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Abstract

Epilepsy is a debilitating neurological disorder affecting approximately 1 % of the world’s 

population. Drug-resistant focal epilepsies are potentially surgically remediable. Although 

epilepsy surgery is dramatically underutilized among medically refractory patients, there is an 

expanding collection of evidence supporting its efficacy which may soon compel a paradigm shift. 

Of note is that a recent randomized controlled trial demonstrated that early resection leads to 

considerably better seizure outcomes than continued medical therapy in patients with 

pharmacoresistant temporal lobe epilepsy. In the present review, we provide a timely update of 

seizure freedom rates and predictors in resective epilepsy surgery, organized by the distinct 

pathological entities most commonly observed. Class I evidence, meta-analyses, and individual 

observational case series are considered, including the experiences of both our institution and 

others. Overall, resective epilepsy surgery leads to seizure freedom in approximately two thirds of 

patients with intractable temporal lobe epilepsy and about one half of individuals with focal 

neocortical epilepsy, although only the former observation is supported by class I evidence. Two 

common modifiable predictors of postoperative seizure freedom are early operative intervention 

and, in the case of a discrete lesion, gross total resection. Evidence-based practice guidelines 

recommend that epilepsy patients who continue to have seizures after trialing two or more 

medication regimens should be referred to a comprehensive epilepsy center for multidisciplinary 

evaluation, including surgical consideration.
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Introduction

Epilepsy is a debilitating neurological disorder affecting approximately 1 % of the world’s 

population, producing a tremendous societal burden [9, 49]. Though common, drug-resistant 

focal epilepsies are potentially surgically remediable. Perspectives related to epilepsy 

surgery have progressed considerably over the past several decades, as recently summarized 

by Wilson and Engel [210], with a few notable developments in just the past year. With 
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regard to palliative non-resective epilepsy surgery, the past 1–2 years have seen the approval 

of NeuroPace—a new implantable neurostimulation device for epilepsy [82]—as well as the 

100,000th implantation of a vagus nerve stimulator [44]. More importantly, however, Engel 

and colleagues [61] recently reported the much anticipated results of a randomized 

controlled trial investigating the clinical effectiveness of early resective epilepsy surgery in 

patients with temporal lobe epilepsy (TLE)61. Only the second randomized controlled trial 

to address resective epilepsy surgery, this study demonstrated convincingly that early 

surgical intervention in patients with newly refractory TLE produces better seizure outcomes 

than continued conservative drug therapy. Some have speculated whether this pivotal trial 

might facilitate a paradigm shift in the treatment of focal epilepsy [120, 174]. Specifically, 

whereas many practitioners have thus far been hesitant to consider invasive surgery for 

pharmacoresistant patients—instead pursing years to decades of new medication 

combinations with marginal success—these novel data may influence earlier referral for 

surgical consideration [62, 102, 127].

There is also reason to be skeptical that the findings of Engel and colleagues will stimulate 

any meaningful paradigm shift. After the first randomized controlled trial by Wiebe et al. in 

2001 [207] revealed dramatically improved seizure outcomes with epilepsy surgery over 

medical therapy in refractory TLE patients207, consensus guidelines recommended early 

surgical referral of pharmacoresistant epilepsy patients [41, 62, 63, 128]. At that time, there 

was anticipation of an increase in surgical referrals [59], but large epilepsy centers did not 

experience the expected increase in patient volume [60, 102]. In fact, two studies in the past 

year examining US hospital data from the Nationwide Inpatient Sample—reported 

independently by our group and by Schiltz et al.—revealed no change in the utilization of 

epilepsy surgery during the 2000s, despite class I evidence and clear practice parameters [73, 

173]. Furthermore, it was found that epilepsy patients are increasingly being treated at low-

volume community hospitals, rather than high-volume epilepsy centers, and that these 

smaller institutions are less likely to perform surgery [74]. It remains unclear whether new 

class I data supporting epilepsy surgery will significantly influence its persistent 

underutilization. Nevertheless, the recent refocus on the issue allows a timely opportunity 

for an inclusive update on seizure outcomes after epilepsy surgery, considering temporal 

lobectomy and other resective procedures.

In the present review, our goal is a concise but thorough summary of seizure freedom rates 

and predictors in the surgical treatment of epilepsy, with particular focus on class I evidence 

and our own institutional experiences. “Seizure freedom” will be defined as a lack of 

disabling seizures, or a class I seizure outcome using the grading scale by Engel and 

colleagues [57], and predictors of seizure freedom will refer to modifiable and fixed 

variables significantly associated with an Engel class I outcome. Both children and adults 

will be considered. Palliative non-resective epilepsy surgery, including disconnection 

procedures and neurostimulation device implantation, will not be discussed.

While most discussions of resective epilepsy surgery are organized by the lobe(s) harboring 

the epileptogenic zone, there are also important treatment nuances across the various 

neuropathological entities which cause focal epilepsy. Blumcke’s recent analysis of 4,512 

specimens excised during resective epilepsy surgeries—the largest study of its kind—allows 
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insight into the commonality of these various pathological entities [18]. As reproduced in 

Table 1, mesial temporal sclerosis (MTS) was the most common clinicopathological finding 

observed (40 %), followed by brain tumors (27 %), malformations of cortical development 

(MCD, 13 %), and vascular malformations (6 %). Henceforth in this review, we will 

consider focal epilepsy etiologies in this same order.

Mesial temporal sclerosis and temporal lobe epilepsy

TLE is the most common epileptic disorder, first described in detail by Hughlings-Jackson 

in the late nineteenth century [65, 111]. Hughlings-Jackson suspected a mesial temporal 

origin of the “uncinate fit” and its resultant “dreamy state,” a phenomenon now recognized 

as the characteristic complex partial seizure of TLE, and its effects on higher-order 

association cortex involved in consciousness [68, 78, 109, 111]. While a wide variety of 

lesions in the mesial or lateral temporal lobe can lead to mesial or lateral TLE, respectively, 

the most common pathology underlying intractable TLE is MTS [18, 182]. MTS is 

characterized by neuronal loss, cellular reorganization, and glial proliferation in the 

hippocampus and may also be associated with sclerosis of the amygdala and 

parahippocampal gyrus [189]. It has been proposed that these and other changes lead to 

hyperexcitability of dentate granule cells, which spread out of the hippocampus to generate 

seizures [46]. Potential risk factors for developing TLE have been described and may 

include febrile seizures, head trauma, central nervous system infection, family history of 

epilepsy, alcohol or drug abuse, status epilepticus, birth injury, cerebral ischemia, and other 

temporal lobe lesions [84, 87].

In TLE, seizures are refractory to antiepileptic drugs (AEDs) in approximately 30 % of 

patients, leading to cognitive deficits, reduced quality of life, and increased risk of death [34, 

60, 105]. Selecting appropriate candidates for temporal lobe resection requires 

comprehensive neuroimaging, electrophysiological, and neurocognitive evaluation by a team 

of neurologists, neuropsychologists, neurosurgeons, and neuro-radiologists. High-resolution 

structural magnetic resonance imaging (MRI) to evaluate for MTS or other lesions is 

routine, and functional neuroimaging may include positron emission tomography (PET) to 

search for focal hypometabolism and functional MRI or magnetoencephalography to 

localize language and, in some cases, interictal spikes [16, 31, 112]. At several centers, 

functional neuroimaging is replacing invasive WADA testing for language lateralization, but 

WADA remains the gold standard for memory lateralization [1, 16]. Interictal scalp 

electroencephalography (EEG) is often followed by longer periods of inpatient video EEG 

monitoring, and invasive intracranial EEG with grid, depth, and strip electrodes is used when 

localization of the epileptogenic zone remains in question and/or greater spatial detail is 

required [91, 220]. In some instances, intraoperative electrocorticography (ECoG) can be 

used to supplement or replace long-term intracranial EEG, particularly in patients 

undergoing awake speech mapping, although capturing ictal events requires implanted 

electrodes [11, 161]. Notably, the evaluation of extratemporal epilepsy absent a pre-localized 

lesion often incorporates a similar diagnostic strategy [165].

The standard of care in treating drug-resistant TLE from MTS is resective surgery with 

anterior temporal lobectomy (ATL) [58, 97, 182]. In both adults and children, seizure 
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freedom is more common after resection for MTS (60– 90 %) than localized neocortical 

epilepsies (40–70 %), the most common being frontal lobe epilepsy [69, 75, 77]. In our own 

surgical series including the past 15 years, approximately 70–80 % of adults and children 

with TLE have achieved seizure freedom after ATL [72, 76]. Furthermore, resective TLE 

surgery has been validated by class I evidence through two randomized controlled trials. In 

the first of these trials, Wiebe and colleagues [207] found that 40 drug-resistant TLE patients 

who underwent ATL were significantly more likely to be seizure-free at 1 year (58 %) than 

40 patients randomized to continued best drug therapy (8 % seizure-free)207. In a meta-

analysis including this trial and 31 other studies (2,250 patients), Engel et al. [63] reported 

that 65 % of TLE patients achieved seizure freedom after ATL, with another 21 % 

experiencing an improved seizure profile63. Together, these results led to a joint 

recommendation of the American Academy of Neurology, the American Epilepsy Society, 

and the American Association of Neurological Surgeons that patients with medically 

refractory epilepsy be referred to a comprehensive epilepsy center with surgical capabilities 

[63].

Recently, in a second randomized controlled trial comparing ATL to continued AED therapy, 

Engel and colleagues [61] specifically investigated the value of early surgical intervention61. 

They found that while 73 % of 15 surgically treated individuals were seizure-free at 2 years, 

none of the 23 patients assigned to medical therapy reached this outcome. Furthermore, 

improvements in quality of life were significantly greater in the surgical group than the 

medical group. Overall, the data in favor of surgical resection for appropriate candidates 

with intractable TLE—including two randomized controlled trials and numerous 

observations studies—are convincing and suggest that a surgical “cure” is possible in some 

patients with this devastating disorder.

With regard to operative approach for mesial temporal lobe resection, most studies have 

shown comparable seizure outcomes between standard ATL and selective 

amygdalohippocampectomy (AH) [175, 215], although the latter may carry the risk of 

seizure recurrence in patients with an unrecognized lateral temporal epileptogenic zone 

[153]. While many groups have described improved memory outcomes and 

neuropsychological scores with selective AH over ATL [35, 142], others have reported no 

differences [24, 96, 212]. Finally, with careful operative technique, some authors have 

proposed that visual field deficits may be less pronounced with selective AH over standard 

ATL [136, 192].

Brain tumors

A brain tumor is the second most common cause of focal epilepsy. Tumor-related epilepsy 

may lead to diminished quality of life, cognitive deterioration, and significant morbidity 

[169, 179, 187, 221]. While the molecular mechanisms of epileptogenicity in brain tumors 

remain incompletely understood, pathophysiological contributions include cerebral hypoxia, 

neurotransmitter alterations, and disruption of the blood–brain barrier [64, 100, 119, 169, 

178]. While seizures can be caused by intrinsic intra-axial tumors, metastatic tumors, or 

extra-axial tumors (such as meningioma), glioneuronal tumors and gliomas are the most 

common pathologies associated with tumoral epilepsy, and will be the subject of our focus.
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Glioneuronal tumors

Unlike patients with malignant brain tumors, patients with low-grade tumors often survive 

many years [155, 156], making seizure freedom a critical factor in optimizing patient quality 

of life. Among low-grade brain tumors, glioneuronal tumors such as gangliogliomas and 

dysembryoplastic neuroepithelial tumors (DNETs) are most likely to present with seizures 

[27, 94, 141, 147]. Approximately three quarters of ganglioglioma patients present with 

seizures, three quarters of those have a temporal lobe lesion, and nearly half of patients with 

ganglioglioma progress to drug-resistant epilepsy [4, 131, 181]. With DNET, approximately 

half of epilepsy patients harboring this lesion also have associated cortical dysplasia [27].

Previous studies have examined seizure outcomes in the resection of glioneuronal tumors 

causing epilepsy, reporting postoperative seizure freedom rates of between 45 and 100 % [4, 

27, 92–94, 152, 214]. In a recent retrospective series of 66 patients with ganglioglioma 

treated at our center, 49 of which presented with epilepsy, we evaluated long-term seizure 

outcomes after excision [181]. Five years after resection, 85 % of patients with a seizure 

history were free of seizures, including 96 % of individuals in whom gross total 

lesionectomy was achieved, but only 54 % of those with subtotal resection. Tumor 

progression occurred in 38 % of cases involving gross total resection, but in only 8 % of 

those associated with subtotal resection. We also evaluated 50 patients with DNET-related 

epilepsy surgically treated at our institution, 87 % of whom reached an Engel class I 

outcome after surgery [27]. Seizure freedom was again predicted by gross total resection, 

achieved in approximately 80 % of surgeries, and this outcome remained resilient at a 

median follow-up of >5 years [27]. The positive predictive value of extent of resection in 

glioneuronal tumor-related epilepsy surgery was also confirmed by a systematic review of 

39 studies including 910 patients [67]. In this report, seizure freedom was >30 % more likely 

with gross total resection compared to subtotal excision and was also predicted by an 

absence of generalized seizures and early surgical therapy. Overall, these findings suggest 

that both seizure and oncologic outcomes can be excellent in glioneuronal tumor surgery, 

particularly with complete resection and early operative intervention.

Gliomas

World Health Organization grade II gliomas—including astrocytoma, oligodendroglioma, 

and oligoastrocytoma—are invasive lesions that often progress over time despite therapy 

[12, 28]. Seizure generation in gliomas may result in part from invasion of tumor cells into 

surrounding brain parenchyma as well as increased expression of fast-activating sodium 

channels and diminished potassium buffering within glial cells at the epileptogenic foci [20, 

166]. While the oncological prognosis of gliomas is poorer than glioneuronal tumors, low-

grade glioma patients may nonetheless survive >10 years with aggressive management, and 

seizure control is a known factor in maximizing quality of life [53, 121, 186, 195].

20, 16653, 121, 186, 195Seizures are a common presenting symptom in patients with low-

grade glioma, affecting 60– 80 % of individuals with these lesions [158, 160, 219]. In an 

analysis of 332 low-grade glioma patients undergoing resection at our center, 80 % 

presented with seizures, and pharmacoresistance was present in half of these [32]. Seizure 

freedom was seen in 67 % of individuals with tumoral epilepsy after surgery, with rare 
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seizures observed in another 17 %, and favorable outcomes were predicted by greater extent 

of resection. Lesion recurrence was associated with epilepsy recurrence, further 

demonstrating the association between tumor burden and seizures [32]. A recent systematic 

review of the literature examined 773 patients with low-grade gliomas and epilepsy across 

20 surgical series [66]. It was noted that about 70 % of individuals with low-grade glioma-

related epilepsy become seizure-free after surgery, with predictors of this outcome including 

resection extent (defined as removal of tissue displaying abnormal T2 signal on 

postoperative compared to preoperative MRI), a shorter history of epilepsy, and preoperative 

seizure control on AEDs. Thus, as with glioneuronal tumors, improved seizure outcomes in 

low-grade glioma surgery are seen with early intervention and gross total resection, and a 

direct relationship between tumor burden and seizure status is likely.

High-grade gliomas are associated with a much poorer prognosis than low-grade lesions, 

with median survival of approximately 22 months for anaplastic astrocytoma and 12 months 

for glioblastoma, even with surgery, radiation, and chemotherapy [23, 42, 47, 67]. Seizures 

affect between 25 and 60 % of individuals with high-grade gliomas and negatively impact 

quality of life [26, 95, 106, 139, 154]. To our knowledge, there has only been one study 

investigating seizure status as a primary outcome in high-grade glioma surgery. In this 

retrospective case series, 1 year after surgical resection of glioblastoma in 153 patients with 

epilepsy, 77 % of individuals were seizure-free on medication [26]. A favorable 

postoperative seizure outcome was predicted by preoperative seizure control. Nevertheless, 

given the poor oncological prognosis associated with high-grade gliomas, the primary goal 

of resection remains aggressive tumor control, with surgical treatment of seizures 

representing a worthwhile secondary consideration [67].

Additional considerations with temporal lobe tumors

While any supratentorial tumor can cause epilepsy, patients with temporal lobe lesions are 

particularly prone to seizures, like due to the epileptogenicity of mesial temporal structures 

[32, 88, 203]. It is known that seizure freedom in tumor surgery is more common with gross 

total resection than subtotal lesionectomy, but an additional consideration in tumoral TLE is 

that dual pathology may drive ictogenesis [84, 182]. Thus, cortical dysgenesis, gliosis, and 

hippocampal sclerosis may permit continued seizures even after gross total excision of the 

primary lesion [84, 88, 203]. Some investigators have therefore argued for more extensive 

resection in tumor-related TLE cases, suggesting that the inclusion of hippocampectomy and 

anterior temporal corticectomy produces better postoperative seizure control than gross total 

lesionectomy alone [14, 94, 117, 148]. In such cases, perilesional parenchymal resection is 

often customized by interictal spike mapping via intra-operative ECoG recordings [12, 181]. 

In one study, Giulioni and colleagues [94] retrospectively analyzed seizure outcomes in 28 

patients who received tailored surgery for temporal lobe glioneuronal tumors causing 

epilepsy94. One half of the patients underwent lesionectomy alone, while the other half 

received lesionectomy along with customized amygdalohippocampectomy and anterior 

temporal corticectomy. Seizure outcomes were dramatically better in individuals who 

received extended resection (93 % Engel I) compared to lesionectomy alone (43 % Engel I), 

but other differences between patients in either group may have confounded this finding. We 

recently meta-analyzed extent of resection in low-grade temporal lobe tumor resections 
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across 41 studies including 1,181 patients [70]. Subtotal lesionectomy alone produced a 

postoperative seizure freedom rate of only 43 %, versus 79 % with gross total lesionectomy 

alone, versus 87 % with lesionectomy plus hippocampectomy and/or anterior temporal 

corticectomy [70]. The small but significant benefit of extended resection over gross total 

lesionectomy alone appears more prominent with mesial rather than lateral temporal lesion 

location. It is therefore possible that a larger tailored resection may be associated with better 

seizure outcomes in temporal lobe tumoral epilepsy surgery, but consensus recommendation 

would likely require controlled prospective data.

Malformations of cortical development

MCD represent a spectrum of congenital structural abnormalities of cerebral cortical growth 

and development. MCD range in severity from focal cortical dysplasia (FCD) to 

polymicrogyria and are a major cause of pharmacoresistant epilepsy [33, 151, 199]. MCD 

subtypes can result from abnormal (1) neuronal and glial proliferation or differentiation, (2) 

neuronal migration, or (3) cortical organization [130]. MCD resulting from aberrant cellular 

proliferation or differentiation are the most common, and under the most recent 

classification scheme, these include FCD, tuberous sclerosis, and hemimegalencephaly [3, 7, 

130]. Epilepsy is also seen in MCD involving neuronal migration problems (lissencephaly, 

subcortical band heterotopia, periventricular nodular heterotopia) and abnormal cortical 

organization (polymicrogyria, schizencephaly), but these disorders will not be discussed 

here further given their relative rarity.

Focal cortical dysplasia

FCD can be defined using a three-tier system recently updated by the International League 

Against Epilepsy (ILAE) Task Force [19], as summarized in Table 2 [19]. Seizures are the 

most common presentation of FCD, and approximately one half of all epilepsy patients have 

some form of FCD [17]. The mechanisms of ictogenesis in FCD have been investigated in 

humans and animal models. These include increased excitation in dysplastic neurons 

produced by elevated glutamate receptor expression [38, 48, 108] as well as diminished 

neuronal expression of γ-aminobutyric acid (GABA) receptors within FCD lesions [83, 

183].

Resection for FCD-related epilepsy can be challenging as subtle radiographic anomalies can 

produce devastating epileptic syndromes [36]. Rates of seizure control reported in the 

literature range widely from 32 to 89 % after resection [33, 103]. In a recent surgical series 

of 143 patients with FCD and intractable epilepsy at our institution, postoperative seizure 

freedom rates were 72 % at 2 years, 65 % at 5 years, and 67 % at 10 years [33]. The main 

predictor of seizure outcome was gross total resection delineated by both MRI and invasive 

ECoG recordings [33]. Other positive prognosticators included small lesion size and a focal 

gray-white blurring on MRI known as the transmantle sign [198]. In a meta-analysis 

combining these results with 36 other surgical FCD series, postoperative seizure freedom 

was achieved by 58 % of 2,014 patients [168]. Favorable outcome was predicted by 

temporal lobe surgical location, abnormal MRI, type II ILAE histological classification, and 

complete resection of the anatomical or electrographic abnormality. Given the inherent 
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challenge of accurately delineating the ictogenic zone in FCD, these findings highlight the 

importance of high-resolution neuroimaging, meticulous electrophysiological techniques, 

and histopathologically proven margins in guiding the surgical excision of dysplastic lesions.

Tuberous sclerosis

Tuberous sclerosis complex is an autosomal dominant disorder resulting from mutations in 

the gene TSC1 (encoding hamartin) or TSC2 (encoding tuberin), leading to the formation of 

hamartomas and other neoplasms in multiple organ systems [40, 133]. This condition was 

first described in detail by Bourneville in 1880 and has an overall prevalence of 

approximately 1 person per 6,000 [21, 40]. Seizures are the manifesting symptom in 90 % of 

patients with tuberous sclerosis, often beginning in the first year of life [80]. The 

pathogenesis of epilepsy is incompletely understood, but has been suggested to involve 

abnormal GABA receptor expression and impaired glutamate transport in astrocytes [80, 

204, 213].

Seizures become refractory to AEDs in the majority of children with tuberous sclerosis by 2 

years of age, leading to marked cognitive impairment and developmental retardation [43, 80, 

99, 113]. Therefore, early surgical intervention is often considered for patients with severe 

pharmacoresistant epilepsy [80]. However, bilateral or multiple epileptogenic foci are more 

common in tuberous sclerosis than other lesional epileptic disorders, perhaps given the 

frequent multiplicity of parenchymal tubers [25, 164, 202]. Therefore, the appropriate 

selection of surgical candidates requires meticulous preoperative evaluation with high-

resolution neuroimaging and electrophysiologic recordings and often includes invasive 

intracranial recordings [25, 80].

Seizure outcome data for tuberous sclerosis surgery are somewhat limited as most published 

patient cohorts are small and retrospective. However, two independent systematic reviews 

have helped to summarize relevant cases throughout the literature. Jansen et al. [114] 

examined 25 articles including 177 epilepsy patients receiving resective surgery for tuberous 

sclerosis114. After post-surgical follow-up of ≥1 year, patients experienced a 90 % decrease 

in seizure frequency, with 57 % of individuals becoming seizure-free. Similar seizure 

outcomes were reported in a recent meta-analysis by Fallah and colleagues [81], who 

analyzed 181 resections from 20 studies with a median follow-up of 2.3 years81. Overall, 

56 % of patients reached an Engel class I outcome, with significant negative prognosticators 

including generalized seizures, developmental delay, and multifocal abnormalities on 

electrographic or neuroimaging studies. Thus, while bilateral or multiple epileptogenic foci 

may make the surgical treatment of tuberous sclerosis challenging, seizure freedom can 

nonetheless be achieved in over half of carefully selected patients with careful preoperative 

evaluation.

Hemimegalencephaly and other causes of catastrophic hemispheric epilepsy

First described by Sims in 1835, hemimegalencephaly is a rare form of MCD involving 

abnormal proliferation of dysplastic neuronal and glial cells, leading to hypertrophy of the 

affected cerebral hemisphere [6, 50, 180]. It is found in approximately 0.1–0.3 % of 

epileptic children, but the pathogenesis remains largely unknown [50, 115]. Macrocephaly is 
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commonly the only physical finding in children with hemimegalencephaly, but 

hemigigantism and/or neurocutaneous lesions may be seen in syndromic variants [85]. Most 

children with this disorder develop a severe, progressive, and medically refractory epilepsy 

syndrome within the first 6 months of life, usually associated with marked cognitive and 

psychomotor impairments including contralateral hemiparesis and hemianopia [193]. 

Seizure types include partial motor seizures, tonic and atonic seizures, spasms, and 

myoclonic jerks [50, 122]. Thus far, surgical removal (anatomic hemispherectomy) or 

multifocal disconnection (functional hemispherectomy or hemispherotomy) of one brain 

hemisphere remains the most useful albeit radical treatment option for severe 

hemimegalencephaly to prevent further seizures, cognitive decline, and premature death 

[85].

Among children who receive hemispherectomy for severe hemispheric epilepsy, 

hemimegalencephaly accounts for 30– 50 % of the cases [51, 116]. Other etiologies of 

catastrophic hemispheric epilepsy include Rasmussen encephalitis, Sturge–Weber syndrome, 

intracerebral hemorrhage, ischemic stroke, traumatic brain injury, and other cortical 

malformations [138]. Hemispherectomy was first described by Dandy in 1928 for 

glioblastoma resection and by McKenzie in 1938 for epilepsy treatment [45, 135]. In 1973, 

Rasmussen [159] proposed modifying the traditional anatomic hemispherectomy to reduce 

morbidity associated with hydrocephalus and blood loss, which at the time were thought to 

result from “superficial hemosiderosis.” 159While several variations of functional 

hemispherectomy or hemispherotomy have since been described, and there is some 

inconsistency in the use of these terms among authors, the procedure typically involves a 

large central resection and temporal lobectomy plus callosotomy and disconnection of the 

frontal and parieto-occipital residual brain [86, 138, 146, 159]. Overall, 70–85 % children 

who receive hemispherectomy for hemimegalencephaly or another epileptogenic 

hemispheric condition achieve seizure freedom [2, 50, 176]. Functional hemispherectomy is 

associated with comparable early seizure outcomes with less morbidity than anatomical 

hemispherectomy, but late seizure recurrence may be more likely with a less extensive 

procedure [37, 86, 98].

Moosa and colleagues [138] recently published a single-institution experience of 170 

hemispherectomy procedures in children with epilepsy, representing the largest such series 

to our knowledge138. Survival analysis revealed the probability of post-surgical seizure 

freedom to be 76 % at 1 year and 63 % at 5 years, with 66 % of children reported as seizure-

free at last follow-up (mean, 5.3 years). Bilateral PET abnormalities predicted early seizure 

recurrence, and there was no perioperative mortality. Complications were not investigated by 

Mossa et al., but are typically more common with hemispherectomy compared to more focal 

epilepsy resections [51]. Adverse outcomes may include worsened hemiparesis, hemianopia, 

or language function and the need for ventriculoperitoneal shunting [51, 86, 159]. However, 

because hemispherectomy is most often performed in children suffering from marked 

hemiparesis and hemianopia, the additional deficits incurred through surgery are generally 

low [51, 86, 206]. In certain cases of likely hemispheric epilepsy, one challenging decision is 

whether to perform focal resection only in order to limit surgical morbidity or proceed 

directly to hemispherectomy in order to increase the likelihood of seizure freedom. Several 

factors should be weighed, including severity of illness, radiographic and electrographic 
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findings, patient age and capacity for neural remodeling, baseline neurological deficits, and 

the results of family discussions. Given the progressive neurological insult caused by 

persistent seizures, and the greater potential for recovery in a young plastic brain, early 

hemispherectomy/ hemispherotomy remains a valuable treatment option in children with 

intractable hemispheric epilepsy.

Vascular malformations

Vascular malformations of the brain, particularly cavernous malformations and 

arteriovenous malformations, are commonly associated with epilepsy [71, 79]. Indications 

for surgical resection include the prevention of intracranial hemorrhage and/or the treatment 

of medically intractable seizures. While a few case reports have proposed occasional 

ictogenesis with other cerebral vascular malformations, such as developmental venous 

anomalies and capillary telangiectasia [137, 172, 185], these lesions are not typically 

associated with epilepsy and will not be considered further.

Cavernous malformations

Cerebral cavernous malformations (i.e., cavernomas) are endothelial-lined vascular lesions 

comprising dilated blood-filled sinusoids without intervening brain parenchyma and may be 

associated with intracranial hemorrhage [5, 149, 163]. Seizures are the most common 

presenting symptom of supratentorial cavernomas, likely arising from the excitotoxic effects 

of blood products on perilesional brain tissue [196, 200, 209]. Overall, epilepsy affects 35–

70 % of patients with cavernous malformations, and about 40% of these individuals progress 

to pharmacoresistant epilepsy [30, 140, 170]. Most studies examining the surgical treatment 

of cavernomas focus on hemorrhage prevention, but clinically significant hemorrhage is not 

as common with these lesions as with brain arteriovenous malformations (AVMs) [124, 149, 

162]. Thus, abolishing seizures is an important and often underappreciated goal in managing 

these lesions, given the morbid effects of intractable lesional epilepsy.

Our group performed a retrospective cohort study of 164 individuals receiving microsurgical 

resection of supratentorial cavernomas, of whom 62% presented with seizures and 35% had 

pharmacoresistant epilepsy [30]. Seizures were more common in patients with a temporal 

lobe lesion and, interestingly, the absence of symptomatic hemorrhage. Among the 44 

patients with intractable epilepsy, 73 % were entirely seizure-free after surgery, with another 

11 % reporting only rare seizures. Predictors of complete seizure freedom were gross total 

resection, smaller lesion diameter, and the absence of secondarily generalized seizures [30]. 

Comparable outcomes at other centers are reflected by a recent systematic review of 31 

studies including 1,226 patients with surgically resected supratentorial cavernomas [71]. 

Overall, 75 % of patients were seizure-free after microsurgical resection, and modifiable 

predictors of this outcome included gross total resection, earlier surgical intervention, 

smaller lesions, preoperative seizure control with AEDs, a lack of multiple cavernomas, and 

a history of partial seizures only [71].

While the benefits of gross total resection in cavernoma surgery are clear, one controversy 

regarding extent of resection remains; that is, whether or not to excise the hemosiderin-

stained parenchyma that surrounds the cavernoma, given the potential that this area may 
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represent the true epileptogenic zone [8, 22, 101, 184, 218, 222]. Some groups have 

described improved seizure outcomes with extended lesionectomy including this 

hemosiderin ring [8, 101, 184], while others have found no additional benefit with adding 

adjacent corticectomy to lesionectomy alone [30, 71, 218, 222]. Given these conflicting 

reports, and the theoretical potential for additional morbidity with extended corticectomy, 

additional prospective data regarding this issue will be important.

Arteriovenous malformations

Brain AVMs are vascular lesions comprising tortuous anastomotic arteries and veins in 

cerebral parenchyma without intervening capillaries, resulting in arteriovenous shunting at a 

central nidus [145, 208]. AVMs are the most frequent cause of intracranial hemorrhage in 

young adults and children [15, 167], and seizures are the second most common presenting 

symptom with these lesions [90, 191]. The mechanisms of epileptogenesis in AVMs are not 

fully known, but have been proposed to include cerebral ischemia from neighboring 

arteriovenous shunting, hemosiderin deposition, gliosis, demyelination, and kindling of 

excitatory synapses [125, 129, 191, 211, 216]. Various authors have reported the incidence 

of epilepsy with brain AVMs as anywhere from 12 to 57 % of patients [39, 107, 110, 118, 

123, 143]. Epilepsy is more likely in patients with a history of hemorrhage, with larger 

lesions, and with AVM location in the temporal or frontal lobes [39, 54, 79, 104, 110, 118, 

157]. Lesional epilepsy in AVM patients leads to increased morbidity [90, 191], but this is 

often overshadowed by the clinical focus on predicting and preventing intracerebral 

hemorrhage [89, 144, 150, 208].

Several case series have examined rates of seizure outcomes in the surgical treatment of 

AVMs causing seizures, with Engel class I outcomes reported in 49–94 % of patients [79, 

107, 123, 157, 191, 217]. In a recent observational study of 440 patients with supratentorial 

AVMs undergoing resection at our institution, 130 (30 %) had preoperative seizures [79]. 

Among these patients, seizure was the presenting symptom in 98 (75 %) and led to 

medically refractory epilepsy in 23 patients (18 %). After a mean postoperative follow-up of 

21 months, 93 % of patients with preoperative seizures achieved freedom from disabling 

seizures, including 91 % of those with pharmacoresistant epilepsy [79]. Overall, seizure 

control is an important though undervalued goal in AVM surgery, secondary only to the 

prevention of devastating intracranial hemorrhage.

Commentary

Seizure freedom is frequently achieved in resective epilepsy surgery

Drug-refractory epilepsy is associated with cognitive and neuropsychological deficits and 

diminished quality of life [60], and a 0.5–1 % annual mortality rate [182, 190]. In contrast, 

epilepsy surgery is associated with only 2 % significant morbidity, such as surgical site 

infection or visual field deficit, and 0.24 % total surgical mortality [182, 190, 205], and 

longer quality-adjusted life span [34]. Outcomes are more favorable in surgery for mesial 

TLE surgery than focal neocortical epilepsy and vary somewhat by epilepsy etiology. The 

four most common distinct pathological entities found in surgical epilepsy specimens are 

MTS, brain tumor, MCD, and vascular malformation.
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Table 3 provides a summary of seizure freedom rates and predictors across epilepsy 

etiologies and various subtypes. With regard to mesial TLE surgery, seizure outcome data 

are taken from randomized controlled trials. For other resective procedures, data reflect the 

findings of meta-analyses/systematic reviews of uncontrolled observational case series 

across the literature, where available. Overall, resective epilepsy surgery produces seizure 

freedom in about two thirds of patients with mesial TLE and in approximately one half of 

individuals with other focal epilepsy etiologies. While seizure freedom is reported more 

frequently in the surgical treatment of some lesions (e.g., vascular malformation, 

glioneuronal tumor) than others (e.g., focal MCD, glioma), direct comparison of these 

outcomes is precluded by an absence of prospective controlled studies and because the 

primary surgical goal may differ by pathology. For instance, while seizure freedom is the 

primary goal in surgery for MTS, seizure control may be secondary to oncologic treatment 

or hemorrhage prevention in glioma or AVM resection, respectively.

The importance of gross total resection and early surgical intervention

Certain predictors of seizure freedom in epilepsy surgery are commonly observed across 

various epilepsy etiologies (Table 3). They include MTS, gross total lesion resection, early 

operative intervention, localized and concordant MRI/ EEG findings, and lack of secondarily 

generalized seizures. Of these, extent of resection and time to surgery are potentially 

modifiable variables.

Subtotal lesionectomy increases not only the risk of continued seizures but also the risk of 

intracranial hemorrhage or oncologic progression in cases of vascular malformation or brain 

tumor, respectively [32, 70, 79, 188]. Gross total resection may prove challenging with a 

lesion involving eloquent brain or located in a region that is difficult to access surgically, but 

various technological tools can facilitate this surgical endeavor. In certain patients, the use of 

direct cortical stimulation for invasive mapping of eloquent brain – including motor, sensory, 

and language regions—improves the ability to safely maximize resection [29, 171]. 

Noninvasive neuroimaging techniques, such as white matter tract mapping with diffusion 

tensor imaging or functional gray matter localization with magnetoencephalograpy or 

functional MRI, may also help guide surgical planning [13, 52, 134]. The use of 

intraoperative MRI to facilitate more aggressive resection has also been examined, with 

positive results reported in one randomized controlled study of glioma surgery [177]. 

Similarly, intraoperative MR angiography or invasive cerebral angiography has been 

proposed to guide complete microsurgical obliteration of AVMs, but these techniques have 

not been evaluated prospectively [10, 56]. Nevertheless, despite the positive prognostic value 

of extent of resection in lesional epilepsy surgery, patient safety remains the primary surgical 

concern, and primum non nocere the guiding principle.

Early surgical intervention in drug-resistant epilepsy is associated with an increased 

likelihood of postoperative seizure freedom, and seizure freedom is the single most 

important predictor of quality of life in epilepsy [55, 132]. Early intervention is also 

important, however, to reduce the duration of persistent epilepsy and its damaging effects on 

the brain. Pharmacoresistant epilepsy is associated with progressive neuropsychological and 

cognitive deficits [60, 68, 105], a 0.5–1 % annual mortality rate, and a lifetime standardized 
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mortality two to three times higher than the general population [182, 190, 205]. In contrast, 

resective epilepsy surgery is associated with approximately 2 % significant morbidity and 

0.24 % total surgical mortality [182, 190, 205], as well as improvement in overall life span, 

neuropsychological profile, and quality-adjusted life years [34, 197, 201]. With temporal 

lobectomy, the value of early surgical intervention has been validated by class I evidence as 

newly refractory TLE patients experience significantly improved seizure outcomes with 

early surgery compared to continued medical therapy [61]. Furthermore, it is now well 

established that focal epilepsy patients are unlikely to achieve seizure freedom with 

medication alone after the failure of two or more separate AED regimens, leaving little 

reason to delay surgical evaluation [61, 102, 126, 127]. Thus, evidence-based practice 

guidelines strongly encourage early referral of children and adults with epilepsy to a 

comprehensive epilepsy center for multidisciplinary medical and surgical evaluation [41, 62, 

63, 128].

Limitations

The goal of this manuscript was to provide a brief but broad overview of seizure freedom 

rates and predictors in resective epilepsy surgery by pathological entity. While a detailed 

examination of other endpoints in the surgical treatment of epilepsy —neuropsychological 

and cognitive outcomes, quality of life assessments, surgical complication rates, patient 

satisfaction, and medication discontinuation—is beyond the scope of this focused review, 

they remain critical considerations. Although we did not consider non-resective surgical 

therapies in this review, such as callosotomy or device implantation, these remain important 

palliative treatment options for individuals who are not candidates for definitive resection. 

Similarly, while alternative treatment options exist for some lesions discussed herein (e.g., 

stereotactic radiosurgery or endovascular embolization of an AVM), they are beyond the 

scope of our present focus. Next, a bias toward our own institutional proceedings is present 

in this review, intended to reflect our group’s treatment experiences. However, a thorough 

and comprehensive evaluation of the literature was performed to ensure that our clinical 

results are comparable to those of other groups, and differences are described where 

applicable. Finally, only temporal lobectomy outcomes have been evaluated by randomized 

controlled trials, and all other results discussed here are the product of uncontrolled 

observational case series and, therefore, inherently prone to bias. Randomized controlled 

trials evaluating the efficacy of resective epilepsy surgery in focal neocortical epilepsy are 

critically needed.

Conclusions

Resective epilepsy surgery is a safe and effective treatment for patients with drug-resistant 

epilepsy harboring a localizable seizure focus. Surgery leads to seizure freedom in 

approximately two thirds of patients with mesial TLE and about one half of individuals with 

focal neocortical epilepsy, with the former statistic validated by two randomized controlled 

trials. While several factors are associated with seizure outcome in epilepsy surgery, two 

modifiable predictors of seizure freedom include early operative intervention and, in patients 

with a discrete lesion, gross total resection. Practice guidelines recommend that epilepsy 

patients experiencing persistent seizures after two or more medication trials should be 
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referred to a comprehensive epilepsy center for multidisciplinary evaluation, including 

surgical consideration.
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Table 2

Three-tiered ILAE classification system of FCD distinguishes isolated forms (FCD types I and II) from those 

associated with another principal lesion (FCD type III)

FCD type I (isolated) Focal cortical dysplasia with
abnormal radial cortical
lamination (FCD type Ia)

Focal cortical dysplasia with
abnormal tangential cortical
lamination (FCD type Ib)

Focal cortical dysplasia with
abnormal radial and tangential
cortical lamination (FCD type Ic)

FCD type II 
(isolated)

Focal cortical dysplasia
with dysmorphic
neurons (FCD type IIa)

Focal cortical dysplasia with
dysmorphic neurons and
balloon cells (FCD type IIb)

FCD type III 
(associated
with principal lesion)

FCD type III (associated
with principal lesion)

Cortical lamination 
abnormalities
in the temporal lobe associated
with hippocampal sclerosis
(FCD type IIIa)

Cortical lamination
abnormalities adjacent
to a glial or glioneuronal
tumor (FCD type IIIb)

Cortical lamination
abnormalities adjacent to
vascular malformation
(FCD type IIIc)

FCD type III (not otherwise specified): if clinically/radiologically suspected principal lesion is not available for microscopic inspection. Please note 
that the rare association between FCD types IIa and IIb with hippocampal sclerosis, tumors, or vascular malformations should not be classified as 
FCD type III variant. Reprinted with permission from Blümcke et al. [19]
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Table 3

Seizure freedom and outcome predictors in resective epilepsy surgery

Epilepsy etiology/cause Specific pathology Engel class I
outcome

Predictors of favorable outcome References included

Mesial temporal lobe
epilepsy

Mesial temporal sclerosis
and other causes

58–73 %a Febrile seizures, mesial temporal
sclerosis, abnormal MRI, tumor,
EEG/MRI concordance

[61, 63, 194, 207]

Tumor Glioneuronal tumor 72–80 %b Early intervention, gross total resection,
lack of generalized seizures

[67, 214]

Low grade glioma 67 %b Gross total resection, early intervention [66]

Malformation of cortical
development

Focal cortical dysplasia 58 %b Gross total resection, lack of generalized
seizures, temporal location, abnormal
MRI, type II classification

[168]

Tuberous sclerosis 56–57 %b Lack of intellectual disability, lack of
generalized seizures, localized ictal
EEG, EEG/MRI concordance

[81, 114]

Severe hemispheric epilepsy
(hemispherectomy)

66–85 %c Early intervention, young age,
Sturge–Weber, lack of
hemimegalencephaly,
unilateral PET abnormality

[2, 138, 176]

Vascular malformation Cavernous malformation 75 %b Gross total resection, early intervention,
small lesion, single lesion, lack of
generalized seizures

[71]

Arteriovenous malformation 70–91 %c Early intervention, young age, gross
total obliteration, lack of deep artery
perforators

[79, 191, 217]

a
Data obtained from randomized controlled trial

b
Data obtained from systematic reviews and meta-analyses (where trial data are not available)

c
Data obtained from at least three large case series (where meta-analysis data are not available)
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