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RATES OF CONVERGENCE IN CENTRAL LIMIT 

THEOREM FOR MARTINGALE DIFFERENCES

                 By 

          Yutaka KATO* 

(Received October 30,  1976  ; revised August 1, 1977)

   In this note we shall give an estimate to the rate of convergence in central limit 
theorem for bounded martingale difference sequence, which is a better estimate than 
Ibragimov's one [ 3 ]. Our method is based on Skorohod representation theorem 

(straightforword probabilistic methods). 
   Let {Xi ; i=1, 2, •} be a sequence of martingale differences with P{ I Xi I =1 

for all i. We define the random variables 

                 s8=E 

                  s=E {X.4,11 X j, X1}, j=1, 2, -- 

and we also define the random indexes 1)7, by the inequalities 

  ( 1 )s8+ ••• +s%_1<n�sg+ •-• +4., n=1, 2, ••• 

Finally, we define 

                        Sn= • • +XLn. 

I. A. Ibragimov [ 3 showed that if E s.; diverges with probability 1, then 
                                                   J=0 

                   sup P  �x}-0(x) 
                            AnT — 

        2 C"2  \                     (1+3C +1C            Vn23 n 

where 0(x) is a standard normal distribution function. We give the theorem which 

deals with the suggestions given to me by Ibragimov [ 4 ] in private conversations. 

   THEOREM : Let {Xi ; i=1, 2, •••} be a sequence of martingale differences with 

P {I Xi15_C} =1. If 

 ( 2 )                    (w) Z f (n)uniformly 
                                          =0
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for some monotone increasing function  f(n) such that 

          f1(n)f (n)   ( 3 )=o (log n)
,=0(1), 

then there exists a constant M such that for sufficiently large n 

             sup Pf Sn x}(x) M(log n)  
    xnn• 

The constant M depends only on the constants C, j3 and r, 
  nn 

where13=liminf ess. inf 1 s2(co),) r=limsup ess. sup Es2i(w).              f (
n) j =0wf(n) j=o 

   REMARK : The condition (2) of Theorem means that 

                              1  n                  0< li
minf ess. infE s2(w) 

                                w f(n) j=0 

                               1 n                      li
msup ess. supEs3(w) <CO.                           n->o<>wf(n)J =0 

   In proving the theorem, we shall use the following three lemmas. The first one 
is a Skorohod representation theorem for martingale differences which was given by 
Strassen 1 J. 

   LEMMA 1 : Let 

( 4 )XX2y 

be random variables such that for all n, .E{X0Xn-i,•••, X1} exists and E{X.II                                                                                                                                                                                                                                     -•.
, 

X1} =0 a. e. Then, without loss of generality, there is a Brownian motion w(t) together 

with a sequence of non-negative random variables T1, T2, ••• such that 

                       Xj=w(± Ti) a. e., 
                   i =1i =1 

for all n. Moreover, if -Bn is generated by X1, ••, X„ and w(t) for 0�t� T1, then 
                                                                                                      i =1 

the following hold. 

  (i) Tn is ..Bn-measurable. 

 ( ii) For any s>0, w( Ti+s)—w( Ti) is independent of -Bn. 
              i =1i =1 

 (iii) E{Tnlign-i} exists and EITniign-il =E {Xiii -=E{X,i II X.-1,•, X1} a. e. 

 (iv) If k is a real number >1 and E{XeliXn-i, X1} exists, then W7/1127,-11 
     exists too, and further E -�LkE �--LkEIX1k11Xn-1, •••, X1} a. e., 

     where each Lk is a constant which depends only on k.
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   The phrase  'without loss of generality' in the above lemma is used in a specific 

sense, namely : there is a new probability space (Q, P) on which random variables 

( 5 )22                                                       1,2, • 

are defined in such a way that the both sequences (4) and (5) have the same distribu-

tion, and the assertions in the above lemma (where now 'without loss of generality' 
is to be omitted) remain valid for the 27, (w(t) and the T7, are of course defined on 

the new space). In this note, we shall assume that the new probability space (Q, P) 
satisfies the following conditions : ( I ) There exists a sequence of independent Brownian 

motions {B„ (t), n�1} on (Q, P) such that Bn(t) converges with probability 1 to 
Brownian motion B(t). (II) There exist random variables independent of all the B.(t), 

Y1, Y2, •-• on (Q, P) which are pairwise independent and distributed uniformly over 
the interval [0, 1]. 

   Hereafter, we shall discuss on the new probability space, and we shall write 

X1, X2, • in place of (5) and (Q, 2, P) in place of (Q, g3, P). 
   The next two lemmas are the generalizations of results of Skorohod [2] on sums 

of independent random variables to martingales. The proofs can be obtained in a way 
similar to Skorohod's one and are omitted. 

   LEMMA 2 : For each n, suppose that 2n,1, g.,2, are non-decreasing sequence of 

a-algebras and that 77,1,i, 77n, 2, • •• are random variables such that for each i, i is 
2.,1-measurable, E{77n,ill-Bn,i-1} =0 a. e., E{772.,ilign,i-1}-__<—Hiln and Etrtn,11H2/n2, 
where gno is a trivial a-algebra. If vm(w) is a non-negative integer-valued random 
variable such that ess. sup v7,(w)�g(n) for some positive integer-valued function g(n), 

then 

            P{ 1,„, i >2 log n                                    i= 

           <g(n)  (2 expf (1+2e)Hig(n)  }+H2).    n2 

   LEMMA 3 : For each n, suppose that _gs                                          —717 1, gn, 2, • • are non-decreasing sequence of 

a-algebras and that 77                      7771, 2, are random variables such that for each i, i is 

2.,cmeasurable, =0 a. e. and _Hk/(log n)k, k=2, 3, 

where Hk�Ak for some constant A and gm o is a trivial a-algebra. Then we have 

                               [(log n)83              PfE77„,i>((1+—2)H, +3) log n}       E=1 

         2 A"  
                        n3 (log n)"-' • 

   We can now prove our theorem as follows. It follows from Lemma 1 that there 

is a Brownian motion w (t) together with a sequence of non-negative random variables 

T„T2,••• such that for each k
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 E en, i= w( Ti) a. e., 

 

i  =1 

          1 where en,i= ,^—nXi. Moreover, if gn,i=glen,i,••-,en,i, w(t),(t),T1}, then 
                                                                   J we have 

                              C                    E frin II gn,L.( rn a. e., 

since, byh—1        ypothesis,PI  =1. 

                                 n We denote by Qn(x) the probability 

 ( 6 )pf NS„ <                        U/n 

                         = Plen ,i+ 

                = P {w( Ti).<x} 

and by Q (x) the probability 

 ( 7 )Q(x)=P{w(1)�x}. 

We define777,, i= n"(Ti—E {Till gn,i-1}), andCn,i= E J. Then we have 
                                                                         j=1 

                         Cn  vn               w(Ti+ ••• nEE{Tillgn,i-1}). 
Thus 

                                    Cn v"             Qn(x)=P{w(E                           'N/ n1 

                                              kk+1 From the property of the stopping time T k +1, it follows that for any sE[ E Ti, E Ti 
                                                                           i =1i =1 

                   w(s)—w(i Ti) C/n1/2. 

                                           i Therefore, we have 

              (log rt)3.nvn+E(log n)3]  ( 8) Plw(s) 'N/ nC, for some sE[E1Ti, E1Td}5.Q7,(x)                           i=i= 

        (log n)3 n)33        <P{w (s) nC, for any sE[E                                                                                      i =1
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   From the conditions (2) and (3) of Theorm, it follows that for sufficiently large n 

 un+E(log n)3313  (log n)3  
 E —                       =7..,n+1E-— 6 n log log n ' 

                                                                        n"2        1 
where 13=-1iminf ess.inf sl(w).We define3-2n,i=then the vari-     n—f (n) J=0log n 

ables 57n, i satisfy the conditions of Lemma 3. Furthermore, we observe that event 

Ivn=k1 is gn, k–measurable, and hence 

            E fxkT =XkE J-11 =0 a. e. 

for all k<—j-1, where xk is a indicator function of fv„=k1. Thus there exists a set 
B such that, for sufficiently large n, P(Bc) �3/n and 

                   1 vn+C(log n)3](log n)2  ((1+—e      sup )C4+3).                  ,E )7n, i        wEBn i=vn+1n2 

Therefore, we have 

                                    vni-E(log n)3](log n)2  
                     On,=inf E Ti> 

                                     wEB i=vn+1 

so that, it follows from (8) that 

     Qn(x) 

                n 

                     (log n)3           P {W (S)C, for any s[ E1,Li'Ti+3,d}.^n=11=1 
Furthermore, from the property ( I ) and (II) of the new probability space, there 

exists a Brownian motion w1(t) independent of w (t) such that 

               P{Ti—77><-1, 
                i =1 1=1n n 

where random variables Tin , •-• are the stopping times for w1(t) determined by 
Skorohod representation theorem (Lemma 1), see Basu [5]. Consequently, we have for 

sufficiently large n 

               (2.(x) 5P{w(v)5_x+ (log n)3  C1+ —4 

                                                       n 

                                                     vn 

                                 where the random variable z•= E 77a+n)is independent of Brownian motion                     i =12 

w(t) and 

( 9 ) [ Ti,Ti-Ead• 
                                 i=ii =1 

Since w(r) and -\17-z-w (1) have the same distribution for fixed v, it follows that
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 (10)(logn                Q7,(x)�11-VT- w(1) <=x+_)3 C±—4 

                                                          n 

   From the condition (2) of Theorem, it follows that for sufficiently large n 

 ess. sup v7,((o)�_[f-1(-2n)1+1�2f-1(-2n). 
Furthermore, the variables 72„,, satisfy the conditions of Lemma 2, then we have 

 (11)PlICn,,,n1 >2 log n} 

                <  n'2 c_i(2 n).                    (expf Cin)}+C2),               \i5tn 

where C1=2(1+—2e)C4 and C2=-C8. From the definition of v7,and Lemma 1, we have 

                       C2 'n                        1— E E{TilIgn ,i_i} <1. 

                               n Therefore, we have the following inequality on Bn I Cm,,, I 2 log n} 

                1—M, log nlogn                                    �7�-1±Mi                                                   -Vn 

                                              1 n 9 
where Ml is a constant depending only on C and r, i=limsup ess. sup f (n)E0s-3(co). 

                                                                                                     = Then, from (10) and (11), we have for sufficiently large n 

                                 logn(log3               Qn(x)--Pfw(1)5x-i-2Mix—+M2—                  -Vnn 

             ± 2f-1(2n)•(exp{ nri(-2n)}+C)+8 ,      n2  

where M2 is a constant depending only on C and r. 

   In an analogous fashion, we can show that 

                                 logn(log3             C27,(x)�P{w(1)�x-2Milx1—M2—}                  -V nn 

             — f_i(2Ci  f_1(2n)}±c2)_8               n2pn)-(expf 
Therefore, we have for sufficiently large n 

 (12) I Q.(x) —(2 (x) 

                       log(log 

                                      A/nn)3 
              .„-C.Pfx-2Milx1——M2-<W(1)
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                                log +11
2  (log3              ±Pfx<w(1) x-F2Milx1 

          nn 

                                       16              - 'pn) •  (exp{ f-1(2,n)}+C2)-F. 

     n But, it follows that for sufficiently large n 

         Px-2M, I xllog n  —111,  (logn)3  <w(i)<x} <m3  (log n)3        ^{ 
     n ^n^n 

 (13) 
                          log +m.

,  (logn)3  1<m3  (logn)3          P-fx<w(1)<x+2M,Ixj 
        nVTI. 

where M3 is a constant depending only on C and r. Consequently, it follows from 

(6), (7), (12) and (13) that 

            sup P{Sn�x}-0(x)                  x^n 

                     2M,                       (log nn)3± 16  

                                 n 

              +  42f-1( 2 n) • (expl f-1(-2,n)}+C2). 

       n Therefore, it follows from the condition (3) of Theorem that there exists a constant 
M (depending only on C, j3 and r) such that 

                            (x) <M(log)3              sup1/3{ Sn 
       xn.N/n• 

The proof of Theorem is now complete. 

   REMARKS : 1 ) We can prove in the same manner that 

                                  =0( (log n)2+°\               sup PI Sn-�x}0(x)     x—\^n) 

for any >O. 

   ( 2 ) In the same manner, we can give an estimate to the rate of convergence 
in central limit theorem for a class of dependent Rk-valued random variables, see 

Y. Kato [61. 
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