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Rates of Change of Eigenvalues and Eigenvectors in
Damped Dynamic System
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Rates of change of eigenvalues and eigenvectors of a damped linear discrete dynamic system with respect to the system param-
eters are presented. A non-proportional viscous damping model is assumed. Due to the non-proportional nature of the damping the
mode shapes and natural frequencies become complex, and as a consequence the sensitivities of eigenvalues and eigenvectors are also
complex. The results are presented in terms of the complex modes and frequencies of the second order system and the use of rather un-
desirable state-space representation is avoided. The usefulness of the derived expressions is demonstrated by considering an example
of a non-proportionally damped two degree-of-freedom system.

Introduction
Changes of the eigenvalues and eigenvectors of a linear vibrating

system due to changes in system parameters are of wide practical
interest. Motivation for this kind of study arises, on one hand, from
the need to come up with effective structural designs without per-
forming repeated dynamic analysis, and, on the other hand, from
the desire to visualise the changes in the dynamic response with
respect to system parameters. Besides, this kind of sensitivity anal-
ysis of eigenvalues and eigenvectors has an important role to play
in the area of fault detection of structures and modal updating meth-
ods. Rates of change of eigenvalues and eigenvectors are useful in
the study of bladed disks of turbomachinery where blade masses
and stiffness are nearly the same, or deliberately somewhat altered
(mistuned), and one investigates the modal sensitivities due to this
slight alteration. Eigensolution derivatives also constitute a central
role in the analysis of stochastically perturbed dynamical systems.
Possibly, the earliest work on the sensitivity of the eigenvalues was
carried out by Rayleigh1. In his classic monograph he derived the
changes in natural frequencies due to small changes in system pa-
rameters. Fox and Kapoor2 have given exact expressions for rates
of change of eigenvalues and eigenvectors with respect to any de-
sign variables. Their results were obtained in terms of changes in
the system property matrices and the eigensolutions of the structure
in its current state, and have been used extensively in a wide range
of application areas of structural dynamics. Nelson3. proposed an
efficient method to calculate eigenvector derivative which requires
only the eigenvalue and eigenvector under consideration. A com-
prehensive review of research on this kind of sensitivity analysis
can be obtained in Adelman and Haftka4.

The above-mentioned analytical methods are based on theun-
dampedfree vibration of the system. For damped systems, it is well
known that unless the damping matrix of the structure is propor-
tional to the inertia and/or stiffness matrices (proportional damp-
ing) or can be represented in the series form derived by Caughey5,
the mode shapes of the system will not coincide with the undamped
mode shapes. In the presence of general non-proportional viscous
damping, the equations of motion in the modal coordinates will be
coupled through the off-diagonal terms of the modal damping ma-
trix, and the mode shapes and natural frequencies of the structure
will in general be complex. The solution procedures for such non-
proportionally damped systems follow mainly two routes: the state
space method and approximate methods in ‘N -space’. The state-
space method (see Newland6) although exact in nature requires
significant numerical effort for obtaining the eigensolutions as the
size of the problem doubles. Moreover, this method also lacks
some of the intuitive simplicity of traditional modal analysis. For
these reasons there has been considerable research effort to analyse
non-proportionally damped structures inN -space. Most of these
methods either seek an optimal decoupling of the equations of mo-
tion or simply neglect the off-diagonal terms of the modal damping
matrix. It may be noted that following such methodologies the
mode shapes of the structure will still be real. The accuracy of
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these methods, other than the light damping assumption, depends
upon various factors, for example, frequency separation between
the modes, driving frequency, etc. (see Parket. al.7, Gawronski
and Sawicki8 and the references therein for discussions on these
topics). A convenient way to avoid the problems which arise due
to the use of real normal modes is to incorporate complex modes
in the analysis. Apart from the mathematical consistency, conduct-
ing experimental modal analysis also one often identifies complex
modes: as Sestieri and Ibrahim9 have put it ‘ ... it is ironic that
the real modes are in fact not real at all, in that in practice they do
not exist, while complex modes are those practically identifiable
from experimental tests. This implies that real modes are pure ab-
straction, in contrast with complex modes that are, therefore, the
only reality ! ’ But surprisingly in most of the current application
areas of structural dynamics which utilise the eigensolution deriva-
tives,e.g. modal updating, damage detection, design optimisation
and stochastic finite element methods, do not use complex modes
in the analysis but rely on the real undamped modes only. This is
partly because of the problem of considering appropriate damping
model in the structure and partly because of the unavailability of
complex eigensolution sensitivities. Although, there has been con-
siderable research efforts towards damping models, sensitivity of
complex eigenvalues and eigenvectors with respect to system pa-
rameters appear to have received very little attention in the existing
literature.

In this paper we determine the rates of change of complex natu-
ral frequencies and mode shapes with respect to some set of design
variables in non-proportionally damped discrete linear systems. It
is assumed that the system does not posses repeated eigenvalues. In
section , we briefly discuss the requisite mathematical background
on linear multiple-degree-of-freedom discrete systems needed for
further derivations. Sensitivity of complex eigenvalues is derived
in section in terms of complex modes, natural frequencies and
changes in the system property matrices. The approach taken here
avoids the use of state-space formulation. In section , sensitiv-
ity of complex eigenvectors is derived. The derivation method
uses state-space representation of equations of motion for inter-
mediate calculations and then relates the eigenvector sensitivities
to the complex eigenvectors of the second order system and to the
changes in the system property matrices. In section , a 2 degree-of-
freedom system which shows the ‘curve-veering’ phenomenon has
been considered to illustrate the application of the expression for
rates of changes of complex eigenvalues and eigenvectors. The re-
sults are carefully analysed and compared with presently available
sensitivity expressions of undamped real modes.

Background of Analytical Methods
The equations of motion for free vibration of a linear damped

discrete system withN degrees of freedom can be written as

Mü(t) + Cu̇(t) + Ku(t) = 0; t ≥ 0 (1)

whereM, C andK ∈ RN×N are mass, damping and stiffness
matrices,u(t) ∈ RN is the vector of the generalised coordinates
andt ∈ R+ denotes time. We seek a harmonic solution of the form
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u(t) = u exp[st], wheres = iω with i =
√−1 andω denotes

frequency. Substitution ofu(t) in equation (1) results

s2Mu + sCu + Ku = 0. (2)

This equation is satisfied by thei-th latent root,si, andi-th latent
vector,ui, of theλ−matrix problem (see Lancaster10), so that

s2
i Mui + siCui + Kui = 0, ∀ i = 1 · · ·N. (3)

In the context of structural dynamics theui are called mode shapes
and the natural frequenciesλi are defined bysi = iλi. Unless
system (1) is proportionally damped,i.e. C is simultaneously di-
agonalisable withM andK (conditions were derived by Caughey
and O’Kelly,11), in generalλi ∈ C andui ∈ CN . Several authors
have proposed methods to obtain complex modes and natural fre-
quencies inN -space. Rayleigh1 considered approximate methods
to determineλi andui by assuming the elements ofC are small but
otherwise general. Using perturbation analysis, Cronin12 has given
a power series expression of eigenvalues and eigenvectors. Re-
cently Woodhouse13 has extended Rayleigh’s analysis to the case
of more general linear damping models described by convolution
integrals of the generalised coordinates over the damping kernel
functions. Bhaskar14 developed a procedure to exactly obtainλi

andui by an iterative method. All of these methods calculate the
complex modes and frequencies with varying degree of accuracy
depending on various factors: for example amount of damping,
separation between the modes and number of terms retained in per-
turbation expansion, etc.

However, complex modes and frequencies can be exactly ob-
tained by the state space (first order) formalisms. Transforming
equation (1) into state space form we obtain

ż(t) = Az(t) (4)

whereA ∈ R2N×2N is the system matrix andz(t) ∈ R2N re-
sponse vector in the state space given by

A =

[
0 I

−M−1K −M−1C

]
; z(t) =

{
u(t)
u̇(t)

}
. (5)

In the above equation0 ∈ RN×N is the null matrix andI ∈ RN×N

is the identity matrix. The eigenvalue problem associated with the
above equation is now in term of an asymmetric matrix and can be
expressed as

Azi = sizi, ∀i = 1, · · · , 2N (6)

wheresi is the i−th eigenvalue andzi ∈ C2N is the i−th right
eigenvector which is related to the eigenvector of the second order
system as

zi =

{
ui

siui

}
. (7)

The left eigenvectoryi ∈ C2N associated withsi is defined by the
equation

yT
i A = siy

T
i (8)

where(•)T denotes matrix transpose. For distinct eigenvalues it is
easy to show that the right and left eigenvectors satisfy an orthog-
onality relationship, that is

yT
j zi = 0; ∀j 6= i (9)

and we may also normalise the eigenvectors so that

yT
i zi = 1. (10)

The above two equations imply that the dynamic system defined
by equation (4) posses a set ofbiorthonormaleigenvectors. As
a special case, when all eigenvalues are distinct, this set forms a
completeset. Henceforth in our discussion it will be assumed that
all the system eigenvalues are distinct.

Rates of Change of Eigenvalues
Suppose the structural system defined in (1) can be described by

a set ofm parameters (design variables),g = {g1, g2, · · · gm}T ∈
Rm, so that the mass, damping and stiffness matrices become
functions ofg, that isM,C andK : g → RN×N . Assume fur-
ther that the design variables undergo a small change of the form
∆g = {∆g1, ∆g2, · · ·∆gm}T ∈ Rm. For this small change, ne-
glecting higher order terms in the Taylor series, thei-th complex
eigenvalue can be expressed as

λ
(c)
i ≈ λi + ∆gT∇λi (11)

where λ
(c)
i ∈ C denotes the changed complex eigenvalue and

∇λi = {λi,1, λi,2, · · ·λi,m}T ∈ Cm. Hereλi,j = ∂λi
∂gj

is the
rate of change ofi-th eigenvalue with respect togj , which is to be
found. It may be noted that recently Bhaskar15 has derived an ex-
pression forλi,j by converting equation (3) to the state-space from
where the eigenvalue problem takes the Duncan form. Here we try
to derive an expression ofλi,j without going into the state space.

For i-th set, substitutingsi = iλi, equation (3) can be rewritten
as

Fiui = 0 (12)

where the regular matrix pencil

Fi ≡ F(λi,g) = −λ2
i M + iλiC + K. (13)

Premultiplication of equation (12) byuT
i yields

uT
i Fiui = 0. (14)

Differentiating the above equation with respect togj one obtains

uT
i,jFiui + uT

i Fi,jui + uT
i Fiui,j = 0 (15)

whereFi,j stands for∂Fi
∂gj

, and can be obtained by differentiating
equation (13) as

Fi,j =
[
λi,j (iC− 2λiM)− λ2

i M,j + iλiC,j + K,j

]
. (16)

Now taking the transpose of equation (12) and using the symmetry
property ofFi it can shown that the first and third terms of the
equation (15) are zero. Therefore we have

uT
i Fi,jui = 0 (17)

SubstitutingFi,j from equation (16) into the above equation one
writes

−λi,j uT
i (iC− 2λiM)ui = uT

i

[−λ2
i M,j + iλiC,j + K,j

]
ui

(18)
and again we note that the scalar term

uT
i (iC− 2λiM)ui = − 1

λ i

[
uT

i Fiui − uT
i (λ2

i M + K)ui

]
.

(19)
Finally, after using equation (14) and combining the above two
equations we can have

λi,j = λi

uT
i

[
K,j − λ2

i M,j + iλiC,j

]
ui

uT
i (λ2

i M + K)ui
(20)

which is the rate of change of thei-th complex eigenvalue. For the
undamped case, whenC = 0, λi → ωi andui → xi (ωi and
xi are undamped natural frequencies and modes satisfyingKxi =
ω2

i Mxi), with usual mass normalisation the denominator→ 2ω2
i ,

and we obtain

2ωiωi,j = (ω2
i ),j = xT

i

[
K,j − ω2

i M,j

]
xi. (21)

This is exactly the well-known relationship derived by Fox and
Kapoor2 for the undamped eigenvalue problem. Thus, equation
(20) can be viewed as a generalisation of the familiar expression
of rates of change of undamped eigenvalues to the damped case.
Following observations may be noted from this result
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• The derivative of a given eigenvalue requires the knowledge
of only the corresponding eigenvalue and eigenvector under
consideration, and thus a complete solution of the eigenprob-
lem, or from the experimental point of view, eigensolution
determination forall the modes is not required.

• Changes in mass and/or stiffness introduce more change in
the real part of the eigenvalues whereas changes in the damp-
ing introduce more change in the imaginary part.

Sinceλi,j is complex in equation (20), it can be effectively used
to determine the rates of change of Q-factors with respect to the
system parameters. For small damping, the Q-factor for thei-th
mode is expressed asQi = <(λi)/2=(λi), with <(•) and=(•)
denoting real and imaginary parts respectively. Consequently the
rate of change can be evaluated from

Qi,j =
1

2

[<(λi,j)=(λi)−<(λi)=(λi,j)

=(λi)2

]
. (22)

This expression may turn out to be useful since we often directly
measure the Q-factors from experiment.

Rates of Change of Eigenvectors
For a small change in the design variables,∆g ∈ Rm, thei-th

complex eigenvector can be expressed as

u
(c)
i ≈ ui + [∇ui]∆g (23)

whereu
(c)
i ∈ CN denotes the changed complex eigenvector and

[∇ui] = [ui,1,ui,2 · · ·ui,m] ,∈ CN×m, with ui,j = ∂ui
∂gj

∈ CN

is thei-th complex modal sensitivity matrix. Sinceui is the first
N rows ofzi (see equation (7)) we first try to derivezi,j and sub-
sequently obtainui,j using their relationship.

Differentiating (6) with respect togj one obtains

(A− si)zi,j = −(A,j − si,j)zi. (24)

Since it has been assumed thatA has distinct eigenvalues the right
eigenvectors,zi, forms a complete set of vectors. Therefore we can
expandzi,j as

zi,j =

2N∑

l=1

aijlzl (25)

whereaijl, ∀l = 1, · · · 2N are set of complex constants to be de-
termined. Substitutingzi,j in equation (24) and premultiplying by
the left eigenvectoryT

k one obtains the scalar equation

2N∑

l=1

(yT
k Azl − siy

T
k zl) aijl = −yT

k A,jzi + si,jy
T
k zi. (26)

Using the orthogonality relationship of left and right eigenvectors
from the above equation we obtain

aijk =
yT

k A,jzi

si − sk
; ∀k = 1, · · · , 2N ; 6= i (27)

Theaijk as expressed above is not very useful since it is in terms of
the left and right eigenvectors of the first order system. In order to
obtain a relationship with the eigenvectors of second order system
we assume

yi =

{
y1i

y2i

}
(28)

wherey1i,y2i ∈ CN . Substitutingyi in equation (8) and taking
transpose one obtains

siy1i = −KM−1y2i

siy2i = y1i −CM−1y2i

or y1i =
[
siI + CM−1]y2i.

(29)

Elimination ofy1i from the above two equation yields

si

(
siy2i + CM−1y2i

)
= −KM−1y2i

or
[
s2

i M + siC + K
] (

M−1y2i

)
= 0.

(30)

By comparison of this equation with equation (3) it can be seen that
the vectorM−1y2i is parallel toui; that is, there exist a non-zero
βi ∈ C such that

M−1y2i = βiui or y2i = βiMui. (31)

Now substitutingy1i, y2i and using the definition ofzi from equa-
tion (7) into the normalisation condition (10) the scalarconstantβi

can be obtained as

βi =
1

uT
i [2siM + C]ui

. (32)

Usingy2i from equation (31) into the second equation of (29) we
obtain

yi = βiPizi; where Pi =

[
siM + C 0

0
M

si

]
∈ C2N×2N .

(33)
The above equation along with the definition ofzi in (7) com-
pletely relates the left and right eigenvectors of the first order
system to the eigenvectors of the second order system.

The derivative of the system matrixA can be expressed as

A,j =

[
0 0[

M−1K
]
,j

[
M−1C

]
,j

]

=

[
0 0

−M−2M,jK + M−1K,j −M−2M,jC + M−1C,j

]

(34)

from which after some simplifications the numerator of the right
hand side of equation (27) can be obtained as

yT
k A,jzi = −βku

T
k

{−M−1M,j [K + siC] + C,j + K,j

}
ui.
(35)

SinceI = MM−1, I,j = M,jM
−1 + M

[−M−2M,j

]
= 0 or

M,jM
−1 = M−1M,j , that isM−1 andM,j commute in prod-

uct. Using this property and also from (3) noting thats2
i ui =

−M−1 [siC + K]ui we finally obtain

aijk = −βk

uk

[
s2

i M,j + siC,j + K,j

]
ui

si − sk
; ∀k = 1, · · · , 2N ; 6= i.

(36)
This equation relates theaijk with the complex modes of the sec-
ond order system.

To obtainaiji we begin with differentiation of the normalisation
condition (10) with respect togj and obtain the relationship

yT
i,jzi + yT

i zi,j = 0. (37)

Substitution ofyi from equation (33) further leads to

βi

{
zT

i,jP
T
i zi + zT

i PT
i,jzi + zT

i PT
i zi,j

}
= 0 (38)

wherePi,j can be derived from equation (33) as

Pi,j =




si,jM + siM,j + C,j 0

0 −M

s2
i

si,j +
M,j

si


 . (39)

SincePi is a symmetric matrix, equation (38) can be rearranged as

2
(
βiz

T
i Pi

)
zi,j = −βiz

T
i Pi,jzi. (40)
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Note that the term within the bracket isyT
i (see equation (33)).

Using the assumed expansion ofzi,j from (27) this equation reads

2yT
i

2N∑

l=1

aijlzl = −βiz
T
i Pi,jzi. (41)

The left hand side of the above equation can be further simplified

zT
i Pi,jzi =uT

i [si,jM + siM,j + C,j ]ui+

uT
i si

[
−M

s2
i

si,j +
M,j

si

]
siui = uT

i [2siM,j + C,j ]ui.

(42)

Finally using the orthogonality property of left and right eigenvec-
tors, from equation (41) we obtain

aiji = −1

2

uT
i [2siM,j + C,j ]ui

uT
i [2siM + C]ui

. (43)

In the above equationaiji is expressed in terms of the complex
modes of the second order system. Now recalling the definition of
zi in (7), from the firstN rows of equation (25) one can write

ui,j = aijiui +

2N∑

k 6=i

aijkuk = −1

2

uT
i [2siM,j + C,j ]ui

uT
i [2siM + C]ui

ui

−
2N∑

k 6=i

βk

uk

[
s2

i M,j + siC,j + K,j

]
ui

si − sk
uk.

(44)

We know that for any real symmetric system first order eigenvalues
and eigenvectors appear in complex conjugate pairs. Using usual
definition of natural frequency, that is,sk = iλk and consequently
s∗k = −iλ∗k, where(•)∗ denotes complex conjugate, the above
equation can be rewritten in a more convenient form as

ui,j = −1

2

uT
i [M,j − iC,j/2λi]ui

uT
i [M− iC/2λi]ui

ui

+

N∑

k 6=i

[
αk(uT

k F̃i,jui)uk

λi − λk
− α∗k(u∗

T

k F̃∗i,ju
∗
i )u

∗
k

λi + λ∗k

] (45)

where

F̃i,j =
[
K,j − λ2

i M,j + iλiC,j

]

and αk = iβk =
1

uT
k [2λkM− iC]uk

.

This result is a generalisation of the known expression of rates of
change of real undamped eigenvectors to complex eigenvectors.
The following observations can be made from this result

• Unlike the eigenvalue derivative, the derivative of a given
complex eigenvector requires the knowledge of all the other
complex eigenvalues and eigenvectors.

• The sensitivity depends very much on the modes whose fre-
quency is close to that of the considered mode.

• Like eigenvalue derivative, changes in mass and/or stiffness
introduce more changes in the real part of the eigenvector
whereas changes in damping introduce more changes in the
imaginary part.

From equation (45), it is easy to see that in the undamped limit
C → 0, and consequentlyλk, λ∗k → ωk; uk,u∗k → xk;
F̃i,j , F̃

∗
i,j →

[
K,j − ω2

i M,j

]
and also with usual mass normal-

isation of the undamped modesαk, α∗k →
1

2ωk
reduces the above

equation exactly to the corresponding well known expression de-
rived by Fox and Kapoor2 for derivative of undamped modes.
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Fig. 1 Two degree-of-system shows veering,m = 1 kg, k1 = 1000
N/m, c = 4.0 Ns/m

Example: Two Degree of Freedom System
1. Rates of Change of Eigenvalues:
A simple 2 degree-of-freedom system has been considered to illus-
trate a possible use of the expressions developed so far. Figure 1
shows the example taken together with the numerical values. When
eigenvalues are plotted versus a system parameter they create fam-
ily of ‘root loci’. When two loci approach together they may cross
or rapidly diverge. The later case is called ‘curve veering’. During
veering, rapid changes take place in the eigensolutions, as Leissa16

pointed out ‘ ... the (eigenfunctions) must undergo violent change
− figuratively speaking, a dragonfly one instant, a butterfly the
next, and something indescribable in between’. Thus this is an
interesting problem for applying the general results derived in this
paper.
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Fig. 2 Imaginary part of rate of change of the first natural frequency,
λ1, with respect to the damping parameter,c

Figure 2 shows the imaginary part (normalised by dividing with√
k1/m) of the rate of change of first natural frequency with re-

spect to the damping parameter ‘c’ over a parameter variation ofk2

ands. This plot was obtained by direct programming of equation
(20) in Matlab. The imaginary part has been chosen to be plotted
here because a change in damping is expected to contribute a sig-
nificant change in the imaginary part. The sharp rise of the rate
in the low-value region ofk2 ands could be intuitively guessed
because there the damper becomes the only ‘connecting element’
between the two masses and so any change made there is expected
to have a strong effect. As we move near to the veering range
(k2 ≈ k1 ands ≈ 0) the story becomes quite different. In the
first mode, the two masses move in the same direction, in fact in
the limit the motion approaches a ‘rigid body mode’. Here, the
change is no longer remains sensitive to the changes in connecting
the element (i.e. only the damper sinces ≈ 0) as hardly any force
transmission takes place between the two masses. For this reason
we expect a sharp fall in the rate of change as can be noticed along
thes ≈ 0 region of the figure. For the region whens is large, we
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Fig. 3 Imaginary part of rate of change of the second natural fre-
quency,λ2, with respect to the damping parameter,c

also observe a lower value of rate of change, but the reason there
is different. The stiffness element ‘s’ shares most of the force be-
ing transmitted between the two masses and hence does not depend
much on the change of the value of the damper. A similar plot has
been shown in figure 3 for the second natural frequency. Unlike
the previous case, here the rate of change increases in the veering
range. For the second mode the masses move in the opposite direc-
tion and in the veering range the difference between them becomes
maximal. Sinces ≈ 0, only the damper is being stretched and as
a result of this, a small change there produces a large effect. Thus,
the use of equation (20) can provide good physical insight into the
problem and can effectively be used in modal updating, damage
detection and for design purposes by taking the damping matrix to-
gether with the mass and stiffness matrices improving the current
practice of using the mass and stiffness matrices only.
Rates of Change of Eigenvectors:
Rates of change of eigenvectors for the problem shown in figure 1
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Fig. 4 Real part of rate of change of the first eigenvector with respect
to the stiffness parameterk2

can directly be obtained from equation (45). Here we have focused
our attention to calculate the rates of change of eigenvectors with
respect to the parameterk2. Figure 4 shows the real part of rates
of change of the first eigenvector normalised by itsL2 norm (that

is <
{

du1
dk2

}
/ ‖ u ‖) plotted over a variation ofk2/k1 from 0 to

3 for both the coordinates. The value of the spring constant for the
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connecting spring is kept fixed ats = 100 N/m. The real part of
the sensitivity of complex eigenvectors has been chosen mainly for
two reasons:(a) any change in stiffness is expected to have made
more changes in the real part; and (b) to compare it with the corre-
sponding changes of the real undamped modes. Derivative of the
first eigenvector (normalised by itsL2 norm) with respect tok2

corresponding to the undamped system (i.e removing the damper)
is also shown in the same figure (see the figure legend for details).
This is calculated from the expression derived by Fox and Kapoor
(1968). Similar plots for the second eigenvector are shown in fig-
ure 5. Both of these figures reveal a common feature: around the
veering rangei.e. 0.5 < k2/k1 < 1.5, the damped and the un-
damped sensitivities show considerable differences while outside
this region they almost traces each other. A physical explanation
of this phenomenon can be given. For the problem considered here
the damper acts as an additional ‘connecting element’ between the
two masses together with the spring ‘s’. As a result it ‘prevents’
the system to be close to show a ‘strong’ veering effect (i.e. when
k2 = k1 and the force transmission between the masses is close to
zero) and thus reduces the sensitivity of both the modes. However,
for the first mode both masses move in the same direction and the
damper has less effect compared to second mode where the masses
move in the opposite directions and have much greater effect on the
sensitivities.

To analyse the results from quantitative point of view at this
point it is interesting to look at the variation of the modal Q-factors
shown in figure 6. For the first mode Q-factor is quite high (in the
order of≈ 103, i.e. quite less damping) near the veering range
but still the sensitivities of the undamped mode and that of the real
part of the complex mode for both coordinates are quite different.
Again, away from the veering range,k2/k1 > 2, the Q-factor is
low but the sensitivities of the undamped mode and that of real part
of the complex mode are quite similar. This is opposite to what we
normally expect, as the common belief is that, when the Q-factors
are high, that is modal dampings are less, the undamped modes
and the real part of complex modes should behave similarly and
vice versa. For the second mode the Q-factor does not change very
much due to a variation ofk2 except becomes bit lower in the vicin-
ity of the veering range. But the difference between the sensitivities
of the undamped mode and that of real part of the complex mode
for both coordinates changes much more significantly than the Q-
factor. For exampleQ2 ≈ 9 for k2/k1 = 1 andQ2 ≈ 11 for
k2/k1 = 2, but the sensitivity of the undamped mode and that of
real part of the complex mode is much different whenk2/k1 = 1
and quite similar whenk2/k1 = 2. This demonstrates that even
when the Q-factors are similar, the sensitivity of the undamped
modes and that of the real part of the complex modes can be sig-
nificantly different. Thus, use of the expression for derivatives of
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undamped mode shapes can lead to a significant error even when
the damping is very low and the expressions derived in this paper
should be used for any kind of study involving such a sensitivity
analysis.
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It may be noted that since the expression in equation (20) and
(45) has been derived exactly, the numerical results obtained here
are also exact within the precision of the arithmetic used for the cal-
culations. The only instance for arriving at an approximate result is
when approximate complex frequencies and modes are used in the
analysis. However, for this example it was verified that the use of
approximate methods to obtain complex eigensolutions inN -space
reported in the literature12,13,14 and the exact ones obtained from
the state space method produce negligible discrepancy. Since in
most engineering applications we normally do not encounter very
high value of damping one can use approximate methods to ob-
tain eigensolusions inN -space in conjunction with the sensitivity
expressions derived here. This will allow the analyst to study the
rates of change of eigenvalues and eigenvectors of non-classically
damped systems in a similar way to those of undamped systems.

Conclusion
Rates of change of eigenvalues and eigenvectors of linear

damped discrete systems with respect to the system parameters
have been derived. In the presence of general non-proportional
viscous damping, the eigenvalues and eigenvectors of the system
become complex. The results are presented in terms of changes
in mass, damping, stiffness matrices and complex eigensolutions
of the second order system so that the state-space representation
of equations of motion can be avoided. The expressions derived
hereby generalise earlier results on derivatives of eigenvalues and
eigenvectors of undamped systems to the damped systems. It was
shown through an example problem that use of the expression for
derivative of undamped modes can give rise to erroneous results
even when the modal damping is quite low. So for a non-classically
damped system the expressions for rates of change of eigenvalues
and eigenvectors developed in this paper should be used. These
complex eigensolution derivatives can be useful in various appli-
cation areas, for example, finite element model updating, damage
detection, design optimisation and system stochasticity analysis re-
laxing the present restriction to use the real undamped modes only.
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