PASCAL MASSART

Rates of convergence in the central limit theorem
for empirical processes

Annales de I'l. H. P, section B, tome 22, 1n°4 (1986), p. 381-423
<http://www.numdam.org/item?id=AIHPB_1986__22_4 381_0>

© Gauthier-Villars, 1986, tous droits réservés.

L’acces aux archives de la revue « Annales de 1'l. H. P, section B »
(http://www.elsevier.com/locate/anihpb) implique I’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIHPB_1986__22_4_381_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Henri Poincaré,

Vol. 22, n°® 4, 1986, p. 381-423. Probabilités et Statistiques

Echianges /A.nG;€s

Rates of convergence
in the central limit theorem
for empirical processes

by

Pascal MASSART

Université Paris-Sud
U. A. CNRS 743 « Statistique Appliquée » Mathématiques, Bat. 425,
91405 Orsay (France)

SumMARY. — In this paper we study the uniform behavior of the empirical
brownian bridge over families of functions % bounded by a function F
(the observations are independent with common distribution P). Under
some suitable entropy conditions which were already used by KolCinskii
and Pollard, we prove exponential inequalities in the uniformly bounded
case where F is a constant (the classical Kiefer’s inequality (1961) is
improved), as well as weak and strong invariance principles with rates of
convergence in the case where F belongs to #?*9(P) with d€ ]0,1] (our
results improve on Dudley and Philipp’s results (1983) whenever & is
a Vapnik-Cervonenkis class in the uniformly bounded case and are new
in the unbounded case).

Key-words and phrases: Invariance principles, empirical processes, gaussian processes,
exponential bounds.

RisumE. — Dans cet article nous étudions le comportement uniforme
du pont brownien empirique sur des familles de fonctions % bornées
par une fonction F (les observations sont indépendantes, de distribution
commune P). Sous des conditions d’entropie convenables qui sont déja
utilisées par Kol€inskii et Pollard, nous prouvons les inégalités exponen-
tielles dans le cas uniformément borné ot F est une constante (I'inégalité
classique de Kiefer (1961) est améliorée) aussi bien que les principes d’in-
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382 P. MASSART

variance faibles et forts avec des vitesses de convergence dans le cas ou
F appartient & £2+%P) avec € ]0,1] (nos résultats améliorent ceux de
Dudley et Philipp (1983) lorsque # est une classe de Vapnik-éervonenkis
dans le cas uniformément borné et sont nouveaux dans le cas non-borné.
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1. INTRODUCTION

1.1. GENERALITIES. — Let (X, &, P) be a probability space and (x,),;
be some sequence of independent and identically distributed random
variables with law P, defined on a rich enough probability space (Q, ¢, Pr).

1
P, stands for the empirical measure — Z&xi and we choose to call
n
i=1
empirical brownian bridge relating to P the centered and normalized
process v, = \/;l(P,, — P). Our purpose is to study the behavior of the

empirical brownian bridge uniformly over %, where & is some subset
of Z2(P).

More precisely, we hope to generalize and sometimes to improve some
classical results about the empirical distribution functions on R? (here &
is the collection of quadrants on R?), in the way opened by Vapnik, Cervo-
nenkis and Dudley.

In particular, the problem is to get bounds for:

(1.1.1) Pr(||v,lle > 1), for any positive ¢,

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



CENTRAL LIMIT THEOREM FOR EMPIRICAL PROCESSES 383

where || - ||+ stands for the uniform norm over # and to build strong uniform
approximations of v, by some regular gaussian process indexed by &
with some speed of convergence, say (b,).

First let us recall the main known results about the subject in the classical
case described above.

1.2. THE CLASSICAL BIBLIOGRAPHY.-— We only submit here a succinct
bibliography in order to allow an easy comparison with our results (for
a more complete bibliography see [26]). Concerning the real case (d = 1),
the results mentioned below do not depend on P and are optimal:

1.2.1. (1.1.1) is bounded by Cexp(— 2t?), where C is a universal

constant according to Dvoretzky, Kiefer and Wolfowitz [24] (C < 4ﬁ
according to [I7]).

Log (n)

1.2.2. The strong invariance principle holds with b, = ,
according to Komlos, Major and Tusnady [37]. ﬁ
In the multidimensional case (d = 2):

1.2.3. (1.1.1) is bounded by C(g)exp(— (2 — &)%), for any & > 0,
according to Kiefer [34]. In this expression ¢ cannot be removed (see {35]
but also [28]).

1
1.2.4. The strong invariance principle holds with b,=n 224~ Log(n),
according to Borisov [8].
This result is not known to be optimal, besides it can be improved
when P is uniformly distributed on [0, 1]% In this case we have:

o - . (Log(n)
1.2.5. Ifd=2, the strong invariance principle holds with b,= ————

according to Tusnady [50]. ﬁ

1.2.6. If d = 3, the strong invariance principle holds with

3

_ 1
by =n 20 (Log (),

according to Csorgo and Réveész [14].
1.2.5 and 1.2.6 are not known to the optimal.
Let us note that even the asymptotic distribution of || v,||# is not well

known (the case where d = 2 and P is the uniform distribution on [0, 1]?
is studied in [/2]).

Vol. 22, n°® 4-1986.



384 P. MASSART

Now we describe the way which has already been used to extend the
above results.

1.3. THE WORKS OF VAPNIK, CERVONENKIS, DUDLEY AND POLLARD.
Vapnik and Cervonenkis introduce in [5/] some classes of sets—which
are generally called V. C.-classes—for which they prove a strong Glivenko-
Cantelli law of large numbers and an exponential bound for (1.1.1).

P. Assouad studies these classes in detail and gives many examples in [3]
(see also [40] for a table of examples).

The functional P-Donsker classes (that is to say those uniformly over
which some central limit theorem holds) were introduced and characte-
rized for the first time by Dudley in [20] and were studied by Dudley
himself in [2/] and later by Pollard in [44].

Some sufficient (and sometimes necessary, see [27]in case # is uniformly
bounded) conditions for % to be a P-Donsker class used in these works
are some kinds of entropy conditions, as follows.

Conditions where functions are approximated from above and below
(bracketing, see [20]) are used in case & is a P-Donsker class whenever
P belongs to some restricted set of laws on X (P often has a bounded density
with respect to the Lebesgue measure in the applications) whereas Kol-
Cinskii and Pollard’s conditions are used in case & is a P-Donsker class
whenever P belongs to some set of laws including any finite support law
(the V. C.-classes are—under some measurability assumptions—the classes
of sets of this kind, see [27]).

In our study we are interested in the latter kind of the above classes.
Let us recall the already existing results in this particular direction. When-
ever # is some V.C.-class and under some measurability conditions,
we have:

1.3.1. (1.1.1) is bounded by C(F,e)exp(— (2 — g)?) for any ¢ in
10, 1], according to Alexander in [/] and more precisely by:
CF)L + 2048 P Vexp (= 26%),  in [2] (1),

where D stands for the integer density of # (from Assouad’s terminology
in [3]).

D
. n?
1.3.2. (1.1.1) is bounded by 4¢° (2( . >> exp (— 2¢2), according to
Devroye in [I6]. J

j=0

(Y) Our result of the same kind (inequality 3.3.1°) @) in the present work) seems to have
been announced earlier (in [47/]) than K. Alexander’s.
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_ 1
1.3.3. The strong invariance principle holds with b, = n 2700®+1)
according to Dudley and Philipp in [23].
Now let us describe the scope of our work more precisely.

2. ENTROPY AND MEASURABILITY

From now on we assume the existence of a non-negative measurable
function F such that | f| < F, for any f in &#. We use in this work Kol-
Cinskii’s entropy notion following Pollard [44] and the same measurability
condition as Dudley in {27]. Let us define KolCinskii’s entropy notion.

Let p be in {1, + oo [. #(X) stands for the set of laws with finite support
and 2P(X) for the set of the laws making F? integrable.

2.1. DEerINITIONS. — Let e be in 10, 1 [ and Q be in ZP/(X). N (e, 7, Q)
stands for the maximal cardinality of a subset ¢ of & for which:
Ql f — gl") > e Q(F?)

holds for any f, g in 4 with f # g (such a maximal cardinality family is

called an e-net of (%, F) relating to Q). We set N¥(., #)= sup N¥(.,#,Q).
Qe (X)

Log (N{(., #)) is called the (p)-entropy function of (%, F). The finite or

infinite quantities:

dP(F) = inf { s > 0 :lim sup &NP(e, F) < © }
e—>0

P (F) = inf { s > 0 :lim sup " Log (N{P(¢, #)) < o0 }
=0

are respectively called the (p)-entropy dimension and (p)-entropy exponent
of (#,F).

Entropy computations. — We can compute the entropy of # from that

of a uniformly bounded family as follows. Let .# = {% lgsop f€F },
then:

NP, F) < NP(, ).
For, given Q in o/(X), either Q(F) = 0 and so N¥(., #,Q) =1, or
P
Q(F) > 0, so Qe #(X) and then:

Q(F?)

FP
NP, 7, Q) = Nam(.,f,

Q(E?)

Q) < NP(., 7).

Vol. 22, n° 4-1986.



386 P. MASSART

Some other properties of the (p)-entropy are collected in [40]. The main
examples of uniformly bounded classes with finite (p)-entropy dimension
or exponent are described below.

2.2. COMPUTING A DIMENSION: THE V. C.-CLASSES. — According to
Dudley [20] on the one hand and to Assouad [3] on the other we have
d{P(¥) = pd whenever & is some V. C.-class with real density d (this notion
can be found in [3]). Concerning V. C.-classes of functions, an analogous
computation and its applications are given in [45]. See also [2/] for a
converse.

2.3. COMPUTING AN EXPONENT: THE HOLDERIAN FUNCTIONS. — Let d
be an integer and o be some positive real number. We write f3 for the greatest
integer strictly less than «. Whenever x belongs to R? and k to N | k|
stands for k; + . . . +k, and D* for the differential operator ol¥!/ox*: . . . dxke.
Let || -|| be a norm on R Let A, ,; be the family of the restrictions to the
unit cube of R? of the p-differentiable functions f such that:

D) = D) _ |

max sup | D¥f(x)| + max sup P
k< f xeRd k=g x=y  |lx — yll
Then, according to [36] on the one hand and using Dudley’s arguments

. .. d
in [/9] on the other, it is easy to see that: eP(A, ) = .

Measurability considerations.— Durst and Dudley give in [2/ ]anexample
of a V. C.-class & such that | P, — Py = 1. So some measurability con-
dition is needed to get any of the results we have in view. So from now on
we assume the following measurability condition (which is due to Dud-
ley [21]) to be fulfilled:

() . (X,%)1s a Suslin space.
. There exists some auxiliary Suslin space (Y, %) and some mapping T
from Y onto &# such that:

(x,y) — T(y)x) is measurable on (X x Y, % ® %)

and we say that % is image admissible Suslin via (Y, T).

This assumption is essentially used through one measurable selection
theorem which is due to Sion [47] (more about Suslin spaces is given
in [I3]).

2.4. THEOREM. — Let H be some measurable subset of X x Y. We

Annales de I'Institut Henri Poincaré. - Probabilités et Statistiques
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write A for its projection on X. Then A is universally measurable and there
exists a universally measurable mapping from A to Y whose graph is
included in H.

A trajectory space for brownian bridges. — We set:
F(F)={h:F > R;hyT is bounded and measurable on (Y, %) }.

We consider IF(#) as a measurable space equipped with the o-field gene-
rated by the open balls relating to || - || (which is generally distinct from
the Borel o-field because IF(&) is not separable).

This trajectory space does not depend on P any more (as it was the case
in [20]) but only on the measurable representation (Y, T) of &.

From now on for convenience we set:

Q. /. Pry = (X’ x [0.11.7" ® B([0,1]), P ® 4)

where A stands for the Lebesgue measure on [0, 1], ([0, 1]) for the Borel
o-field on [0,1] and (X*, Z°, f>) for the completed probability space of
the countable product (X*, Z=, P®) of copies of (X, Z,P). The following
theorem points out how [P(F) is convenient as a trajectory space.

n

2.5. THEOREM. — For any a in R Eaiéxi is measurable from Q
i=1

to IF(F). Moreover, setting %, (F) ={h:% — R, h is uniformly
continuous and bounded on (F, pp) }, %(F) is included in [P(F). Pro-
vided that (F, pp)is totally bounded this inclusion is measurable. Here #(P)
is given the distance pp:(f.g) — op(f —g), with a3: [ — P(f)—(P(/))~

For a proof of 2.5, see [2]] (sec. 9) and [40] where it is also shown
that many reasonable families (in particular A, 4 and the « geometrical »
V. C.~classes) fulfill (.#).

2.6. REMARk. — Since # fulfills (#) it follows from [27] (sec. 12)
that ||P, — P|lz — 0 a.s. whenever N{)(., #) < o0 and therefore:

e
sup N¥P (e, #,Q) < N%Z)(—, 97> for any ¢ in 0,1 [.
Qe 2

This implies that the local behavior of the entropy function is unchanged
when taking the sup in 2.1 over the set of all reasonable laws.

Vol. 22, n° 4-1986,



388 P. MASSART

3. EXPONENTIAL BOUNDS
FOR THE EMPIRICAL BROWNIAN BRIDGE

We assume in this section that for some constants y and v, u < f < v
forany fin F;weset U=v—uand F —u={f—u feF}
The following entropy conditions are considered:

a) dP(F — u) <

b) EF —u)<2.

Using a single method we find upper bounds for (1.1.1) that are effective
in the following two situations:
U2

1°) Observe that | op (s < 7 nothing more is known about the
variance over Z. In this case we prove some inequalities which are ana-
logous to Hoeffding’s inequality [30].

2°) We assume that || o3 ||z < o This time our inequalities are ana-
logous to Bernstein’s inequality (see Bennett [5]).

3.1. DESCRIPTION OF THE METHOD. — We randomize from a sample
whose size is equal to N = mn. In Pollard’s [44], Dudley’s [20] or Vapnik
and Cervonenkis’ [51] symmetrization technique, m = 2 but here, fol-
lowing an idea from Devroye [I6], we choose a large m.

Effecting the change of central law: P — Py with the help of a Paul Lévy’s
type inequality, we may study 13,, — Py instead of P, — P where P, stands
for the randomized empirical measure.

Choosing some sequence of—measurably selected—nets relating to Py
whose mesh decreases to zero and controlling the errors committed by
passing from a net to another via some one dimensional exponential
bounds, we can evaluate, conditionally on Py, the quantity || IN),, — Pyl

Randomization. — Setting N = nm (m is an integer), let w be some ran-
dom one-to-one mapping from [1,n] into [1,N] whose distribution is
uniform (the « sample w is drawn without replacement »).

The inequalities in the next two lemmas are fundamental for what

follows:

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques
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3.1. LemMMa. — For any ¢ in RY, we set

N ;
SN = Z gia gn = Z iw(i) >
i=1 i=1
N N
1 1 2
- (5 2,%)- (2 2%

i= i=1

and Uy = (lmaxN(éi)) — (1r<r;i£1N(éi)); the following three quantities are,

for any positive ¢, lower bounds for — Log (% Pr( E - SﬁN > s)):
; 2ne?
1°) oz
. ne?
29 20% + eUy
S ng?
3°) o

These bounds only depend on £ through numerical parameters (Uy, oy).
Bound 3°) is new ; concerning 1°) (due to Hoeffding [30]), Serfling’s bound
is better (see [46]) but brings no more efficiency when m is large.

The proof of lemma 3.1 is given in the appendix.

F"rom now on we write f’,, for the randomized empirical process

1

- z&xwm. The inequality allowing us to study the randomized process
i=1

rather than the initial one is the following:

3.2. LemMMa. — The random elements || P, — Pyl and || P, — Plls
are measurable.

Besides, whenever || o3

# < p?, the following holds:

2 ’
p ~ n
(1 - azgzn)Pr(nP,. ~Plls>0< Pr(HPn = Pylls > (1 - a)ﬁs>

for any positive ¢ and any a in 0,1, where n’ = N — n.

For a proof of this lemma see [/6] using Dudley’s measurability argu-
ments in [27] (sec. 12).

Vol. 22, n° 4-1986.
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Statements of the results.

3.3. TueoreM. — The following quantities are, for any positive ¢ and 7,
upper bounds for Pr (|| v.ll& > 1):

tZ 3(d+n) t2
1) a) if dB(F — u) = 2d, 0,,,;(1)(1 + f> exp<— 2_>;

UZ U2
t k+n [2
b) if eP(F —u)=(<2, 0,4(1) exp(O,,’g(l)<6> >exp<— 2ﬁi>’
6 —
where k = C(ﬁ) (when { increases from 0 to 2 so does k).

2°) Suppose that || o3 ||# < ¢, with ¢ < U, then
a) if dP(F — u) = 2d,

o\~ 4d+n £2\3+n) 2
0, (D — 1+ - :
e )<U> ( N 62> P 2( 2+ Y gy )> |
0"+ —= +t
Jn

by if €F —u)=( <2,

On’g(l) exp (0’1’?(1)(%)%"(5)”_“”
t\2ptn 2
+ 5(—) >exp — U e
’ G )" +)

ERAE

(when ( increases from 0 to 2 so does 2p).

204 - 0)
4+ {4-0

The constants appearing in these bounds depend on % only through
N{A(.,# — u) and of course on #.

where p =

Comments.

— Yukich also used in [54] KolCinskii-Pollard entropy notion to prove
an analogue of theorem 3.3, but our bounds are sharper because of the
use of a randomization from a large sample as described in 3.1.

— From section 2.2, the assumption d?(#) < oo is typically fulfilled
whenever # is some V. C.-class with real density d.

Thus bound 1°) a) is sharper than those of 1.3.1;in an other connection
the factor O(F, #)t5@* ™ in 1°) a) is specified in the appendix.

— In the classical case (i.e. & is the collection of quadrants in R,
bound 1°) a) improves on 1.2.3 but is less sharp than 1.2.1 in the real

Annales de I’ Institut Henri Poincaré - Probabilités et Statistiques



CENTRAL LIMIT THEOREM FOR EMPIRICAL PROCESSES 391

case; moreover the optimality of 1°) a) is discussed in the appendix where
it is shown that
d-1

lim Pr (|| v, ||ls > ) > 22

i=0

2%y

i!

exp (— 2t%).

So, there is a gap for the degree of the polynomial factor in bound
3.3.2°) a) between 2(d — 1) and 6(d + »). p

— Suppose that # = A, then, from section 2.3 we have e?*(F) = —.
o

In other respects, Bakhvalov proves in [4] that if P stands for the uniform
distribution on [0, 1]? then:
1

o
| valle = Cn? ¢ surely.

Thus we cannot get any inequality of the 1°) or 2°) type in the situation
where e?(F) > 2.

The border line case. — For any modulus of continuity ¢, we can intro-
duce a family of functions Ay 4 in the same way as A, ; by changing v — °
into ¢ and defining f as the greatest integer for which ¢p(uyu"? — 0 as
u — 0.

It is an easy exercise, using Bakhvalov’s method, to show that:

Vi lla,.a = C(Log ()’

provided that ¢(u) = u¥? (log(u™'))’ and P is uniformly distributed on
[0, 1]%. Of course e?(A,4) = 2 and we cannot get bounds such as in theo-
rem 3.3.

But the above result is rather rough and we want to go further in the
analysis of the families A, ; around the border line.

Then the (2)-entropy plays the same role for A, ; concerning the Donsker
property as the metric entropy in a Hilbert space for the Hilbert ellipsoids

concerning the pregaussian property, that is to say that the following
holds:

i) Ay 1s a functional P-Donsker class whenever

1
f (Log (NP(e, Ay 1)) 2de < oo .

[o]

Vol. 22, n® 4-1986.
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if) Ag,; is not a functional A-Donsker class whenever

u 1/2 )
#0=( o) O

and in this case we have Log(N{(e, Ay 1)) =~ (¢ Log ()™ 2

i) follows from Pollard’s central limit theorem in [44].
ii) follows from a result of Kahane’s in [32] about Rademacher trigono-

metric series. In fact, if we set ¢(u) = /#, we have from [32] p. 66
| Log () |

et . -
that: t — ZKE)% belongs to A, ; with some probability px —» 1

n>1

as K — oo, where (¢,) is a Rademacher sequence and e,(t) = \/5 cos (2nnt).

Let us consider a standard Wiener process on L?([0, 1]), we may write
(W(e,) as (g,] W(e,)|) with (g,) being independent of (| W(e,)|).
Then, with probability more than pg, the following holds:

1 1
w > - Wie,) | ——————.
[ HAW_KZ| @) Logi
n>1

1
By the three series theorem the series £ | W(e,) | ———— diverges to
n Log (n)

infinity almost surely and therefore W is almost surely unbounded on A, ;.
The same property holds for any brownian bridge G, for

[ - G(f)+ J fW(1) is some Wiener process provided that W(1) is

some N(0, 1) random variable independent of G. So A, ; is not pregaussian
and ii) is proved.

An upper bound in situation 2°) is also an oscillation control. — If we set
Y, ={f—g;o(f —g) <o, f,geF}, it is not difficult to see that:

3.4 NZ(., %, + U) < (N@(., F — u))?.

Thus changing U into 2U and d into 24 if necessary the upper bounds in
situation 2°) hold with ¥, instead of &, the constants being independent
of ¢ because of 3.4.

In particular if % is a V. C.-class with real density d, we set:

A(o,n,t) = Pr(llv,llg, > 1).

(?) We write f ~ g, when 0 < lim(fg™ %) < lim(fg™ %) < oo.

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques
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As it is summarized in [23], Dudley shows in [20] that A(o,n,t) < t
whenever t is small enough, ¢ = 0( ) and n > 0(t") with r > 8.

t
| Log (1) |
Applying 3.3.2°) a) improves on this evaluation for then:

t
A(o,n,t) <t whenever t is small enough, ¢ = 0<——> a

. | Log () |
() )
| Log (1) |

In order to specify in what way the constant in bound 2°) a) depends
on %, we indicate the following variant of 3.3.2°) a).

3.5. ProposiTioN. — If we assume that NP(e, # — u) < C(epe)~ %
for any ¢ in ]0, 1 [ and some ¢ in ]0,1 [ and that || 63 ||+ < ¢ with ¢ not
exceeding U, then there exists some ¢; in ]0,1[ depending only on g,
and a constant K depending only on C such that:

o —4d t2 14d t2
Pr(j|v.lls > 1) < Kerd — 1+ — - )
(Ivellz >0 &1 (U) ( GZ) €xXp T UBU )
n

From now on L stands for the function x — max (1, Log (x)).

3.6. CorOLLARY. — Let (#,) be some sequence of V. C.-classes ful-
filling (.#) with integer densities (D,). Then (with the above notations)
Pr(llvallg,y >80 — 0 as n — oo for any positive ¢t whenever

o(n? = o(1/(D,1(D,)) and a(n) > = 0(/n).

(Provided that D, = a(—{—n) such a choice of a(n) does exist).
n

Comment. — According to Le Cam [38] (Lemma 2) and applying 3.6
the process {v,(f), f € %,} admits finite dimensional approximations

whenever D, = O’(
is fulfilled.

This result improves on Le Cam’s corollary of proposition 3 where

n
and provided that Le Cam’s assumption (A1)
Log (n)

1
D, = 0(n™") for some y < 3 is needed.

Proof of 3.6.— Let # be a V. C.-class with entire density D and real
density d. Using Dudley’s proof in [20] (more details are given in [40]) it
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is easy to show that, for any w > d (or w > d if d is « achieved »), we have:

N(ll)(S’ g.‘) < K! +(1/2ILogsI)eXp (2w)(1 + 2] Log (8) ’)w8—2w

for any ¢ in ]0, 1 [, with in particular when w = D, K = 5(2D)2D. So
from Stitling’s formula we get: NP(e, #) < C3e5P23P¢ 4P for any ¢ in
1
:IO, 7:' and some universal constant Cy. Hence. for any ¢ in 10,1 [ we
2
have:
NP(e, ) < C3(2e)°Pe 4P,
Thus, applying 3.5 to the class %, yields 3.6.
We propose below another variant of inequality 3.3.2°) a), providing
an alternative proof of a classical result about the estimation of densities.

3.7. PROPOSITION. — If we assume that dZ(# — u) = 2d < oo and

| o5 |# < 0% with — < 6 < U for some positive V, then there exists

some positive constant C such that an upper bound for Pr (|| v,|ls > 1)
is, for any positive ¢, given by:

t2 3(d+n) c —4d+n
ol ) )

exp

) 2(02 + %(CLLV:(% + a) + t)) |

In the situation where U is large this inequality may be more efficient
than 3.3.2° a).

Application to the estimation of densities: minimax risk.

Let Ky be the following kernel on R*: Ky(y) = y¥(y'My) for any y
in R¥, where 1 is some continuous function with bounded variation from R

11
nto [— 7 2:' and M is some k x k matrix. Pollard shows in [45] that

the class
H = {Kyu(- — x), MeRF, xeR*}
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is a V. C.-class of functions and so:
N@e, #) < Ce™™ forany ein 10,11

where C and w depend only on k.
Now if we assume that P is absolutely continuous with respect to the
Lebesgue measure on R¥, the classical kernel estimator of its density f is:

-l )

where K is a Ky with fixed y and M so that J‘Kz(x)dx< o0. We set £ =E(f)).

Proposition 3.7 gives a control of the random expression f; — fbychoosing:
F = {hk/2K<%>,xe R* }, 6=C and U=h¥?
where C2 > || f ||oojK2(x)dx.

n . -
So, if we assume that in >h~*> C?, we get, setting D, = sup | f,(x)— f(x)]:
n x

2
Pr (/nk*D, > t) < 0(n*)tf exp (— )

t
2AC? + O(LLn//nk") + t]/nk*

foranytin [1 + oc [and some positive o and §. Hence, after an integration:

TZ
E(\/nk*D,) < T + 0(n*)T* (— )
W ) ()T exp 2C? + O(LLn//nh*) + T/ /nk"

forany T in [1, + oo [, provided that nk* > 4p%. We choose T = 0(,/Ln),
thus:
E(D,) = O(Ln/(nh*)'/ .

Provided that f belongs to some subset of regular functions ®, the bias
expression f — f can be evaluated so that the minimax risk associated
to the uniform distance on R* and to ® can be controlled with the same
speed of convergence as in [29], via an appropriate choice of h.

3.8. Proors OF 3.3, 3.5, 3.7.— Lemma 3.1 is proved in the appen-
dix. Let us prove theorem 3.3. First, we reduce the problem to the case

—u
where u = 0 and v = 1 by studying the class ¥ = {fU—’ fe&F } instead
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of # ; % fulfills (#) and NZ(., #) = N?(., 9). Finally || v, ||z = Ul v,lls
and || |15 = U2 | o [

In the course of the proof we will need to introduce some parameters
such as: a,u (in ]0,1[}; r,m (in N); o« (in }1, 4+ o0 [); g (in ]0,2]) and
some positive s, # and y. Let (t;) be a positive sequence decreasing to
zero. These parameters will be chosen in due time, sometimes differently
in different cases. We set N = mn, we write Pr™ (-) for the probability
distribution conditional on (x, . .., xx) and || - || instead of || - || & for short.

t 1
We set & = 7 and ¢ = (1 - >(1 — a)e. A bound for Pr(||v,|| >t
n m

will follow, via lemma 3.2, from a bound for Pr (]| 13,, — Py || > ¢) which
is at first performed conditionally on (x4, ..., xn).

Conditional approximation by a series of projections.

For each integer j a t;-net #; can be measurably selected (wit‘h the help
~

of 2.4, see [21] p. 120). So we can define a projection Il; from % onto
such that on the one hand Py(IT;(f) — f)?) < 7 holds for any f in &
and on the other hand (P, — Py) - I1; belongs to If(#). We show that the

development:
(P, — Py eld —I1,) = Z (B, — Py) o (IT; — T1; )
jzr+1

holds uniformly over & and over the realizations of (X,)1<ix<n
In fact, because each realization of w is one-to-one we have:

IN),,( g) < mPx(g) for any positive function g defined on X.

Hence:
[|(B,—Py)o(Id — I <(2 sup (Bt POIL(f)— £))V2 </ 20+ m)z,
res for any J in N*.
Therefore we get:
1P, — Py e (Id — IT) || < Z Py — By o (T = T- ) |-
Jj=r+1
So, provided that (7;) is a positive series such that n; < p, we have

jzr+1

Pr™ (|| P, — Pyl > &) < Pr™ (]| (B, — Py) o I, || > (1 — p)e’)

+ Z Pr® (|| (P, — Py) o (IT; — T, 1) || > ;) P®™Nas.
j=r+1
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But the cardinalities of the ranges of IT; and IT; — IT;_, are respectively
not greater than N; and N;_;N; (where N; stands for N{(t;, #)) so that:

Pr™(|B, — Pyl >¢)<A+B  P®™Nas
where A and B are the (x4, ..., xy)-measurable variables:

A =N, || PP, - PYTL| > (1 — we) |,

B = z NZ || Pr(| (P, — Py o (IT; — TT;4) | > n¢) .
jzr+1
A is the principal part of the above bound and B is the sum of the errors.

We use lemma 3.1 to bound A and B: inequalities 1°) or 2°) are needed
to control A according to whether case 1°) or 2°) is investigated. Setting

t = ﬁs’, we use bound 3°) to control B, so:

tlZ 2
B <2 2 Nfexp(— — > 3.8.1
ji-1

jzr+1

for Pi((TL(f) — 1L (/) < (zj + 7;-1)* < 472 holds for any f in #Z.

We choose n;=(j — 1)"* and r =2+ [p~ V1) <so Z n<u
holds whenever o > 2).

jzr+1
The control of the tail of the series in 3.8.1 is performed via the following
elementary lemma:

3.8.2. Lemma. — Let ¢ :[r,+ o[ - R. Provided that i is an
increasing convex function, the following inequality holds:

Z exp (— ¥(j) < exp (— ¥(r))

jzr+1

1
wlr)

where ) stands for the right-derivative of .

o]

HINT: Note that j

¥

exp (— Ylx)dx < (%(r))‘lj Yi(x) exp (— Y(x))dx.

In each case it will be enough to prove the inequality for ¢ > ty = to(n, )

for some t,. We choose f = 1 under assumption a) and f = ( ) : y)fx
under assumption b). oo

Proof of theorem 3.3 in case 1°). — Applying 3.1.1°) we get:
A < 2N, exp (— 2t2(1 — w)?) P®N.a,s,
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-2 2 L
We choose: a =172, m = [t*] and 7; = —=j @"#.
m

2

1
If we set p = —, the variance factor 1 — sz
2 a‘en

in lemma 3.2 is stabilized

’

. 1
for it is not less than 3 whenever t > 2.

Besides, whenever 2 > 3, t'2 > 1?2 — 5 hence:

A < 2N,e'®exp(— 2631 — 2p)  P®Nas.

Under assumption a). — If we prove that for any given positive #’ and d’
such that N®(v, #) < C(dv~2¢ holds for any v in ]0, 1 [, an upper bound
for Pr(||v,]| > t) is given by: K(@, )1 + t2)3@*" exp (— 2t%). Then,
setting d’ = d + g and n’ = g we get 3.3.1°%a).

So, writing « d,n » instead of « d’,#’ » for short, we may assume that

4d
N; < C?4?@* 14 We choose u = t~? and o = Max (2,1 + 3—), $0:
n

A < 0,1 + 33 Dexp(— 267  P®Nas.

In order to evaluate B we apply lemma 3.8.2, setting:

,2

W09 = S (v — 1) — 4d(a + 1) Log (v,

then the condition t? > 7 + 4d(x + 1) (which can be assumed) ensures
that y/(r) = 1, hence

t/Z
B < 2C%*4(2 4 (2~ )ddat1) exp <— T(r — 1)2> P®N_g s,

As r — oo whenevert — /. we get:
B < 0, s(1)exp (— 2t%) P®N.a s,

But the above estimates of A and B are deterministic, so, using lemma 3.2,
theorem 3.3 is proved in situation 1°) a).

With the idea of proving proposition 3.5 we remark that, setting o = 2,
the above method gives, under the hypothesis in 3.5, that Pr(]| v, || > 1)
is bounded by:

Ki(g 't)*(2 + ¥ exp (— 217) 3.8.3

with K, depending only on C, whenever ¢t* > 7 + 124.
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Under assumption b). — Using the same arguments as above we may
suppose that: N; < exp (Ci&"#),
We set u = t~27, then the following inequalities hold P®M-a.s.:

A < 2exp (CHH2 + 277 DYEETH 4 442070 4 10)exp (— 267),

t/2
B<2 z exp <2Ct4j5‘°‘“" — TU - 1)2>.

jzrad
In order to balance the above bound of A we choose y so that
Z,’(l + 2))(2;?)) = 2(1 — y) and « large enough for y > ¢({) —g and
f > 1tohold, where ¥({) is the solution of the above equation when a= + oo
{Note that 2(Y — ¥({)) = k, where k is defined in the statement of 3.3). So
A <0,-1)exp 0, (D Nexp(— 267  P®Na.s.
The evaluation of B is performed via lemma 3.8.2 with the choice:

’2

Ylx) = T(x — 1) — 2Ctx*.

2 .
Then, whenever t* > — + 5 + Ct2226*% y’(r) > 1, hence (since r —» o
whenever t > )

B <0, s(1)exp(— 2  P®Nas.

We finish the proof as under assumption a), so theorem 3.3 is proved in
case 1°).

t
Proof of theorem 3.3 in case 2°). — We set ¢ = — and choose m = [¢?],

I3 g
(a+p) = i
a=20"" p - ¢4 and 1; = m] . If we set p = o, the variance

factor1 —

o ) - .. 1
in lemma 3.2 is stabilized for it is not less than — whenever
a’e?n’ 2

¢? = 4. The variable A is this time controlled with the help of 3.1.29),

so now the probleme is to replace 6% by of. In fact, let Ey be the (xq, . . ., Xy)-
measurable event:

En=1{||ok—ob| >s}, where oZ(f)=Pu(f?)—(Pu(f))?* forany finF.
Each term of the following estimate is studied in the sequet:

Pr(||P, — Pyl > &) < Pr(En) + A’ + B 3.8.4
where A" = E(Alz ) and B’ = E(Blgg).
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The control of Pr(Ey) reduces to a problem of type 1°). — For, setting
F?={f2 feF }, we have:
lo& — o || < IPx — Plls= + 2[| Px — PI.

Since N{?(., #?) < NP <§ F > and % 2 fulfills (.#), we may use the bounds

in 3.3.1°), so s
2N
Pr(En) < ‘P<§\/ﬁ> exp(— 9S )

where W is a polynomial or exponential function (according to whether
case a) or b) is studied). Anyway

Ns

2
Pr (E‘N) < CO €Xp <— T) .

3 2
We choose s = ¢ , 80 Pr(Ey) = 0<exp <_ ﬂ))
/ 2nm 2

The evaluation of A’ and B’. — The inequality || 0% || < ¢ + s holds
on Z§, thus applying 3.1.29):
-a.s.

t/2(1 . u)2 > P®N

Aflg, < 2N, exp (— m

t'?
so, since (1 — w)?— > @? — 100>~ * whenever ¢? > 2, we get:
a2 &

t2
A’ < 2N, exp (5¢* 9 exp <— >’
20? + (t + 39 1) /n)

t/2
B <2 Z N7 exp ((— 4ftz(j - 1)2’3)>.

j=r+1
Under assumption a). — As in the proof of 3.3.1°) we may assume that
d
N; < Co~p2424=*1D and we choose g = 2 and o = Max (2, 1+ ~>
(recall that f — 1). Then: 3

t2
A; < 0 ’?(1)0_—2d((p2)3(d+r,) exp <_ )
! 20 + (3 + 1)//n)
In another connection the control of B’ follows from the control of the
same tail of series as in 1°) (via a modification of parameters), so:

(pz
B, < 0,1,37(1)0'744 exp (— 7)
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whenever @? > 8 + 4d(x + 1). Collecting the estimates of Pr(Ey), A’
and B’, bound 3.3.2°) a) is established via lemma 3.2 and inequality 3.8.4.

Proof of 3.5.— Under the hypothesis in 3.5 we choose this time o= 2, so:

Nj < C862d0_2d¢2dj4d,

hence
t2
A’ < 2Ceq Mo 29?2 + @) exp (— . >,
202 + (3 + 1) /n)
2 8 2
B’ < 2c2864d0.—4d(p4d(2 + (p2)12¢i eXp(— ((P 2 ) >

whenever @2 > 8 + 12d. The evaluation of Pr(Ey) is performed by using

£
bound 3.8.3 (changing & into 50 when studying & 2) at the point % Hence

—~44d 44 2\ 12d 2
Eo P P (‘4
PrEy) < 2K, (2} (Z) (2+% -7
TE) < <2> <2> ( * 2) eXp( 2)
2

whenever % > 7 + 12d. Applying inequality 3.8.4 and lemma 3.2
gives proposition 3.5.

Proof of 3.3.2°). — Under assumption b). Let us choose g so that:

1
cray e ((29) -2

We choose o large enough for § > land 1 — % < p + n(where p is defined

in the statement of theorem 3.3) to hold. We may assume that:

Nj < exp (Ca—é((p)Cq/Zjé(Hﬂ)) .

Then:
t2
A’ < 2exp(0, #(1)0 @ 74 + 52 Mexp

2<02 + %(I + 3<p"+’1)>

n

The control of B’ is of the same kind as that of B in situation 1°), so:

2
B’ < 2exp <2Co-5<p5‘1/2r2" + 29271 — %(r - 1)2ﬁ>

2 2p+ 2 ~Ly(Pm DL G
whenever ¢@? > 8¢?P*" + — + 8Co *p'*” Y% Since r — oo whenever
@ — 0! B

2
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Using inequality 3.8.4 and lemma 3.2 gives 3.3.2°) b) and finishes the
proof of theorem 3.3.

Proof of proposition 3.7. — The above method which allows deduction
of bounds of type 2°) from bounds of type 1°) is iterated here. We shall
assume that ¥ = 0 and v = 1. Inequality 3.3.2°) a) may be written (in
view of its proof):

2\ t? )
M,: P n < Ko™l 5 B
0 r(lfvall > 7) < Ko <al) eXp< 2a% + (3 + 1)/\/n)

whenever t%/6? > 5. Let us define by induction the following sequences

2b; 1
ajrq = 544‘”1aj<2 + =+ —),
o

no?
2 /1
bjvi =—7= (—— + \/b.z)
NANC
3
Jn
We suppose that the following inequality (M) holds whenever t?/62 > 5:
l,Z ay tZ
Pr(jjv.]| > 8) < Ka-a““(—) exp<— > M;)
! o’ 2Ao? + b; + t)\/n !

We want to deduce (M) from (M;) by the same way as 3.3.2° a) from
3.3.1%9a). So, let ¢ be positive so that:

m_ Né&2
2 2c? + b{N) + &)

Then s
21 Ner ot 2bim) 1
EJSGZS7@+ o T w)

Besides, setting F = {f=P(), feF}, we have for any law Q

with ao = 1 and b() =

(recall that mn = N and m = [t%/¢?)).

Q

NP7 +1,Q) < N‘12’<.,3<7, P—;g> < N<12><§', z«*)
according to remark 2.6, hence:
NP, #?) < N(f)(j, g«*).
Moreover it is easy to show that
ok — o [ls < |Px — P32+ | Py — Pll5.
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Therefore, using the notations of the above proof of 3.3.2°) q) and applying
M;) to # and #? at the point \/ﬁé, we get (since || P |z < 6?)

P — ] 44d+1 K —a t2 - 2b1 1 2 tz
r(Z) <1+ Ka;o g 2+—2+F \/;exp ~ 302

c
and also (here s = 2¢)

t2 az t2
A"+ B < (Ko™ - ,
(K[2)e <02> eXp< 2e? + 2¢ + t/\/ﬁ)>

So, via lemma 3.2 and inequality 3.8.4 we get (M. ;) whenever t?/¢6? > 5.
Therefore inequalities (M;) are proved by induction.

Let us consider the step J = 1 + [LLn/L2] of the iteration. Then, with
a few calculations it can be shown that:

b, §%<e+ J(l +g\5/ﬁ>>

9 8J
a; < (544‘“”)]11“2(—2 + 2 + —2<1 +
no no

and

aﬁ Jaz

5 .
Hence, using the condition ./ne > V and the above estimates of a; and b,,
inequality (M) gives proposition 3.7.

4. EXPONENTIAL BOUNDS
FOR THE BROWNIAN BRIDGE

We assume that P(F?) < co. We want to show that the bounds in the
preceding section still hold for the brownian bridge.

4.1. THEOREM. — If &{?(F) < 2, then there exists some version Gp of
a brownian bridge relating to P whose trajectories are uniformly conti-
nuous and bounded on (&, pp). Moreover, setting { = ef(F), if
|3 ||s < o < P(F?), an upper bound for Pr(|| Gells > 1) is, for any
positive ¢t and #, given by:

2p—{+ 2p+n
0, #(1)exp <0n,§(1)a_5~2"(P(F2))C/ “"(é) o + <£) >exp(— t2/26%)

4.1.1
or, if more precisely d(F) = 2d < o0, by:

2

2d+n
On,f(l)(P(Fz))z'”"G_“_2"(1 + 7) exp(— ?/26%)  4.1.2
ag
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where p is defined in the statement of theorem 3. 3. The constants appearing
in the above bounds depend only on # and N{¥(., #).

Comments. — In the framework of theorem 4.1 the existence of some
regular version of a brownian bridge is an easy consequence of the proof
of 4.1.1 and 4.1.2 but is of course a well known result (see [/8]). More-
over the bounds in 4.1 are in this case sharper than the more general
Fernique-Landau-Shepp inequality (see [25]) that can be written:

Pr(||Gells > 1) < Ca)exp (= £*/22%)
for any a > || op || #-
Proof of theorem 4.1. — If & is countable. Let Gp be some brownian
bridge relating to P. The calculations are similar to those in the proof
of theorem 3.3. Of course here a randomization would not mean anything

and a sequence of nets in (%, F) relating to P is directly given. Moreover
the following single inequality is used instead of the bounds in 3.1:

4.2. LemMmA.— Let V be a real and centered gaussian random variable,

then:
Pr(| V| > s) < 2exp(— s%/(2v?)) for any positive s

where v? stands for the variance of V.

So, as in 3.8 we have:
Pr(l|Gylls >t) <A+ B

(1 —- u)2>

with this time:

202

2n?
B<2 Z N}exp(—— ——#)
SP(F )Tj~1

jzr+1

A< 2N,exp<—

2

P(F?)
of A and B are then performed as in the proof of 3.3.2°) giving 4.1.1
and 4.1.2. Since 4.1.1 is also an oscillation control the almost sure regu-
larity of Gy is ensured via the Borel-Cantelli lemma. So theorem 4.1 is
proved in the case where & is countable.

The choices of parameters (except 13 = In 2(a+ﬁ)> and the estimates

The general case. — Since (&, pp) is totally bounded any version of a
brownian bridge which is almost surely regular on some countable and
dense subset of (&, pp) may be extended to (F, pp) giving some version
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of a brownian bridge which is almost surely regular on (#, pp). Inequa-
lities 4.1.1 and 4.1.2 hold for this version.

Comment. — The optimality of bound 4.1.2 is discussed in the appendix.
The degrees of the polynomial factors are different in 3.3.1.2°)a) and
in 4.1.2; the reason is that bound 3.1.3°) is less efficient than bound 4.2.

5. WEAK INVARIANCE PRINCIPLES
WITH SPEEDS OF CONVERGENCE

We assume from now on that P(F2*%) < oo for some 6 in 10, 1]. Using
the results in sections 3 and 4, we can evaluate the oscillations of the empi-
rical brownian bridge and of a regular version of the brownian bridge
over &, so we can control the approximations of these processes by some
E;-valued processes (where E, is a vector space with finite dimension k).
The Prokhorov distance between the distributions of these two processes

is estimated via an inequality from Dehling [/5] allowing reasonable
variations of k with n.

Oscillations of the empirical brownian bridge over & . — The oscillations
of v, over # are controlled with the help of a truncation from 3.3.2%a)
{the proof in this case is straightforward) on the one hand and of a slight
modification in the proof of 3.3.2°) b) (truncating twice) on the other hand.
The control of the tails of these various truncations is performed via the
following inequalities (the second is elementary).

5.1. LemMma (Marcinkiewicz-Zygmund’s inequality). — Let &, ..., &,
be independent and identically distributed real valued random variables
such that E(&;) = 0 and E(| &, |") < oo for some r in 1, + oo [.

We set S, = zéi, then:
i=1

E(|Sy/nl) < TE(| &, [ynmint=1r/2),
See [42] for a proof of the above lemma.

Besides: let £ be a positive random variable such that E(£") < oo for
some r in |1, + o [. The following inequality holds for any positive M:

E(¢leamy) < E(E)YM™1. 5.2

(Note that M™™ ¢l esmy < & to prove 5.2). The next theorem is an ana-
logue of theorem 3.3 in the case where F is not necessarily bounded.
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5.3. THEOREM. — We set u; = P(F2"%)., If we assume that
||o? || < o® <P(F?) with ﬁazl, then an upper bound for Pr(||v,||s>1)
is, for any positive ¢ such that t*/¢? > 1, given by:

a) if d@(F) = 2d < oo,

t 8d tZ
0-(Dn™ —) exp|— + 128n 792G 287243
G LLno
822+ 0 T
whenever 2?0 > 6y, 5.3.1

b) if é?(F) = { < 2, an upper bound is
)

t 2ptn é"'ﬂ t = t2
0,,5(1) exp <0n,gz(1 (;) <1 + (P(F?))? 0‘4_2”<0_) )exp(— TH)
1 t 2—-2p+n
+ 0, #{1) exp <— T3 <;> >

£\2-2p-n\ ~4/2
+0,(1)(1 + u5)2<n<;) ) (67270 + g7

+ O(L)psn—%2g 23243 for any positive #
(p is defined in the statement of 3.3) whenever 5.3.1 holds and:
n?462* % > 512, 5.3.2
Proof of theorem 5.3.— Under assumption a). Note that we may assume

that & is centered under P as in the proof of proposition 3.7, for, setting
F={f—Pf).feF and F =F + (P(F?)'2, we have:

N@(., F) < NQ’(;—, 9*)
} 2\/5

with P(F2) < 4P(F2) and P(F2"%) < 8P(F2+9),
We make the truncation of # from 3.7 with the speed M = azﬁ/t.
We set:

SM) = flgoy and f(M) = f — f(M) for any f in # U {F} and

then FM)={fM), feF}.
It 1s easy to see that:

N, ZMY<NP(., F), hence NZ(., M+FM)<NEX., %)
Moreover # (M) fulfills (.#). Note that:
[ Valls < 1 vallzy + « 2Py + PYE(M))
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hence Pr(flvill#zg > )< C+ D

, L — t
where C= Pr< | Vall 7y > 2) and D=Pr (ﬁ(P,, +P)YF(M))> 5)
Control of D.— Using Bienaymé-Tchebycheff’s inequality and bound 5.2
we get:
— 5 16 s s
D < P((F(M)) )t—2 < 16t™“usM

t

whenever P(F(M)) < - Since P(F(M)) < usM~*7% according to 5.2
8

n
the above estimate of D holds whenever ;458\/;M_1_5 <t

Control of C. — Applying proposition 3.7 to F(M) we get:

2

C=< Qy(l)n“<—> (/¥ exp |~

O.Z

t2

o)

Collecting the above estimates and changing us into 8us give 5.3.a).

Under assumption b). — Bound 3.3.2°) b) is not efficient enough to
allow any direct truncation of #. Moreover an inequality such as in pro-
sition 3.7 is here not available (our proof of 3.7 does not work under
assumption b)). So our plan to avoid this difficulty is as follows: truncating
from 3.3.1°) b) to deduce a new bound of type 2°) via the method in 3.8
in the case where F is bounded, finishing the proof in the general case by
truncating as under assumption q).

5.4, LEMMA. — let # be &F or %2 Then an upper bound for
Pr(| P, — P|l# > ¢) is, for any positive ¢, given by:
-38/2
) If# =F,0:()exp(— 0) + 64(%) n~te= 2%y, for any positive 0
fulfilling the condition:

1+

n 2
(5) 82+6227‘U(5. 5.4.1

iy If # = F2, 02(1) exp (— 0) + O(D)usn~ %2~ 1~ for any positive 6
fulfilling the condition:

n §/4
(5> 1D 5 16, . 5.4.2
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Proof of lemma 5.4 (first truncation). — Let H be F or F2. The notations
for the truncations are the same as above. It can be shown that
NZ(., M + # M) < NP, #) and that #(M) fulfills (.#), so theo-
rem 3.3 may be applied to #(M). This time we choose the speed of

n\''? ¢
truncation: M = <9> T Then: Pr(||P, — Plle > &) < C + D with

& —
C= Pr(|| P, — Pllwon > E) and D = Pr ((P,, + P)YHM)) > %)
Using 3.3.1°)b), an upper bound for C is given by: 0gx(1)exp (- 6).

— e
Besides, whenever P(HM)) < 3 and using Bienaymé-Tchebycheff’s inequa-
lity

D < P((F(M»Z)n‘l(ﬁ)lz

holds in case i) on the one hand; on the other hand we apply lemma 5.1

t t:
0 g D < O(I)Man—ﬁ/ZS—l—(é/Z)

in case ii).

Bounding P(H(M)) with the help of 5.2 and collecting the various
estimates above, we obtain lemma 5.4. Let us return to the proof of 5.3.5).

We assume that F < M for some positive M.

The slight modifications that we introduce in the proof of 3.3.2°)b)
are as follows (the notations are those of this proof):

— We consider nets of (¥, F) relating to Py

— The event Zy is defined by:

Ex = {[lok — ob|ls > o* } U {(Py = PYF?) > P(F?) }.

O_2

mP(F?) -
Then the inequalities: Py(IT;(f) — f)*) < ij'z(‘”ﬁ) for any f in &
m

-—2(a+p)

2
— We choose 17 = j

and || o&||» < 207, hold on Eg, so, recalling estimate 3.8.4:
Pr(IP, — Pxllz > &) < Pr(Ey) + A’ + B’.

The control of A’ and B’ is performed as in 3.8, giving:

A t\2p+n
A’ +B’ <0, #(1)exp <o,,§(1)a—42" () (P(E2)@D+n 4 5 (~) )
o o
2
B Mo\ |
4(02 + ‘>
NG
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Control of Pr(Zy). — We have Pr(Ey) < I + II where
IL=Pr({|o% —otl|ls >0} {(Px— PYF?) < P(F)})
and  II = Pr(|(Py — P)YF?)| > P(F?)).
The control of I may be performed via lemma 5.4, for:
|0 = 63 |l# < 1Py — Plls> + | Py — Plls(2(Ps + PYF?)'2
so, on the event { (Py — P)(F?) < P(F?)}, the following inequality holds:
|02 — o2 |l# < Il By — P ll= + (6P(F2))2 | Py — P |-
Hence, applying lemma 5.4 with § = m/4, we get:

m

I < 09(1) eXp< 4) + 0(1)(N-1*(6/2)H§O.—4425 + N—6/2'u§0_—2*5)

whenever 62 tON%* > 64y, Besides, from lemma 5.1 we get:
IT < O(1)(P(F?)) ™2 p,N 7% .

2—=2p+y
Since m > () — 1, collecting the above estimates and using
a

lemma 3.2 we get the following upper bound for Pr (|| v, ||s > #):

t\2p—i+n
0,,#(1) exp <0,,, #(1)o ¢ H(P(F2) @D +n <_>
g

t\2ptn t* 1/t\* 27"
5= — 4050 B
i <0> )exp My | # )exp< 4<0> )
4o+

Jn
t 2*2p—vy — /2
+0(1)(1+#5)2<n(;> ) (@ > +07%) 5.5

whenever o2 79%4 > 64y,

The general case (second truncation). — We proceed here as in the

proof of 5.3.4) using 5.5 instead of proposition 3.7. So theorem 5.3 is
proved.

Speed of convergence in the central limit theorem in finite dimension. —
We recall below an evaluation of the Prokhorov distance between the
distribution of the centered and normalized sum of independent and
identically distributed R*-valued and (2 + d)-integrable random variables
and the corresponding gaussian distribution, that is due to Dehling [/5]
(the first result in the same direction is due to Yurinskii [53)).
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5.6. TueoreM. — Let (X;);<:<, be a sample of centered R*-valued
random variables. We write F, for the distribution of the normalized sum
of these variables and G for the centered gaussian distribution whose
covariance is that of X;.

Let || ||, be an euclidean pseudo-norm on R* and =, be the Prokhorov
distance that is associated to ||-|[,. If E(|| X, [|37%) = u < o, then:

my(F,, G) < Kn™98kM 431 + | L(n %2k ™ty |12y

Comment. — Comparing the above evaluation and the one in [52]
(assuming that 0 = 1), a power of n is lost in the speed of convergence
for in [52] we have n,(F,, G) = 0(n~*2) but in 5.6 the estimate is a poly-
nomial function of k; on the contrary the estimate in [52] depends expo-
nentially on k.

Weak invariance principles for the empirical brownian bridge. — In order
to build regular versions of brownian bridges with given projection on
a finite dimensional vector space (or further in section 6 on a countable
product of such spaces), we need two lemmas.

5.7. LemMA (Berkes, Philipp [6]). — Let Ry, R,, R3 be Polish spaces,
Q, and Q, be some distributions respectively defined on R; x R, and
R, x R; with common marginal on R,. Then there exists a distribution Q
on R; x R, x R; whose marginals on R; x R, and R, x Rj are respec-
tively Q; and Q,.

Remember that I{(F) is generally not separable. The following lemma
is fundamental to avoid this difficulty (see [23]). The space Q to be men-
tionned below is defined in Section 2.

5.8. Lemwma (Skorohod [48]). — Let Ry, R, be Polish spaces and Q be
some distribution on R; x R, with marginal ¢ on R,. If V is a random
variable from X* to R, whose distribution is g, then there exists a random
variable Y from Q to Ry such that the distribution of (Y, V) is Q.

Concerning our problems of construction the point in the sequel is
that the distribution on IF(#) of a regular version of a brownian bridge
is concentrated on a separable space. Now we can state some weak inva-
riance principles for the empirical brownian bridge with speeds of conver-
gence.
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5.9. NotaTioNs. — From now on y and f are positive functions that
are respectively defined on [0,1] x Ry and [0,2] by:
x d 21 = pl2)

Bz) =

=g ary ™ 22 = 2p(2) + 2)

. 2z(4 — z)
where, as in the statement of theorem 3.3, p(z) = —————.
4+ 24 — 2)

5.10. THEOREM. — Under each of the following assumptions there
exists some continuous version on (%, pp) of a brownian bridge relating
to P, G, such that Pr(||v, — G")||# = a,) < B, where («,) and (8,)
are defined below (we recall that Fe #2%%P) and that ef?) and d{» are
defined in Section 2):

a) if d(F)=2d < o0, a, = B, =0n"") for any 7 < y(5,d);

a')if NP (e, ) < Ce™ 24Le~ 1) for any ¢ in 10,11,

o, = Bn = 0((Ln)(1/2)+dn—y(5’d));

b)if eP(F) = < 2, a, = O(Ln)"") and B, = O(Ln) %)
for any t < B({) and any positive s.

Proof of theorem 5.10. — Let ¢ be an oscillation rate (depending on n)
and I, be a projection of & on a g-net # (o) relating to P. We approximate
v, uniformly over &% by v, o I1,.

Setting 4, = { f — g, pp(f,2) < 0 }, we may apply theorem 5.3 to ¥,
(changing d into 2d if necessary), hence the quantity || v, — vao I, |l& < || v,lle,
can be evaluated. Besides, let F,, , be the distribution of v, (s On the k-dimen-
sional vector space [(#(g)) and let G, be the corresponding gaussian
distribution.

Writing 7., for the Prokhorov distance associated to || - ||+, and applying
Strassen’s theorem [49], there exists a probability space (€', ', Pr’) and
two random variables v, (a) and G(o) with respective distributions F, ,
and G, on [®(#(0)) such that:

Pr'(|lvio) — Glo) ||, > B) < B

where B = n(F, ., G,).

So, using lemma 5.7, we may ensure the existence of some regular version
of a brownian bridge Gy relating to P such that G(6) = Gy, and then,
applying lemma 5.8 with V0 — v, g, we may assume that Gp is
constructed on Q with Pr(|| vyz@ — Gpisy = B) < B.
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Hence, noticing that || vyze) — Geg@ llg@ = | (Vs — Gp) o IL; |5, we

ct.
g Pr(||va — Gpllz > 2t + B) <A+ B+ C

where A = Pr(||v,llg, > 1) and C = Pr (|| Ge {lg, > 0.
Theorem 5.6 is used to control B (with || llz@e < Il ]l2 < ﬁ” J1%)
noticing that k < N(F2)<%, F ) according to remark 2.6.

Moreover C is evaluated with the help of theorem 4. 1, so the calculations
are completed via an appropriate choice of ¢ and o.

Under assumption a) or 2’). — it is enough to prove 5.10.a’). We choose
t = O(n @ Ln)ft2*4) and ¢ = O(n~ 7).

Under assumption b). — We may assume that k < exp (Co~%) with { > 0.
1
We choose t = O(Ln) " “ ™) with b=2 - 2p() + )™}, a< 7 and a in
1
the neighbourhood of —.
8

Comment. — It is shown in [40] that a Prokhorov or Lipschitz distance
may be defined on IF(%). In the notations of the above theorem Max(a,, ,)
is an upper bound for these distances between the distributions of v, and Gy.

6. STRONG INVARIANCE PRINCIPLES
WITH SPEEDS OF CONVERGENCE

The method to deduce strong approximations from the preceding weak
invariance principles is the one used in [43] to prove theorem 2: the weak
estimates are used locally, giving strong approximations with the help
of maximal inequalities and via the Borel-Cantelli lemma.

Maximal inequalities.— As was noticed in [23 ], the proofs of the following
inequalities may be deduced from those given in [/0] and in [32] (and
hold without any measurability assumption).

Notation. — We set X; = J,, — P for any integer j.

6.1. LEMMA (Ottaviani’s inequality). — We set §; = ZXJ-. Then, for

any positive o, the following inequality holds: ey

(1 — o) Pr¥(max || S |l > 20) < Pre(|| S, ||+ > )
where ¢ = max Pr* (|} Sk ll# > o).
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More precisely, for symmetrical variables, the following sharper ine-
quality is available:

6.2. Lemma (Paul Lévy’s inequality). — Let (Y;); <;<» be independent
and identically distributed B-valued random variables where (B, || -|]) is
a normed vector space. If we assume that Y; is symmetrical then:

Pr* (rilgx NSkl > o) < 2Pr*(]| S, || > o) holds for any positive «, where
%

ji=1
Strong approximations for the empirical brownian bridge.

6.3. THeorem. — Let y(-,-) and f(-) be as defined in 5.9.

Under each of the following assumptions some sequence (Y;);»; of
independent versions of brownian bridges relating to P that are uniformly
continuous on (£, pp) may be defined on Q such that:

a) if dP(F) = 2d < o,
1
— ) x-Y)
Jn
j=1
(9, d)

21 + 96, d)’
') if, more precisely Nf (e, #) < Ce~ 241 + Le™ ') for any ¢ in 10,1,

Z(Xj_Yj)

j=

=0n"" a.s.

F

for any o <

=0(n" y@.d)(2(1 + v(é,d)))((Ln)(I/ZH a4 (Ln)(5/4)+ (d/2))) a.s.;
n

F

b) if 6 F) = { < 2,

Z(Xj -Y))

Proof of theorem 6.3. — Note that in order to prove 6.3.q) it is enough
to prove 6.3.a"). We decompose the time into pieces: Hy, ..., H,
with H; = [t 6,04 [

We choose t; = [i%Li)’] under assumption a’) and t; = [exp (i'79)]

= Q(Ln~¥/2) a.s.
7

L
N

for any f < B(0).
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.. . 1+
under assumption b), writing y instead of y(J,d) for short: a = __y’

iita) Y
1+ By

Moreover we set n; = ;11 — t;. Let g; be the rate of oscillation depending
on n; in the same way as ¢ depends on #n in the proof of 5.10. We write I,
for the projection of % on some o-net #; and we set D; = [*(#;). Then,
from the proof of 5.10, we have {choosing s = 2/(1 — 1) in case b)):

TEOO(Fn,-,a'p Gal-) g ﬁni ]

Pr( ’ E(Xj - XjeI) i > ﬁa) < B, (1)
JjeHi

So, using Strassen’s theorem, some random variables (V; j, W, ;);cs, can be
built on (', «/’, Pr’) so that the distributions of V;; and W, ; are respec-
tively those of X; &, and G,, and such that:

Pr'< ” Z(V,,,. —W)| = ﬁﬁ) < B

JjeH;

b=ald+ 3/2) and © =

F

Moreover we may assume that these variables are independent for different
values of i. Writing i(j) for the index fulfilling je H; ), we set V; = V., ;
and W; = Wy, . Besides, theorem 4.1 ensures the existence of some distri-
bution gp, defined on the Polish space %x(#) of real valued uniformly
continuous functions on (&, pp), of a brownian bridge relating to P.

Then, we can apply lemma 5.7 with R, = (@(F))"" and R,=R;= HD,@,
jz1

writing Q for the distribution of (Y;, Yj#,,,) (Where (Y});, is the random
variable whose distribution is canonically g&™’) and Q, stands for the
distribution of (W, V));» ;. So, we may assume that W; = Yz .

Then, using lemma 5.8, we may assume that (Y;);», is built on Q and
that V; = Xz,

As s > f({) we may suppose that 8, < a, for any integer n.

Since bound (1) still holds when replacing X; by Y; we get:

Pr( Z(Xj -Y)

F

> 3\/r7,-oc,,i> < 3B, foranyintegeri. (2)

Annales de I’Institur Henri Poincaré - Probabilités et Statistiques



CENTRAL LIMIT THEOREM FOR EMPIRICAL PROCESSES 415

So, using the inequality:

e

<A+ B + Con
F

r m m
where A, = % ’ E X; E Y;
7
i=1 jeH; Jj=tr j=t,

the problem reduces to the almost sure control of A, B and C. We notice that:

and C=max

meH,

,B,=max
F meH,

F

3
n;=0(*" Y(Li)®) and then B,,=0("'(Li)~* %) with e=by— 3 —d in case a').
n;=0(i"“exp(i' %) and then B, =0(i"?) in case b).

So, in both cases a’) and b), the series ZBW is convergent.
i

Control of A. — The Borel-Cantelli lemma ensures, because of (2),

that A, = 0<z ﬁa) a.s.
i=1

Under assumption a’).

r
Z\/;iam = O(F U D(Ly) 1D+ a+b(/D =)
i=1

So, since (r(n))A(Lr(n))’ < n + 1 we get:

Ay = O(Ln) 127 dpl2a+amy g g

Under assumption b)

. ¥ xl*r
\/;ioc,,. = 0<I x @A exp (—)dx) ,
% ; ) >
i1

hence, integrating by parts:

- rl—t
\/;a = of P20 -0s exp( ))
g 2
i=1
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Then, since r(n) = O(Ln'/1 79, we get:
Ao = O( \/—,;(Ln)(r/(z(l—r)))—ﬂ)_

Control of B. — Using Ottaviani’s inequality 6.1, we get (because of

(A Pr* is here unuseless):
Pr(B, > 2T,)1 — ¢) < Pr( ZX]- > T,)
F
JeHy

IZ >T> WlthT—K‘/Ln\/n?mcasea
and T, = K, /LLn,\/rz in case b).

As a consequence of theorem 5.3 applied with 6 = P(F?), we have that
¢, — 0 for Ton, W2 5 oo asr — oo. So:

Pr(B > 2T,) = O(B’ + B")
T,
!Z(X > )and B"—gp<ye%p(d‘) Iylle> —‘>

2/,
JjeH,

Then, using inequality (2) on the one hand and theorem 4.1 with
o = P(F?) and via an appropriate choice of K on the other hand, we
get that in both cases a’) and b): B’ = 0(8,,) and B” = 0(r~?).

Hence, using the Borel-Cantelli lemma again, we get B, = O(T,) a.s. So:

where ¢, = max Pr(

meH,

where B’ =Pr (

Under assumption a’)
T, = 0(/Lr(r* = H(Lr")'P2)
hence, since (r(n)(Lr(n))’ < n + 1:
B,y = O(nl/C+ M) Ly)(514)+@2) 4.

rn)

Under assumption b)

rl—r
T, = 0< Lrr~®® exp <——2 ))

hence, since r(n) = O(Ln*1~9):

B, = 0(/nLLn(Ln) (2~ a.s.
Control of C. — Paul Lévy’s inequality 6.2 gives:

Pr(C, > T,) < 2g(y e %)/ || v |5 > T,//n)
so, the above control of B still holds for C.
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Then 6.3 follows from collecting the almost sure estimates of A, Band C.

Comments. — When passing from weak invariance principles to strong

ones, the speeds of convergence are transformed as follows within our
framework.

iy n77 - n77CUT 4 case a),
iiy Ln # — Ln #72 in case b).

Transformation ii) appears in theorem 6.1 (under 6.3) from [23], but
it is not the case for transformation i) in the same theorem (under 6.4).
On the contrary transformation i) is present in finite dimensional prin-
ciples and appears to be optimal in that case: more precisely, the rate of
weak convergence towards the gaussian distribution for 3-integrable
variables is ranging about n~ Y2 when the rate of strong convergence is

ranging about n~ /¢ (see [39] for the upper bound and [9] for the lower
bound), in the real case.

Application to V. C.-classes. — Applying theorem 6.3 with § = 1 in the
case where & is a V. C.-class with real density d, we get a speed of conver-

1

18 + 20d
This improves on 1.3.3 but is less sharp than 1.2.4 in the classical case
of quadrants in R?

gence towards the brownian bridge that is O(n™%) for any a <

6.4. INVARIANCE PRINCIPLES IN C(S). — Following an idea from
Dudley in [27] (sec. 11), the study of the general empirical processes theo-
retically allows one to deduce some results about random walks in general
Banach spaces. As an application of this principle let us consider a compact
metric space (S, k) and the space C(S) of real continuous functions on S,
equipped with the uniform norm | -||,. Let X be the space of Lipschitz-
functions on S equipped with the Lipschitz-norm:

B-tlar :x = xlle +SupM_

t#£s K(S, t)

We write N(e, S, k) for the maximal cardinality of a subset R of S such
that (s, t) > ¢ for any s # ¢t in R.

We may apply our results through the following choices:

F ={06,5€S} and F = |..
Vol. 22, n° 4-1986.
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Then (X,]||-1l) is a Suslin space (but is not Polish in general), so &
fulfills (.#). Moreover, for any distribution Q in #Z(X) we have:

Q(S; — 8%) < (s, DQ(F?),

so N&)(.,#) < N(.,S,«). Besides |||l = || - || &
Therefore, considering a sequence (X;);- ; of independent and identically
distributed C(S)-valued random variables such that:

| Xi(s) — X(t)| < Mk(s,t), foranys,tin$S,

with E(M?*?%) < oo and E(Xi*%(t0)) < « for one t4 in S, we can apply
theorem 5.10 or 6.3 to get speeds of convergence towards the gaussian
distribution, whose structure depends on N(., S, x) (the central limit
theorem for such uniformly Lipschitzian processes as above is due to
Jain and Marcus in [3/]).
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APPENDIX

1. Proof of lemma 3.1.

First let us recall Hoeffding’s lemma (see [29]).
Hoeffding’s lemma. — Let S be a centered and [u, v]-valued random variable, then:

1A — u)?

EexpiS)) < exp ( ’—87—) for any t in R.

We may assume that w is chosen as follows:

. drawing—with uniform distribution—a partition # = (J;); <;<, such that |J;| = m
for each i in [1,n].

. then, drawing an index w(i) independently in each J,—with uniform distribution—.
The following evaluations are conditional on _# but the last bound will not depend on ¢,
giving 3.1. »

Sn

Weset Z = — — N and we write A for the logarithm of the conditional Laplace trans-
n

form of Z. Then setting &= — ¢, we have, for any s in R:
m
jel,
1 s _
A(s) = Log|— expl-(&;—&))]).
m n
i=1 Jeli
Then, since the logarithm is a concave function:
N

o< oton(4 Y e (26 2)) - om )

j=1

where, writing Qy for the uniform distribution on { &, . . ., &y }, Ay stands for the logarithm
of the Laplace transform under Qy of x — x — Eg,(x). Therefore the Cramér-Chernoff

transform of Z is larger than that of —= — Eqg(Sy/n) under Q#" where S, stands for the
n

sum of n i.1. d. random variables with common distribution Q.
Then, Hoeffding [29] and Bernstein [5] inequalities yield 3.1.1°) and 3.1.2°). In order
to prove 3.1.3°) we may assume that Sy = 0 (otherwise changing ¢&; into &; — Sy/N).
Then, applying Hoeffding’s lemma to the condltlonally centered random variables
Ewiy — & and setting u; = 1}151;_16 and v; = n?gx &5, we get:

= (v; — u;)? .
I{1) = Log B (exp (£ — &) < — t?, foranytin R.

T YICIEE YA )P

i=1 i=1 jely

Hence
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and therefore ,

s
A(s) < — mof
4n

yielding 3.1.3°) via Markov’s inequality.

2. The distribution of the supremum
of a d-dimensional parameter brownian bridge

Goodman’s work in [28] and Cabafia’s in [//] give a lower bound of the probability
for the supremum of a brownian bridge to cross a barrier.

Notations. — We set I = [0, 1] and write for any integer d, 1, for the element (1,...,1)
of R% Moreover, for any s in I, we set p(s) = s; ... S,

A.1. THeoremM. — Letd be an integer and W, be some standard d-dimensional para-
meter Wiener process, then, on the one hand:

i) Pr(sup Wys) < t| Wy(1,) = at) < hya, t)

seld

for almost any real number a (in Lebesgue sense) and any positive ¢, where

d—1
7 .
. (2tYa - D)
hala, 1) — (1 + exp(263(a — 1)) Z(— 1)+t (—(afﬁk,w,”@
[
i=0
and on the other hand: s
. Vil 2
i) Pr (sup Wils) — pleWally) > = ) = L.exp(=202).
seld 1!
i=0

Proof of theorem A.Il. — If d = 2 the whole proof is contained in [28]. For d > 3 it
follows easily from Cabana [/]].

Comment. — Theorem A.1 was proved by ourself (see [40] and [41]) as well as by
E. Cabafia in [/7] (%). In another connection, inequality A .1 ii) ensures that some poly-
nomial factor 12*9 with h(d) > d — 1 cannot be removed in bounds 3.3.1°a) and 4.1.2.

3. Making an exponential bound explicit.

The calculations yielding 3.3.1°)a) are slightly modified here, where the entropy con-
dition a) is replaced with a more explicit one.

A.2. TueoreM. — If we assume that & is [0, I]-valued and that

a’y NP, F) < KIT1LoeC (1 1 Tog(¢72))% %% for any ¢ in ]0,1][ then, an upper
bound for Pr(|jv,|l# > t) is, for any ¢ in {1, + oo [, given by:

4H(t) exp (13) exp (— 262) + 4H2(t) exp (— (12 — 5)L1)%)
where H(t) = K%5 exp (16d)(1 + L?)%4%4.

(®) Thanks to M. Wschebor and J. Leon for communicating this reference to us.
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Proof of A.2. — In the proof of 3.3.1°)a) we choose o = 1 + Lt?/LLt?, then
A < 2H(t) exp (13) exp (— 2¢?) P®N.as.
B < 2H%*(t)exp (— (> — 5)(Lt)?) P®N_a s,
whenever t2 > 6 + 44, yielding A.2 via lemma 3.2.

Comment. — Assumption a’) is typically fulfilled whenever & is a V. C.-class. In that
case d may be the real density of & (if it is « achieved ») or the integer density of Z (see
the proof of 3.6).
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