arXiv:0708.2575v1 [cs.IT] 20 Aug 2007

Rateless Coding for Gaussian Channels

Uri Erez, Member, IEEE Mitchell D. Trott, Senior Member, IEEEGregory W. Wornell Fellow, IEEE

Abstract— A rateless code—i.e., a rate-compatible family of LT codes of Luby [2], [13]. An erasure channel model (for
codes—has the property that codewords of the higher rate cas  packets) is most appropriate for rateless coding architest

are prefixes of those of the lower rate ones. A perfect family gnchored at the application layer, where there is little or n
of such codes is one in which each of the codes in the family is . '
access to the physical layer.

capacity-achieving. We show by construction that perfect ateless . L .
codes with low-complexity decoding algorithms exist for aditive Apart from erasure channels, there is a growing interest in
white Gaussian noise channels. Our construction involveshe exploiting rateless codes closer to the physical layer,revhe
use of layered encoding and successive decoding, togetheitv AWGN models are more natural; see, e.g., [25] and the
a repetition and dithering technique. As an illustration of our references therein. Surprisingly little is known about tisa

framework, we design a practical three-rate code family. We . . - .
further construct rich sets of near-perfect rateless codewithin possible in this realm. Recent work [8], [17] applies Raptor

our architecture that require either significantly fewer layers or ~ codes to binary-input AWGN channels (among others), where
lower complexity than their perfect counterparts. Variations of it is shown that no degree distribution allows Raptor codes t

the basic construction are also discussed. approach capacity simultaneously at different signal tisao
Index Terms— Incremental redundancy, rate-compatible punc- ratios (SNRs). Another line of work is based on puncturing of
tured codes, hybrid ARQ (H-ARQ), static broadcasting. low-rate capacity-approaching codes such as turbo and LDPC

codes [1], [9], [15], [18], [19], [25]. When iterative deciod
is used, however, a balance must be struck between the
_ o ., ) performance at different rates. That is, improving perfance
HE design of effective “rateless” codes has received rg; ,ne rate comes at the expense of the performance at other

newed strong interest in the coding community, motivatedeq - Beyond this issue, binary codes themselves may be
by a number of emerging applications. Such codes have‘rﬁearly“ capacity achieving only at low SNR

long history, gnd have gone by various names over tiI”r?e’ln this paper, motivated by a host of emerging wireless
among them |ncremer_1tal redundancy codes, rate-c_ompatlg lications, we work at the physical layer with an assediat

punctured codes, hybrid ARQ type Il codes, and St"_mc brog, GN channel model, rather than with an erasure model.
cast codes [3], [4], [9]-[12], [14], [18], [19], [24]. Thisaper anq as such, our focus is on that part of the network where

focuses on the design of such codes for average power limi{egitional hybrid ARQ research has been aimed. The rateles

additive white Gaussian noise (AWGN) channels. Specificall.g yos that result are efficient, practical, and can operate a

we develop techniques for mapping standard good singde—rﬁstltes of multiple b/s/Hz.
codes for the AWGN channel into good rateless codes. We show that the successful techniques employed to

From a purely information theoretic perspective the proble ot jow-complexity codes for the standard AWGN
of rateless transmllssmn is well understood; see Shulmah [_%hannel—such as those arising out of turbo and low-density
for a comprehensive treatment. Indeed, for channels havipgi. check (LDPC) codes—can be leveraged to construct
one maximizing |_nputd|§tr|put|on,a__codebookdrawn 'nd,‘}perateless codes. Specifically, we develop an architecture in
dgnt_ly a_nd |d_ent|cally d'St_”bUt_ed (iid) at random frafris which a single codebook designed to operate at a single SNR is
distribution will be good with high probability, when truated used in a straightforward manner to build a rateless codeboo
to (a finite number of) different lengths. Phrased diffelygnt that operates at many SNRs
in such cases random codes are rateless codes. _ The encoding in our architecture exploits three key ingredi

Constructing good codes that also have computationally;q. layering, dithering, and repetition. By layering, mean

efficient encoders and decoders requires more effort. A '$e creation of a code by a linear combination of subcodes.
markable example of such codes fmasurechannels are the By dithering we mean the use of multiplicative pre- and post-

recent Raptor codes of Shokrollahi [22], which build on thﬁrocessing by known sequences. Finally
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Hence, our main result is the construction of capacitand- T for Hermitian (conjugate transpose) operators. Vectors
achieving, low-complexity rateless codes, i.e., ratelgsdes and matrices are denoted using bold face, random variables
constructed from layering, dithering, and repetition,ttaee are denoted using sans-serif fonts, while sample values use
successively decodable. regular (serif) fonts.

The paper is organized as follows. In Secfidn Il we introduce We define theeeiling rateof the rateless code as the highest
the channel and system model. In Section Il we motivatate R at which the code can operate, i.e., the effective rate
and illustrate our construction with a simple special-casiethe message is decoded from the single received bjack
example. In Sectioh IV we develop our general constructidrence, a message consists\oR information bits. Associated
and show that within it exist perfect rateless codes for astle with this rate is an SNRhreshold which is the minimum SNR
some ranges of interest, and in Sectioh V we develop arehjuired in the realized channel for decoding to be possible
analyze specific instances of our codes generated numgricdtom this single block. This SNR threshold can equivaleby
In Section[Vl, we show that within the constraints of ouexpressed in the form of a channel gain threshold. Simjlarly
construction rateless codes for any target ceiling and ganif the message is decoded from > 2 received blocks,
can be constructed that are arbitrarily close to perfectnin ¢he corresponding effective code rate R&Ym, and there is
appropriate sense. In Section VIl we describe some potlntiaa corresponding SNR (and channel gain) threshold. Thus, for
useful variations on our basic construction, and their keyrateless encoding consisting/df blocks, there is a sequence
properties. Finally, Sectiof _VlII contains some conclgdinof M associated SNR thresholds.
remarks. Finally, as in the introduction, we refer to the code out

of which our rateless construction is built as thase code

1. CHANNEL AND SYSTEM MODEL and the associated rate of this code as simplybhse code
Rte. At points in our analysis we will assume that a good
ase code is used in the code design, i.e., that the base code
is capacity-achieving for the AWGN channel, and thus has
the associated properties of such codes. This will allowous t
where a is a channel gaifl,x,, is a vector of of N input distinguish losses due to the code architecture from thase d
symbols,y,, is the vector of channel output symbols, antb the choice of base code.
z,, is a noise vector ofV i.i.d. complex, circularly-symmetric
Gaussian random variables of variance independent across [1l. M OTIVATING EXAMPLE

blockSm = 1, 2, e The Channel input iS ||m|ted to aVerage TO deve'op |n|t|a| insightS, we construct a Simp'e IOW'
power P per symbol. In our model, the channel gainand complexity perfect rateless code that employs two layers of
noise variance? are known a priori at the receiver but not atoding to support a total of two redundancy blocks.
the transmittef. We begin by noting that for the case of a rateless code with
The block lengthV has no important role in the analysiswo redundancy blocks the channel gairf may be divided
that follows. It is, however, the block length of the base&odnto three intervals based on the number of blocks needed for
used in the rateless construction. As the base code penfieemadecoding. Leta; and a, denote the two associated channel
controls the overall code performance, to approach changgin thresholds. Whefw| > |a;| decoding requires only one
capacity N must be large. block. When|a;| > |a| > |az| decoding requires two blocks.
The encoder transmits a messageby generating a se- When |a,| > |a| decoding is not possible. The interesting
quence of code blocks (incremental redundancy bloekS)), cases occur when the gain is as small as possible to permit

The codes we construct are designed for a complex AW
channel
Ym:axm+zma m:172a"'7 (1)

x2(w), .... The receiver accumulates sufficiently many retecoding. At these threshold values, for one-block deapdin
ceived blocksy;, ys, ...to recoverw. The channel gainv  the decoder sees
may be viewed as a variable parameter in the model; more Y1 = aixq + z1, 2)
incremental redundancy is needed to recowewhen « is ) )
small than when is large. while for two-block decoding the decoder sees

An important feature of this model is that the receiver Y1 = qoxi + 21, (3)

always starts receiving blocks from index= 1. It does not

receive an arbitrary subsequence of blocks, as might be the
case if one were modeling a broadcast channel that permitdn general, given any particular choice of the ceiling rate
“tuning in” to an ongoing transmission; discussion of such & for the code, we would like the resulting SNR thresholds

y2 = QoXg + Z3. 4)

scenario is deferred to Sectibn VII. to be a low as possible. To determine lower bounds on these
We now define some basic terminology and notation. Unlettgesholds, let
noted otherwise, all logarithms base 2, all symbols denote SNR,, = P|a,,|?/0?, (5)

complex quantities, and all rates are in bits per complex . i :
symbol (channel use), i.e., bis/Hz. We us for transpose and note that the capacity of the one-block channel is
Il :10g(1—|—SNR1), (6)

1see Sectiof VIl for a discussion regarding more generalatsofbr c.
2An equivalent model would be a broadcast channel in whichnglsi While for the two-block channel the capacity is
encoding of a common message is being sent to a multiplidiseceivers,
each experiencing a different SNR. I, = 2log(1l + SNRy) @)



bits per channel use. A “channel use” in the second cagecapacity-achieving code requireas and x; to be i.i.d.
consists of a pair of transmitted symbols, one from eachkblocGaussian. As; andc, are Gaussian, independent, and equal
In turn, since we deliver the same message to the receiuempower by assumption, this occurs only if the rows @f
for both the one- and two-block cases, the smallest valuesas& orthogonal. Moreover, the power constrdhénsures that
|a1| and|az| we can hope to achieve occur when these orthogonal rows have the same norm, which implies that
G is a scaled unitary matrix.
h=hL=R (8) The unitary constraint has an immediate important conse-
Thus, we say that the codeperfectif it is decodable at these quence: the per-layer ratés and R, must be equal:
limits.
We next impose that the construction biageredcode, and
arallel orthogonal channels of equal SNR. We will see in the

ted blocks to be linear combinations of two base codeworfa .
i next section that a comparable result holds for any number of
c; € C; andc, € CH:

Ry =Ry =R/2. (17)

layers.
X1 = g11€1 + g12C2, 9) From the definitions of SNRand I; [cf. (§) and [6)], and
Xo = g21C1 + g22Co. (10) the equality/; = R (8), we find that
Base codeboole; has rateR; and base codebooR, has Play|?/o% =28 — 1. (18)

rate R,, where R; + R = R, so that total rate of the )

two codebooks equals the ceiling rate. We assume for tH¥$0. from (13) and[(17), we find that

example that both codebooks are capacity-achieving, g0 tha 2 12,2 _ oRJ2

the codeword components are i.i.d. Gaussian. Furtherrfaore, lg1alen|?/o” = 2797 — 1. (19)
convenience, we §ca!e the codebooks to have unit po"‘,’er’(f‘(?mbining [I8) and(19) yields
the power constraint instead enters through the consdraint

lg11]* + |g12]* = P, (11) lgi|* =P

lg211? + [g22|* = P. (12) _ , , ,
_ _ ) o The constraint tha be a scaled unitary matrix, together with
Finally, the successive decoding constraint in our systege power constrainP, implies

means that the layers are decoded one at a time to keep

oft/2 _q P
2R — 1 2R/24 17

(20)

complexity low (on order of the base code complexity). lg12|* = P — |g11|? (21)
Specifically, the decoder first recovets while treating c; lg21]? = P — |gu|? (22)
as additive Gaussian noise, then recowgrsisingc, as side 5 5

information. |922| = |gll| ) (23)

We now show that perfect rateless codes are possible WitQ\i/ﬂich completely determines the squared modulus of the
these constraints by constructing a ma@x= [g,,;] so that entries ofG

the resulting code satisfidd (8). Finding admiss{@lés simply Now, the mutual information expressions I(181H(16) are
a matter of some algebra: in the one-block case we need unaffected by applying a common complex phase shift to any

Ri = I, (ci;0|c) (13) rowor cqumn_ofG, so without loss of generality W(_a_take the

Rs = I, (2 1) (14) first row and first column ofG to be real and positive. For

2T emm I G to be a scaled unitary matrixp, must then be real and
and in the two-block case we need negative. We have thus shown that, if a solution[id (13}-(16)

exists, it must have the form
Ry = I, (ci3 1, yalc2) (15)

Ry =1y, (2351, y2)- (16) |91 g12| P 1 2R/A
G= go1 gea| V2R/24 71 |2B/4 1 |” (24)

The subscriptsy; and a; are a reminder that these mutual

information expressions depend on the channel gain, and thenversely, it is straightforward to verify thdt {1)J(1&)e
scalar variables denote individual components from thetinpsatisfied with this selection. Thus{24) characterizes s (
and output vectors. sentially) unique solutiorG.

While evaluating [(IB)£(15) is straightforward, calcutgti  In summary, we have constructed a 2-layer, 2-block perfect
the more complicated (16), which corresponds to decodifgteless code from linear combinations of codewords drawn
c2 in the two-block case, can be circumvented by a littleom equal-rate codebooks. Moreover, decoding can proceed
additional insight. In particular, while; causes the effec- gne layer at a time with no loss in performance, provided
tive noise in the two blocks to be correlated, observe thgde decoder is cognizant of the correlated noise caused by

3 _ . undecoded layers. In the sequel we consider the generatizat

In practice, the codebook3; and Cz should not be identical, though they

can for example be derived from a common base codebook vénbding. of our construction to an arb'trary number of Iayers and
This point is discussed further in Sectibn VI1-B. redundancy blocks.



g21€1 gs1€1 decodec,, treatingG [cf - -- cE_l]T as (colored) noise,
guc then decodec;_i, treatingG [cf --- cE_l}T as noise,
_ g22C2 and so on. Thus, our aim is to seleGt so that capacity is
o g32€2 achieved for any numben = 1, ..., M of redundancy blocks
© 1262 subject to the successive decoding constraint.
l 923€3 735C5 Both the layered repetition structure_{25) and the suc-
g13€3 cessive decoding constraint impact the degree to which we
can approach a perfect code. Accordingly, we examine the
914€4 g24€4 934€4 consequences of each in turn.
We begin by examining the implications of the layered
time — repetition structure[{25). When the number of layérss at

Fig. 1. A rateless code construction with 4 layers and 3 Idafiredundancy. l€@st as large as the number of redundancy blakssuch
Each block is a weighted linear combination of tha/-élement) base layering does not limit code performance. But whier< M,

codewordscy, 3, .. ., €4, Wheregy,,;, the (m, [)th element ofG, denotes jt qoes. In particular, whenever the numberof redundancy
the weight for layerl of block m. . . .
blocks required by the realized channel exceégdghere is
necessarily a gap between the code performance and capacity
IV. RATELESS CODES WITHLAYERED ENCODING AND To see this, observe thdt (25) withl (1), restricted to the firs
SUCCESSIVEDECODING m blocks, defines a lineak-input m-output AWGN channel,

. . the capacity of which is at most
The rateless code construction we pursue is as follows

[7]. First, we choose the range (maximum numbér of mlog (1 + W) form < L,
redundancy blocks), the ceiling ral& the number of layers, I, = mja‘zp

and finally the associated codebodks ..., ;. We assume Llog (1 TI e ) for m > L.
a priori that theL base codebooks all have equal r&@L; only for m < L does this match the capacity of a general
this assumption turns out to be necessary when constructing,ock AWGN channel, viz.,

perfect rateless codes withf = L, and in any case has the

(26)

advantage of allowing the codesbooks for each layer to be I, = mlog (1 + |O‘|2P) _ 27)
derived from a single base code. o?
Given codewords; € €, I = 1,..., L, the redundancy yltimately, for m > L the problem is that ari-fold linear
blocksxi, ..., xys take the form combination cannot fill all degrees of freedom afforded by th
X c m-block channel.
. An additional penalty occurs when we combine the layered
=G (25) repetition structure with the requirement that the codedbe-r
X1 CL less. Specifically, fonl > L, there is no choice of gain matrix
where G is an M x L matrix of complex gains and where& that permits[(26) to be met with equalgjmultaneouslyor
x,, for eachm andc, for eachl are row vectors of lengtiV. allm =1,...,M. A necessary and sufficient condition for

The power constraint enters by limiting the rows@fto have €duality is that the rows ok, ;. be orthogonal forn < L
squared normP and by normalizing the codebooks to havénd the columns ofs,, ;, be orthogonal form > L. This
unit power. Note that with this notation, theth row of G follows because reaching (26) fon < L requires that the
are the weights used in constructing theh redundancy block linear combination ofL codebooks create an i.i.d. Gaussian

from the L codewordd In the sequel we usg,,; to denote the Seguence. In contrast, reachihgl(26) for> L requires that
(m, )th entry of G and G, ; to denote the upper-lefty x I the linear combination inject the codebooks into orthogonal
suk;matrix ofG. ’ subspaces, so that a fractidiym of the available degrees

An example of this layered rateless code structure is & freedom are occupied by i.i.d. Gaussians (the rest being
picted in Fig[. Each redundancy block contains a repetiti¢MP)-
of the codewords used in the earlier blocks, but with a cifier ~_Unfortunately, the columns o, . cannot be orthogonal
complex scaling factor. The code structure may therefore Bignultaneously for alin > L. That would entail the construc-
viewed as a hybrid of layering and repetition. Note thateabs tion of orthogonaln-dimensional vectors (with nonzero en-
assumptions on the decoder, the order of the layers is H@£S) thatremain orthogonal when truncated to their first1
important. dimensions, an obvious impossibility. Thus](26) determine

In addition to the layered code structure, there is addition®nly @ lower bound on the loss due to the layering structure
decoding structure, namely that the layered code be succ&s)- Fortunately, the additional loss encountered in fac

sively decodable. Specifically, to recover the message, nste ffurns out to be quite small, as we demonstrate numerically as
part of the next section.

“4Thelth column ofG also has a useful interpretation. In particular, one can Our lower bound on loss incurred by the use of insufficiently
interpret the construction as equivalent to a “virtual” eativision multiple- many |ayers is readily obtained by compari@(ZG) dnd (27).
access (CDMA) system witlh users, each corresponding to one layer of thPS - . . e
rateless code. With this interpretation, the signatureegsing) sequence for peC|f|caIIy, given a choice of Celllng rate for the rateless
the ith virtual user is thdth column of G. code, [26) implies that for rateless codes constructedgusin



TABLE |
LosseSal,|/|am| IN DB DUE TO LAYERED STRUCTURE IMPOSED ON A
RATELESS CODE OF CEILING RATER = 5 B/S/Hz, AS A FUNCTION OF THE

messagesv € {1,...,2N%/L} Additional constraints on

G will now follow from the requirement that the mutual

information accumulated through any blogkat each layef

be large enough to permit successive decoding.
Redundancy blocksn Concretely, suppose we have received blodks. ., m.

2 3 4 5 6 7 8 9 10 |etthe optimal threshold channel gain, be defined as in

NUMBER OF LAYERS L AND REDUNDANCY BLOCKS m.

L=1 522 677 750 792 820 840 854 865 874 X ) .
L=2 000 155 228 270 298 317 332 343 352 Sectiorll, i.e., as the solution to [c{_(27)]
L=3 000 000 073 116 143 163 177 188 197 9, o
L=4 000 000 000 042 070 090 104 115 124 R=mlog (1+ (lamm|?/a?)P). (31)
L=5 000 000 000 000 028 047 062 073 0.82
L=6 0.00 0.00 000 0.00 000 020 0.34 045 0.54 Suppose furtherthatlayefs-1,...,L have been successfully
L=7 000 000 000 000 000 000 014 026 0.35 i
L=8 0.00 000 000 000 000 000 000 011 0.20 decoded, and define
L=9 000 000 000 000 000 000 000 000 0.09 vy c 2
=amGuy | 2|+ | (32)
. . . . Vm C; Z,
linear combinations of, base codes, the smallest channel gain _ _ o
o/, for which it's possible to decode with blocks is as the received vectors without the contribution from layer
. , l+1,..., L.
ag . . .
ol |2 = (2f/m—1) % . form < L, (28) Then, following standard arguments, with independent
m (2R/L —1) L= form > L. equiprobable messages for each layer, the probability of de

. N . . coding error for layerl can made vanishingly small with
By pompanson,[(Z?) |_mpI|es that WIFhOUt the layering Confncreasing block length only if the mutual information betm
straint the corresponding channel gain threshelgsare

input and output is at least as large as the fté of the code

9 . . . :
Iam|2 _ (QR/m B 1) %' (29) C;. That is, successive decoding requires
: ’ R/Lg(l/N)I(clvyh7Ym|clL+l) (33)
The resulting performance loga/,|/|ayn| caused by the — (/N (e 34
layered structure as calculated fram](28) dnd (29) is shown i = (1/N)I(es;v1; -, Vi) _ (34)
dB in Table[] for a target ceiling rate dR = 5 bits/symbol. det(I+ (|am|2/02)Gm7lGjn_l)
For example, if an application requirdd = 10 redundancy < log 2/ 2 T o (39)
* det(I+ (am|*/0?)Gm1-1Gy, 1)

blocks, a 3-layer code has a loss of less than 2 di at 10,
while a 5-layer code has a loss of less than 0.82 dB at 10. WwhereI is an appropriately sizedr{ x m) identity matrix.
The inequality [(3b) relies on the assumption that the code-
As Table[] reflects—and as can be readily verified—for Books have constant power, and it holds with equality if the
fixed number of layerd, and a fixed base code rafg/L, components oty,...,c; are i.i.d. Gaussian.
the performance losg/,, | /|a.,| attributable to the imposition ~ Our ability to chooséG to either exactly or approximately
of layered encoding grows monotonically with the number efatisfy [35) for alll = 1,...,L and eachm = 1,..., M
blocksm, approaching the limit determines the degree to which we can approach capacity. It
F 2 oR/L is straightforward to see that there is no slack in the proble
ot | = . (30) (BB) can be satisfied simultaneously forladindm only if the
aof?  (R/L)In2 inequalities are all met with equality. Beyond this obséora
Thus, in applications where the number of incremental redumowever, the conditions under whidh135) may be satisfied are
dancy blocks is very large, it's advantageous to keep the bamt obvious.
code rate small. For example, with a base code rate of 1/2Characterizing the set of solutions f& whenL = M = 2
bit per complex symbol (implemented, for example, using was done in Section Il (se€(R4)). Characterizing the set of
rate-1/4 binary code) the loss due to layering is at most 0.88lutions whenl, = M = 3 requires more work. It is shown
dB, while with a base code rate of 1 bit per complex symbai Appendix] that, when it exists, a solutidk must have the
the loss is at most 1.6 dB. form
We now determine the additional impact the successive
decoding requirement has on our ability to approach capacit G = v —1-

and more generally what constraints it imposes @n We NS /22(x + 1) 2%z + 1)
continue to incorporate the power constraint by taking #ie-r Bz +1) V5 +1 el \Ja(z+1)| (36)

R/L codebook<,...,C to have unit power and the rows (23 i0 3 0 3
1 i L \/ +1) e/ x(z® +1 el ad +1
of G to have squared norn?. Since our aim is to employ ( ) ( )

codebooks designed for (non-fading) Gaussian channels, wieerez = 27%/6 and wheree??:, i = 1,...,4 are complex
make the further assumption that the codebooks have cansgamasors. The desired phasors—or a proof of nonexistence—
power, i.e., that they satisfy the per-symbol energy cairgtr may be determined from the requirement tikatbe a scaled
E[lein(w)[?] < 1 for all layers! and time indices» = unitary matrix. Using this observation, it is shown in Ap-
1,..., N, where the expectation is taken over equiprobabpendix] that a solutioiG exists and is unique (up to complex




conjugate) for allR < 3(log(7 + 3v/5) — 1) ~ 8.33 bits per TABLE Il

complex symbol, but no choice of phasors results in a unlta%TELESS CODE WITHM = 10 BLOCKS, L
G for larger values ofR.
For example, usingd (36) wittk = 6 bits/symbol we find

PERCENT SHORTFALL IN RATE FOR A NUMERICALLY¥OPTIMIZED
= 3 LAYERS, AND A CEILING
RATE OF R = 5 B/S/Hz.

that: Redundancy blocksn
1 2 3 4 5 7 8 9 10
_ _ — /170 _ I=1 0.00 000 0.00 000 0.00 000 0.00 000 0.00 0.00
P=63, a=1 ax=v1/9, a3=+y1/21 I=2 000 028 123 146 139 044 059 048 0.16 0.23
I=3 000 029 123 148 140 043 054 051 015 023
V3 V12 \V/48
G=|Vv24 /33e/ /6ei
/A6 /TR0 i
36 V18el%  /9el% rate R = 5. The associated complex gain matrix is
where [ 1.4747 2.6277 4.6819
-5 3.5075 3.7794¢72:0510 21009 ¢—71-9486
01 = arccos STk 0, = 2m — arctan 3v/7, 4.0648 3.1298 ¢J0-9531 21637 £92:5732
3.2146 3.1322¢73:0765 3.2949 70-9132
03 = — arctan V7, 01 = — arctan v/7/3. 3.2146 3.3328 ¢ L6547 3018 ¢—i1-4248
G_ . ) _ . _
70.9409 72.8982
For M > 3 the algebra becomes daunting, though we g;ﬁg g;’gig ej1.2506 g?ggieﬁo,zow
conjecture that exact solutions and hence perfect ratetetes 3.2146 3'0980 z—ﬂ-‘“% 3'3270 ;1.9403
exist for all L = M, for at least spme nontrivial yalues &, 39146 39880 c—i29M9 3 1304 o—i1.9243
For L < M perfect constructions cannot exist. As devel- 39146 31795 £J0-T839 3 9409 003413

oped earlier in this section, even if we replace the optimum
threshold channel gains,, defined via[(3ll) with suboptimal The worst case loss is less than 1.5%; this example is typical
gains determined by the layering bound](26), viz., in its efficiency.

The total loss of the designed code relative to a perfect
rateless code is, of course, the sum of the successive aecodi
and layered encoding constraint losses. Hence, the losses i
Table[l and Tabldll are cumulative. As a practical matter,
it is still not possible to satisfy[((35). However, one can mmgowefver,hwhan < Mr’] the Iayere_d er;codlg_g constralnt_ '953h
close to satisfying[(35) in such cases. While the associated o> that due to the successive decoding constraint: the

_ g o . overall performance loss arises almost entirely from thee&
analysis is nontrivial, such behavior is easily demonsttat.

numerically, which we show as part of the next section inability to occupy all available degrees of freedom in the
' " channel. Thus, this overall loss can be estimated quitelglos

by comparing[(2l7) and_(26), or, equivalently, 31) ahd] (37).

Indeed this is reflected in our example, where the loss of

. . . . ) Table[]l dominates over that of Tatlé II.
In this section, we consider numerical constructions both

for the casel. = M and for the casd. < M. Specifically,
we have experimented with numerical optimization methods
to satisfy [(35) for up ta\/ = 10 redundancy blocks, using the
threshold channel gains,, defined vial[(3FF) in place of those
defined vial(3l1) as appropriate when the number of blddks
exceeds the number of layefs

|O‘M|2P

mlog (1 + 7 form < L,
Liog (1+ 2122 form > L,

V. NUMERICAL EXAMPLES

VI. EXISTENCE OFNEAR-PERFECTRATELESSCODES

While the closed-form construction pérfectrateless codes
subject to layered encoding and successive decoding bescome
more challenging with increasing code raniye the contruc-
tion of codes that are at least nearly perfect is compatgtive
For the casel, — M, for each of M = 2.3....,10, we straightforward. In the preceding section, we demondlrate

found constructions with?/L = 2 bits/symbol that come this numerically. In this section, we prove this analytigaln
within 0.1% of satisfying[(35) subject t& (31), and often thgarticular, we construct rateless codes that are arbhjtreldse
solutions come within 0.01%. This provides po,werfulevicken to perfect in an appropriate sense, provided enough layers

that perfect rateless codes exist for a wide range of pammé’lre used._ We term these n_ear-perfe(_:t rateless co.des.. The cod
choices. constructl_on we present WI!| be appllcab_le to arbitrardyge
For the casel. < M, despite the fact that there do notM and will also allqw for S|mpler_ decoding than the MMSE
exist perfect codes, in most cases of interest one can coﬂ%Oder employed in the preceding development.
remarkably close to satisfying@ (35) subject fol(37). Evitlen
mutual information for Gaussian channels is quite inseasit A- Encoding
to modest deviations of the noise covariance away from aOur near-perfect rateless code construction [5] is a slight
scaled identity matrix. generalization of that used in Sectign] V. Specifically, as
As an example, Tablelll shows the rate shortfall in meetin@3) indicates, in our approach to perfect constructions we
the mutual information constraints (35) for dh= 3 layer made each redundancy block a linear combination of the base
code with M = 10 redundancy blocks, and a target ceilingodewords, where the weights are the corresponding row of



the combining matrixG. This means that each individuallow-complexity capacity-approaching codes for the AWGN
symbol of a particular redundancy block is, therefore, adin channel are suitable as a base code in the dsign.
combination of the corresponding symbols in the respectiveThe decoder operation is as follows, assuming the SNR is
base codewords, with the combining matrix being the sarsach that decoding is possible fram redundancy blocks. To
for all such symbols. decode thd.th (top) layer, the dithering is first removed from
By contrast, in this section, we allow the combining matrithe received waveform by multiplying by the conjugate dithe
to vary from symbol to symbol in the construction of eackequence for that layer. Then, the blocks are combined
redundancy block, and use the additional degrees of freedono a single block via the appropriate MRC for that layer.
in the code design to simplify the analysis—at the expense Bfie message in thigth layer is then decoded, treating the
some slightly more cumbersome notation. In particulamgisi undecoded layers as noise, and its contribution subtracted
c/(n) and x,,(n) to denote thenth elements of codeword, from the received waveform. Thé — 1st layer is now the
and redundancy block,,, respectively, we have [cf(25)] top layer, and the process is repeated, until all layers have
been decoded. Note that the use of MRC in decoding is

x(n) ci(n) equivalent to treating the undecoded layers as white (rathe
; = G(n) ; , n=12,...,N.  (38) than structured) noise, which is the natural approach when t
xa1(n) cr(n) dither sequence structure in those undecoded (lower)dager

ignored in decoding the current layer of interest.

The value ofM plays no role in our development and may we now introduce notation that allows the operation of the
be taken arbitrarily large. Moreover, as before, the powgecoder to be expressed more precisely. We then determine
constraint enters by limiting the rows d&(n) to have a the effective SNR seen by the decoder at each layer of each
squared normP and by normalizing the codebooks to haveendundancy block.
unit power. SinceG(n) is drawn i.i.d., the overall channel is i.i.d., and

It suffices to restrict our attention #G(n) of the form thus we may express the channel model in terms of an arbitrary
individual element in the block. Specifically, our received

G(n) =P © D(n), (39)  waveform can be expressed as [E]. (1) dnd (25)]
whereP is an M x L (deterministic) power allocation matrix " a 7
with entries, /p,,; that do not vary within a block, y=|:|=anG|:|+|:

'\/m cee /P1L ym cr, Zp

P= (40) WhereG = PoD, with G denoting the arbitrary elementin the

)

; ; sequencés(n), and wherey,, is the corresponding received
LVPML e /PMLL symbol from redundancy block: (and similarly forc,,, z,,

andD(n) is a (random) phase-only “dither” matrix of the formD).
If layersi+1,1+2,..., L have been successively decoded

[dii(n) -+ dir(n) from m redundancy blocks, and their effects subtracted from
D(n) = : : ) (41) the received waveform, the residual waveform is denoted by
_d]\,{_]l(n) cee dMyL(TL) C1 P4
with ® denoting elementwise multiplication. In our analysis, Vil = amGy | 2|+ 1] (42)
the d;;(n) are all i.i.d. in4, j, andn, and are drawn in- q Zm

dependently of all other random variables, including M®is§yhere we continue to 166, ; denote them x I upper-left
messages, and codebooks. As we shall see below, the ro'%t?ématrix ofG, and likewise f’orDml andP,, ;. As additional

the dither is to decorrelate pairs of random variables, eenﬁotation we letg,,; denote them-vector formed from the
it sufficies for d;;(n) to take valuest+1 and —1 with equal upperm,rows of tﬁelth column ofG. whence
probability. '
Gm,l = [gm,l gm2 - gm,l] ; (43)
and likewise ford,,, ; andp,, ;.
With such notation, the decoding can be expressed as
To obtain a near-perfect rateless code, it will be sufficiefdllows. Starting withv,, ;, = y, decoding proceeds. After

to employ a successive cancellation decoder with maximalers; + 1 and higher have been decoded and removed, we
ratio .comblmng (MRC) of the redun(_jancy blocks: While, ijecode fromv,, ;. Writing
principle, an MMSE-based successive cancellation decoder
enables higher performance, as we will see, an MRC-based Vil = Qn (Gt © Prn,t) €+ Vi 11, (44)
one is sufficent for our purpo;es, and simplifies the analyS'S5More generally, the MRC-based decoder is particularlyaetive for
Indeed, although the encoding we choose creates a pesetical implementation. Indeed, as each repetitionkbhrcives a sufficient
layer channel that is time-varying, the MRC-based sucgessptatistic for decoding can be accumulated without the neectain earlier

. . ’ repetitions in buffers. The computational cost of decod rows linearl
cancellation decoder effectively transforms the chanmekb P P s g Y

) X . . ¢ -~ with block length while the memory requirements do not grdavala This is
into a time-invariant one, for which any of the traditionamuch less complex than the MMSE decoder used in SeEfion IV.

B. Decoding



the operation of removing the dither can be expressed as We establish our main result by finding a lower bound on
the average mutual information between the input and output
of the channel. Upon receiving: blocks with channel gain
where a.n,, and assuming layets-1, .. ., L are successfully decoded,
Vi1 = a5 OV 1. (46) let I' , be the mutual information between the input to the

The MRC decoder treats the dither in the same mannerlgé layer and the channel output. Then
(a5 Vm,i | dimt) (50)

noise, i.e., as a random process with known statistics but I, =1
unknown realization. Because the entries of the ditherirmatr ’ (e o v | dy), (51)
are chosen to be i.i.d. random phases independent of the b OmPm,l T Vim,1—1 | €m.t
messages, the entriesBf,; and[c; -+ 1] are jointly I(ci; QmPrm 1€+ Vi ) (52)
and individually uncorrelated, and the effective noié,gl_l I(c; mPpm,ia + vm D, (53)
seen by the MRC decoder has diagonal covaridﬁpslil = (
log

dy, 1 OVl = mPm,iC + V;n.,lA (45)

AVANLY]

E[V/m,lfl"/lz,l—l]-
The effective SNR at which thigh layer is decoded from
m blocks via MRC is thus where [51) follows from [(45)E(46),[(H2) follows from the
m independence of;, andd,, ;, and [EB) obtains by replacing
> SNRy (), (47) v/, ,_, with a Gaussian random vectef, , , of covariance
m/=1 K‘,/ . Lastly, to obtain[{54) we have usdd147) for the post-
where MRC SNR.
Now, if the assumptior(49) is satisfied, then the right-hand

|am| Pm/ 1
SNRy1(am) = | 2(Drmr 1 + -+ P 1) + 02 (48)  side of [B4) is further bounded for aih by

1+ Z SNRm/,l(am)> (54)

m/=1

Note that we have made the dependency of these per-layer

e _ roy>log(1+In2= ), 55
per-block SNRs onv,, explicit in the notation. ™t = Og( i L) (55)

- where we have applied the inequalitn(l + u) < u
C. Efficiency (valid for u > 0) to (49) to conclude thaf{ln2)R/L <

The use of random dither at the encoder and MRC at the™,  SNR,, ;(a,,). Note that the lower bound(55) may
decoder both cause some loss in performance relative to ﬁfeequ.te loose; for exampld; , = R/L whenm = 1.
perfect rateless codes presented earlier. In this sectéoshaw Thus, if we design each layer of the code for a base code
that these losses can be made small. rate of
When a coding scheme is not perfectgtfciencyquantifies 2 og (1 n 1n2_>
how close the scheme is to perfect. There are ultimatelyrakve L L)’
ways one could measure efficiency that are potentially lhseéh@
e

"

(56)

) ensures decodability aften blocks are received when
channel gain igv,,, form =1,2,....
Finally, rewriting [56) as

for engineering design. Among these, we choose the follgwi
efficiency notion:

1) We find the ideal thresholdsv,, } for a perfect code of ,
rate R. R 2oR'/L _4

2) We determine the highest rai such that an imperfect L~ 2 ®7)

code designed at rat&’ is decodable withm redun- he efficiencyy of the conservatively-designed layered repeti-
dancy blocks when the channel gain ds,, for all o code is bounded by

m=1,2,....
3) We measure efficiency by the ratio R’/R, which is n> 2 R" (%E)f”/L 51— 1n_2R_”7 (58)
always less than unity. R 28"/ 1 2 L

With this notion of efficiency, we further define a codingvhich approaches unity a — oo as claimed.

scheme as near-perfect if the efficiency so-defined appesach In Fig.[2, the efficiency boundg (b8) are plotted as a function

unity when sufficiently many layers are employed. of the base code ratB” /L. As a practical matter, our bound
The efficiency of our scheme ultimately depends on theplies, for instance, that to obtain 90% efficiency reqsiise

choice of our power allocation matrix_(40). We now showase code of rate of roughly/3 bits per complex symbol.

the main result of this section: provided there exists a powRote, too, that when the number of layers is sufficiently éarg

allocation matrix such that for eachandm that the SNR per layer is low, a binary code may be used
R m instead of a Gaussian codebook, which may be convenient for

— =Y log(l + SNR,/ i(am)), (49) implementation. For example, a code with rat8 bits per

m’=1 complex symbol may be implemented using a rgté-LDPC

with SNR,, ;(«,,,) as defined in[{(48), a near-perfect ratelessode with binary antipodal signaling.

coding scheme results. The existence of such a power alit thus remains only to show that there exists a power
location, as well as an interpretation &f[49), is proved iallocation such thaf{{49) is satisfied, which is establisimed
Appendixl. the Appendix.



It should be stressed, however, that there is a price to be
paid with this approach. In particular, if we keep constéuet t
number of codeword symbols that must be accumulated before
096~ 1 decoding at rate? is possible, then the underlying block size
in our rateless construction must decrease inversely with
Thus, for sufficiently large: the basic block length becomes
short enough that code performance suffers, and so in peacti
the selection ofx involves a compromise. In addition, this
e : 1 approach may also increase requirements on the analog-to-
digital conversion precision at the receiver front end.

0.84

B. Implementation Comments
A few additional aspects of implementation are worthy of

efficiency bound (fraction of capacity)

0.82

8, 005 01 015 0z 025 o3 0% 04 045 05 comment.
base code rate (b/s/Hz) First, one consequence of our development of perfect
rateless codes fo = L is that all layers must have

Fig. 2. Lower bound on efficiency of the near-perfect ratelesde. The top the same rateR/L. This does not seem to be a serious
and bottom curves are the middle and right-hand bounds 9f (E8pectively. . . . . .
limitation, as it allows a single base codebook to serve as th
template for all layers, which in turn generally decreases t
implementation complexity of the encoder and decoder. The
VIl. DESIGN AND IMPLEMENTATION ISSUES codebooksCy, ..., Cr used for theL layers should not be

In this section, we comment on some additional issues tﬁg?mlcal’ however, for otherwise a naive successive decod

arise in the development and implementation of such codeg.]Ight mgdvgrtantly swap messages f“’.rT‘ two Iayer_s or face
other difficulties that increase the probability of decapiémror.

A simple cure to this problem is to apply pseudorandom
A. Increasing Code Resolution phase scrambling to a single base codeb@oto generate
With an ideal rateless codevery prefix of the code is the different codebooks needed for each layer. Pseudomando

a capacity-achieving code. This corresponds to a maximalfjjéréaving would have a similar effect. ,
dense set of SNR thresholds at which decoding can occur. B _econd, a Ia}yered code designed W't,h the Successive de-
contrast, our focus in the preceding sections was on ratel§8ding constraint (35) can be decoded in a varl_ety of ways.
codes that were capacity-achieving only for prefixes who cause the undecodeq quers act as colored noise, an bp'Flma
lengths are an integer multiple of the base block length. THEC0der should take this into account, for example by using
associated sparseness of SNR thresholds can be undesirapfBinimum mean-square error (MMSE) combiner on the
in some applications, since when the realized SNR is betwd&geived blocks{y, }. The M,MSE combining vyelghts will
thresholds, capacity is no longer achieved: the realizés rghange as each layer is stripped off. Alternatively, some or

promised by the construction is that corresponding to the néll Of the layers could be decoded jointly; this might make
lower SNR threshold. sense vyhen _the decoder for the_ base codebook decoder is
On the other hand, performance may be much better th?jlﬁeady iterative, and could potentially accelerate cogeece

this pessimistic assesment. Attempting to decode whenC@TPared to a decoder that treats the layers sequentially.
partial redundancy block is available will cause the decode Finally, a comparatively simple receiver is possible when
for the base code to see a time-varying channel in Whi(f,’}lnI M_block_s have been rece|_ved fro_m a perfect r_ateless
the symbols bolstered by the partial block have better Sl\ﬁQde n _Wh'ChM = L. In this special case the linear
than the others. Whether the base code and decoder caﬁ%’@b'naﬂons applied to the layers are orthogonal, hence

adapted to operate efficiently in this situation dependshen {1€ optimal receiver can decode each layer independently,
details of their construction, and may be hard to prediceih Without successive decoding. This property is advantageou
performance is, however, easily assessed via simulation in a multicasting scenario because it allows the introduncti

Another approach to controlling this aspect of our rateleg_I, users with simplified receivers that function only at ait

code behavior is as follows. Suppose we are interested ries, In this case th_e lowest ;upported one. -
a rateless code whose ceiling rate & Then we use the Some further design and implementation issues are ad-

rateless construction of the preceding section to designd%\essed in [21].
code of ceiling ratexR, wherel < x < M, and have

the decoder collect at least blocks before attempting to VIII. CONCLUDING REMARKS
decode. With this approach, the associated rate threshodds There are a variety of interesting directions for further
R,Rk/(k+ 1), Rr/(k + 2),...,Rx/M, where we note that research. For example, one obvious area of future work is

the largest rate increment is the first, corresponding to tkeincorporate time variation into the channel modél (1)eTh
factorx/(x + 1). Hence, by choosing larger values fone rateless constructions presented in this paper are designe
can increase the density of rate (and thus SNR) thresholdsoperate efficiently when, e.g., for one block the channei gai
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[a1], for two blocks the gains arex; «as], for three blocks the restrict our attention to determining the set of solutiomshe
gains arelas a3 as], and so on. A simple extension wouldfirst two rows of G; the third row comes “for free” from the
allow « to vary deterministically so long as the pattern ofonstraint thalG be a scaled unitary matrix.

variation is known in advance. Then, for one block the code Assume, again without loss of generality, tHa|? = 1
would be designed for a gain dé; ;], for two blocks the ando? = 1. Via (38), the first row ofG (which controls the
target gains would béws 1 a2 2], for three blocks the gains first redundancy block) must satisfy

would befas 1 as2 a3 3], and so on. More generally, however,

_ 2
the design of perfect layered rateless codes whéollows a R/3 = log(1 + g1,) (60)
stochastic model remains an important open problem. 2R/3 =log(1+ g, + gi2) (61)
Other worthwhile directions include more fully developing 3R/3 =log(1+ g} + g%y + 9%3) (62)

rateless constructions for the AWGN channel that allow de-

coding to begin at any received block, and/or to exploit dfgether with the power constraint

arbitrary subset of the subsequent blocks. Initial effortshis _ 2 2 2

direction include the faster-than-Nyquist constructiom$s], P=gi1+ 912 ¥ 915 (63)

[20], and the diagonal subblock layering approach desdrib&@hus

in [20]. P=2F_1=2%-1
Beyond the single-input, single-output (SISO) channel,

many multiterminal and multiuser extensions are also &f'

considerable interest. Examples of preliminary develapsie g2 = 2R3 1 =32 1 (64)
along these lines include the rateless space-time codé&raons = :

tions in [6], the rateless codes for multiple-access chianne g, = 2R/3(2R/3 —1) = 2%(2? - 1), (65)
developed in [16], and the approaches to rateless coding for

parallel channels examined in [20]. Indeed, such reseassh m g2y = 22BIB3 (2R3 _ 1) = gt (2% - 1), (66)

lead to efficient rateless orthogonal frequency-divisionl-m
tiplexing (OFDM) systems and efficient rateless multi-igpu
plexing ( ) Y op variablesr = 27/6,

multi-output (MIMO) codes with wide-ranging applications _ _ i

Finally, extending the layered approach to rateless coding’N€ first column ofG (which controls the first layer of
developed in this paper beyond the Gaussian channel is &f&h redundancy block) is also straightforward. Vid (3Zhwi
a potentially rich direction for further research. A noabl” = 2 andm =3, we have
example would be the binary symmetric channel, where good 1

where for convenience we have introduced the change of

2 _
rateless solutions remain elusive. 2" = 341’ (67)
1
2 _
APPENDIX | Jos|” = 241 (68)
PERFECT RATELESS SOLUTION FOH. =M =3 Using [35) forl = 1 andm = 2 yields
Determining the set of solutions 9 9 )
R/3 =log(1 + |2 (911 + 921))- (69)
g1 gi12 gi3 o ] ]
G= g1 goo 93 (59) Substituting the previously computed expressidns (64) and
g31 g32 g3 ©7) for g2, and|az|? into (E9) and solving fols; yields
to (39) whenL = M = 3 as a function of the ceiling rat& ¢ =23 (@ — 1) (70)

is a matter of lengthy if routine algebra.
We begin by observing that any row or any column@f  To solve for the second row a& we use [(3b) withm =

may be multiplied by a common phasor without changing= 2 together with the requirement that the first and second

GG'. Without loss of generality we may therefore take theows be orthogonal. It is useful at this stage to switch t@pol

first row and first column ofG to be real. EachG thus coordinates, i.e.g2a = |g22]e’t and gos = |go3|e’?.

represents a set of solutioh®; GD-, whereD; andD, are Orthogonality of the first and second rows means that

diagonal matrices in which the diagonal entries have madulu B o 65

1. The solutions in the set are equivalent for most engingeri 0= g11921 + gu2|geale’™ + g13|gase”™. (71)

purposes and we shall therefore not distinguish them furthesomplex conjugation is not needed here because the first row

We know thatG must be a scaled unitary matrix, scaled s rea|. Substituting the quantitids {64)3(66) and (70) i),
that the row and column norms avéP. Thus, if we somehow using the power constraint

determine the first two rows d&, there is always a choice for

the third row: it's the unique vector orthogonal to the firsbt lg23]* = P — |ga2]” — 931, (72)
rows which meets the power constraint and which has fir, L S

component real and positive. Conversely, it's easy to sat tﬁ%d dividing through byrv'z* — 1 yields

any appropriately scaled unitary matr that satisfies[(35) 0= /2(z2 — 1) + ed0

form =1 andm = 2 (and alll = 1, 2, 3) necessarily satisfies ( ) |9226| = 5 5 6
[@8) for m = 3. We may therefore without loss of generality + /20 — a5 + 2% — 1 —[gaafPe!?. (73)
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By isolating the rightmost of the three terms in the above We must now establish the existence of suitahle . ., 0,.
equation and taking the squared modulus of both sides, We resolve this question it sufficies to consider the conse-

find that quences of the orthogonality constraibt](71) én and 6.
) ) As remarked at the start of this section, the last roviGoand
z(x” — 1) + |g22|” + 2 cos b1 |gaz|\/x(2? — 1) hencefs; andd, come “for free” once we have the first two

=2%(a® — 2% + 2% — 1 — |goo|?), (74) rows of G.
Substituting the expressions fdg,,;|*> determined above

so that into (Z1) and canceling common terms yields

2 cos 1/gaz| 0= \/E—l—ejel\/:c‘1 —z3 a2 —x+1+e%Va3. (85)

8 _ .7 5 _ 3 _ .2 _ 2 2
e N e (L+2%)lg2| . (75) Theright-hand side is a sum of three phasors of predetetmnine

z(z? —1) magnitude, two of which can be freely adjusted in phase. In
This ungainly expression will allow us to eliminaie from a geometric terms, the equation has a solution if we can aerang
subsequent equation. the three complex phasors into a triangle, which is posgible
To complete the calculation of the second row®@f we and only if the longest side of the triangle is no longer than t
use [3b) withm = 2 andi = 1, 2 to infer that sum of the lengths of the shorter sides. The resulting tt&ang
is unique (up to complex conjugation of all the phasors). Now
28 =t = det(I + |02’ G2 2GY ). (76)  the m?ddlé tF()erm of5) grovdsgl]‘aster in than thpe otherg, )

To expand the right hand side ¢f{76), we compute for large x we cannot possibly construct the desired triangle.
A necessary condition for a solution is thus
Go,2G)
2832 2

V3 4_ 3 2
2t =1 (2% = 1)2%? + 2v/a? — 1|ga|e " N e e e Rt (86)

(%) lgoz|? + 23 (2? — 1) ] . (77) where equality can be shown (after some manipulation) td hol
at the largest root of? — = + 1, i.e., atz = (3+/5)/2, or
Yequivalently R = 6log, © = 6log,(3 + /5) — 6. It becomes

where (x) is the complex conjugate of the upper right entr

from which we find evident by numerically plotting the quantities involvedtlthis
1 n 22(x+1)/ , necessary condition is also sufficient, i.e., a unique Eoiub
det(I+ 3+ 1G272G2,2) = (23 1+ 1) (x (z+1) (85) exist for all values ofr in the rangel < = < (3 +
v/5)/2 and no others. Establishing this fact algebraically is an
(@ - 1)va(z? - 1>)' (78) " unrewarding though straightforward exercise.

The term 2cosf|g2| in (Z8) matches the left hand side A relatively compact formula f0_“91 may be found by
of (78), so by combining[{75)(76), an@ {78), solving foRPPIYINg the law of cosines t¢ (BS):
lg22]2, and simplifying terms, we arrive at zt— 23+ 22 +1

cos(m—61) = .
s(m =) 2y/x(zt — a3+ 22 —x + 1)
Similar formulas may be derived fak, 03, andd,.

+ |922|2 + 2COS€1|922|

(87)

|922* = (2” + 1) (z - 1). (79)

The power constrainf (72) then immediately yields

|lgas|® = x(a® — 1). (80) APPENDIXII

POWERALLOCATION
The squared modulus of the entries of the last ronGobf . L
. . . The power allocation satisfying the properfy 1(49) can be
follow immediately from the norm constraint on the columns; P ying properfy (49)

“btained as the solution to a different but closely relatad-r
‘g%l =P g3+ g% = — a4+ 1) - 1) ‘ (81) less code opt_|m|zat|on prqblem. Specifically, let us rethim
block structuring and layering of the code of Secfion VI-&t b
(82) instead of using repetition and dithering in the constarcti
let us consider a code where the codebooks in a given layer
and areindependentrom block to block. While such a code is still
2 _p_ 2 2 _ 3 _ successively decodable, it does not retain other charstiter
933" = P — 925 — 915 = (2" + 1)(w — 1). (83) that make decoding possible with low complexity. However,
This completes the calculation of the squared modulus of tHg complexity characteristic is not of interest. What does

entries ofG. In summary, we have shown th@thas the form matter to us is that the per-layer, per-block SNRs that tesul
from a particular power allocation will be identical to tleos

|g32|> = P — g35 — gia = 2(2® + 1) (z — 1)

G=vzr—-1- of the code of Sectiop_VI-A for the same power allocation.
V1 [22(z + 1) [e%(z + 1) Thus, in tailoring our code in this Appendix to melet](49), we
3z + 1) d01 \ﬁﬁ 002 SC(:C +)1) (84) simultaneously ensure our code of Secfion VI-A will as well.

\/m 6j93\/m 0\ /Z3 T 1 We begin by recalling a useful property of layered codes in

general that we will apply. Consider an AWGN channel with
wherez = 21/6, gaina and noisevsz of variances?, and consider ari-layer
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block code that is successively decodable. If the constitue Comparing[(4B) with[{90) and (91) reveals tHatl(49) can be
codes are capacity-achieving i.i.d. Gaussian codes, an&EMrewritten as m

successive cancellation is used, then the overall codebwill R = Z Lo 1(ctm) (92)
capacity achieving. More specifically, for any choice of posv ' ’
p; for layersi = 1,2,..., L that sum to the power constrain
P, the associated rates for these layers will sum to the
corresponding capacityog(1 + |a|?P/o?). Equivalently, for Ry =R/L (93)
any choice of rated; that sum to capacity, the associatednqy, , (a,,) is the mutual information in layedrfrom block
powersp; will sum to the corresponding power constraint. I,/ \when the realized channel gairis,. Thus, meeting(49) is
this latter case, any rate allocation that yield powers &1at gqyivalent to finding powers,, ; for each code block:’ and

m/=1

tfor all=1,2,...,Landm =1,2,..., where

all nonnegative is a valid one. layer so that for the given rate allocatiai; (a) the powers

_ To see this, let the relevant codebooks for the layers Bge nonnegative, (b) the power constraint is met, and (chwhe

€1,...,€L, and let the overall codeword be denoted the channel gain isv,,, the mutual information accumulated
L - at thelth layer after receiving code blocks2, ..., m equals
=& +---+7¢r, (88) R, Yy g S m eq

where the; € C; are independently selected codewords drawn Since the power constraint is automatically satisfied by any
for each layer. The overall code rate is the sum of the rat@gsignment of powers that achieves the target rates, icesffi
of the individual codes. The overall power of the codeis- 0 establish that[(92) have a solution with nonnegative per-
pi+ -+ prL. layer powers. o _

From the mutual information decomposition The solution exists and is unique, as can be established by

induction onm. Specifically, form = 1 the rateless code is

~ L an ordinary layered code and the poweis, ..., p1,, may
I(&y)=> 1 (89) be computed recursively from [cf(92)]
=1 m
where Ry =) log(1+ SNRy i(am)), (94)
L=I1& e+ +e& +z| &), m/=1
: Gk t LY with SNR,, ;(a,,) as given in[(4B) fol =1, ..., L.
with 51L+1 = (&1, Gyo,...,C), We see that the overall code- For the induction hypothesis, assume we have a power

book power constrainP can be met by apportioning powerassignment for the first blocks that satisfie§ (94). To find the
to layers in any way desired, so long as+ --- + p;, = P. power assignment for th@n + 1)st block, observe that when
Since the undecoded layers are treated as noise, the maxintbénchannel gain decreases fram, to a,,,1 the per-layer

codebook rate for théh layer is then mutual information of every block decreases. A nonnegative
power must be assigned to every layer in {he+ 1)st code
I, =log(1 +SNR) (90) block to compensate for the shortfall.
The mutual information shortfall in th&h layer is
where m
SNR laf2p, - Apmirr=Ri— ) log(1+SNRy i(ami1)),  (95)

m’/=1

laPpi+lalpe + -+ lafPpios + 02 . .
) ) ) ) and the powep,,11,; needed to make up for this shortfall is
is the effective SNR when decoding tité layer. Straightfor- iha solution to

ward algebra, which amounts to a special-case recalcnlatio
of (89), confirms that; + - - - + I, = log(1 + |a|*P/c?) for A1 = log(1 + SNRy i1 1(@m+1)), (96)
any selection of power$p; }. viz.,

Alternatively, instead of selecting per-layer powers and oA
computing corresponding rates, one can select per-layes ra Pm+1,1 = (273t —1)
and compute the corresponding powers. The rdtk$ for Ori1
each level may be set in any way desired so long as the (Pmara At A P+ Iam+1l2)' (97)
total rate/; +--- + I, does not exceed the channel capacitynis completes the induction. Perhaps counter to intujtion
log(1 + |a|?P/c?). The required powergp,;} may then be

‘ ) even if the per-layer rateBy, ..., Ry are set equal, the per-
found using[(9D) and_(91) recursively foe=1,..., L. There layer shortfallsA 41 1, .. ., A1, will not be equal. Thus,

is no need to verify the power constraint: it follows fromyiiin 5 jayer the effective SNR and mutual information will
(89) that the powers computed in this way sumRo Thus vary from block to block.

it remains only to check that thfp;} are all nonnegative to Egs. [95) and[{97) are easily evaluated numerically. An

2

ensure that the rate allocation is a valid one. example is given in Table JA.
We now apply this insight to our rateless context. The target
ceiling rate for our rateless code i, and, as beforeg,,, 6If one were aiming to use a rateless code of the type described

. . Segtion[V] in practice, in calculating a power allocationeoshould take
m =1,2,..., denotes the threshold channel gains as Obtamﬁﬁf account the gap to capacity of the particular base cedlgghused. This

via (31). optimization is developed in [21].



TABLE Il
PER-LAYER POWER ASSIGNMENT,,, ; AND CHANNEL GAIN
THRESHOLDS(, FOR THE INITIAL BLOCKS OF AN L = 4 LAYER

RATELESS CODE WITH TOTAL POWERP = 255, NOISE VARIANCE 02 = s

AND PER-LAYER RATE R/L = 1 B/S/Hz.

m=1 m=2 m=3 m=4 m=5
gain (dB) 0.00 -12.30 -16.78 -19.29 -20.99
=1 3.00 40.80 48.98 55.77 58.79
1=2 12.00 86.70 61.21 60.58 61.65
=3 48.00 86.70 81.32 71.48 67.50
=4 | 192.00 40.80 63.48 67.16 67.06

Finally, since this result holds regardless of the choice
the constituent?,, it will hold for the particular choice[(93),

whence [(4D).
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