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RATES OF CONTRACTION FOR POSTERIOR DISTRIBUTIONS
IN Lr -METRICS, 1 ≤ r ≤ ∞

BY EVARIST GINÉ AND RICHARD NICKL

University of Connecticut and University of Cambridge

The frequentist behavior of nonparametric Bayes estimates, more specif-
ically, rates of contraction of the posterior distributions to shrinking Lr -
norm neighborhoods, 1 ≤ r ≤ ∞, of the unknown parameter, are studied.
A theorem for nonparametric density estimation is proved under general
approximation-theoretic assumptions on the prior. The result is applied to
a variety of common examples, including Gaussian process, wavelet series,
normal mixture and histogram priors. The rates of contraction are minimax-
optimal for 1 ≤ r ≤ 2, but deteriorate as r increases beyond 2. In the case of
Gaussian nonparametric regression a Gaussian prior is devised for which the
posterior contracts at the optimal rate in all Lr -norms, 1 ≤ r ≤ ∞.

1. Introduction. In finite-dimensional statistical models the Bernstein–von
Mises theorem provides a frequentist justification of the use of Bayesian methods.
In the case of infinite-dimensional models, consistency properties in weak metrics
hold under relatively mild conditions; see Schwartz [28]. Consistency in stronger
metrics was considered by Barron, Schervish and Wasserman [1] and by Ghosal,
Ghosh and Ramamoorthi [9], and, shortly after, Ghosal, Ghosh and van der Vaart
[10] and Shen and Wasserman [30] developed techniques that allow us to prove
frequentist rates of contraction of the posterior to the true infinite-dimensional pa-
rameter in the Hellinger metric, if the prior is suitably chosen according to the
structure of the nonparametric problem at hand. This led to further progress re-
cently; we refer to [11, 12, 32, 34] and the references therein.

This literature has been successful in generalizing the scope of these techniques
to a variety of different statistical models, and has naturally focussed on consis-
tency and rates of contraction results in the Hellinger distance. For instance, if p0
is the unknown density to be estimated, and if �(·|X1, . . . ,Xn) is the posterior
based on a prior � and a sample X1, . . . ,Xn with joint law P n

0 , results of the kind

�
(
p :h(p,p0) ≥ εn|X1, . . . ,Xn

) → 0 in P n
0 probability(1)

were established, where h2(f, g) = ∫
(
√

f − √
g)2 is the Hellinger metric and

where εn → 0. Such posterior contraction results are known to imply the same fre-
quentist consistency rate εn, also in the metric h, for the associated formal Bayes
estimators.
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In this article we investigate the question of how to generalize results of this
kind to more general loss-functions than the Hellinger metric, with a particular fo-
cus on Lr -norms, 1 ≤ r ≤ ∞. Such results are of interest for a variety of reasons,
for example, the construction of simultaneous confidence bands, or for plug-in pro-
cedures that require control of nonparametric remainder terms (e.g., in the proof of
the Bernstein–von Mises theorem in semiparametric models in Castillo [6]). They
are also of interest with a view on a more unified understanding of nonparamet-
ric Bayes procedures that complements the existing Lr -type results for standard
frequentist methods.

The main challenge in extending the theory to the Lr -case, except for specific
conjugate situations discussed below, rests in generalizing the Le Cam–Birgé test-
ing theory for the Hellinger metric to more general situations. A main ingredient
of the proof of a result of the kind (1) is that, in testing problems of the form

H0 :p = p0 against HA :p ∈ {p :h(p,p0) ≥ εn},(2)

universal tests with concentration bounds on type-II errors of the type e−Cnε2
n exist,

under assumptions on the size, or entropy, of the “alternative” space defining HA.
This fact is rooted in the subtle connection between nonparametric testing prob-
lems and the Hellinger metric as highlighted in the work of Le Cam [21] and
Birgé [2]. A main contribution of this article is the development of a new approach
to testing problems of the kind (2) based on concentration properties of linear cen-
tered kernel-type density estimators, derived from empirical process techniques.
While this approach can only be used if one has sufficient control of the approxi-
mation properties of the support of the prior, it can be generalized to arbitrary Lr -
metrics, including the supremum norm ‖f ‖∞ = supx |f (x)|. The concentration
properties of these tests depend on the geometry of the Lr -norm and deteriorate as
r → ∞, which is, in a sense, dual to the fact that the minimax testing rate in the
sense of Ingster [20] approaches the minimax rate of estimation as r → ∞.

While our main results can be viewed as “abstract” in that they replace the
entropy conditions in [10] for sieve sets Pn by general approximation-theoretic
conditions (see Theorems 2 and 3 below), our findings become most transparent
by considering specific examples, selected in an attempt to reflect the spectrum
of situations that can arise in Bayesian nonparametrics: In Section 2 we study the
“ideal” situation of a simple uniform wavelet prior on a Hölder ball, the “super-
smooth” situation of mixtures of normals, the case of random histograms based on
a Dirichlet process where no uniform bound on the L∞-norm of the support of the
prior is available, as well as Gaussian process priors of the kind studied in [32]. The
general conclusion is that if f0 is α-smooth, then the rate of contraction obtained
in the Lr -norm for a posterior based on an adequately chosen prior of smoothness
α is, up to logn factors, and with r̄ = max(2, r),(

1

n

)(α−1/2+1/r̄)/(2α+1)

.(3)
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So as soon as r ≤ 2 our proof retrieves the minimax optimal rate, but for r > 2
the rate deteriorates by a genuine power of n. As α approaches infinity this effect
becomes more lenient and vanishes in the limit.

We currently have no proof of the fact that our general theorem gives the right
rate for Bayesian posteriors if r > 2—similar problems are known with nonpara-
metric maximum likelihood estimators in Lr -metrics (cf. the proof of Proposition 6
in [27]). While we do not settle the issue of optimality of our rates for r > 2 in this
article, we also prove in Theorem 1 below that in nonparametric Gaussian regres-
sion the minimax rate of contraction can be obtained by certain diagonal Gaus-
sian wavelet priors, in all Lr -norms simultaneously. We believe that this result is
closely tied to the fact that the posterior is then itself Gaussian, and conjecture that
our rates cannot be substantially improved in the nonconjugate situation.

2. Main results. Let P be a class of probability densities on [0,1] or R, and
let X1, . . . ,Xn be a random sample drawn from some unknown probability density
p0 with joint law the first n coordinate projections of the infinite product proba-
bility measure P N

0 . Suppose one is given a prior probability distribution � defined
on some σ -algebra B of P . The posterior is the random probability measure

�(B|X1, . . . ,Xn) =
∫
B

∏n
i=1 p(Xi) d�(p)∫

P
∏n

i=1 p(Xi) d�(p)
, B ∈ B.

We wish to analyze contraction properties of the posterior distribution under cer-
tain regularity conditions on � and p0, and these regularity properties can be con-
veniently characterized by wavelet theory.

2.1. Function spaces and wavelets. For T = R or T = [0,1], f :T 	→ R, we
shall write ‖f ‖∞ = supx∈T |f (x)|, the norm on the space C(T ) of bounded contin-
uous real-valued functions defined on T . We shall use wavelet theory throughout;
see [19, 26]. Let φ,ψ be the scaling function and wavelet of a multiresolution anal-
ysis of the space L2(T ) of square integrable real-valued functions on T . We shall
say that the wavelet basis is S-regular if φ,ψ are S-times continuously differen-
tiable on T . For instance we can take Daubechies wavelets on T = R of sufficiently
large order N (see [26]) and define the translated scaling functions and wavelets

φk = φ(· − k), ψ�k = 2�/2ψ
(
2�(·) − k

)
, � ∈ N ∪ {0}, k ∈ Z,(4)

which form an orthonormal basis of L2(R).
For T = [0,1] we consider the orthonormal wavelet bases of L2([0,1]) con-

structed in Theorem 4.4 of Cohen, Daubechies and Vial [8]. Each such basis is
built from a Daubechies scaling function φ and its corresponding wavelet ψ , of
order N , starting at a fixed resolution level J0 such that 2J0 ≥ 2N (see Theo-
rem 4.4 in [8]): the ψ�k,φk that are supported in the interior of [0,1] are all kept,
and suitable boundary corrected wavelets are added, so that the {φk,ψ�k : 0 ≤ k <
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2�, � ∈ N, � > J0} still form an orthonormal basis for L2([0,1]). While formula (4)
now only applies to the “interior” wavelets, one can still write φjk = 2j/2φk(2j ·)
for every k, j ≥ J0; cf. page 73 in [8] and also after Condition 1 below.

DEFINITION 1. Let T = [0,1] or T = R, and let 1 ≤ p,q ≤ ∞, 0 ≤ s < S,
s ∈ R, S ∈ N. Let φ,ψ be bounded, compactly supported S-regular scaling func-
tion and wavelet, respectively, and denote by αk(f ) = ∫

T φkf and β�k(f ) =∫
T ψ�kf the wavelet coefficients of f ∈ Lp(T ). The Besov space Bs

pq(T ) is de-
fined as the set of functions {f ∈ Lp(T ) :‖f ‖s,p,q < ∞} where

‖f ‖s,p,q := ∥∥α(·)(f )
∥∥
p +

( ∞∑
�=0

(
2�(s+1/2−1/p)

∥∥β�(·)(f )
∥∥
p

)q)1/q

with the obvious modification in case q = ∞.

REMARK 1. We note the following standard embeddings/identifications we
shall use (cf. [19, 26]): for Cs(T ) the Hölder (-Zygmund in case s integer) spaces
on T , we have Bs∞∞(T ) = Cs(T ). Moreover Bs

22(T ) = Hs(T ) where Hs(T )

are the standard L2-Sobolev spaces. We also have the “Sobolev-type” imbed-
dings Bs

rq(T ) ⊂ B
s−1/r+1/t
tq (T ) for t ≥ r,1 ≤ q ≤ ∞. Finally, if T = [0,1], then

Cα(T ) ⊂ Bα
r∞(T ) for every r ≤ ∞, where Cα(T ) = {f :T 	→ R :‖f ‖α,∞ < ∞},

with ‖f ‖α,∞ := ∑α
k=0‖f (k)‖∞, α ∈ N.

2.2. Uniform wavelet series. Let us consider first the case where an a priori
upper bound on the Hölder norm ‖p0‖α,∞,∞ is available, so that the prior can be
chosen to have bounded support in Cα([0,1]). An example is obtained, for exam-
ple, by uniformly distributing wavelet coefficients on a Hölder ball. Let {φk,ψ�k}
be a N -regular CDV-wavelet basis for L2([0,1]), let u�k be i.i.d. U(−B,B) ran-
dom variables, and define, for α < N , the random wavelet series

Uα(x) = ∑
k

u0kφk(x) +
∞∑

�=J0

∑
k

2−�(α+1/2)u�kψ�k(x),(5)

which has trajectories in Cα([0,1]) ⊂ Lr([0,1]),1 ≤ r ≤ ∞, almost surely (in
view of Definition 1 and Remark 1). Since moreover ‖Uα‖∞ ≤ C(B,α,ψ), and
since the exponential map has bounded derivatives on bounded subsets of R, the
same applies to the random density

pU,α(x) := eUα(x)∫ 1
0 eUα(y) dy

,

whose induced law on C([0,1]) we denote by �α . Our general results below imply
the following proposition, which, since p0 is bounded away from zero, implies the
same contraction rate in Hellinger distance h. Note moreover that the result for
2 < r < ∞ could be obtained from interpolation properties of Lr -spaces.
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PROPOSITION 1. Let X1, . . . ,Xn be i.i.d. on [0,1] with density p0 satisfying
‖logp0‖α,∞ ≤ B . Let 1 ≤ r ≤ ∞, r̄ = max(2, r), r∗ = min(r,2), and suppose α ≥
1 − 1/r∗. Then there exist finite positive constants M,η = η(α, r) such that, as
n → ∞,

�α{
p ∈ P :‖p − p0‖r ≥ Mn−(α−1/2+1/r̄)/(2α+1)(logn)η|X1, . . . ,Xn

}
(6)

→P N

0 0.

2.3. Dirichlet mixtures. Consider first, as in [9, 12, 13], a normal mixture prior
�, defined as follows: for ϕ the standard normal density, set:

(-) pF,σ = ∫
R

σ−1ϕ((· − y)/σ)dF (y),
(-) F ∼ Dα the Dirichlet-process with base measure α = α(R)ᾱ, α(R) < ∞

and ᾱ a probability measure,
(-) σ ∼ G, where G is a probability distribution with compact support in (0,∞).

PROPOSITION 2. Let X1, . . . ,Xn be i.i.d. on R with density pF0,σ0 where σ0 >

0 and where F0 is supported in [−k0, k0], k0 > 0. Suppose that G has a positive
continuous density in a neighborhood of σ0, and that the base measure α has
compact support and a continuous density on an interval containing [−k0, k0].
Then there exist finite positive constants M,η such that

�α

{
p ∈ P :‖p − p0‖∞ ≥ M

(logn)η√
n

∣∣∣X1, . . . ,Xn

}
→P N

0 0 as n → ∞.(7)

Consider next a random histogram based on a Dirichlet process, similar to the
priors studied in [29]: for j ∈ N let Dirj be a Dirichlet-distribution on the 2j -
dimensional unit simplex, with all parameters equal to one. Consider the dyadic
random histogram with resolution level j

2j∑
k=1

αjk2j 1
{(

k − 1

2j
,

k

2j

]}
(x), {ajk} ∼ Dirj , x ∈ [0,1],

and denote its law on the space of probability densities by �j . Note that this prior
is not concentrated uniformly (in j ) on bounded densities (despite the densities in
the support being uniformly bounded for fixed j ).

PROPOSITION 3. Let X1, . . . ,Xn be i.i.d. on [0,1] with density p0 ∈ Cα([0,

1]),0 < α ≤ 1, satisfying p0 > 0 on [0,1]. Let jn be such that 2jn ∼ (n/

logn)1/(2α+1), let 1 ≤ r ≤ ∞, r̄ = max(2, r) and let either α > 1/2 or r = 1.
Then for some M,η = η(α, r), as n → ∞

�jn

{
p ∈ P :‖p − p0‖r ≥ Mn−(α−1/2+1/r̄)/(2α+1)(logn)η|X1, . . . ,Xn

}
(8)

→P N

0 0.
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2.4. Gaussian process priors. We now study a variety of Gaussian process
priors that were considered in the nonparametric Bayes literature recently; see
[32, 34] for references. To reduce technicalities we shall restrict ourselves to in-
tegrated Brownian motions, but see also the remark below.

DEFINITION 2. Let B(t) = B1/2(t), t ∈ [0,1], be a (sample-continuous ver-
sion of) standard Brownian motion. For α > 1, α ∈ {n − 1/2 :n ∈ N}, setting
{α} = α − [α], [α] being the integer part of α, Bα is defined as the [α]-fold in-
tegral

Bα(t) =
∫ t

0

∫ t[α]−1

0
· · ·

∫ t2

0

∫ t1

0
B(s) ds dt1 · · ·dt[α]−1

= 1

([α] − 1)!
∫ t

0
(t − s)[α]−1B(s) ds, t ∈ [0,1],

where for [α] = 1 the multiple integral is understood to be only
∫ t

0 B(s) ds.

Following [23, 32], and as before Proposition 1, we would like to define our
prior on densities as the probability law of the random process

eBα∫ 1
0 eBα(t) dt

,(9)

but we must make two corrections: first, since B
(k)
α (0) = 0 a.s., k ≤ [α], would

impose unwanted conditions on the value at zero of the density, we should release
Bα at zero, that is, take B̄α := ∑[α]

k=0 Zkt
k/k! + Bα , where Zk are i.i.d. N(0,1)

variables independent of Bα ; see [32]. In order to deal with bounded densities, we
introduce a second modification to (9), and define our prior (on the Borel sets of
C([0,1])) as

� = L
(

eB̄α∫ 1
0 eB̄α(t) dt

∣∣∣‖B̄α‖∞ ≤ c

)
,(10)

where c is a fixed arbitrary positive constant. This prior works as follows: if A ⊂
C([0,1]) is a measurable set of continuous densities on [0,1], then

�(A) = Pr
{
eB̄α

/∫
eB̄α ∈ A,‖B̄α‖∞ ≤ c

}/
Pr{‖B̄α‖∞ ≤ c},

and clearly the denominator is strictly positive for all c > 0; see Proposition 7
below.

PROPOSITION 4. Let 1 ≤ r ≤ ∞, r̄ = max(r,2), α ∈ {n − 1/2, n ∈ N} and
assume (a) p0 ∈ Cα([0,1]), and (b) p0 is bounded and bounded away from zero,
say, 2‖logp0‖∞ ≤ c < ∞. Let � be the prior defined by (10) where α is as in (a)
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and c is as in (b). Then, if Xi are i.i.d. with common law P0 of density p0, there
exists M < ∞ s.t.

�
{
p ∈ P :‖p − p0‖r ≥ Mn−(α−1/2+1/r̄)/(2α+1)(logn)(1/2)1{r=∞}|X1, . . . ,Xn

}
→ 0

in P N

0 -probability as n → ∞.

As remarked before Proposition 1, a contraction result in the Hellinger distance
follows as well, and the case 2 < r < ∞ could be obtained from interpolation.

The result in Proposition 4 extrapolates to fractional multiple integrals of Brow-
nian motion (Riemann–Liouville processes) of any real valued index α > 1/2, and
it also extends to the related fractional Brownian motion processes (see, e.g., [32]
for definitions), but, for conciseness and clarity of exposition, we refrain from car-
rying out these extensions.

2.5. Sharp rates in the Gaussian conjugate situation. We currently have no
proof that the rates obtained in the previous subsections are optimal for these priors
as soon as r > 2. While we conjecture that Bayesian posteriors may suffer from
suboptimal contraction rates in density estimation problems in Lr -loss, r > 2, we
finally show here that in the much simpler conjugate situation of nonparametric
regression with Gaussian errors, sharp rates in all Lr norms can be obtained at least
for certain diagonal wavelet priors. The proof of this result follows from a direct
analysis of the posterior distribution, available in closed form due to conjugacy.

Given a noise level 1/
√

n,n ∈ N, we observe

dY (n)(t) = f (t) dt + 1√
n

dB(t), t ∈ [0,1],(11)

for f = f0 ∈ L2([0,1]), where B is Brownian motion on [0,1]. This model is
well known to be asymptotically equivalent to nonparametric regression with fixed,
equally-spaced design and Gaussian errors.

Consider priors on L2([0,1]) defined on a S-regular CDV-wavelet basis as

� = L
(

N∑
k=0

gkφk +
∞∑

�=J0

2�−1∑
k=0

√
μ�g�kψ�k

)
(12)

in L2([0,1]), with the g’s i.i.d. N(0,1) and with μ� = �−12−�(2α+1) ∀� ≥ J0. Such
a prior is designed for α-smooth f0. As is easily seen, the series in (12) converges
uniformly almost surely.

THEOREM 1. Let 0 < α < S, and let � be the Gaussian prior on L2([0,1])
defined by (12) based on a CDV wavelet basis of L2([0,1]) of smoothness at
least S. Let f0 ∈ Cα([0,1]), let εn = (n/ logn)−α/(2α+1) and suppose we observe
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dY
(n)
0 (t) = f0(t) dt + dB(t)/

√
n. Then there exists C < ∞ and M0 < ∞ depend-

ing only on the wavelet basis, α and ‖f0‖α,∞,∞ such that, for every M0 ≤ M < ∞,
and for all 1 ≤ r ≤ ∞, n ∈ N,

E
Y

(n)
0

�
(
f :‖f − f0‖r > Mεn|Y (n)

0

) ≤ n−C2(M−M0)
2
.(13)

This rate of convergence is sharp (in case r < ∞ up to the logn-term) in view
of the usual minimax lower bounds and since the contraction rate implies the same
rate of convergence for the formal Bayes estimator E�(f |Y (n)

0 ) to f0 (using An-
derson’s lemma and the fact that the posterior is a random Gaussian measure on
L2([0,1]), as inspection of the proof shows). One may even apply the usual thresh-
olding techniques to the posterior mean to obtain a Bayesian rate adaptive estima-
tor of f0 by proceeding as in [17, 25].

3. General contraction theorems for density estimates in Lr -loss, 1 ≤
r ≤ ∞. We shall, in our main results, use properties of various approximation
schemes in function spaces, based on integrating a localized kernel-type function
Kj(x, y) against functions p, Kj(p) = ∫

Kj(·, y)p(y) dy. Let, in slight abuse
of notation, for T ⊆ R, L1(μw) = L1(T , B,μw),w ≥ 0 be the space of μw-
integrable functions, dμw(t) = (1 + |t |)w dt , normed by ‖f ‖μw = ∫

T |f (t)|(1 +
|t |)w dt . Recall the notion of p-variation of a function (e.g., as before Lemma 1
in [17]).

CONDITION 1. Let T = R or T = [0,1]. The sequence of operators Kj(x,

y) = 2jK(2j x,2j y);x, y ∈ T , j ≥ 0, is called an admissible approximating se-
quence if it satisfies one of the following conditions:

(a) (convolution kernel case): K(x,y) = K(x − y), where K ∈ L∞(T ) is of
bounded p-variation for some finite p ≥ 1, right (or left) continuous, and satisfies
‖K‖μw < ∞ for some w > 2.

(b) (multiresolution projection case): K(x,y) = ∑
k φ(x − k)φ(y − k), the sum

extending over any subset of Z, where φ ∈ L1 ∩ L∞ has bounded p-variation
for some finite p ≥ 1 and satisfies, in addition, supx∈R

∑
k|φk(x)| < ∞ as well

as |K(x,y)| ≤ �(|x − y|) for every x, y ∈ T and some function � ∈ L∞(R) for
which ‖�‖μw < ∞ for some w > 2.

(c) (multiresolution case, T = [0,1]): K(x,y) = ∑
k φk(x)φk(y) is the projec-

tion kernel of a Cohen–Daubechies–Vial (CDV) wavelet basis.

Condition (a) is a standard assumption on kernels, condition (b) is satisfied for
most wavelet basis on R, such as Daubechies, Meyer or spline wavelets, by us-
ing standard wavelet theory (e.g., [19]). For part (c) we note the following: as in
the case of the whole line, an orthonormal basis of Vj = {φjk = 2j/2φk(2j ·)} is
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obtained from 2j−J0 -fold dilates of the basic linear span VJ0 , for every j ≥ J0 (pa-
ge 73 in [8]). In this case, Vj has dimension 2j , and a basis consists of: (i) N left
edge functions φ0

jk(x) = 2j/2φ0
k (2

j x), k = 0, . . . ,N − 1, where φ0
k is a modifi-

cation of φ, which is still bounded and of bounded support; (ii) N right edge
functions φ1

jk(x) = 2j/2φ1
k (2

j x), k = 0, . . . ,N − 1, φ1
k also modifications of φ

bounded and of bounded support, and then the 2j − N “interior” usual trans-
lations of dilations of φ, φjk , k = N, . . . ,2j − N − 1. The projection kernel
Kj(x, y) = K0

j (x, y) + K1
j (x, y) + K̃j (x, y) corresponds to the projection onto

the three orthogonal components of Vj (the linear spans, respectively, of the left
edge functions φ0

j,k , the right edge functions φ1
k , and the interior functions φjk).

The first two spaces have dimension N and the third, 2j − 2N . By Lemma 8.6
in [19], there exist bounded, compactly supported nonnegative functions � such
that K̃(x, y) ≤ �(|x − y|), for all x, y. We call this function a majorizing kernel
of the interior part of K .

Let Xi be i.i.d. with law P0 and density p0.

THEOREM 2. Let T = [0,1] or T = R, let P = P(T ) be a set of probability
densities on T , and let �n be priors defined on some σ -algebra of P for which the
maps p 	→ p(x) are measurable for all x ∈ T . Let 1 ≤ r ≤ ∞ and let εn → 0 as
n → ∞ be a sequence of positive numbers such that

√
nεn → ∞ as n → ∞. Let

δn = εn(nε2
n)

1/2−1/(2r)γn(14)

for some sequence γn satisfying γn ≥ 1 ∀n. Let Jn be any sequence satisfying
2Jn ≤ cnε2

n for some fixed 0 < c < ∞, and let Kj be an admissible approximator
sequence. Let Pn be a sequence of subsets of

{p ∈ P :‖KJn(p) − p‖r ≤ C(K)δn,‖p‖μw ≤ D},(15)

where C(K) is a constant that depends only on the operator kernel K , D is a fixed
constant, and where w > (2 − r)/r if r < 2, w = 0 if r ≥ 2.

Assume there exists C > 0 such that, for every n large enough:

(1) �n(P \ Pn) ≤ e−(C+4)nε2
n and

(2) �n{p ∈ P :−P0 log p
p0

≤ ε2
n,P0(log p

p0
)2 ≤ ε2

n} ≥ e−Cnε2
n .

Let p0 ∈ Lr(T ) be s.t. ‖KJn(p0) − p0‖r = O(δn) and s.t. ‖p0‖μw < ∞ if T =
R,1 ≤ r < 2. If δn → 0 as n → ∞, then there exists M < ∞ such that

�n{p ∈ P :‖p − p0‖r ≥ Mδn|X1, . . . ,Xn} → 0 as n → ∞(16)

in P N

0 -probability.

Note that the moment condition in (15) is void if r ≥ 2 or if T = [0,1]. If r = 1
the rate can be taken to be δn = εn or, more generally, δn = γnεn. For r = ∞ one
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only has at best δn = √
nε2

n, which is always slower than εn (since
√

nεn → ∞).
In case 1 < r < ∞ the rate interpolates between these two rates without, however,
requiring p0 ∈ L∞.

In the case where p0 is bounded, and if it is known that the posterior concen-
trates on a fixed sup-norm ball with probability approaching one, we can refine
the rates in the above theorem for 1 < r < ∞, and retrieve the (in applications of
the theorem often optimal) rate εn for 1 ≤ r ≤ 2. The following theorem can be
applied with γn = 1 ∀n, in which case conditions (a) and (b) require the rate εn

to be fast enough (which in applications typically entails that a minimal degree of
smoothness of p0 has to be assumed).

THEOREM 3. Let T , P,�n be as in Theorem 2. Let 1 < r < ∞, and let εn →
0 as n → ∞ be a sequence of positive numbers such that

√
nεn → ∞ as n → ∞.

Let r̄ = max(r,2), and set

δn = εn(nε2
n)

1/2−1/r̄γn(17)

for some sequence γn ≥ 1. Assume either:

(a) that 1 < r < 2 and that εn = O(γn(nε2
n)

1/r−1) or
(b) that 2 ≤ r < ∞ and that ε2

n = O(γn/
√

n).

Let Jn, Pn be defined as in Theorem 2, assume that conditions (1) and (2) in
that theorem are satisfied, and that, in addition,

(3) there exists 0 < B < ∞ such that

�n(p ∈ P :‖p‖∞ > B|X1, . . . ,Xn) → 0

as n → ∞ in P N

0 -probability.

Let p0 ∈ L∞(T ) be s.t. ‖KJn(p0) − p0‖r = O(δn) and such that ‖p0‖μw < ∞
for some w > (2− r)/r if T = R,1 ≤ r < 2. If δn → 0 as n → ∞, then there exists
M < ∞ s.t.

�n{p ∈ P :‖p − p0‖r ≥ Mδn|X1, . . . ,Xn} → 0 as n → ∞(18)

in P N

0 -probability.

3.1. Lr -norm inequalities. A main step in the proof of Theorems 2 and 3
[see (30) below] is the construction of nonparametric tests for Lr -alternatives,
1 ≤ r ≤ ∞, that have sufficiently good exponential bounds on the type-two errors.
For this we first derive sharp concentration inequalities for Lr -norms of centered
density estimators. It is convenient to observe that the degree of concentration of a
kernel-type density estimator around its expectation in Lr depends on r , as can al-
ready be seen from comparing the known cases r = 1,∞ in [14, 16] for kernel esti-
mators and [17] for wavelets. These results are derived from Talagrand’s inequality



Lr AND UNIFORM CONSISTENCY OF BAYES ESTIMATES 2893

[31] for empirical processes: let X1, . . . ,Xn be i.i.d. with law P on a measurable
space (S, S), let F be a P -centered (i.e.,

∫
f dP = 0 for all f ∈ F ) countable class

of real-valued measurable functions on S, uniformly bounded by the constant U ,
and set ‖H‖F = supf ∈F |H(f )| for any H : F → R. Let σ be any positive num-
ber such that σ 2 ≥ supf ∈F E(f 2(X)), and set V := nσ 2 + 2UE‖∑n

j=1 f (Xj )‖F .
Then, Bousquet’s [5] version of Talagrand’s inequality, with constants, is as fol-
lows (see Theorem 7.3 in [5]): for every x ≥ 0, n ∈ N,

Pr

{∥∥∥∥∥
n∑

j=1

f (Xj )

∥∥∥∥∥
F

≥ E

∥∥∥∥∥
n∑

j=1

f (Xj )

∥∥∥∥∥
F

+ √
2V x + Ux/3

}
≤ 2e−x.(19)

This applies to our situation as follows: let X1, . . . ,Xn be i.i.d. with density
p0 on T with respect to Lebesgue measure λ, dP0 = p0dλ, and let p̂n(j) =
1
n

∑n
i=1 Kj(·,Xi) be a kernel-type estimator with Kj as in Condition 1. Its ex-

pectation equals P n
0 p̂n(j)(x) = EKj(x,X) = Kj(p0)(x), and we wish to derive

sharp exponential bounds for the quantity ‖p̂n(j) − Kj(p0)‖r for 1 ≤ r ≤ ∞. In
case r = ∞ this can be achieved by studying the empirical process indexed by

K = {Kj(x, ·) − Kj(p0)(x) :x ∈ T },
and in case r < ∞ we shall view p̂n(j)−P n

0 p̂n(j) as a sample average of the cen-
tered Lr(T )-valued random variables Kj(·,Xi)−Kj(p0), and reduce the problem
to an empirical process as follows: let s be conjugate to r , that is, 1 = 1/s + 1/r .
By the Hahn–Banach theorem, the separability of Lr(T ) implies that there is a
countable subset B0 of the unit ball B of Ls(T ) such that

‖H‖r = sup
f ∈B0

∣∣∣∣
∫

R

H(t)f (t) dt

∣∣∣∣
for all H ∈ Lr(T ). We thus have ‖p̂n(j)−P n

0 p̂n(j)‖r = ‖Pn −P0‖K, where Pn =∑n
i=1 δXi

/n is the empirical measure, and where

K =
{
x 	→

∫
T

f (t)Kj (t, x) dt −
∫
T

f (t)Kj (p0)(t) dt :f ∈ B0

}
.

To apply (19) with the countable class K we need to find suitable bounds for the
envelope U ≥ supk∈K|k(x)| and the weak variances σ 2 ≥ supk∈K Ek2(X). We will
also apply (19) in the case r = ∞, and note that the corresponding empirical pro-
cess suprema are over countable subsets B0 of T , by the continuity property of K

in the convolution kernel case, and by finiteness of the p-variation of the scaling
function in the wavelet case (Remark 2 in [17]).

3.1.1. Envelope and variance bounds for K. We first consider Condition 1(a),
the convolution kernel case: let us write in abuse of notation Kj(·) = 2jK(2j ·) and
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f = δy, y ∈ B0 ⊂ T for r = ∞. (One naturally replaces Ls by the Banach space of
finite signed measures if r = ∞ in the arguments below.) The class K then equals

K = {
x 	→ Kj ∗ f (x) − E

(
Kj ∗ f (X)

)
:f ∈ B0

}
.

The bound for the envelope is seen to be of size 2j (1−1/r): by Hölder’s inequality

‖Kj ∗ f ‖∞ ≤ ‖Kj‖r‖f ‖s ≤ C(K, r)2j (1−1/r) ≡ U,(20)

a bound that remains true when r = ∞ since |2jK(2j (x − y))| ≤ ‖K‖∞2j . To
bound the variances, for densities p0 ∈ Lr , we have

E(Kj ∗ f )(X)2 ≤ ‖p0‖r‖Kj ∗ f ‖2
2s ≤ C′(K, r)‖p0‖r2j (1−1/r) ≡ σ 2(21)

from Hölder’s inequality and since ‖Kj ∗ f ‖2s , for f ∈ Ls is bounded up to
constants by 2j (1/2−1/2r), by using Young’s inequality ‖h ∗ g‖t ≤ ‖h‖p‖g‖q for
1 + 1/t = 1/p + 1/q,1 ≤ p,q, t ≤ ∞.

The last estimate can be refined if p0 is known to be bounded, where we recall
that r̄ = max(r,2), to yield

E(Kj ∗ f )(X)2 ≤ C(p0)2
j (1−2/r̄) ≡ σ 2,(22)

where C(·) is bounded on uniformly bounded sets of densities. To see this, con-
sider first r ≥ 2 and thus s ≤ 2: then Young’s inequality gives, as above,

E(Kj ∗ f )(X)2 ≤ ‖p0‖∞‖Kj ∗ f ‖2
2 ≤ C‖p0‖∞2j (1−2/r) = σ 2.

If 1 < r < 2, then p0 ∈ L∞ ∩ L1 ⊂ Ls/(s−2), so by Hölder’s inequality

E(Kj ∗ f )(X)2 ≤ ‖Kj ∗ f ‖2
s‖p0‖s/(s−2) ≤ C(p0)‖Kj‖2

1‖f ‖2
s ≤ C(p0,K).

For Condition 1(b), so in the multiresolution case for T = R, the arguments as
in (a) and obvious modifications give the same bounds for U,σ in view of the
estimate |∫

R
Kj(x, y)f (y) dy| ≤ �j ∗ |f |(x), which allows us to compare wavelet

projections to convolutions and proceed as above.
For Condition 1(c), note that, by the comments following the statement of

Condition 1, the projection kernels have the form Kj = K0
j + K1

j + K̃j where
K̃j (x, t) = 2j K̃(2j t,2j x) with K̃ majorized by a convolution kernel. Therefore
the envelope and variance bounds for the previous two cases apply as well to this
“interior part” of the kernel. For the boundary part,

Ki
j (x, t) =

N−1∑
k=0

2jφi
k(2

j x)φi
k(2

j t), i = 0,1, j ≥ J0,(23)

with N finite and φi
k bounded and with bounded support, it is immediate to check,

just using Hölder’s inequality, that for f ∈ B0,∥∥∥∥2jφi
k(2

j x)

∫ 1

0
φi

k(2
j t)f (t) dt

∥∥∥∥∞
≤ ‖φi

k‖∞‖φi
k‖r2j (1−1/r), 1 ≤ r ≤ ∞,
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and that

22jE(φi
k(2

jX))2
(∫ 1

0
|φi

k(2
j t)||f (t)|dt

)2

≤ ‖p0‖r‖φi
k‖2

2s‖φi
k‖2

r 2j (1−1/r)

for p0 ∈ Lr , with the refinement ‖p0‖∞‖φi
k‖2

2‖φi
k‖2

r 2j (1−2/r̄) if ‖p0‖∞ < ∞. This
shows that the bounds for U,σ 2 from (a), (b) apply to (c) as well.

3.1.2. Application of Talagrand’s inequality. To apply Talagrand’s inequality
we need a bound on the moment of the supremum of the empirical process in-
volved, provided in the following lemma, known for the cases r = ∞ (see [14, 17,
25]) and, implicitly, 1 ≤ r ≤ 2 (see [15]). As the proof is standard but somewhat
lengthy it is given in the supplementary file for this paper, [18].

LEMMA 1. Assume Condition 1(a), (b) or (c) and that p0 ∈ Lr(T ). If 1 ≤ r <

2 in the cases (a) or (b), assume further that p0 ∈ L1(μs) for some s > (2 − r)/r .
Then, if 1 ≤ r < ∞, there exists Lr such that, for all j ≥ 0 if r ≤ 2, and for all j

such that 2j < n for r > 2, we have

E‖n(Pn − P0)‖K = E

∥∥∥∥∥
n∑

i=1

(
Kj(·,Xi) − EKj(·,X)

)∥∥∥∥∥
r

≤ Lr

√
2jn.(24)

If r = ∞, for p0 and � bounded, there exists a constant L∞ such that for all j

satisfying 2j j < n we have

E‖n(Pn − P0)‖K = E

∥∥∥∥∥
n∑

i=1

(
Kj(·,Xi) − EKj(·,X)

)∥∥∥∥∥∞
≤ L∞

√
2j jn.(25)

We are now ready to apply (19): for V = nσ 2 + 2UE‖p̂n(j) − Ep̂n(j)‖r we
have the bound

Pr
{
n‖p̂n(j) − P n

0 p̂n(j)‖r ≥ nE‖p̂n(j) − P n
0 p̂n(j)‖r + √

2V x + Ux

3

}
≤ 2e−x.

This can be further simplified, using the standard inequalities
√

a + b ≤ √
a +√

b,
√

ab ≤ (a + b)/2, to

Pr
{
n‖p̂n(j) − P n

0 p̂n(j)‖r ≥ 3
2nE‖p̂n(j) − P n

0 p̂n(j)‖r +
√

2nσ 2x + 7
3Ux

}
≤ 2e−x.

Combining the moment estimate Lemma 1 with (20) and (21), we obtain, for
2j j (r) < n with j (∞) = j and j (r) = 1 for r < ∞,

Pr
{
n‖p̂n(j) − P n

0 p̂n(j)‖r
(26)

≥ C
(√

2jnj (r) +
√

n2j (1−1/r)‖p0‖rx + 2j (1−1/r)x
)} ≤ 2e−x
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for some constant C, and in the case where ‖p0‖∞ < ∞ we have, analogously,
from (22),

Pr
{
n‖p̂n(j) − P n

0 p̂n(j)‖r

(27)
≥ C

(√
2jnj (r) +

√
n2j (1−2/r̄)‖p0‖∞x + 2j (1−1/r)x

)} ≤ 2e−x.

If we take εn, δn, 2jn ∼ nε2
n as in Theorems 2, 3, and if ‖p0‖r is bounded by a fixed

constant B , then the choice x = Lnε2
n gives for every L and M = M(L,K,B)

large enough, after some simple computations using the conditions on εn, δn from
the theorem, that

nMδn ≥ C
(√

2jnjn(r)n +
√

‖p0‖rn2jn(1−1/r)Lnε2
n + 2jn(1−1/r)Lnε2

n

)
and, likewise, if ‖p0‖∞ is bounded by a fixed constant, the corresponding choice
of δn,M also satisfies

nMδn ≥ C
(√

2jnjn(r)n +
√

C(p0)n2jn(1−2/r̄)Lnε2
n + 2jn(1−1/r)Lnε2

n

)
.

Moreover for ‖p0‖r ≥ ζ > 0 we have

n‖p0‖r ≥ C
(√

2jnjn(r)n +
√

‖p0‖rn2jn(1−1/r)Lnε2
n + 2jn(1−1/r)Lnε2

n

)
from some index n0 onwards that depends only on C,ζ .

Using these inequalities in (26), (27), we conclude that in both cases, for every
0 < L < ∞ we can find a large enough M(L,K,B) such that

Pr{n‖p̂n(jn) − P n
0 p̂n(jn)‖r ≥ Mnδn} ≤ 2e−Lnε2

n(28)

and, likewise, for n large enough,

Pr{n‖p̂n(jn) − P n
0 p̂n(jn)‖r ≥ n‖p0‖r/3} ≤ 2e−Lnε2

n .(29)

3.2. Proof of Theorems 2 and 3. Using the small ball estimate from condi-
tion (2), it suffices to construct tests (indicator functions) φn = φn(X1, . . . ,Xn;p0)

such that

P n
0 φn → 0 as n → ∞ and

(30)
sup

p∈Pn : ‖p−p0‖r≥Mδn

P n(1 − φn) ≤ 2e−(C+4)nε2
n

for n large enough; see the proof of Theorem 2.1 in [10].
Consider first Theorem 2. Let p̂n be a kernel-type density estimator based on

an i.i.d. sample X1, . . . ,Xn of common law P0, n ∈ N, at resolution Jn. For M0,
a constant to be chosen below, set Tn = ‖p̂n −p0‖r and φn = I (Tn > M0δn). Note



Lr AND UNIFORM CONSISTENCY OF BAYES ESTIMATES 2897

that φn is the (indicator of the) rejection region of a natural test of the hypothesis
H0 :p = p0. Then we have

P n
0 φn = P n

0 {‖p̂n − p0‖r > M0δn}
≤ P n

0 {‖p̂n − P n
0 p̂n‖r > M0δn − ‖P n

0 p̂n − p0‖r}.
Since ‖KJn(p0) − p0‖r ≤ c′δn for some c′ > 0 by assumption, we have for all
n large enough, P n

0 φn ≤ P n
0 {‖p̂n − P n

0 p̂n‖r > (M0 − c′)δn}. Then using inequal-
ity (28), we have for some constant L1 for some constant L1, choosing M0 large
enough, that, as n → ∞,

P n
0 φn ≤ 2e−L1nε2

n → 0.(31)

Let now p be a density in Pn such that ‖p − p0‖r ≥ Mδn (the alternatives). Set
dP (x) = p(x)dx. We have, from the triangle inequality,

P n(1 − φn) = P n{‖p̂n − p0‖r ≤ M0δn}
≤ P n{‖p̂n − P np̂n‖r ≥ ‖p − p0‖r − M0δn − ‖P np̂n − p‖r}(32)

≤ P n{‖p̂n − P np̂n‖r ≥ ‖p − p0‖r − (
M0 + C(K)

)
δn

}
since by assumption on Pn, supp∈Pn

‖P np̂n − p‖r ≤ C(K)δn, uniformly in
p ∈ Pn.

To complete the estimation of the last probability, we consider first r > 1. For
those p ∈ Pn satisfying ‖p‖r ≥ 2‖p0‖r we have ‖p − p0‖r ≥ ‖p‖r/2 ≥ ‖p0‖r ,
and, using inequality (29) for p0 = p, we deduce, that for all L > 0, there exists
n0 ∈ N such that for all n ≥ n0,

sup
p∈Pn : ‖p‖r≥2‖p0‖r

P n(1 − φn)

≤ sup
p∈Pn,‖p‖r≥2‖p0‖r

P n

{
‖p̂n − P np̂n‖r >

‖p‖r

3

}
(33)

≤ 2e−Lnε2
n .

For those p ∈ Pn for which ‖p‖r < 2‖p0‖r , we apply (28) with p = p0 and use
as well ‖p − p0‖r ≥ Mδn to obtain that for all L > 0 there exists M large enough
such that

sup
p∈Pn : ‖p‖r<2‖p0‖r ,‖p−p0‖r≥Mδn

P n(1 − φn)

≤ sup
p∈Pn : ‖p‖r<2‖p0‖r ,‖p−p0‖r≥Mδn

P n{‖p̂n − P np̂n‖r

(34)
>

(
M − M0 − C(K)

)
δn

}
≤ 2e−Lnε2

n .



2898 E. GINÉ AND R. NICKL

We conclude from (32) and (33) that for any L > 0 there exists nL < ∞ such that

sup
p∈Pn : ‖p−p0‖r≥Mδn

P n(1 − φn) ≤ 2e−Lnε2
n .(35)

Now (31) and (35) prove (30) if r > 1. If r = 1 the above case distinction is not
necessary as ‖p‖1 = 1 always holds, so that the proof of the second case applies
with the full supremum over {p ∈ Pn :‖p − p0‖1 ≥ Mδn}. This completes the
proof of Theorem 2.

To prove Theorem 3 we argue similarly, and only have to slightly modify the
derivation of the error probabilities of the tests: when it is known that the posterior
concentrates on a fixed sup-norm ball of radius B , then we can restrict the alterna-
tives in (30) further to densities bounded by B , and, using (28) with p = p0 and
the present choice of δn, we also obtain

sup
p∈Pn : ‖p‖∞≤B,‖p−p0‖r≥Mδn

P n(1 − φn)

≤ sup
p∈Pn : ‖p‖∞≤B,‖p−p0‖r≥Mδn

P n{‖p̂n − P np̂n‖r >
(
M − M0 − C(K)

)
δn

}

≤ 2e−Lnε2
n .

4. Remaining proofs.

4.1. Proofs of Propositions 1, 2 and 3.

PROOF OF PROPOSITION 1. Since ‖Uα‖∞ ≤ C almost surely for some fixed
constant C = C(B,α,ψ), we infer ‖pU,α‖α,r,∞ ≤ D(B,α,ψ) almost surely for
1 ≤ r ≤ ∞. In particular the prior is supported in a ball of bounded densities, hence
so is the posterior, and we can attempt to apply Theorems 2 (for r = 1,∞) and 3
for (1 < r < ∞), which we shall do with the choice εn = (n/ logn)−α/(2α+1).

We verify the small ball estimate in the second condition in Theorem 2. By
Lemma 3.1 in [32] we can lower bound the prior probability in question by
Pr{‖logp0 − Uα‖∞ ≤ cεn} for some constant c > 0. Since

‖h‖∞ ≤ C(φ,ψ)max
(

sup
k

|αk(h)|,∑
�

sup
k

2�/2|β�k(h)|
)

for any continuous function h on [0,1] and some constant C(φ,ψ), we can lower
bound the last probability, writing αk,β�k for the wavelet coefficients of logp0, by

Pr
{

max
(

sup
k=0,...,N

|αk − u0k|,
∑
�

sup
k

2�/2∣∣β�k − 2−�(α+1/2)u�k

∣∣) ≤ c′εn

}

= Pr
{
max

k
|αk − u0k| ≤ c′εn

}
Pr

{ ∑
�≥J0

max
k≤2�

2�/2∣∣β�k − 2−�(α+1/2)u�k

∣∣ ≤ c′εn

}
,



Lr AND UNIFORM CONSISTENCY OF BAYES ESTIMATES 2899

where N,J0 depend only on the wavelet basis (see before Definition 1). Since
|αk| ≤ B and since the u0k are U(−B,B), the first probability exceeds (c′εn/

2B)N+1 = e−(N+1) log(2B/c′εn) which is bounded below by e−c log(1/εn) for some
c > 0 that depends only on B , α and the wavelet basis. For the second probability

set b�k ≡ 2�(α+1/2)β�k, � ≥ J0, and M(J) ≡ ∑J
�=J0

∑2�−1
k=0 1 ≤ 2 · 2J , and note that

|b�k| ≤ ‖logp0‖α,∞ ≤ B . Choosing J = Jn ≥ J0 large enough and of order εn �
2−Jα , this probability is bounded below by

Pr

{
J∑

�=J0

2−�α sup
k

|b�k − u�k| ≤ c′εn − C(ψ,B)2−Jα

}

≥ Pr
{
max
�≤J

max
k≤2�

|b�k − u�k| ≤ c′′εn

}

= ∏
�≤J

∏
k≤2�

Pr{|b�k − u�k| ≤ c′′εn} ≥
(

c′′εn

2B

)M(J)

≥ e−c′′′log(1/εn)/ε
1/α
n

for n large enough and some c′′′ > 0 that depends only on B , α and the wavelet ba-
sis. Summarizing we have, by definition of εn, that the �α probability in condition
(2) of Theorem 2 is bounded from below by

Pr{‖logp0 − Uα‖∞ ≤ cεn} ≥ e−c log(1/εn)e−c′′′ log(1/εn)/ε
1/α
n ≥ e−Cnε2

n(36)

for some C that depends only on B , α and the wavelet basis, which proves that
condition (2) holds.

We next verify the bias condition with Pn = supp(�) so that �(P \ Pn) = 0. We
bound the Lr -norm of the approximation errors of any element in Pn by a constant
times δn, where we take γn equal to logn to a sufficiently large power chosen
below. Since 2Jn ≥ cnε2

n ≥ cn1/(2α+1) we have, using B0
r1([0,1]) ⊂ Lr([0,1]) and

p ∈ Cα([0,1]),

‖KJn(p) − p‖r ≤ c

∞∑
�=Jn

2�(1/2−1/r)

( 2j∑
k=1

|β�k(p)|r
)1/r

≤ c′(B, r)

∞∑
�=Jn

2−�α,

which is O(εn), so the bias condition is satisfied for some C(K) large enough,
both for Pn, as well as for p0.

Finally condition (c) from Theorem 2 and (a), (b) from Theorem 3, as well as
δn → 0, are verified for this choice of εn and under the conditions on α, r , except
for the cases α = 0 or α = 1/2, r = ∞, where the result trivially follows from
δn being bounded from below by a constant multiple of logn (and as the prior is
supported in a Lr -bounded set). �
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PROOF OF PROPOSITION 2. We apply Theorem 2 with r = ∞. We have from
the proof of Theorem 5.1 in [13] that for εn = (logn)κ/

√
n, κ ≥ 1, the small-ball

estimate in condition (2) of Theorem 2 is satisfied. Choose γn in such a way that
δn equals (logn)η/

√
n where η > κ . For the bias, we take Pn to be the support

of � and consider a Meyer-wavelet basis and the wavelet projection onto it, with
2Jn = c(logn)2κ , where c is a large enough constant that depends on inf{σ :σ ∈
supp(G)}, and apply Proposition 4 in [25] with s = 2 and suitable c̃0, to see that
‖KJn(pF,σ ) − pF,σ‖∞ = o(1/n) uniformly in the support of �. A more detailed
proof is in the supplementary file [18]. �

PROOF OF PROPOSITION 3. Taking εn = M ′(n/ logn)−α/(2α+1), and noting
ε
−1/α
n = O(nε2

n), we can take Jn such that 2jn ≤ 2Jn ≤ cnε2
n for every n, some

c > 0. Taking K(x,y) equal to the Haar wavelet projection kernel (CDV-wavelet
of regularity S = 0), we conclude that ‖KJn(p) − p‖r = 0 �jn-a.s. ∀n, so condi-
tion (1) in Theorem 2 is satisfied with Pn equal to the support of �jn . The small
ball estimate (2) follows, as in the proof of Theorem 1 ([29], pages 636 and 637,
with k0 = 2jn , and approximating p0 by Kjn(p0) s.t. ‖Kjn(p0) − p0‖1 ≤ εn/2 for
M ′ large enough), and from the second inequality in (36). The bias condition for
p0 is satisfied by standard approximation properties of Haar wavelets. The result
now follows from first applying Theorem 2 with r = 1,∞ and then using the con-
clusion that the posterior concentrates on a ‖ · ‖∞ neighborhood of p0 to invoke
Theorem 3 for the cases 1 < r < ∞. �

4.2. Proof of Proposition 4. We shall construct subsets of P on which we can
control the approximation errors from (15). We define Hölder spaces. For α, τ ≥ 0
positive real numbers, define the norm ‖f ‖α,∞,τ := ∑[α]

k=0‖f (k)‖∞ + H(α, τ, f )

where

H(α, τ, f ) = sup
0<t<1

suph : |h|≤t,x+h∈[0,1] supx∈[0,1]|f (k)(x + h) − f (k)(x)|
t {α}(log t−1)τ

,

and where we take ‖f (k)‖∞ = ∞ if f (k) does not exist. Define, moreover,
Cα,∞,τ ([0,1]) := {f : [0,1] → R :‖f ‖α,∞,τ < ∞}. The case τ = 0 specialises to
the strict α-Hölder case Cα([0,1]).

In case 1 ≤ r < ∞, we shall use approximation theoretic properties of the re-
producing kernel Hilbert spaces (RKHSs) of Bα, B̄α , which are Sobolev spaces.
Recall that the RKHS H(1/2) of Brownian motion on [0,1] is the space of ab-
solutely continuous functions that are zero at zero and whose first derivatives are
in L2([0,1]), equipped with the inner product 〈f,g〉H(1/2) = ∫ 1

0 f ′g′. Then, the
RKHS of integrated Brownian motion Bα is

H(α) =
{∫ t

0

∫ [α]−1

0
· · ·

∫ t1

0
f (s) ds dt1 · · ·dt[α]−1 :f ∈ H(1/2)

}
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with inner product 〈f,g〉H(α) = ∫ 1
0 f ([α]+1)g([α]+1). Finally, f ∈ H̄(α), the RKHS

of B̄α , iff f = P[α] + g where Pα is a polynomial of degree [α] and g ∈ H(α), and
note that P[α](t) = ∑[α]

i=0 f (i)(0)t i/i!; the inner product in H̄(α) is 〈f,g〉
H̄(α) =∑[α]

i=0 f (i)(0)g(i)(0)+∫ 1
0 f ([α]+1)g([α]+1); see, for example, [33]. The spaces H̄(α)

are precisely the Sobolev spaces Hα+1/2, and other equivalent norms may be used
below.

We will also require the following definition. For a B-valued Gaussian random
vector W , B a Banach space, and for w ∈ B , the “concentration function” φW

w (ε)

of W at w is defined as

e−φW
w (ε) = Pr{‖W − w‖ < ε}.(37)

The following result is a consequence of Borell’s isoperimetric inequality [4],
and is essentially contained in the proof of Theorem 2.1 in [32].

PROPOSITION 5. Let α ∈ {n − 1/2 :n ∈ N}, denote by H̄1(α) the unit ball of

H̄(α) and let B1 = {f ∈ C([0,1]) :‖f ‖∞ ≤ 1}. Let εn satisfy φ
B̄α

0 (εn) ≤ nε2
n for

all n. Then the released integrated Brownian motion process B̄α has a version, that
we continue denoting by B̄α , such that for every C > 0, D > 0,

Pr{B̄α /∈ MnH̄1(α) + εnB
1} ≤ De−(C+4)nε2

n,

where Mn = Mn(C,D) = −2�−1(De−(C+4)nε2
n) � √

nεn and � is the standard
normal distribution function.

PROOF. Borell’s inequality (e.g., Theorem 4.3.3 in [3]) implies

Pr{B̄α /∈ MnH̄1(α) + εnB
1} ≤ 1 − �(an + Mn),(38)

where an solves the equation �(an) = Pr{‖B̄α‖∞ ≤ εn} ≥ e−nε2
n . It then follows

(C + 4 > 1) that an ≥ −Mn/2, which implies

1 − �(an + Mn) ≤ �(−Mn/2) = De−(C+4)nε2
n . �

In particular, taking D = Pr{‖B̄α‖∞ ≤ c} for any c > 0, this proposition gives

Pr{B̄α /∈ MnH̄1(α) + εnB
1|‖B̄α‖∞ ≤ c} ≤ e−(C+4)nε2

n(39)

with Mn depending on C and c, and of the order
√

nεn.
In case r = ∞ we need a different result that reflects the almost sure Hölder

regularity of the trajectories of Bα .

PROPOSITION 6. For all α ∈ {n − 1/2 :n ∈ N}, integrated Brownian motion
has a version, that we continue denoting by Bα , with almost all its sample paths in
Cα,∞,1/2([0,1]) and for every D > 0 there exist tα < ∞ and Lα < ∞ such that

Pr{‖Bα‖α,∞,1/2 ≥ t} ≤ De−Lαt2
, t ≥ tα.(40)
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The same is true for the processes B̄α = ∑[α]+1
k=0 Zkt

k/k! + Bα , that is,

Pr{‖B̄α‖α,∞,1/2 ≥ t} ≤ De−Lαt2
, t ≥ tα,(41)

for possibly different Lα(D) and tα(D), for all D > 0.

PROOF. By a classical result of Lévy (see also Theorem IV.5 in [7]) Brownian
motion B1/2 has a version in C1/2,∞,1/2([0,1]). Since, for α > 1, by the defini-
tions,

‖Bα‖α,∞,1/2 = ‖Bα‖∞ + ‖B ′
α‖α−1,∞,1/2 = ‖Bα‖∞ + ‖Bα−1‖α−1,∞,1/2,

and ‖Bα‖∞ < ∞ a.s., induction extends the result to all α ∈ {n − 1/2 :n ∈ N}.
For 0 < α < 1, Theorem III.6 in [7] shows that the norms ‖f ‖α,∞,1/2 and

‖f ‖(d)
α,∞,1/2 are equivalent, where ‖f ‖(d)

α,∞,1/2 is defined as

‖f ‖(d)
α,∞,1/2 := ‖(yf

i , y
f
j,k)‖α,∞,∞

(42)

= sup
{
|yf

0 |, |yf
1 |,max

k,j

2αj

√
j log 2

|yf
j,k|

}

with

y
f
0 = f (0),

y
f
1 = 3−1/2(

f (1) − f (0)
)
,(43)

y
f
j,k = (3 · 2J )−1/2

[
f

(
2k − 1

2j+1

)
− 1

2

(
f

(
k

2j

)
+ f

(
k − 1

2j

))]

for k = 1, . . . ,2j , j = 0,1, . . . . Obviously, ‖ · ‖(d)
α,∞,1/2 is a supremum norm on a

sequence space; more specifically, it is the sup of the absolute values of a countable
number of linear functionals on the space Cα,∞,1/2([0,1]) (linear combinations of
point evaluations). Hence Lemma 3.1 and inequality (3.2) in [22] (this last inequal-
ity even with π2/2 replaced by 2) apply to ‖Bα‖α,∞,1/2, giving (40) for D = 1. For

D < 1, take t ′α ≥ tα such that D ≥ e−(Lα/2)(t ′α)2
and L′

α = Lα/2. If α > 1, then the
result follows by applying these inequalities to the C{α},∞,1/2-norm of the [α]th
derivative of the process and to the sup norms of the process and of its derivatives
of order smaller than [α]. Since (40) is obviously true for the processes Zkt

k , it is
true as well for B̄α possibly with a different constant, which gives (41). �

Again, taking D = Pr{‖B̄α‖∞ ≤ c}, for any c > 0, this proposition gives

Pr{‖B̄α‖α,∞,1/2 ≥ t |‖B̄α‖∞ ≤ c} ≤ e−Lαt2
, t ≥ tα,(44)

Lα and tα depending on c.
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These two consequences of Borell’s inequality imply that the integrated Brown-
ian motions concentrate on suitable subsets of C([0,1]), and the following lemma
achieves the same for the normalized trajectories of the processes eB̄α(t,ω).

LEMMA 2. Let α ∈ {n − 1/2 :n ∈ N}, and let Kj be a CDV-projection kernel
of regularity α + 1/2, at resolution j ≥ 0.

(1) (Case 1 ≤ r < ∞.) Let f ∈ {MnH̄1(α) + εnB
1,‖f ‖∞ ≤ c}, where H̄1(α) is

the unit ball of the RKHS of B̄α and set p = ef /
∫ 1

0 ef . Then, for r̄ = max(2, r)

and some C > 0,

‖Kj(p) − p‖r ≤ C
(
Mn2−j (α+1/r̄) + εn

)
.

(2) (Case r = ∞.) Let f satisfy ‖f ‖∞ ≤ c and ‖f ‖α,∞,1/2 ≤ L
√

nεn, and let
p be as above. Then, for some C > 0,

‖Kj(p) − p‖∞ ≤ C
√

nεn2−jα
√

j .

PROOF. We first consider 1 ≤ r < ∞. Since ‖f ‖∞ ≤ c we have e−c ≤∫ 1
0 ef ≤ ec so,

∫
Kj(x, y)(·)(y) dy being a linear operator, it suffices to bound

‖Kj(e
f )− ef ‖r . Writing f = f1 + f2 with f1 ∈ MnH̄1(α) and f2 ∈ εnB

1, we see
that ‖f2‖∞ ≤ εn < c, ‖f1‖∞ ≤ c + εn < 2c, and in particular, |ef2(x) − ef2(y)| ≤
ec|f2(x) − f2(y)|. Note also that, for some constant C(K) < ∞, ‖2−jKj (x, x +
2−j ·)‖1 ≤ C(K). Then we have

|Kj(e
f ) − ef |(x)

=
∣∣∣∣
∫

2−jKj (x, x + 2−ju)
(
e(f1+f2)(x+2−j u) − e(f1+f2)(x))du

∣∣∣∣
≤

∣∣∣∣ef2(x)
∫

2−jKj (x, x + 2−ju)
(
ef1(x+2−j u) − ef1(x))du

∣∣∣∣
+

∣∣∣∣
∫

2−jKj (x, x + 2−ju)ef1(x+u2−j )(ef2(x+2−j u) − ef2(x))du

∣∣∣∣
≤ ec|Kj(e

f1)(x) − ef1(x)| + 2e3c sup
x

‖2−jKj (x, x + 2−j ·)‖1εn.

The Lr([0,1])-norm of the second term is bounded by a fixed constant times εn,
and it remains to control the Lr([0,1])-norm of the first term in the bound.
Note that the Sobolev space H̄(α) = Hα+1/2 is contained in the Besov space
B

α+1/2
22 ([0,1]), which itself is continuously imbedded into the Besov space

B
α+1/2−1/2+1/r̄
r̄2 ([0,1]) = B

α+1/r̄
r̄2 ([0,1]); cf. Remark 1. We conclude, for some

constant C ′, that ‖Kj(e
f1) − ef1‖r ≤ C′‖f1‖H̄(α)2

−j (α+1/r̄) from the approxima-
tion properties of wavelet projections on Besov spaces (Definition 1). This estab-
lishes the bound in the first part of the lemma.
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For the case r = ∞, note that, f being bounded by c, the chain rule gives that
there exists C(c,α) such that

‖ef ‖α,∞,1/2 ≤ C(c,α)(‖f ‖α,∞,1/2 + 1).(45)

We conclude from a standard bias bound for wavelet projections that ‖Kj(e
f ) −

ef ‖∞ ≤ c(‖f ‖α,∞,1/2 + 1)2−jα
√

j which, in view of e−c ≤ ∫ 1
0 ef ≤ ec gives the

overall inequality. �

The choice j = Jn with 2Jn ∼ nε2
n, relevant in Theorems 2 and 3, gives, for p

satisfying the hypotheses of the previous proposition, the bounds

‖KJn(p) − p‖r ≤ C
(
(nε2

n)
−α + εn

)
for 1 ≤ r ≤ 2(46)

and

‖KJn(p) − p‖r ≤ C
(√

nεn(nε2
n)

−(α+1/r) + εn

)
for 2 < r < ∞(47)

as well as

‖KJn(p) − p‖∞ ≤ C
√

nεn(nε2
n)

−α
√

log(nε2
n).(48)

The last auxiliary fact that we will require about Bα is a small ball probability
estimate, concretely an upper bound for the concentration function φB̄α

w (ε) as ε

approaches zero.

PROPOSITION 7. Let Bα,α ∈ {n − 1/2 :n ∈ N} be integrated Brownian mo-
tion, considered as a Gaussian vector taking values in the Banach space C([0,1]),
and let w ∈ Cα([0,1]). Then, φB̄α

w (ε) = O(ε−1/α), and the same is true for φBα
w if

we further assume w(k)(0) = 0, k ≤ [α].
PROOF. Since Bα = W2α in [24] and it also equals a constant times Rα in [32],

this proposition simply combines Theorem 2.1 in [24] and Theorem 4.3 in [32].
�

This result applies to the “conditional” concentration function: if ‖w0‖∞ ≤ c/2
and ε ≤ c/2, then

Pr{‖B̄α − w0‖∞ < ε|‖B̄α‖∞ ≤ c}

= Pr{‖B̄α − w0‖∞ < ε,‖B̄α‖∞ ≤ c}
Pr{‖B̄α‖∞ ≤ c}(49)

= e−φ
B̄α
w0 (ε)

Pr{‖B̄α‖∞ ≤ c} .
We are now in a position to apply Theorems 2 and 3 to prove Proposition 4.

To ease notation define I (w) = ew/
∫ 1

0 ew(t) dt,w ∈ C([0,1]), and record that, for
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‖w‖∞ ≤ c,

|I (w)| ≤ L(|w| + 1),(50)

where L depends only on c.
Set w0 = logp0, so that, since ‖w0‖∞ ≤ c/2 and p0 is a density, hence p0 =

I (w0), Lemma 3.1 in [32] gives that if p = I (w) for w = B̄α(ω) for some ω ∈ �,
and ‖w‖∞ ≤ c, then −P0 log p

p0
≤ R‖w−w0‖2∞ and P0(log p

p0
)2 ≤ R‖w−w0‖2∞

for some R < ∞ (that depends on c). Hence, for any ε > 0 such that R−1/2ε < c/2,

�

{
p ∈ P :−P0 log

p

p0
≤ ε2,P0

(
log

p

p0

)2

≤ ε2
}

(51)
≥ Pr{‖B̄α − w0‖∞ ≤ R−1/2ε|‖B̄α‖∞ ≤ c}.

Since w0 is in Cα([0,1]), it follows from Proposition 7 that φB̄α
w0

(ε) = O(ε−1/α)

as ε → 0, say, there exist c1 large enough and ε1 > 0 such that

φB̄α
w0

(ε) ≤ c1ε
−1/α for all ε ≤ ε1.

Then we have, for εn = (c1/n)α/(2α+1), from some n on, both

φB̄α
w0

(R−1/2εn) ≤ c1R
1/(2α)ε−1/α

n and φB̄α
w0

(εn) ≤ nε2
n.

Hence, for these n, by (49),

Pr{‖B̄α − w0‖∞ ≤ R−1/2εn|‖B̄α‖∞ ≤ c} ≥ e−Cnε2
n,(52)

where C = c1R
1/(2α). This proves condition (2) in Theorems 2, 3 for these C,εn.

To proceed with the verification of the conditions of Theorem 2, take Pn =
{I (w) :w ∈ {MnH̄1(α) + εnB

1}} if r < ∞ and Pn = {I (w) :‖w‖α,∞,1/2 ≤√
(C + 4)/Lα

√
nεn} if r = ∞, and note that condition (1) in Theorem 2 is sat-

isfied for these choices in view of Propositions 5 and 6; see (39) and (44). The bias
condition is satisfied for the above choice of εn, γn = 1 if r < ∞ and γn = √

logn

if r = ∞, in view of Lemma 2; cf. also (46), (47), (48). Finally the additional
restrictions on εn in Theorems 2 and 3 are also satisfied, unless α = 1/2, r = ∞.
In this case the rate of contraction δn exceeds a constant multiple times

√
logn,

so that the result follows trivially from the fact that the prior is supported in a
sup-norm bounded set.

4.3. Proof of Theorem 1. Observing Y (n) is equivalent to observing its action,
on the basis,

yk =
∫ 1

0
φk(t) dY (n)(t) = 〈f,φk〉 + 1√

n

∫ 1

0
φk(t) dB(t)

(53)

:= θk + 1√
n
gk, k = 0, . . . ,N − 1,
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y�k =
∫ 1

0
ψ�k(t) dY (n)(t)

= 〈f,ψ�k〉 + 1√
n

∫ 1

0
ψ�k(t) dB(t)(54)

:= θ�k + 1√
n
g�k, k = 0, . . . ,2� − 1, � ≥ J0,

with the variables gk , g�k all i.i.d. N(0,1). The observed process, still denoted by
Y (n), can thus be viewed as a random element Y (n) = (yk, y�k)

t of �2, where yk is
N(θk,1/n), and y�k is N(θ�k,1/n), all independent. Likewise the function f0 to
be estimated becomes the vector θ0 = (θ0

k , θ0
�k)

t of the coefficients of its wavelet
expansion, that is, θ0

k = 〈f0, φk〉 and θ0
�k = 〈f0, φ�k〉, and any prior � on L2 maps

onto a prior, still denoted by �, on the parameter space θ = (θk, θ�k)
t ∈ �2.

The posterior �(·|Y (n)) is then the law of θ given the observed process Y (n).
Standard results on Gaussian measures on �2 imply that if the prior � on �2
is a centered Gaussian vector of trace class covariance �, then the posterior
probability law given Y (n), �̂Y

n = �̂Y (n)
, is also Gaussian, with mean θ̂ (Y ) =

E�(θ |Y (n)) = �(� +I/n)−1Y (n) = �(� +I/n)−1(yk;y�k)
t and with covariance

�|Y (n) = �(n� + I )−1; see, for example, Theorem 3.2 in [35]. We will drop the
superindex (n) from the processes Y (n) and Y

(n)
0 from now on to expedite notation.

The posterior �̂Y
n gives rise to a Gaussian measure on L2([0,1]) by simply

“undoing” the isometry, that is, by taking the law of the random wavelet series in
L2([0,1]) with coefficients drawn from �̂Y

n equal to

X =
N−1∑
k=0

[
1

1 + 1/n
yk +

(
1

n + 1

)1/2

ḡk

]
φk

+
∞∑

�=J0

2�−1∑
k=0

[
μ�

μ� + 1/n
y�k +

(
μ�

nμ� + 1

)1/2

ḡ�k

]
ψ�k

= E�n(f |Y) +
N∑

k=0

(
1

n + 1

)1/2

φkḡk

+
∞∑

�=J0

2�−1∑
k=0

(
μ�

nμ� + 1

)1/2

ψ�kḡ�k,

where the ḡ variables are i.i.d. N(0,1), and yk , y�k are, as defined above, the
integrals of the wavelet basis functions with respect to dY (t). Under dY0(t) =
f0(t) dt + dB(t)/

√
n, we have yk = 〈f0, φk〉+ gk/

√
n, y�k = 〈f0, φ�k〉+ g�k/

√
n,

where the gk, g�k are again i.i.d. N(0,1), independent of the variables ḡ. So, the
posterior given Y0 integrates the ḡ variables, and EY0 integrates the g variables,
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and we have

EY0�̂
Y0
n {‖f − f0‖∞ > Mεn}

= Pr

{∥∥∥∥∥
N−1∑
k=0

[ −1/n

1 + 1/n
〈f0, φk〉

+ 1√
n(1 + 1/n)

gk +
(

1

n + 1

)1/2

ḡk

]
φk

+
∞∑

�=J0

2�−1∑
k=0

[ −1/n

μ� + 1/n
〈f0,ψ�k〉(55)

+ μ�√
n(μ� + 1/n)

g�k

+
(

μ�

nμ� + 1

)1/2

ḡ�k

]
ψ�k

∥∥∥∥∥∞
> Mεn

}

= Pr
{∥∥E

Y
(n)
0

(
E�n(f |Y0) − f0

) + G
∥∥∞ > Mεn

}
,

where G is the centered Gaussian process

G(t) =
N−1∑
k=0

[
1√

n(1 + 1/n)
gk +

(
1

n + 1

)1/2

ḡk

]
φk(t)

+
∞∑

�=J0

2�−1∑
k=0

[
μ�√

n(μ� + 1/n)
g�k +

(
μ�

nμ� + 1

)1/2

ḡ�k

]
ψ�k(t)

and

EY0

(
E�n(f |Y0) − f0

) =
N−1∑
k=0

−1/n

1 + 1/n
〈f0, φk〉φk

+
∞∑

�=J0

2�−1∑
k=0

−1/n

μ� + 1/n
〈f0,ψ�k〉ψ�k.

It suffices to prove the theorem for r = ∞. We will apply Borell’s [4] inequality
(a consequence thereof, in fact, equation (3.2) in [22], page 57) to the probability
in (55), and for this we need to estimate ‖E(E�n(f |Y0) − f0)‖∞, E‖G‖∞ and
‖E(G2(·))‖∞.

Choose Jn ≥ J0 such that 2Jn � (n/ logn)1/(2α+1). Since f0 ∈ Cα([0,1]) and
‖∑

k|ψ�k|‖∞ ≤ C2�/2, we obtain∥∥∥∥∥
N−1∑
k=0

−1/n

1 + 1/n
〈f0, φk〉φk

∥∥∥∥∥∞
≤

∥∥∥∥∥
N−1∑
k=0

|φk|
∥∥∥∥∥∞

C

n + 1
≤ C1

n
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and ∥∥∥∥∥
∞∑

�=J0

2�−1∑
k=0

−1/n

μ� + 1/n
〈f0,ψ�,k〉ψ�,k

∥∥∥∥∥∞
≤

∞∑
�=J0

∥∥∥∥∥
2�−1∑
k=0

|ψ�k|
∥∥∥∥∥∞

C2−�(α+1/2)

nμ� + 1

≤ C′
(

Jn∑
�=J0

2−�α

nμ�

+
∞∑

�=Jn+1

2−�α

)

≤ C2

(
logn

n

)α/(2α+1)

,

where C1 and C2 depend only on the wavelet basis, α and ‖f0‖α,∞. Collecting the
last two sets of inequalities yields the bound

∥∥EY0

(
E�n(f |Y0) − f0

)∥∥∞ ≤ C̄1

(
logn

n

)α/(2α+1)

(56)

for some C̄1 < ∞. To bound E‖G‖∞, recall that for any sequence of centered
normal random variables Zj ,

E max
1≤j≤N

|Zj | ≤ C
√

logN max
j≤N

(EZ2
j )

1/2,(57)

where C is a universal constant. Therefore, from the definitions of Jn,μ�,

E

∥∥∥∥∑
k

[
1√

n(1 + 1/n)
gk +

(
1

n + 1

)1/2

ḡk

]
φk

∥∥∥∥∞

≤
∥∥∥∥∑

k

|φk|
∥∥∥∥∞

(
1

n(1 + 1/n)2 + 1

n + 1

)1/2

E max
k

|gk|

= O

(
1√
n

)

and, using μ� � n−1 for � ≥ Jn,

E

∥∥∥∥∥
∞∑

�=J0

2�−1∑
k=0

[
μ�√

n(μ� + 1/n)
g�k +

(
μ�

nμ� + 1

)1/2

ḡ�k

]
ψ�k

∥∥∥∥∥∞

≤ C′
∞∑

�=J0

2�/2E max
k≤2�

|g�k|
(

μ2
�

n(μ� + 1/n)2 + μ�

nμ� + 1

)1/2

≤ C′′
∞∑

�=J0

(�2�)1/2
(

μ2
�

n(μ� + 1/n)2 + μ�

nμ� + 1

)1/2
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≤ C′′
(

2
Jn∑

�=J0

√
2��

n
+ ∑

�>Jn

√
2��nμ� + ∑

�>Jn

√
2��μ�

)

≤ C′′′
(√

2JnJn

n
+ 2−Jnα

)
≤ D

(
logn

n

)α/(2α+1)

.

Conclude

E‖G‖∞ ≤ C̄2

(
logn

n

)α/(2α+1)

(58)

for some C̄2 < ∞. Finally,

EG2(t) =
N−1∑
k=0

(
1

n(1 + 1/n)2 + 1

n + 1

)
φ2

k (t)

+
∞∑

�=J0

2�−1∑
k=0

(
μ2

�

n(μ� + 1/n)2 + μ�

nμ� + 1

)
ψ2

�k(t)(59)

≤ C

(
1

n
+ 2Jn

n
+ 2−Jn(2α+1)

)
≤ C3

2Jn

n
.

So, setting εn = (n/ logn)−α/(2α+1), the estimates (56), (58) and (59) together with
inequality (3.2) on page 57 of [22], give

Pr
{‖EY0

(
E�n(f |Y0) − f0

) + G‖∞ > Mεn

}
≤ Pr{‖G‖∞ − E‖G‖∞ > Mεn − ∥∥E(

E�n(f |Y0) − f0
)∥∥∞ − E‖G‖∞}

(60)
≤ Pr{‖G‖∞ − E‖G‖∞ > (M − C̄1 − C̄2)εn}

≤ exp
(
−(M − C̄1 − C̄2)

2ε2
n

C2
32Jn/n

)
.

Collecting (55) and (60) and taking into account that ε2
n � 2JnJn/n completes the

proof.
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SUPPLEMENTARY MATERIAL

Supplement to “Rates of contraction for posterior distributions in Lr -
metrics, 1 ≤ r ≤ ∞” (DOI: 10.1214/11-AOS924SUPP; .pdf). This supplement
contains a detailed proof of Lemma 1 and an expanded proof of Proposition 2
from the mentioned article.
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