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SUMMARY . In this paper we study the uniform behavior of the empirical
brownian bridge over families of functions ~ bounded by a function F
(the observations are independent with common distribution P). Under
some suitable entropy conditions which were already used by Kolcinskii
and Pollard, we prove exponential inequalities in the uniformly bounded
case where F is a constant (the classical Kiefer’s inequality (1961) is

improved), as well as weak and strong invariance principles with rates of
convergence in the case where F belongs to ~2 +a(P) with 6 E ] o,1 ] (our
results improve on Dudley and Philipp’s results (1983) whenever ~ is

a Vapnik-Cervonenkis class in the uniformly bounded case and are new
in the unbounded case).
Key-words and phrases : Invariance principles, empirical processes, gaussian processes,

exponential bounds.

RESUME. - Dans cet article nous etudions le comportement uniforme
du pont brownien empirique sur des familles de fonctions ~ bornees
par une fonction F (les observations sont independantes, de distribution
commune P). Sous des conditions d’entropie convenables qui sont deja
utilisees par Kolcinskii et Pollard, nous prouvons les inegalites exponen-
tielles dans le cas uniformement borne ou F est une constante (1’inegalite
classique de Kiefer (1961) est amelioree) aussi bien que les principes d’in-
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382 P. MASSART

variance faibles et forts avec des vitesses de convergence dans le cas ou

F appartient a L2 +a(P) avec 03B4~ ] O, 1 ] (nos résultats améliorent ceux de
Dudley et Philipp (1983) lorsque ~ est une classe de Vapnik-Cervonenkis
dans le cas uniformement borne et sont nouveaux dans le cas non-borne.
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1. INTRODUCTION

1.1. GENERALITIES. - Let (X, ~’, P) be a probability space and (Xn)n> 1
be some sequence of independent and identically distributed random

variables with law P, defined on a rich enough probability space Pr).

Pn stands for the empirical measure - and we choose to call

empirical brownian bridge relating to P the centered and normalized

process 03BDn = P). Our purpose is to study the behavior of the

empirical brownian bridge uniformly over ~ , where ~ is some subset
of 22(P).
More precisely, we hope to generalize and sometimes to improve some

classical results about the empirical distribution functions on f~d (here ~
is the collection of quadrants on [Rd), in the way opened by Vapnik, Cervo-
nenkis and Dudley.

In particular, the problem is to get bounds for:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



383CENTRAL LIMIT THEOREM FOR EMPIRICAL PROCESSES

where ~ ~ ~ ~ ~ ~ stands for the uniform norm over ~ and to build strong uniform

approximations of 03BDn by some regular gaussian process indexed by F
with some speed of convergence, say (bn).

First let us recall the main known results about the subject in the classical
case described above.

1 . 2. THE CLASSICAL BIBLIOGRAPHY. - We only submit here a succinct
bibliography in order to allow an easy comparison with our results (for
a more complete bibliography see [26 ]). Concerning the real case (d = 1),
the results mentioned below do not depend on P and are optimal:

~ . 2 . l. (1.1.1) is bounded by C exp ( - 2t2), where C is a universal
constant according to Dvoretzky, Kiefer and Wolfowitz [24 ] (C  4/
according to [17]).

1.2.2. The strong invariance principle holds with 

according to Komlos, Major and Tusnady [37 ]. V~
In the multidimensional case (d > 2):

1. 2 . 3. (1.1.1) is bounded by C(E) exp ( - (2 - ~)t2), for any ~ > 0,
according to Kiefer [34 ]. In this expression E cannot be removed (see [35 ]
but also [28]).

’ 

_ i

1. 2 . 4. The strong invariance principle holds with bn = n 2 ~Za -1 ~ Log (n),
according to Borisov [8 ].
This result is not known to be optimal, besides it can be improved

when P is uniformly distributed on [O, 1 ]d. In this case we have:

1. 2. 5. If d = 2, the strong invariance principle holds with bn = ,

according to Tusnady [.~0 ]. " /n

1.2.6. If d > 3, the strong invariance principle holds with

according to Csorgo and Revesz [14 ].
1.2. 5 and 1.2.6 are not known to the optimal.
Let us note that even the asymptotic distribution of )) 03BDn~F is not well

known (the case where d = 2 and P is the uniform distribution on [0, 1 ]2
is studied in [12]).

Vol. 22, n° 4-1986.



384 P. MASSART

Now we describe the way which has already been used to extend the
above results.

1 . 3. THE WORKS OF VAPNIK, CERVONENKIS, DUDLEY AND POLLARD.

Vapnik and Cervonenkis introduce in [51 ] some classes of sets-which
are generally called V. C.-classes for which they prove a strong Glivenko-
Cantelli law of large numbers and an exponential bound for (1.1.1).

P. Assouad studies these classes in detail and gives many examples in [3 ]
(see also [40 ] for a table of examples).
The functional P-Donsker classes (that is to say those uniformly over

which some central limit theorem holds) were introduced and characte-
rized for the first time by Dudley in [20] ] and were studied by Dudley
himself in [21 ] and later by Pollard in [44 ].
Some sufficient (and sometimes necessary, see [27 ] in case ~ is uniformly

bounded) conditions for ~ to be a P-Donsker class used in these works
are some kinds of entropy conditions, as follows.

Conditions where functions are approximated from above and below
(bracketing, see [20 ]) are used in case ~ is a P-Donsker class whenever
P belongs to some restricted set of laws on X (P often has a bounded density
with respect to the Lebesgue measure in the applications) whereas Kol-
cinskii and Pollard’s conditions are used in case F is a P-Donsker class

whenever P belongs to some set of laws including any finite support law
(the V. C.-classes are under some measurability assumptions-the classes
of sets of this kind, see [21 ]).

In our study we are interested in the latter kind of the above classes.
Let us recall the already existing results in this particular direction. When-
ever ~ is some V. C.-class and under some measurability conditions,
we have :

1. 3 . l. (1.1.1) is bounded by (2 - E)t2) for any £ in

] O, 1 ], according to Alexander in [1 ] and more precisely by :
+ t2)2048(D+ 1) exp (- 2t2), in [2 ] (1) ,

where D stands for the integer density of EF (from Assouad’s terminology
in [3 ]). 

1. 3 . 2. (1.1.1) is bounded by 4e8(03A3(n2 j)) exp ( - 2t2), according to
Devroye in [16 ]. 

(~) Our result of the same kind (inequality 3 . 3 .1°) a) in the present work) seems to have
been announced earlier (in [41 ]) than K. Alexander’s.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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_ 

1

1. 3 . 3. The strong invariance principle holds with bn = n 
according to Dudley and Philipp in [23 ].
Now let us describe the scope of our work more precisely.

2. ENTROPY AND MEASURABILITY

From now on we assume the existence of a non-negative measurable
function F such that F, for any f in F . We use in this work Kol-
cinskii’s entropy notion following Pollard [44 ] and the same measurability
condition as Dudley in [21 ]. Let us define Kolcinskii’s entropy notion.

Let p be in [1, + oo [. d(X) stands for the set of laws with finite support
and for the set of the laws making FP integrable.

2.1. DEFINITIONS. - Let 8 be in ] 0,1 [ and Q be in ~ , Q)
stands for the maximal cardinality of a subset % of !F for which :

holds for any f, g in % with f ~ g (such a maximal cardinality family is
called an 8-net of (~, F) relating to Q). We set NF ~(., ff) = sup N~F ~(. , ~, Q).

QEd(X)

Log (N~F ~( . , ~ )) is called the (p)-entropy function of (~ , F). The finite or
infinite quantities :

are respectively called the (p)-entropy dimension and (p)-entropy exponent
of (~ , F).

Entropy computations. We can compute the entropy of ~ from that

of a uniformly bounded family as follows. . 
then : ~ ~

For, given Q in ~(X), either Q(F) = 0 and so ~ ,~ Q) = 1, or
Fp

Q(F) > 0, so 
O(Fp) 

Q E A(X) and then :

Vol. 22, n° 4-1986.



386 P. MASSART

Some other properties of the (p)-entropy are collected in [40 ]. The main

examples of uniformly bounded classes with finite (p)-entropy dimension
or exponent are described below.

2 . 2. COMPUTING A DIMENSION: THE V. C.-CLASSES . - According to

Dudley [20 ] on the one hand and to Assouad [3 ] on the other we have
= pd whenever L is some V. C.-class with real density d (this notion

can be found in [3 ]). Concerning V. C.-classes of functions, an analogous
computation and its applications are given in [45 ]. See also [21 ] for a
converse.

2.3. COMPUTING AN EXPONENT: THE HOLDERIAN FUNCTIONS. Let d

be an integer and a be some positive real number. We write f3 for the greatest
integer strictly less than a. Whenever x belongs to (Rd and k to I
stands for ki + ... + kd and Dk for the differential operator ... 

Let ) ) . )) be a norm on Let be the family of the restrictions to the
unit cube of [Rd of the fl-differentiable functions f such that:

Then, according to [36 ] on the one hand and using Dudley’s arguments

in [19 ] on the other, it is easy to see that : -.

a

Measurab ilit y considerations. Durst and Dudley give in [21 ] an example
of a V. C.-class L such that )) Pn - P~L - 1. So some measurability con-
dition is needed to get any of the results we have in view. So from now on
we assume the following measurability condition (which is due to Dud-
ley [21 ]) to be fulfilled :

. (X, ~’) is a Suslin space.

. There exists some auxiliary Suslin space (Y, ~) and some mapping T
from Y onto ~ such that :

(x, y) ~ T( y)(x) is measurable on (X x 0 J)

and we say that iF is image admissible Suslin via (Y, T).
This assumption is essentially used through one measurable selection

theorem which is due to Sion [47] (more about Suslin spaces is given
in [13 ]).

2 . 4. THEOREM. - Let H be some measurable subset of X x Y. We

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



387CENTRAL LIMIT THEOREM FOR EMPIRICAL PROCESSES

write A for its projection on X. Then A is universally measurable and there
exists a universally measurable mapping from A to Y whose graph is

included in H.

A trajectory space for brownian bridges. We set :

lT (~ ) _ ~ h : ~ -~ f~ ; hoT is bounded and measurable on (Y, 

We consider lT (~ ) as a measurable space equipped with the d-field gene-
rated by the open balls relating to )) . )(, (which is generally distinct from
the Borel because lT (~ ) is not separable).

This trajectory space does not depend on P any more (as it was the case
in [20 ]) but only on the measurable representation (Y, T) of ~ .
From now on for convenience we set:

where £ stands for the Lebesgue measure on [0, 1 ], ~( [0, 1 ]) for the Borel
a-field on [o, 1 ] and (X ~, ~’ °~, p:D) for the completed probability space of
the countable product (X~, POO) of copies of (X, ~’, P). The following
theorem points out how IT (~ ) is convenient as a trajectory space.

L= 1

to lT (~ ). Moreover, setting ~Cb(~ ) - ~ h : is uniformly
continuous and bounded on (~ , pp)}, is included in lT (~ ). Pro-
vided that (~ , pp) is totally bounded this inclusion is measurable. Here 5f2(P)
is given the distance with 6P : f -~ P( f 2)- (P( f ))2.
For a proof of 2 . 5, see [21 (sec. 9) and [40 ] where it is also shown

that many reasonable families (in particular and the « geometrical »
V. C.-classes) fulfill 

2 . 6. REMARK. - Since % fulfills it follows from [21 ] (sec. 12)
that )) Pn - 0 a. s. whenever NF ~( . , ~ )  oo and therefore:

This implies that the local behavior of the entropy function is unchanged
when taking the sup in 2.1 over the set of all reasonable laws.

Vol. 22, n° 4-1986.
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3. EXPONENTIAL BOUNDS

FOR THE EMPIRICAL BROWNIAN BRIDGE

We assume in this section that for some constants u and v, u  f  v
for any f 
The following entropy conditions are considered:

Using a single method we find upper bounds for (1.1.1) that are effective
in the following two situations:

U~
1°) Observe that ~03C32P~F~  4; nothing more is known about the

variance over iF. In this case we prove some inequalities which are ana-
logous to Hoeffding’s inequality [30].

2°) We assume that I ~ ~P ~ ~~  (J2. This time our inequalities are ana-
logous to Bernstein’s inequality (see Bennett [5]).

3.1. DESCRIPTION OF THE METHOD. - We randomize from a sample
whose size is equal to N = mn. In Pollard’s [44 ], Dudley’s [20 ] or Vapnik
and Cervonenkis’ [51 ] symmetrization technique, m = 2 but here, fol-

lowing an idea from Devroye [16 ], we choose a large m.

Effecting the change of central law : P -~ PN with the help of a Paul Levy’s
type inequality, we may study Pn - PN instead of Pn - P where Pn stands
for the randomized empirical measure.

Choosing some sequence of measurably selected nets relating to P~
whose mesh decreases to zero and controlling the errors committed by
passing from a net to another via some one dimensional exponential
bounds, we can evaluate, conditionally on PN, the quantity II Pn - PN~F.

Randomization. Setting N = nm (m is an integer), let w be some ran-
dom one-to-one mapping from [l, n ] into [1, N ] whose distribution is

uniform (the « sample w is drawn without replacement »).
The inequalities in the next two lemmas are fundamental for what

follows :

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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3.1. LEMMA. - For any ~ in (~N, we set

and UN = ( mjx (ji)) - ( min (ji)) ; the following three quantities are,

~ 
~ ~ ~ ~ ~’ 

(l ( S~ Sr~ / ))for any positive £, lower bounds for - Log ( 2 Pr - - - > £ :

These bounds only depend on ~ through numerical parameters (UN, 6N).
Bound 3°) is new ; concerning 1 °) (due to Hoeffding [30 ]), Serfling’s bound
is better (see [46]) but brings no more efficiency when an is large.
The proof of lemma 3.1 is given in the appendix.
From now on we write Pn for the randomized empirical process

- n The inequality allowing us to study the randomized process
i= 1

rather than the initial one is the following :

3 . 2. LEMMA. - The random elements II Pn - and )) Pn - P~F
are measurable.

Besides, whenever I  p2, the following holds :

for any positive 2 and any a in ]0,1 [, where n’ - N - n.

For a proof of this lemma see [16 ] using Dudley’s measurability argu-
ments in [21 ] (sec. 12).

Vol. 22, n° 4-1986.
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Statements of the results.

3 . 3. THEOREM. The following quantities are, for any positive t and r~,
upper bounds for > t) :

where k = 03B6(6 + 03B6 2 + 03B6) (when ( increases from 0 to 2 so does k). 
%

2°) Suppose that )) ~03C32P~F ~ (J2, with a  U, then

B v 
.. 

/

where p = 
2((4 - () 

(when increases from 0 to 2 so does 2

The constants appearing in these bounds depend on : only through
NU ~{ . , ~ - u) and of course on ~.

Comments.

- Yukich also used in [54 Kolcinskii-Pollard entropy notion to prove
an analogue of theorem 3.3, but our bounds are sharper because of the
use of a randomization from a large sample as described in 3.1.
- From section 2 . 2, the assumption d(2)1(F)  oo is typically fulfilled

whenever % is some V. C.-class with real density d.
Thus bound 1 °) a) is sharper than those of 1. 3.1 ; in an other connection

the factor 0(iF, r~)t6~d +’’) in 1 °) a) is specified in the appendix.
In the classical case (i. e. ~ is the collection of quadrants in 

bound 1 °) a) improves on 1. 2 . 3 but is less sharp than 1. 2 .1 in the real

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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case ; moreover the optimality of 1 °) a) is discussed in the appendix where
it is shown that

So, there is a gap for the degree of the polynomial factor in bound

3.3.2°) a) between 2(d - 1) and 6(d + r~). 
d

- Suppose that % = then, from section 2.3 we have e 12~(~ ) - .
a

In other respects, Bakhvalov proves in [4 ] that if P stands for the uniform
distribution on [0, 1 ]~ then :

Thus we cannot get any inequality of the 1 °) or 2°) type in the situation
where e12~(~ ) > 2.

The border line case. For any modulus of continuity we can intro-

duce a family of functions l~~,d in the same way as Aa,d by changing u - u°‘

into ~ and defining {3 as the greatest integer for which -~ 0 as

u - 0.

It is an easy exercise, using Bakhvalov’s method, to show that :

provided that = Ud/2 (log (u-1))y and P is uniformly distributed on
[0, 1 ]d. Of course e 12~(A~,d) = 2 and we cannot get bounds such as in theo-
rem 3.3.

But the above result is rather rough and we want to go further in the
analysis of the families around the border line.

Then the (2)-entropy plays the same role for concerning the Donsker
property as the metric entropy in a Hilbert space for the Hilbert ellipsoids
concerning the pregaussian property, that is to say that the following
holds :

i ) is a functional P-Donsker class whenever

Vol. 22, n° 4-1986.
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ii) is not a functional £-Donsker class whenever

and in this case we have (E Log (~)) - 2.

i) follows from Pollard’s central limit theorem in [44].
ii) follows from a result of Kahane’s in [32 ] about Rademacher trigono-

metric series. In fact, if we set = u |Log(u)|, we have from [32 p. 66
that: t ~ ~nen(t) KnLog(n) belongs to 03C6,1 with probability pK ~ 1

as K ~ oo, where (8n) is a Rademacher sequence and == 2 cos (2xnt).
Let us consider a standard Wiener process on L2( [0, 1 ]), we may write

(W(en)) as (8n with being independent of ( ~ W(en) ).
Then, with probability more than pK, the following holds :

By the three series theorem the series E 20142014201420142014 diverges to
n Log (n)

infinity almost surely and therefore W is almost surely unbounded on 
The same property holds for any brownian bridge G, for

f -; G( f ) + is some Wiener process provided that W(l) is

some N(0,1) random variable independent of G. So is not pregaussian
and ii) is proved.

An upper bound in situation 2°) is also an oscillation control. If we set

~~ _ ~ f - g ; a-p( f - g)  J, it is not difficult to see that:

Thus changing U into 2U and d into 2d if necessary the upper bounds in
situation 2°) hold with ~~. instead of ~, the constants being independent
of 6 because of 3.4.

In particular if F is a V. C.-class with real density d, we set :

(~) We write g, when 0   oo.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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As it is summarized in [23 ], Dudley shows in [29] ] that A(6, n, t)  t

/ t B
whenever t is small enough, 6 = 0 and n > 0(t-r) with r > 8.
Applying 3 . 3 . 2°) a) improves on this evaluation for then:

n, _ t)  t whenever t is small enough, 03C3 = I and

In order to specify in what way the constant in bound 2°) a) depends
on ~ , we indicate the following variant of 3 . 3 . 2°) a).

3.5. PROPOSITION. - If we assume that NU ~(E, ~ - u) - 
for any E in ]0,1 [ and some Eo in ]0,1 [ and that I I 6P I ~~ - a2 with 6 not
exceeding U, then there exists some E 1 in ]0,1 [ depending only on Eo
and a constant K depending only on C such that :

From now on L stands for the function x ~ max (1, Log (x)). 
’

3.6. COROLLARY. - Let be some sequence of V. C.-classes ful-

filling with integer densities (D~). Then (with the above notations)
-~ 0 as n - oo for any positive t whenever

a(n)2 = and a(n)-2 = ..

Provided that Dn = 03C3(n Ln) , such a choice of 6(n) does exist .

Comment. According to Le Cam [38 ] (Lemma 2) and applying 3 . 6
the f E ~n ~ admits finite dimensional approximations

whenever D,~ _ ~ Lo n and provided that Le Cam’s assumption (Al)is fulfilled. "

This result improves on Le Cam’s corollary of proposition 3 where

Dn = 0(n-03B3) for some y  1 is needed.
Proof of 3 . 6. Let ~ be a V. C.-class with entire density D and real

density d. Using Dudley’s proof in [20 ] (more details are given in [40 ]) it

Vol. 22, n° 4-1986.
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is easy to show that, for any w > d (or w > d if d is « achieved »), we have :

for any £ in ] 0, 1 [, with in particular when w = D, K 
3 

(2D)2D. So

from Stirling’s formula we get : N(2)1(~, F)  for any ~ in

0,20142014 and some universal constant C1. Hence, for any s in ]0,1 [ we

have:

Thus, applying 3.5 to the class yields 3.6.

We propose below another variant of inequality 3.3.2°) a), providing
an alternative proof of a classical result about the estimation of densities.

3 . 7. PROPOSITION. - If we assume that u) = 2d  oo and

~03C32P ~F ~ 62 with UV n  6  U for some positive V, then there exists

some positive constant C such that an upper bound for > t)
is, for any positive t, given by:

In the situation where U is large this inequality may be more efficient
than 3.3.2°) a).

Application to the estimation of densities : minimax risk.

Let K.M be the following kernel on f~~ : KM(y) = gi( y’my) for any y
in where ~r is some continuous function with bounded variation from R

into - 2’ 1 1 2 and M is some k x k matrix. Pollard shows in f~J 1 that

the class

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



395CENTRAL LIMIT THEOREM FOR EMPIRICAL PROCESSES

is a V. C.-class of functions and so:

where C and w depend only on k.
Now if we assume that P is absolutely continuous with respect to the

Lebesgue measure on the classical kernel estimator of its density f is :

where K is a KM with fixed § and M so that K2(x)dx oJ . We set f = E( £).

Proposition 3 . 7 gives a control of the random expression £ - f by choosing:

So, if we assume that n > h-k > C2, we get, setting Dn = f (x) ~ : :
Ln x

for any t in [1 + x [ and some positive ex and /~. Hence, after an integration :

for any T in [1, + oo [, provided that nhk > 4f32. We choose T = 0( Ln),
thus :

Provided that f belongs to some subset of regular functions 8, the bias
expression f - f can be evaluated so that the minimax risk associated
to the uniform distance on [Rk and to 8 can be controlled with the same

speed of convergence as in [29], via an appropriate choice of h.

3.8. PROOFS OF 3. 3, 3. 5, 3 . 7 . Lemma 3 .1 is proved in the appen-
dix. Let us prove theorem 3.3. First, we reduce the problem to the case

where u = 0 and u = 1 by studying the f E ~~ instead

Vol. 22, n° 4-1986.
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of F ; G fulfills (A) and N(2)U(., F) = N(2)1(., G). Finally ~03BDn~F = 

and II 6P II~ = II~.
In the course of the proof we will need to introduce some parameters

such as : (in ] 0, 1 [) ; r, m (in ~f ) ; a (in ]1, + oo [ ) ; q (in ] 0, 2 ]) and
some positive s, ~3 and y. Let (r~) be a positive sequence decreasing to
zero. These parameters will be chosen in due time, sometimes differently
in different cases. We set N = mn, we write (.) for the probability
distribution conditional on (xi, ..., xN) instead of ) ) . ) for short.

We set s = 20142014 and Sf = 1 - - ( 1 - A bound for > t)

will follow, via lemma 3.2, from a bound for Pr(~Pn - PN II > 8’) which
is at first performed conditionally on (xl, ..., xN).

Conditional approximation by a series of projections.
For each integer j a Fj can be measurably selected (with the help

of 2. 4, see [21 ] p. 120). So we can define a projection n j from % onto /Fj
such that on the one hand f )2)  i~ holds for any f in ~
and on the other hand (Pn - II~ belongs to lT {~ ). We show that the
development :

holds uniformly over ~ and over the realizations of 
In fact, because each realization of w is one-to-one we have:

Pn(g)  mPN(g) for any positive function g defined on X.
Hence:

Therefore we get :

So, provided that (~j) is a positive series such that 03A3 q j  p, we have

j>r+ 1

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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But the cardinalities of the ranges of II~ and II~ - are respectively
not greater than N J and (where N~ stands for N 12~(2~, ~ )) so that :

where A and B are the (xi, ..., xN)-measurable variables :

A is the principal part of the above bound and B is the sum of the errors.
We use lemma 3 .1 to bound A and B : inequalities 1°) or 2°) are needed
to control A according to whether case 1°) or 2°) is investigated. Setting
t’ == fi8’, we use bound 3°) to control B, so :

The control of the tail of the series in 3 . 8 .1 is performed via the following
elementary lemma :

3.8.2. LEMMA. - Let 0/: [r, + oo [ -~ f~. Provided that 0/ is an

increasing convex function, the following inequality holds :

where ~d stands for the right-derivative of ~.

In each case it will be enough to prove the inequality for t > to = ~ )

for some to. We choose [3 = 1 under assumption a) a
under assumption b). B ~/

Proof of theorem 3 . 3 in case 1 °). Applying 3 .1.1 °) we get :
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If we set p == -, 2 
the variance factor 1 - 

03C12 a2~2n’ 
in lemma 3 . 2 is stabilized

for it is not less than - whenever t > 2.
2 

-

Besides, whenever t2 ~ 3, t’2 > t2 - 5 hence :

Under assumption a). 2014 If we prove that for any given positive and d’
such that F) ~ C(d’)03BD-2d holds for any 03BD in ]0,1 [, an upper bound
for Pr(!!~J! > ~) is given by: K(~~)(l + ~)~~’+~exp(- 2~). Then,

setting = d + - and ~’ == - we get 3.3.1°)a).
So, writing « d,~ » instead of « d’, ~’ » for short, we may assume that

N,  Ct2dj2(03B1+1)d. We choose  == t-2 and x = Max (2,1 + 2014), so:

In order to evaluate B we apply lemma 3 . 8 . 2, setting:

then the condition t2 > 7 + 4d(a + 1) (which can be assumed) ensures
that > 1, hence

But the above estimates of A and B are deterministic, so, using lemma 3 . 2,
theorem 3 . 3 is proved in situation 1 °) a).
With the idea of proving proposition 3. 5 we remark that, setting a = 2,

the above method gives, under the hypothesis in 3. 5, that Pr ( ~ ~ > t)
is bounded by:

with Ki depending only on C, whenever t2 > 7 + 12d.
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Under assumption b). Using the same arguments as above we may
suppose that : N~  exp 
We set J1 = t- 2y, then the following inequalities hold s. :

In order to balance the above bound of A we choose y so that

( 1 + 2 a + ~ - 2 1 - y) and a large e enough for y > - ~ an+ Y a - 1 ~~ t Y) g g Y - 
2 

d

~3 > 1 to hold, where Y(~) is the solution of the above equation when a = + o0
(Note that 2( r - = k, where k is defined in the statement of 3 . 3). So

The evaluation of B is performed via lemma 3 . 8 . 2 with the choice :

2
Then, whenever t2 > - + 5 + > 1, hence (since r -~ o0

whenever t -~ oo) f3

We finish the proof as under assumption a), so theorem 3.3 is proved in
case 1 °).

l

Proof ~ of theorem 3. 3 in case 2°). We set ~p = - and choose m = 

a = 203C6-q,  = 03C6-q and 03C4j = 03C3 mj-(03B1+03B2). , If we set p = o-, the variance

factor 1 - 6 2 in lemma 3 . 2 is stabilized for it is not less than - whenever
4. The variable A is this time controlled with the help of 3.1.2°),

so now the probleme is to replace 03C32N by In fact, let N be the (xl, ..., 
measurable event :

Each term of the following estimate is studied in the sequel:

where A’ = and B’ = 
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The control of Pr reduces to a problem of type 1 °). For, setting
~ 2 - ~ f 2, f E ~ ~, we have :

Since N(2)1(., F2) ~ N(2)1(. 2,F) and F2 fulfills (M), we may use the bounds
in 3 . 3 .1 °), so 

~ B ~ ~~~ 0B

where ~’ is a polynomial or exponential function (according to whether
case a) or b) is studied). Anyway _

The evaluation of A’ and B’. The inequality ( ~ aN I  62 + s holds

on thus applying 3 .1. 2°) :

Under assumption a). As in the proof of 3 . 3 .1 °) we may assume that

N~  > and we choose q = 2 and a = Max (2, 1 + 2014 )(recall that /3 == 1). Then : ~’ 
~ 

’ 

~ ~

In another connection the control of B’ follows from the control of the

same tail of series as in 1°) (via a modification of parameters), so :
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whenever ~p2 > 8 + 4d(a + 1). Collecting the estimates of Pr (EN), A’
and B’, bound 3 . 3 . 2°) a) is established via lemma 3 . 2 and inequality 3 . 8 . 4.

Proof of 3 . 5. - Under the hypothesis in 3 . 5 we choose this time a = 2, so :

hence

whenever ~p2 >_ 8 + 12d. The evaluation of Pr (,~N) is performed by using

bound 3 . 8 . 3 ( changing ~o into ~-° when studying ~ 2 at the point. Hence
B 

g g 
2 / 2

whenever 03C62 4 ~ 7 + 12d. Applying inequality 3.8.4 and lemma 3.2

gives proposition 3.5.

Proof of 3. 3 . 2°). - Under assumption b). Let us choose q so that :

We choose a large enough for 03B2 > 1 and 1 - q 2  p + ~ (where p is defined
in the statement of theorem 3 . 3) to hold. We may assume that :

Then:

The control of B’ is of the same kind as that of B in situation 1 °), so :
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Using inequality 3.8.4 and lemma 3.2 gives 3.3.2°) b) and finishes the
proof of theorem 3.3.

Proof of proposition 3. 7. The above method which allows deduction
of bounds of type 2°) from bounds of type 1 °) is iterated here. We shall
assume that u = 0 and v = 1. Inequality 3 . 3 . 2°) a) may be written (in
view of its proof) :

whenever 5. Let us define by induction the following sequences

3
with ao = 1 and bo = 20147=’

We suppose that the following inequality (M~ ) holds whenever t2~62 >_ 5 :

We want to deduce from (M~ ) by the same way as 3 . 3 . 2°) a) from
3 . 3 .1 °) a). So, let ~ be positive so that :

Then

according to remark 2. 6, hence :

Moreover it is easy to show that
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Therefore, using the notations of the above proof of 3 . 3 . 2°) a) and applying
(M; ) to F and 2 at the point we get (since ~ P ~4  62)

and also (here s = 2(;)

So, via lemma 3 . 2 and inequality 3 . 8 . 4 we get {M J+ 1) whenever > 5.

Therefore inequalities (M~ ) are proved by induction.
Let us consider the step J = 1 + [LLn/L2 ] of the iteration. Then, with

a few calculations it can be shown that :

and

Hence, using the condition -~/~ > V and the above estimates of aj and bj,
inequality (MJ) gives proposition 3 . 7.

4. EXPONENTIAL BOUNDS

FOR THE BROWNIAN BRIDGE

We assume that P(F2)  oo. We want to show that the bounds in the

preceding section still hold for the brownian bridge.

4.1. THEOREM. If eF2~(~ )  2, then there exists some version Gp of
a brownian bridge relating to P whose trajectories are uniformly conti-
nuous and bounded on ( , pp). Moreover, setting ( = eF ~(~ ), if

 o-~  P(F2), an upper bound for > t) is, for any

positive t and r~, given by:

or, if more precisely dF ~(~ ) = 2d  oo, by :
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where p is defined in the statement of theorem 3 . 3. The constants appearing
in the above bounds depend only on 1] and NF ~ ( . , ~ ).

Comments. In the framework of theorem 4.1 the existence of some

regular version of a brownian bridge is an easy consequence of the proof
of 4 .1.1 and 4 .1. 2 but is of course a well known result (see [18 ]). More-
over the bounds in 4.1 are in this case sharper than the more general
Fernique-Landau-Shepp inequality (see [25 ]) that can be written :

for any rx 

Proof of theorem 4 . l. is countable. Let Gp be some brownian

bridge relating to P. The calculations are similar to those in the proof
of theorem 3.3. Of course here a randomization would not mean anything
and a sequence of nets in (~, F) relating to P is directly given. Moreover
the following single inequality is used instead of the bounds in 3.1:

4 . 2. LEMMA . Let V be a real and centered gaussian random variable,
then:

Pr ( ~ V ~ > s)  2 exp ( - s2/(2v2)) for any positive s

where v2 stands for the variance of V.

So, as in 3 . 8 we have :

with this time :

The choices of parameters ( except z J = 03C32 P(F2)j-2(03B1+03B2)) and the estimatesThe choices of parameters ( except r § = p(F2) 
j- 2(03B1+03B2)) and the estimates

of A and B are then performed as in the proof of 3.3.2°) giving 4.1.1
and 4.1. 2. Since 4.1.1 is also an oscillation control the almost sure regu-

larity of Gp is ensured via the Borel-Cantelli lemma. So theorem 4.1 is

proved in the case where ~ is countable.

The general case. Since (, pp) is totally bounded any version of a
brownian bridge which is almost surely regular on some countable and
dense subset of (~ , pp) may be extended to (~, pp) giving some version
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of a brownian bridge which is almost surely regular on (~ , pp). Inequa-
lities 4.1.1 and 4.1.2 hold for this version.

Comment. The optimality of bound 4.1. 2 is discussed in the appendix.
The degrees of the polynomial factors are different in 3 . 3 .1. 2°) a) and
in 4 .1. 2 ; the reason is that bound 3 .1. 3°) is less efficient than bound 4 . 2.

5. WEAK IN VARIANCE PRINCIPLES

WITH SPEEDS OF CONVERGENCE

We assume from now on that P(F2 + a)  oo for some 03B4 in ] o, 1 ]. Using
the results in sections 3 and 4, we can evaluate the oscillations of the empi-
rical brownian bridge and of a regular version of the brownian bridge
over ~ , so we can control the approximations of these processes by some
Ek-valued processes (where Ek is a vector space with finite dimension k).
The Prokhorov distance between the distributions of these two processes
is estimated via an inequality from Dehling [15] ] allowing reasonable
variations of k with n.

Oscillations of the empirical brownian bridge over ~ . The oscillations
of vn over % are controlled with the help of a truncation from 3 . 3 . 2°) a)
(the proof in this case is straightforward) on the one hand and of a slight
modification in the proof of 3 . 3 . 2°) b) (truncating twice) on the other hand.
The control of the tails of these various truncations is performed via the
following inequalities (the second is elementary).

5 .1. LEMMA (Marcinkiewicz-Zygmund’s inequality). ..., ~n
be independent and identically distributed real valued random variables
such that = 0 and f)  oo for some r in ] 1, + oo [.

See [42 ] for a proof of the above lemma.
Besides: let ~ be a positive random variable such that E(çr)  oo for

some r in ]1, + oo [. The following inequality holds for any positive M :

(Note that to prove 5 . 2). The next theorem is an ana-
logue of theorem 3.3 in the case where F is not necessarily bounded.
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5.3. THEOREM. - We set = p(F’2 + a). If we assume that

I I 6P ( I~  ~-2  P(F2) with then an upper bound for 

is, for any positive t such that > 1, given by:

whenever

(p is defined in the statement of 3. 3) whenever 5 . 3 .1 holds and:

Proof of theorem 5 . 3. Under assumption a). Note that we may assume
that % is centered under P as in the proof of proposition 3. 7, for, setting
ff == { f - P( f), f and F = F + (P(F2))1/2, we have:

with P(F2)  4P(F2) and P(F2 +a)  8P(F2 +a),
We make the truncation of % from 3.7 with the speed M = 
We set :

then

It is easy to see that :

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



407CENTRAL LIMIT THEOREM FOR EMPIRICAL PROCESSES

hence

where

Control of D. Using Bienaymé-Tchebycheff’s inequality and bound 5 . 2
we get :

- t - 

~ whenever P(F(M))  
8. /n 

Since P(F(M))  according to 5 . 2

the above estimate of D holds whenever  t.

Control of C. Applying proposition 3. 7 to ~ (M) we get :

Collecting the above estimates and changing ,ub into give 5 . 3 . a).

Under assumption b). - Bound 3. 3 . 2°) b) is not efficient enough to
allow any direct truncation of F . Moreover an inequality such as in pro-
sition 3.7 is here not available (our proof of 3.7 does not work under
assumption b)). So our plan to avoid this difficulty is as follows : truncating
from 3 . 3 .1 °) b) to deduce a new bound of type 2°) via the method in 3 . 8
in the case where F is bounded, finishing the proof in the general case by
truncating as under assumption a).

fulfilling the condition :

ii) If ~ _ ~ 2, 0~(1) exp (- 8) + 0(1)~can-s~2~-1-tb~2> for any positive 0
fulfilling the condition:
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Proof of lemma 5 . 4 (first truncation) . Let H be F or F2. The notations
for the truncations are the same as above. It can be shown that

N2M( . , M +  NF ~( . , ~ ) and that ~(M) fulfills (~~), so theo-

rem 3.3 may be applied to This time we choose the speed of

truncation: M = (n 03B8)1/2 . Then: Pr(~Pn - P ~H > s) ~ C + I) withtruncation: M = 
B6’/ 4 . Then: Pr( ( ( Pn - > E)  C + D with

Using 3 . 3 .1 °) b), an upper bound for C is given by: 0~(1) exp ( - 8).

Besides, whenever P(H(M))  E and using Bienaymé-Tchebycheff’s inequa-
lity 

~ 
, _ _

holds in case i) on the one hand; on the other hand we apply lemma 5.1
to get :

in case ii).
Bounding P(H(M)) with the help of 5.2 and collecting the various

estimates above, we obtain lemma 5 . 4. Let us return to the proof of 5 . 3 . b).
We assume that F  M for some positive M.
The slight modifications that we introduce in the proof of 3 . 3 . 2°) b)

are as follows (the notations are those of this proof) :
- We consider nets of (~ , F) relating to PN.
- The event EN is defined by :

, , 

L
Then the inequalities : - 2 _ 26 - 2(03B1+03B2) for an f in Fq N(( , (.f ) .f ) ) 

m 
J Y .~

and I ( 6N I ~-~  262, hold on Eg, so, recalling estimate 3 . 8 . 4 :
r , , , T ~ .... _ ._ ..

The control of A’ and B’ is performed as in 3 . 8, giving:
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and

The control of I may be performed via lemma 5 . 4, for:

so, on the event ( (PN - P)(F2)  P(F2) ~, the following inequality holds :

Hence, applying lemma 5.4 with 0 = m/4, we get:

whenever ~2 + aNa~4 > 64,ua_ Besides, from lemma 5 .1 we get :

Since m ~ (t 03C3)2-2p+~ - l, collecting the above estimates and using

lemma 3 . 2 we get the following upper bound for Pr ( )) 03BDn )), > t) :
, , - - .

whenever a2 + 64,us.

The general case (second truncation) . - We proceed here as in the
proof of 5 . 3 . a) using 5 . 5 instead of proposition 3 . 7. So theorem 5 . 3 is

proved.

Speed of convergence in the central limit theorem in finite dimension. -
We recall below an evaluation of the Prokhorov distance between the

distribution of the centered and normalized sum of independent and
identically distributed IRk-valued and (2 + 03B4)-integrable random variables
and the corresponding gaussian distribution, that is due to Dehling [15 ]
(the first result in the same direction is due to Yurinskii [53 ]).
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5 . 6. THEOREM. - Let be a sample of centered Rk-valued
random variables. We write Fn for the distribution of the normalized sum
of these variables and G for the centered gaussian distribution whose
covariance is that of Xi.

112 be an euclidean pseudo-norm on [Rk and n2 be the Prokhorov
distance that is associated to 11’112’ If E( ~X1 I I 2 + a) - ,u  oo, then:

Comment. - Comparing the above evaluation and the one in [52] ]
(assuming that 6 = 1), a power of n is lost in the speed of convergence
for in [52] we have G) = 0{n-1~2) but in 5.6 the estimate is a poly-
nomial function of k ; on the contrary the estimate in [52 ] depends expo-
nentially on k.

Weak invariance principles for the empirical brownian bridge. In order
to build regular versions of brownian bridges with given projection on
a finite dimensional vector space (or further in section 6 on a countable

product of such spaces), we need two lemmas.

5 . 7. LEMMA (Berkes, Philipp [6 ]). - Let Ri, R2, R3 be Polish spaces,
Qi and Q~ be some distributions respectively defined on Ri x R2 and
R2 x R3 with common marginal on R2. Then there exists a distribution Q
on R1 x R2 x R3 whose marginals on Ri x R2 and R2 x R3 are respec-
tively Qi and Q2.

Remember that is generally not separable. The following lemma
is fundamental to avoid this difficulty (see [23 ]). The space Q to be men-
tionned below is defined in Section 2.

5 . 8. LEMMA (Skorohod [48 ]). - Let Ri, R2 be Polish spaces and Q be
some distribution on Rl x R2 with marginal q on R2. If V is a random
variable from X ~° to R2 whose distribution is q, then there exists a random
variable Y from Q to Ri 1 such that the distribution of (Y, V) is Q.

Concerning our problems of construction the point in the sequel is

that the distribution on IT(%) of a regular version of a brownian bridge
is concentrated on a separable space. Now we can state some weak inva-
riance principles for the empirical brownian bridge with speeds of conver-
gence.
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5 . 9. NOTATIONS. - From now on y and f3 are positive functions that
are respectively defined on [o, 1 ] x [R + and [o, 2 ] by:

2z(4 - z)
where, as in the statement of theorem 3. 3, p(z) = .

4 + z(4 - z)

5.10. THEOREM. - Under each of the following assumptions ther
exists some continuous version on (~ , pp) of a brownian bridge relatin
to P, such that GP"~) ( I~ > an) where (an) and ((3;
are defined below (we recall that and that and ai

defined in Section 2) :

a) if = 2d  oo, an = ~3n = 0(n - ~) for any i  y(5, d) ;
a’) if for any ~ in ] 0, I E,

for any r  and any positive s.

Proof of theorem 5 .10. Let 6 be an oscillation rate (depending on n)
and be a projection of ~ on a 6-net relating to P. We approximate
vn uniformly over iF by 03BDn o II6.

Setting ~~ _ ~ f - g, pp(f, g)  6 ~, we may apply theorem 5 . 3 to ~~.
(changing d into 2d if necessary), hence the 
can be evaluated. Besides, let be the distribution on the k-dimen-

sional vector space and let Go- be the corresponding gaussian
distribution.

Writing 03C0~ for the Prokhorov distance associated to ~.~F(03C3) and applying
Strassen’s theorem ~49 ], there exists a probability space (SZ’, Pr’) and
two random variables vn(6) and with respective distributions Fn.o-
and Go- on l °° (~ (6)) such that:

where B = GJ.
So, using lemma 5. 7, we may ensure the existence of some regular version

of a brownian bridge Gp relating to P such that G(a) = and then,
applying lemma 5.8 with V :co --~ vn~~~~~, we may assume that Gp is
constructed on Q with Pr ( ~ ~ > B)  B.
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noticing that k  according to remark 2.6.

Moreover C is evaluated with the help of theorem 4.1, so the calculations
are completed via an appropriate choice of t and cr.

Under assumption a) or a’). - it is enough to prove 5 .10 . a’). We choose
t = p(n - yt~~d~(Ln)~ 1 ~2~ + d) and 6 = 

Under assumption b). We may assume that k  exp (C6 - ~) with ( > 0.

We choose t = ) with b = (2 - 2 p(~) + Q’B a  1 and a in
1 ~

the neighbourhood of -.

Comment. It is shown in [40 ] that a Prokhorov or Lipschitz distance
may be defined on In the notations of the above theorem Max(03B1n, f3n)
is an upper bound for these distances between the distributions of Vn and Gp.

6. STRONG INVARIANCE PRINCIPLES

WITH SPEEDS OF CONVERGENCE

The method to deduce strong approximations from the preceding weak
invariance principles is the one used in [43 ] to prove theorem 2 : the weak
estimates are used locally, giving strong approximations with the help
of maximal inequalities and via the Borel-Cantelli lemma.

Maximal inequalities. As was noticed in [23 ], the proofs of the following
inequalities may be deduced from those given in [10] ] and in [32] (and
hold without any measurability assumption).

Notation. We set Xj = 03B4xj - P for any integer j.

6.1. LEMMA (Ottaviani’s inequality). We set Sk = Then, for

any positive a, the following inequality holds : r2014~
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More precisely, for symmetrical variables, the following sharper ine-
quality is available :

6.2. LEMMA (Paul Lévy’s inequality) . Let be independent
and identically distributed B-valued random variables where (B, ~ ~ . ~ ~ ) is

a normed vector space. If we assume that Y1 is symmetrical then:

Pr* Sk II > a)  2 Pr* (~Sn~ > a) holds for any positive a, where

Strong approximations for the empirical brownian bridge.

6 . 3. THEOREM. - Let y(.; ) and (3(.) be as defined in 5 . 9.

Under each of the following assumptions some sequence of

independent versions of brownian bridges relating to P that are uniformly
continuous on (~ , pp) may be defined on S~ such that :

for any f3  f3( ().

Proof of theorem 6. 3. Note that in order to prove 6 . 3 . a) it is enough
to prove 6 . 3 . a’). We decompose the time into pieces: Hi, ..., H;, ...
with Hi = [ti, ti+ 1 [-
We choose t~ = ] under assumption a’) and [exp (i 1- 2) ]
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1+y
under assumption b), writing y instead of 03B3(03B4, d) for short: a = ,

Y

Moreover we set ni = ti+1 - ti. Let 03C3i be the rate of oscillation depending
on ni in the same way as 03C3 depends on n in the proof of 5.10. We write IIi
for the projection of iF on some (Ji-net ~ and we set Di = l°°(~ i). Then,
from the proof of 5.10, we have (choosing s = 2/(1 - r) in case b)):

So, using Strassen’s theorem, some random variables (Vi,j, Wi,j)jEHi can be
built on (Q’, Pr’) so that the distributions of Vi,j and Wi,j are respec-
tively those of I 

and Gai and such that :

Moreover we may assume that these variables are independent for different
values of i. Writing f(/) for the index fulfilling j E we set V~ = 
and WJ = Besides, theorem 4 1 ensures the existence of some distri-
bution gp, defined on the Polish space of real valued uniformly
continuous functions on pp), of a brownian bridge relating to P.

Then, we can apply lemma 5 . 7 with R1 = and R2= R3= 

writing Ql for the distribution of (Y~, (where 1 is the random

variable whose distribution is canonically and Q2 stands for the
distribution of (Wj, Vj)j> 1. So, we may assume that W~ = 

Then, using lemma 5 . 8, we may assume that 1 is built on S~ and

that V; = 
As s > (3(~) we may suppose that j3,~ _ an for any integer n.

Since bound (1) still holds when replacing X~ by Y~ we get:
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So, using the inequality: .

the problem reduces to the almost sure control of A, B and C. We notice that :

So, in both cases a’) and b), the series 03A3 03B2ni is convergent.
i

Control of A. - The Borel-Cantelli lemma ensures, because of (2),
r

that Ar = o a. S.

i=1

Under assumption a’).

So, since (r(n))a(Lr(n))b  n + 1 we get :

Under assumption b)

hence, integrating by parts :
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Then, since r(n) = we get:

Control of B. Using Ottaviani’s inequality 6.1, we get (because of
Pr* is here unuseless) :

, ,, ... , ~ ,

As a consequence of theorem 5 . 3 applied with 62 - P(F2), we have that
Cr ~ 0 for ~ co as r -~ oo. So:

Then, using inequality (2) on the one hand and theorem 4.1 with

CF~ = P(F2) and via an appropriate choice of K on the other hand, we
get that in both cases a’) and b) : B’ = and B" = 0(r- 2).

Hence, using the Borel-Cantelli lemma again, we get Br = a. s. So :

Under assumption a’)

hence, since  n + 1:

Under assumption b)

hence, since r(n) = 

Control of C. Paul Levy’s inequality 6 . 2 gives :

Pr (Cr > Tr)  2gP( Y E 11 y > 

so, the above control of B still holds for C.
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Then 6. 3 follows from collecting the almost sure estimates of A, B and C.

Comments. When passing from weak invariance principles to strong
ones, the speeds of convergence are transformed as follows within our
framework.

Transformation ii) appears in theorem 6 .1 (under 6 . 3) from [23 ], but
it is not the case for transformation i) in the same theorem (under 6.4).
On the contrary transformation i) is present in finite dimensional prin-

ciples and appears to be optimal in that case : more precisely, the rate of
weak convergence towards the gaussian distribution for 3-integrable
variables is ranging about n - 1/2 when the rate of strong convergence is
ranging about n -1 ~6 (see [39 ] for the upper bound and [9 ] for the lower
bound), in the real case.

Application to V. C.-classes. Applying theorem 6 . 3 with 6 = 1 in the
case where F is a V. C.-class with real density d, we get a speed of conver-

1
gence towards the brownian bridge that is for any a  20142014201420142014. 

.

This improves on 1.3.3 but is less sharp than 1.2.4 in the classical case
of quadrants in 

6.4. INVARIANCE PRINCIPLES IN C(S). - Following an idea from

Dudley in [21 ] (sec. 11), the study of the general empirical processes theo-
retically allows one to deduce some results about random walks in general
Banach spaces. As an application of this principle let us consider a compact
metric space (S, x) and the space C(S) of real continuous functions on S,
equipped with the uniform norm 1B.1B00’ Let X be the space of Lipschitz-
functions on S equipped with the Lipschitz-norm :

We write N(a, S, K) for the maximal cardinality of a subset R of S such
that x(s, t) > E for any s ~ t in R.
We may apply our results through the following choices:
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Then (XJ~. is a Suslin space (but is not Polish in general), so ~
fulfills (~~). Moreover, for any distribution Q in ~~.2~(X) we have:

so NF2~( . , ~ )  N(., S, K). Besides 11.1100 == 
Therefore, considering a sequence (X~)~ > 1 of independent and identically

distributed C(S)-valued random variables such that :

with E(M2 + a)  oo and E(X i + a(to))  oo for one to in S, we can apply
theorem 5.10 or 6.3 to get speeds of convergence towards the gaussian
distribution, whose structure depends on N(., S, x) (the central limit

theorem for such uniformly Lipschitzian processes as above is due to

Jain and Marcus in [31 ]).
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APPENDIX

1. Proof of lemma 3.1.

First let us recall Hoeff ding’s lemma (see [29]).

Hoeffding’s lemma. - Let S be a centered and [u, v]-valued random variable, then :

We may assume that w is chosen as follows:

. drawing-with uniform distribution-a partition / = such that 
for each i in [1, n ].

. then, drawing an index w(i) independently in each Ji-with uniform distribution-.
The following evaluations are conditional on / but the last bound will not depend on ~,
giving 3.1. _

We set Z and we write A for the logarithm of the conditional Laplace trans-

form of Z. Then setting 03BEi= 1 m03A3 03BEj, we have, for any s in [R:
jEJ,

Then, since the logarithm is a concave function:

where, writing QN for the uniform distribution ..., ~N }, AN stands for the logarithm
of the Laplace transform under QN of x ~ x - EQN(x). Therefore the Cramér-Chernoff

Sf
transform of Z is larger than that of n - under Qg" where S~, stands for the

n 
N

sum of n i. i. d. random variables with common distribution QN.
Then, Hoeffding [29 ] and Bernstein [~] ] inequalities yield 3 .1.1 °) and 3 .1. 2°). In order

to prove 3.1.3°) we may assume that SN = 0 (otherwise changing çj into ~~ - SN/N).
Then, applying Hoeffding’s lemma to the conditionally centered random variables

~w~l - ~~ and setting ui = and v; = we get :
]EJi ]EJ;

Hence
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and therefore

yielding 3.1.3°) via Markov’s inequality.

2. The distribution of the supremum
of a d-dimensional parameter brownian bridge

Goodman’s work in [28 ] and Cabana’s in [77] ] give a lower bound of the probability
for the supremum of a brownian bridge to cross a barrier.

Notations. - We set I = [0, 1 ] and write for any integer d, ld for the element (1, ..., 1)
of IRd. Moreover, for any s in Id, we set p(s) = si ... sd.

A .1. THEOREM. - Let d be an integer and Wd be some standard d-dimensional para-
meter Wiener process, then, on the one hand:

for almost any real number a (in Lebesgue sense) and any positive t, where

and on the other hand :

Proof of theorem A . l. - If d = 2 the whole proof is contained in [28]. For d > 3 it

follows easily from Cabana [Il ].

Comment. - Theorem A. 1 was proved by ourself (see [40] ] and [41 ]) as well as by
E. Cabana in [11 ] {3). In another connection, inequality A .1 ii) ensures that some poly-
nomial factor t2h(d) with h(d) >- d - 1 cannot be removed in bounds 3 . 3 .1 °) a) and 4 .1. 2.

3. Making an exponential bound explicit.

The calculations yielding 3 . 3 .1 °) a) are slightly modified here, where the entropy con-
dition a) is replaced with a more explicit one.

A. 2. THEOREM. - If we assume that F is [0, 1 ]-valued and that

a’) N 12~(E, ~ )  K 1 + 1~L°g cE - 2>( 1 + Log (~ - 2))dE - za for any E in ] 0, 1 [ then, an upper
bound for > t) is, for any t in [1, + oo [, given by:

where

(3) Thanks to M. Wschebor and J. Leon for communicating this reference to us.
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Proof of A . 2. - In the proof of 3 . 3 .1 °) a) we choose a = 1 + Lt2/LLt2, then

whenever t2 >_ 6 + 4d, yielding A. 2 via lemma 3 . 2.

Comment. - Assumption a’) is typically fulfilled whenever / is a V. C.-class. In that
case d may be the real density of ~ (if it is « achieved ») or the integer density of ~ (see
the proof of 3.6).
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