NMARZZMIZRY R MY

Kyushu University Institutional Repository

RATES OF CONVERGENCE IN CENTRAL LIMIT THEOREM
FOR MARTINGALE DIFFERENCES

Kato, Yutaka

Department of Industrial Engineering, College of Engineering, Hosei University

https://doi.org/10.5109/13119

HARTERR : FEHEERHZE. 18 (1/2), pp.1-8, 1978-03. REHRIZEHES
N—3 0

HEFIBEMR

.

¥, KYUSHU UNIVERSITY




RATES OF CONVERGENCE IN CENTRAL LIMIT
THEOREM FOR MARTINGALE DIFFERENCES

By
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In this note we shall give an estimate to the rate of convergence in central limit
theorem for bounded martingale difference sequence, which is a better estimate than
Ibragimov’s one [3]. Our method is based on Skorohod representation theorem
(straightforword probabilistic methods).

Let {X;; i=1,2,---} be a sequence of martingale differences with P{|X;|=C}=1
for all 7. We define the random variables

ss=E{Xi}
sng{X_?H-l”Xj; ) Xl}: J:1) 2) B
and we also define the random indexes v, by the inequalities
(1) sit+ - sl a<ns=si+ - +s3, n=1,2, -
Finally, we define
Sp=X1+ - +X,,.

I. A. Tbragimov [ 3] showed that if ji s} diverges with probability 1, then
=0

S}clp\P{ j% §x}—(b(x) ’

C1/2
ézw(w

3 C 1 C*
vty )

where @(x) is a standard normal distribution function. We give the theorem which
deals with the suggestions given to me by Ibragimov [4] in private conversations.

THEOREM : Let {X;; i=1,2,--} be a sequence of martingale differences with
P{|X;|=Cy=1. If

(2) ZZ)O sHw) X f(n) uniformly
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for some monotone increasing function f(n) such that

fi(n)
n

(3)

=0 (logn), Lnn)=0(1),

then there exists a constant M such that for sufficiently large n

sup P{ j; <x }—(b(x) ‘ gMﬂ%/g%'

The constant M depends only on the constants C, 8 and r,

where p= lmnnf ess. inf —— E s} (w), -—hmsup ess. Sup —- - sHw).

f() f()]—

REMARK: The condition (2) of Theorem means that

0<11m1nf ess. 1nf f( y ; E sHw)
<limsup ess.sup f(ln) Z"‘,O sHw) <co.
n->o0 @ Jj=

In proving the theorem, we shall use the following three lemmas. The first one
is a Skorohod representation theorem for martingale differences which was given by
Strassen [17].

LEMMA 1: Let
(4) Xl; Xz;

be random variables such that for alln, E{Xi|Xa_s, -+, Xi} exists and E{X,| X, y, -,
X} =0 a.e. Then, without loss of generality, there is a Brownian motion w(t) together
with a sequence of non-negative random variables T,, T, --+ such that

ié Xi:w( él Ti) a.e.,

for all n. Moreover, if B, is generated by X,, -, X, and w(t) for 0=t=< é}l T:, then
the following hold.

(i) T, is B,-measurable.

(ii) For any s>0, w( iZZ)I Tri-s)—w( iél Ti) is independent of B,.

(iii) E{TullBn-1} exists and E{T,|B,-} =E{Xi|Bu-i} =E{Xi| Xn-y, -, X1} a.e.

(iv) If k is a real number >1 and E{X%*|X,-1, -, X1} exists, then E{TE|B,_.}
exists too, and further E{T}| B, .} SLE{X¥*| B, } SL.E{X*|X._,, -, X.} a.e.,
where each L, is a constant which depends only on k.
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The phrase ‘without loss of generality’ in the above lemma is used in a specific
sense, namely : there is a new probability space (£, _é, P) on which random variables

(5> XAI) XA’z} ot

are defined in such a way that the both sequences (4) and (5) have the same distribu-
tion, and the assertions in the above lemma (where now ‘without loss of generality’
is to be omitted) remain valid for the Xn (w(?) and the T, are of course defined on
the new space). In this note, we shall assume that the new probability space (.@, é, P
satisfies the following conditions: (I) There exists a sequence of independent Brownian
motions {B,({),n=1} on (!5, 2, P) such that B,(f) converges with probability 1 to
Brownian motion B(t). (II) There exist random variables independent of all the B,(?),
Y, Y, - on (Q, _615, P) which are pairwise independent and distributed uniformly over
the interval [0, 1].

Hereafter, we shall discuss on the new probability space, and we shall write
X1, X,, --- in place of (5) and (2, 8, P) in place of (Q, 5§, p).

The next two lemmas are the generalizations of results of Skorohod [2] on sums
of independent random variables to martingales. The proofs can be obtained in a way
similar to Skorohod’s one and are omitted.

LEMMA 2: For each n, suppose that By i, Bn,s, -+ are non-decreasing sequence of
o-algebras and that 7,1, Yn,s, === are random variables such that for each i, Wa,: i
By, i~measurable, E{9qllBs,:-1} =0 a.e, E{p’,l B} SH/n and E{y*,:} <H,/n?
where B, is a trivial o-algebra. If v.(w) is a non-negative integer-valued random
variable such that ess. sup vi(w)=g(n) for some positive integer-valued function g(n),

then

P{ :2:17],.,,- >2log n}
20 (exp (14 )22} 4 1),

LEMMA 3: For each n, suppose that B, B, -+ are non-decreasing sequence of
o-algebras and that 7,1, Yr,qs, === are random variables such that for each i, %n,; 1S
B, ~measurable, E{9,,il|Bn,:-1} =0 a.e. and E{pk |8, ...} <H,/(logn)*, £~=2,3, -,
where H, < A* for some constant A and B, , is a trivial o-algebra. Then we have

P{ moig:m i >((1—}— —;—)Hz-}-S)log n}
<_2_ A

nd + (log n)an—a .

We can now prove our theorem as follows. It follows from Lemma 1 that there
is a Brownian motion w(#) together with a sequence of non-negative random variables
T,, T,, -+ such that for each &
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élgn,i: (Zﬁl ) a.e.,

where En,izvl_xi. Moreover, it Ba,i=8{n,1, , Eni w(D), 0StS i T,}, then
n =1

we have
C \2
EATE 0,0} = La( =)

C}l

En,z '\/—

since, by hypothesis, {

We denote by Q,(x) the probability

(6) Qu (= P{= =)

:P{En,1+ e +En,un§x}

~rlu(gr)=d

and by Q(x) the probability
(7)
We define 7, i=n"*(Ti—E(Tu|Bn,i-1)), and Co,i= 3 7n, -

Q=P{w(l)=x}.

Then we have

Wit - ) =u(E22 B BT 8,0,

Thus
Q@=P{u(222 1 8 BT 8,01 )2},

From the property of the stopping time T,.,, it follows that for any SE[
i

1/2

‘w(s)—w( élTi> <

Therefore, we have

(8) P{w(S)éx Off%c for some sE[g)IT vn”i)ma]T]}éQn(x)

3 ) vp+log )8
éP{w(s) §x+ﬁg/gFL)C, for any se[?‘:lT,-, wi: )]Tt]}.
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From the conditions (2) and (3) of Theorm, it follows that for sufficiently large n

Jn+r(108 n)8] ﬁ (log n)®
I >4Fr& 279
i=pn+ E{Tdl B0, -1} = 6 nlog logn’

1/2

where ﬁﬂhmlnf ess. inf —— Z} s¥(w). We define 7,;=————1%a,: then the vari-

f() log n

ables 7, satisfy the conditions of Lemma 3. Furthermore, we observe that event
{v,=Fk} is B, ,~measurable, and hence

E{Xkﬁn,ju-@n,j—l} :XkE{r—}n,j"-@n,j—l} =0 a.e.

for all k<j—1, where y; is a indicator function of {v,=k}. Thus there exists a set
B such that, for sufficiently large n, P(B¢) =£3/n and

s O (1)),

wEB '\/n i=vp+1

Therefore, we have

. vp+lQogn)3] (log n)?
Op=inf = 2 T;>——,
wEB i=yp+1 n

so that, it follows from (8) that

3
< -
Qa(x)=—
(log n)® vn vn
+ Pl sx+52C,  for any s=| B SEREAI
vn i=1 i1
Furthermore, from the property (1) and (II) of the new probability space, there
exists a Brownian motion w,(¢) independent of w(#) such that

2z o<

where random variables T, T{, --- are the stopping times for w,(t) determined by
Skorohod representation theorem (Lemma 1), see Basu [5]. Consequently, we have for
sufficiently large n

(1)

% =PfwE s+ L8l 2,

n

. ¥n On ..
where the random variable T:(21T§1)+_2_-> is independent of Brownian motion

w(t) and
(9) fe[:zlei, :zle,.wn].

Since w(zr) and +/7 w(l) have the same distribution for fixed z, it follows that
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(10) Qa0 =P{vTuy=er 2 ch+ 2

From the condition (2) of Theorem, it follows that for sufficiently large n

ess. sup (o) < [f‘ ]+1<2 -
(gm] 12 (5m).
Furthermore, the variables 7,,; satisfy the conditions of Lemma 2, then we have

(11) P{|Cn,v,1 >21log n}
s 2 () (e GG e,

where C1=2<1+ %)C‘ and C,=C8 From the definition of v, and Lemma 1, we have

CZ Yn
1—7 = EIE{TzMQn,z—l} <L

Therefore, we have the following inequality on BN {[{s,.,| =2 log n}

logn
v’

1—M, lf/g; <r<1+M,

Z) si(w).

where M, is a constant depending only on C and 7, r_hmsup €ess. . SUP— <

7 ( ) i
Then, from (10) and (11), we have for sufficiently large n

Iog n gy, ot

(log n)® }

n(x><P{w(1)<x+2M11x[ N

L) (oS G e)
where M, is a constant depending only on C and p.

In an analogous fashion, we can show that
logn
v

I DICHER RO
Therefore, we have for sufficiently large n

(12) |Qn(x) —Q(x) |

(og n)® }

Qu(x) 2 P{w(1) Sx—2M, | x| —M=

logn
vV

—pp, log n° <w(l)§x}

< —
=P{x oM, | x| o
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logn
vVn

+de (G (el S (G ) + 2

But, it follows that for sufficiently large n

M, (log n) }

+P{x<w(1)§x+2Ml]xl o

_ g, og )
M= < (1><x} M

log n
vV

P{x—ZMl x|
(13)

logn (log n)® (log n)®
M —— <M, —=,
VR v S v
where M, is a constant depending only on C and y. Consequently, it follows from
6), (), (12) and (13) that

P{x<w<1) <x+2M, | x|

{:/—_ Sx —0(x) ‘
(log n)* | 16
=2M, NS -l—

+%f-l(%n) : (exp{%f—l(%n)}Jrcz).

Therefore, it follows from the condition (3) of Theorem that there exists a constant
M (depending only on C, 8 and y) such that

P{j%gx}—(b(x)}gM(li/ng‘)s.

sup
x

The proof of Theorem is now complete.

REMARKS: (1) We can prove in the same manner that

oca]-o( L)

=

for any 6>0.

(2) In the same manner, we can give an estimate to the rate of convergence
in central limit theorem for a class of dependent R*-valued random variables, see

Y. Kato [6].
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