,L(n)






, (41)

with ⊙ denoting elementwise multiplication. In our analysis,
the dij(n) are all i.i.d. in i, j, and n, and are drawn in-
dependently of all other random variables, including noises,
messages, and codebooks. As we shall see below, the role of
the dither is to decorrelate pairs of random variables, hence
it sufficies for dij(n) to take values+1 and−1 with equal
probability.

B. Decoding

To obtain a near-perfect rateless code, it will be sufficient
to employ a successive cancellation decoder with maximal
ratio combining (MRC) of the redundancy blocks. While, in
principle, an MMSE-based successive cancellation decoder
enables higher performance, as we will see, an MRC-based
one is sufficent for our purposes, and simplifies the analysis.
Indeed, although the encoding we choose creates a per-
layer channel that is time-varying, the MRC-based successive
cancellation decoder effectively transforms the channel back
into a time-invariant one, for which any of the traditional

low-complexity capacity-approaching codes for the AWGN
channel are suitable as a base code in the design.5

The decoder operation is as follows, assuming the SNR is
such that decoding is possible fromm redundancy blocks. To
decode theLth (top) layer, the dithering is first removed from
the received waveform by multiplying by the conjugate dither
sequence for that layer. Then, them blocks are combined
into a single block via the appropriate MRC for that layer.
The message in thisLth layer is then decoded, treating the
undecoded layers as noise, and its contribution subtracted
from the received waveform. TheL − 1st layer is now the
top layer, and the process is repeated, until all layers have
been decoded. Note that the use of MRC in decoding is
equivalent to treating the undecoded layers as white (rather
than structured) noise, which is the natural approach when the
dither sequence structure in those undecoded (lower) layers is
ignored in decoding the current layer of interest.

We now introduce notation that allows the operation of the
decoder to be expressed more precisely. We then determine
the effective SNR seen by the decoder at each layer of each
rendundancy block.

SinceG(n) is drawn i.i.d., the overall channel is i.i.d., and
thus we may express the channel model in terms of an arbitrary
individual element in the block. Specifically, our received
waveform can be expressed as [cf. (1) and (25)]

y =







y1

...
yM






= αmG







c1

...
cL






+







z1

...
zM






,

whereG = P⊙D, with G denoting the arbitrary element in the
sequenceG(n), and whereym is the corresponding received
symbol from redundancy blockm (and similarly forcm, zm,
D).

If layers l + 1, l + 2, . . . , L have been successively decoded
from m redundancy blocks, and their effects subtracted from
the received waveform, the residual waveform is denoted by

vm,l = αmGm,l







c1

...
cl






+







z1

...
zm






, (42)

where we continue to letGm,l denote them × l upper-left
submatrix ofG, and likewise forDm,l andPm,l. As additional
notation, we letgm,l denote them-vector formed from the
upperm rows of thelth column ofG, whence

Gm,l =
[

gm,1 gm,2 · · · gm,l

]

, (43)

and likewise fordm,l andpm,l.
With such notation, the decoding can be expressed as

follows. Starting withvm,L = y, decoding proceeds. After
layersl + 1 and higher have been decoded and removed, we
decode fromvm,l. Writing

vm,l = αm(dm,l ⊙ pm,l)cl + vm,l−1, (44)

5More generally, the MRC-based decoder is particularly attractive for
practical implementation. Indeed, as each repetition block arrives a sufficient
statistic for decoding can be accumulated without the need to retain earlier
repetitions in buffers. The computational cost of decodingthus grows linearly
with block length while the memory requirements do not grow at all. This is
much less complex than the MMSE decoder used in Section IV.
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the operation of removing the dither can be expressed as

d∗
m,l ⊙ vm,l = αmpm,lcl + v′m,l−1 (45)

where
v′m,l−1 = d∗

m,l ⊙ vm,l−1. (46)

The MRC decoder treats the dither in the same manner as
noise, i.e., as a random process with known statistics but
unknown realization. Because the entries of the dither matrix
are chosen to be i.i.d. random phases independent of the
messages, the entries ofDm,l and

[

c1 · · · cl−1

]

are jointly
and individually uncorrelated, and the effective noisev′m,l−1

seen by the MRC decoder has diagonal covarianceKv′
m,l−1

=

E[v′m,l−1v
′†
m,l−1].

The effective SNR at which thislth layer is decoded from
m blocks via MRC is thus

m
∑

m′=1

SNRm′,l(αm), (47)

where

SNRm′,l(αm) =
|αm|2pm′,l

|αm|2(pm′,1 + · · ·+ pm′,l−1) + σ2
. (48)

Note that we have made the dependency of these per-layer
per-block SNRs onαm explicit in the notation.

C. Efficiency

The use of random dither at the encoder and MRC at the
decoder both cause some loss in performance relative to the
perfect rateless codes presented earlier. In this section we show
that these losses can be made small.

When a coding scheme is not perfect, itsefficiencyquantifies
how close the scheme is to perfect. There are ultimately several
ways one could measure efficiency that are potentially useful
for engineering design. Among these, we choose the following
efficiency notion:

1) We find the ideal thresholds{αm} for a perfect code of
rateR.

2) We determine the highest rateR′ such that an imperfect
code designed at rateR′ is decodable withm redun-
dancy blocks when the channel gain isαm, for all
m = 1, 2, . . . .

3) We measure efficiencyη by the ratioR′/R, which is
always less than unity.

With this notion of efficiency, we further define a coding
scheme as near-perfect if the efficiency so-defined approaches
unity when sufficiently many layersL are employed.

The efficiency of our scheme ultimately depends on the
choice of our power allocation matrix (40). We now show
the main result of this section: provided there exists a power
allocation matrix such that for eachl andm

R

L
=

m
∑

m′=1

log(1 + SNRm′,l(αm)), (49)

with SNRm,l(αm) as defined in (48), a near-perfect rateless
coding scheme results. The existence of such a power al-
location, as well as an interpretation of (49), is proved in
Appendix II.

We establish our main result by finding a lower bound on
the average mutual information between the input and output
of the channel. Upon receivingm blocks with channel gain
αm, and assuming layersl+1, . . . , L are successfully decoded,
let I ′m,l be the mutual information between the input to the
lth layer and the channel output. Then

I ′l,m = I(cl; vm,l | dm,l) (50)

= I(cl; αmpm,lcl + v′m,l−1 | dm,l), (51)

≥ I(cl; αmpm,lcl + v′m,l), (52)

≥ I(cl; αmpm,lcl + v′′m,l), (53)

= log

(

1 +

m
∑

m′=1

SNRm′,l(αm)

)

(54)

where (51) follows from (45)–(46), (52) follows from the
independence ofcl and dm,l, and (53) obtains by replacing
v′m,l−1 with a Gaussian random vectorv′′m,l−1 of covariance
Kv′

m,l−1
. Lastly, to obtain (54) we have used (47) for the post-

MRC SNR.
Now, if the assumption (49) is satisfied, then the right-hand

side of (54) is further bounded for allm by

I ′m,l ≥ log

(

1 + ln 2
R

L

)

, (55)

where we have applied the inequalityln(1 + u) ≤ u
(valid for u > 0) to (49) to conclude that(ln 2)R/L ≤
∑m

m′=1
SNRm′,l(αm). Note that the lower bound (55) may

be quite loose; for example,I ′m,l = R/L whenm = 1.
Thus, if we design each layer of the code for a base code

rate of
R′′

L
= log

(

1 + ln 2
R

L

)

, (56)

(55) ensures decodability afterm blocks are received when
the channel gain isαm, for m = 1, 2, . . . .

Finally, rewriting (56) as

R

L
=

2R′′/L − 1

ln 2
, (57)

the efficiencyη of the conservatively-designed layered repeti-
tion code is bounded by

η ≥ R′′

R
=

(ln 2)R′′/L

2R′′/L − 1
≥ 1− ln 2

2

R′′

L
, (58)

which approaches unity asL→∞ as claimed.
In Fig. 2, the efficiency bounds (58) are plotted as a function

of the base code rateR′′/L. As a practical matter, our bound
implies, for instance, that to obtain 90% efficiency requires a
base code of rate of roughly1/3 bits per complex symbol.
Note, too, that when the number of layers is sufficiently large
that the SNR per layer is low, a binary code may be used
instead of a Gaussian codebook, which may be convenient for
implementation. For example, a code with rate1/3 bits per
complex symbol may be implemented using a rate-1/6 LDPC
code with binary antipodal signaling.

It thus remains only to show that there exists a power
allocation such that (49) is satisfied, which is establishedin
the Appendix.
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Fig. 2. Lower bound on efficiency of the near-perfect rateless code. The top
and bottom curves are the middle and right-hand bounds of (58), respectively.

VII. D ESIGN AND IMPLEMENTATION ISSUES

In this section, we comment on some additional issues that
arise in the development and implementation of such codes.

A. Increasing Code Resolution

With an ideal rateless code,every prefix of the code is
a capacity-achieving code. This corresponds to a maximally
dense set of SNR thresholds at which decoding can occur. By
contrast, our focus in the preceding sections was on rateless
codes that were capacity-achieving only for prefixes whose
lengths are an integer multiple of the base block length. The
associated sparseness of SNR thresholds can be undesirable
in some applications, since when the realized SNR is between
thresholds, capacity is no longer achieved: the realized rate
promised by the construction is that corresponding to the next
lower SNR threshold.

On the other hand, performance may be much better than
this pessimistic assesment. Attempting to decode when a
partial redundancy block is available will cause the decoder
for the base code to see a time-varying channel in which
the symbols bolstered by the partial block have better SNR
than the others. Whether the base code and decoder can be
adapted to operate efficiently in this situation depends on the
details of their construction, and may be hard to predict. Their
performance is, however, easily assessed via simulation.

Another approach to controlling this aspect of our rateless
code behavior is as follows. Suppose we are interested in
a rateless code whose ceiling rate isR. Then we use the
rateless construction of the preceding section to design a
code of ceiling rateκR, where 1 ≤ κ ≤ M , and have
the decoder collect at leastκ blocks before attempting to
decode. With this approach, the associated rate thresholdsare
R, Rκ/(κ + 1), Rκ/(κ + 2), . . . , Rκ/M , where we note that
the largest rate increment is the first, corresponding to the
factor κ/(κ + 1). Hence, by choosing larger values ofκ, one
can increase the density of rate (and thus SNR) thresholds.

It should be stressed, however, that there is a price to be
paid with this approach. In particular, if we keep constant the
number of codeword symbols that must be accumulated before
decoding at rateR is possible, then the underlying block size
in our rateless construction must decrease inversely withκ.
Thus, for sufficiently largeκ the basic block length becomes
short enough that code performance suffers, and so in practice
the selection ofκ involves a compromise. In addition, this
approach may also increase requirements on the analog-to-
digital conversion precision at the receiver front end.

B. Implementation Comments

A few additional aspects of implementation are worthy of
comment.

First, one consequence of our development of perfect
rateless codes forM = L is that all layers must have
the same rateR/L. This does not seem to be a serious
limitation, as it allows a single base codebook to serve as the
template for all layers, which in turn generally decreases the
implementation complexity of the encoder and decoder. The
codebooksC1, . . . , CL used for theL layers should not be
identical, however, for otherwise a naive successive decoder
might inadvertantly swap messages from two layers or face
other difficulties that increase the probability of decoding error.
A simple cure to this problem is to apply pseudorandom
phase scrambling to a single base codebookC to generate
the different codebooks needed for each layer. Pseudorandom
interleaving would have a similar effect.

Second, a layered code designed with the successive de-
coding constraint (35) can be decoded in a variety of ways.
Because the undecoded layers act as colored noise, an optimal
decoder should take this into account, for example by using
a minimum mean-square error (MMSE) combiner on the
received blocks{ym}. The MMSE combining weights will
change as each layer is stripped off. Alternatively, some or
all of the layers could be decoded jointly; this might make
sense when the decoder for the base codebook decoder is
already iterative, and could potentially accelerate convergence
compared to a decoder that treats the layers sequentially.

Finally, a comparatively simple receiver is possible when
all M blocks have been received from a perfect rateless
code in which M = L. In this special case the linear
combinations applied to the layers are orthogonal, hence
the optimal receiver can decode each layer independently,
without successive decoding. This property is advantageous
in a multicasting scenario because it allows the introduction
of users with simplified receivers that function only at certain
rates, in this case the lowest supported one.

Some further design and implementation issues are ad-
dressed in [21].

VIII. C ONCLUDING REMARKS

There are a variety of interesting directions for further
research. For example, one obvious area of future work is
to incorporate time variation into the channel model (1). The
rateless constructions presented in this paper are designed to
operate efficiently when, e.g., for one block the channel gain is
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[α1], for two blocks the gains are[α2 α2], for three blocks the
gains are[α3 α3 α3], and so on. A simple extension would
allow α to vary deterministically so long as the pattern of
variation is known in advance. Then, for one block the code
would be designed for a gain of[α1,1], for two blocks the
target gains would be[α2,1 α2,2], for three blocks the gains
would be[α3,1 α3,2 α3,3], and so on. More generally, however,
the design of perfect layered rateless codes whenα follows a
stochastic model remains an important open problem.

Other worthwhile directions include more fully developing
rateless constructions for the AWGN channel that allow de-
coding to begin at any received block, and/or to exploit an
arbitrary subset of the subsequent blocks. Initial effortsin this
direction include the faster-than-Nyquist constructionsin [5],
[20], and the diagonal subblock layering approach described
in [20].

Beyond the single-input, single-output (SISO) channel,
many multiterminal and multiuser extensions are also of
considerable interest. Examples of preliminary developments
along these lines include the rateless space-time code construc-
tions in [6], the rateless codes for multiple-access channels
developed in [16], and the approaches to rateless coding for
parallel channels examined in [20]. Indeed, such research may
lead to efficient rateless orthogonal frequency-division mul-
tiplexing (OFDM) systems and efficient rateless multi-input,
multi-output (MIMO) codes with wide-ranging applications.

Finally, extending the layered approach to rateless coding
developed in this paper beyond the Gaussian channel is also
a potentially rich direction for further research. A notable
example would be the binary symmetric channel, where good
rateless solutions remain elusive.

APPENDIX I
PERFECT RATELESS SOLUTION FORL = M = 3

Determining the set of solutions

G =





g11 g12 g13

g21 g22 g23

g31 g32 g33



 (59)

to (35) whenL = M = 3 as a function of the ceiling rateR
is a matter of lengthy if routine algebra.

We begin by observing that any row or any column ofG

may be multiplied by a common phasor without changing
GG†. Without loss of generality we may therefore take the
first row and first column ofG to be real. EachG thus
represents a set of solutionsD1GD2, whereD1 andD2 are
diagonal matrices in which the diagonal entries have modulus
1. The solutions in the set are equivalent for most engineering
purposes and we shall therefore not distinguish them further.

We know thatG must be a scaled unitary matrix, scaled so
that the row and column norms are

√
P . Thus, if we somehow

determine the first two rows ofG, there is always a choice for
the third row: it’s the unique vector orthogonal to the first two
rows which meets the power constraint and which has first
component real and positive. Conversely, it’s easy to see that
any appropriately scaled unitary matrixG that satisfies (35)
for m = 1 andm = 2 (and alll = 1, 2, 3) necessarily satisfies
(35) for m = 3. We may therefore without loss of generality

restrict our attention to determining the set of solutions to the
first two rows ofG; the third row comes “for free” from the
constraint thatG be a scaled unitary matrix.

Assume, again without loss of generality, that|α1|2 = 1
andσ2 = 1. Via (35), the first row ofG (which controls the
first redundancy block) must satisfy

R/3 = log(1 + g2
11) (60)

2R/3 = log(1 + g2
11 + g2

12) (61)

3R/3 = log(1 + g2
11 + g2

12 + g2
13) (62)

together with the power constraint

P = g2
11 + g2

12 + g2
13. (63)

Thus
P = 2R − 1 = x6 − 1

and

g2
11 = 2R/3 − 1 = x2 − 1, (64)

g2
12 = 2R/3(2R/3 − 1) = x2(x2 − 1), (65)

g2
13 = 22R/3(2R/3 − 1) = x4(x2 − 1), (66)

where for convenience we have introduced the change of
variablesx = 2R/6.

The first column ofG (which controls the first layer of
each redundancy block) is also straightforward. Via (31) with
m = 2 andm = 3, we have

|α2|2 =
1

x3 + 1
, (67)

|α3|2 =
1

x4 + x2 + 1
. (68)

Using (35) forl = 1 andm = 2 yields

R/3 = log(1 + |α2|2(g2
11 + g2

21)). (69)

Substituting the previously computed expressions (64) and
(67) for g2

11 and |α2|2 into (69) and solving forg21 yields

g2
21 = x3(x2 − 1). (70)

To solve for the second row ofG we use (35) withm =
l = 2 together with the requirement that the first and second
rows be orthogonal. It is useful at this stage to switch to polar
coordinates, i.e.,g22 = |g22|ejθ1 andg23 = |g23|ejθ2 .

Orthogonality of the first and second rows means that

0 = g11g21 + g12|g22|ejθ1 + g13|g23|ejθ2 . (71)

Complex conjugation is not needed here because the first row
is real. Substituting the quantities (64)–(66) and (70) into (71),
using the power constraint

|g23|2 = P − |g22|2 − g2
21, (72)

and dividing through byx
√

x2 − 1 yields

0 =
√

x(x2 − 1) + |g22|ejθ1

+ x
√

x6 − x5 + x3 − 1− |g22|2ejθ2 . (73)
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By isolating the rightmost of the three terms in the above
equation and taking the squared modulus of both sides, we
find that

x(x2 − 1) + |g22|2 + 2 cos θ1|g22|
√

x(x2 − 1)

= x2(x6 − x5 + x3 − 1− |g22|2), (74)

so that

2 cos θ1|g22|

=
x8 − x7 + x5 − x3 − x2 + x− (1 + x2)|g22|2

√

x(x2 − 1)
. (75)

This ungainly expression will allow us to eliminateθ1 from a
subsequent equation.

To complete the calculation of the second row ofG, we
use (35) withm = 2 and l = 1, 2 to infer that

22R/3 = x4 = det(I + |α2|2G2,2G
†
2,2). (76)

To expand the right hand side of (76), we compute

G2,2G
†
2,2

=

[

x4 − 1 (x2 − 1)x3/2 + x
√

x2 − 1|g22|e−jθ1

(∗) |g22|2 + x3(x2 − 1)

]

, (77)

where(∗) is the complex conjugate of the upper right entry,
from which we find

det(I +
1

x3 + 1
G2,2G

†
2,2) =

x2(x + 1)

(x3 + 1)2

(

x2(x + 1)

+ |g22|2 + 2 cos θ1|g22|(x − 1)
√

x(x2 − 1)
)

. (78)

The term 2 cos θ1|g22| in (78) matches the left hand side
of (75), so by combining (75), (76), and (78), solving for
|g22|2, and simplifying terms, we arrive at

|g22|2 = (x5 + 1)(x− 1). (79)

The power constraint (72) then immediately yields

|g23|2 = x(x2 − 1). (80)

The squared modulus of the entries of the last row ofG

follow immediately from the norm constraint on the columns:

g2
31 = P − g2

21 + g2
11 = x2(x2 − x + 1)(x2 − 1). (81)

|g32|2 = P − g2
22 − g2

12 = x(x3 + 1)(x− 1) (82)

and

|g33|2 = P − g2
23 − g2

13 = (x3 + 1)(x− 1). (83)

This completes the calculation of the squared modulus of the
entries ofG. In summary, we have shown thatG has the form

G =
√

x− 1 ·




√
x + 1

√

x2(x + 1)
√

x4(x + 1)
√

x3(x + 1) ejθ1

√
x5 + 1 ejθ2

√

x(x + 1)
√

x2(x3 + 1) ejθ3

√

x(x3 + 1) ejθ4

√
x3 + 1



 (84)

wherex = 2R/6.

We must now establish the existence of suitableθ1, . . . , θ4.
To resolve this question it sufficies to consider the conse-
quences of the orthogonality constraint (71) onθ1 and θ2.
As remarked at the start of this section, the last row ofG and
henceθ3 and θ4 come “for free” once we have the first two
rows of G.

Substituting the expressions for|gml|2 determined above
into (71) and canceling common terms yields

0 =
√

x + ejθ1

√

x4 − x3 + x2 − x + 1 + ejθ2

√
x3. (85)

The right-hand side is a sum of three phasors of predetermined
magnitude, two of which can be freely adjusted in phase. In
geometric terms, the equation has a solution if we can arrange
the three complex phasors into a triangle, which is possibleif
and only if the longest side of the triangle is no longer than the
sum of the lengths of the shorter sides. The resulting triangle
is unique (up to complex conjugation of all the phasors). Now,
the middle term of (85) grows faster inx than the others, so
for largex we cannot possibly construct the desired triangle.
A necessary condition for a solution is thus

√
x +
√

x3 ≥
√

x4 − x3 + x2 − x + 1, (86)

where equality can be shown (after some manipulation) to hold
at the largest root ofx2 − x + 1, i.e., atx = (3 +

√
5)/2, or

equivalentlyR = 6 log2 x = 6 log2(3 +
√

5) − 6. It becomes
evident by numerically plotting the quantities involved that this
necessary condition is also sufficient, i.e., a unique solution to
(85) exist for all values ofx in the range1 < x ≤ (3 +√

5)/2 and no others. Establishing this fact algebraically is an
unrewarding though straightforward exercise.

A relatively compact formula forθ1 may be found by
applying the law of cosines to (85):

cos(π − θ1) =
x4 − 2x3 + x2 + 1

2
√

x(x4 − x3 + x2 − x + 1)
. (87)

Similar formulas may be derived forθ2, θ3, andθ4.

APPENDIX II
POWER ALLOCATION

The power allocation satisfying the property (49) can be
obtained as the solution to a different but closely related rate-
less code optimization problem. Specifically, let us retainthe
block structuring and layering of the code of Section VI-A, but
instead of using repetition and dithering in the construction,
let us consider a code where the codebooks in a given layer
areindependentfrom block to block. While such a code is still
successively decodable, it does not retain other characteristics
that make decoding possible with low complexity. However,
the complexity characteristic is not of interest. What does
matter to us is that the per-layer, per-block SNRs that result
from a particular power allocation will be identical to those
of the code of Section VI-A for the same power allocation.
Thus, in tailoring our code in this Appendix to meet (49), we
simultaneously ensure our code of Section VI-A will as well.

We begin by recalling a useful property of layered codes in
general that we will apply. Consider an AWGN channel with
gainα and noiservsz of varianceσ2, and consider anL-layer
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block code that is successively decodable. If the constituent
codes are capacity-achieving i.i.d. Gaussian codes, and MMSE
successive cancellation is used, then the overall code willbe
capacity achieving. More specifically, for any choice of powers
pl for layersl = 1, 2, . . . , L that sum to the power constraint
P , the associated ratesIl for these layers will sum to the
corresponding capacitylog(1 + |α|2P/σ2). Equivalently, for
any choice of ratesIl that sum to capacity, the associated
powerspl will sum to the corresponding power constraint. In
this latter case, any rate allocation that yield powers thatare
all nonnegative is a valid one.

To see this, let the relevant codebooks for the layers be
C̃1, . . . , C̃L, and let the overall codeword be denoted

c̃ = c̃1 + · · ·+ c̃L, (88)

where thẽcl ∈ C̃l are independently selected codewords drawn
for each layer. The overall code rate is the sum of the rates
of the individual codes. The overall power of the code isP =
p1 + · · ·+ pL.

From the mutual information decomposition

I(c̃ ; y) =

L
∑

l=1

Il (89)

where

Il = I(c̃l; c̃1 + · · ·+ c̃L + z | c̃L
l+1),

with c̃L
l+1 = (c̃l+1, c̃l+2, . . . , c̃L), we see that the overall code-

book power constraintP can be met by apportioning power
to layers in any way desired, so long asp1 + · · · + pL = P .
Since the undecoded layers are treated as noise, the maximum
codebook rate for thelth layer is then

Il = log(1 + SNRl) (90)

where

SNRl =
|α|2pl

|α|2p1 + |α|2p2 + · · ·+ |α|2pl−1 + σ2
(91)

is the effective SNR when decoding thelth layer. Straightfor-
ward algebra, which amounts to a special-case recalculation
of (89), confirms thatI1 + · · ·+ IL = log(1 + |α|2P/σ2) for
any selection of powers{pl}.

Alternatively, instead of selecting per-layer powers and
computing corresponding rates, one can select per-layer rates
and compute the corresponding powers. The rates{Il} for
each level may be set in any way desired so long as the
total rateI1 + · · ·+ IL does not exceed the channel capacity
log(1 + |α|2P/σ2). The required powers{pl} may then be
found using (90) and (91) recursively forl = 1, . . . , L. There
is no need to verify the power constraint: it follows from
(89) that the powers computed in this way sum toP . Thus
it remains only to check that the{pl} are all nonnegative to
ensure that the rate allocation is a valid one.

We now apply this insight to our rateless context. The target
ceiling rate for our rateless code isR, and, as before,αm,
m = 1, 2, . . . , denotes the threshold channel gains as obtained
via (31).

Comparing (49) with (90) and (91) reveals that (49) can be
rewritten as

Rl =
m
∑

m′=1

Im′,l(αm), (92)

for all l = 1, 2, . . . , L andm = 1, 2, . . ., where

Rl = R/L (93)

andIm′,l(αm) is the mutual information in layerl from block
m′ when the realized channel gain isαm. Thus, meeting (49) is
equivalent to finding powerspm′,l for each code blockm′ and
layer l so that for the given rate allocationRl (a) the powers
are nonnegative, (b) the power constraint is met, and (c) when
the channel gain isαm, the mutual information accumulated
at thelth layer after receiving code blocks1, 2, . . . , m equals
Rl.

Since the power constraint is automatically satisfied by any
assignment of powers that achieves the target rates, it suffices
to establish that (92) have a solution with nonnegative per-
layer powers.

The solution exists and is unique, as can be established by
induction onm. Specifically, form = 1 the rateless code is
an ordinary layered code and the powersp1,1, . . . , p1,L may
be computed recursively from [cf. (92)]

Rl =

m
∑

m′=1

log(1 + SNRm′,l(αm)), (94)

with SNRm,l(αm) as given in (48) forl = 1, . . . , L.
For the induction hypothesis, assume we have a power

assignment for the firstm blocks that satisfies (94). To find the
power assignment for the(m + 1)st block, observe that when
the channel gain decreases fromαm to αm+1 the per-layer
mutual information of every block decreases. A nonnegative
power must be assigned to every layer in the(m + 1)st code
block to compensate for the shortfall.

The mutual information shortfall in thelth layer is

∆m+1,l = Rl −
m
∑

m′=1

log(1 + SNRm′,l(αm+1)), (95)

and the powerpm+1,l needed to make up for this shortfall is
the solution to

∆m+1,l = log(1 + SNRm+1,l(αm+1)), (96)

viz.,

pm+1,l = (22∆m+1,l − 1)

· (pm+1,1 + · · ·+ pm+1,l−1 +
σ2

m+1

|αm+1|2
). (97)

This completes the induction. Perhaps counter to intuition,
even if the per-layer ratesR1, . . . , RL are set equal, the per-
layer shortfalls∆m+1,1, . . . , ∆m+1,L will not be equal. Thus,
within a layer the effective SNR and mutual information will
vary from block to block.

Eqs. (95) and (97) are easily evaluated numerically. An
example is given in Table III.6

6If one were aiming to use a rateless code of the type describedin
Section VI in practice, in calculating a power allocation one should take
into account the gap to capacity of the particular base code being used. This
optimization is developed in [21].
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TABLE III

PER-LAYER POWER ASSIGNMENTSpm,l AND CHANNEL GAIN

THRESHOLDSαm FOR THE INITIAL BLOCKS OF AN L = 4 LAYER

RATELESS CODE WITH TOTAL POWERP = 255, NOISE VARIANCEσ2 = 1,

AND PER-LAYER RATE R/L = 1 B/S/HZ.

m = 1 m = 2 m = 3 m = 4 m = 5
gain (dB) 0.00 -12.30 -16.78 -19.29 -20.99

l = 1 3.00 40.80 48.98 55.77 58.79
l = 2 12.00 86.70 61.21 60.58 61.65
l = 3 48.00 86.70 81.32 71.48 67.50
l = 4 192.00 40.80 63.48 67.16 67.06

Finally, since this result holds regardless of the choice of
the constituentRl, it will hold for the particular choice (93),
whence (49).
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