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RATES OF CONVERGENCE OF ESTIMATES, KOLMOGOROV’S
ENTROPY AND THE DIMENSIONALITY REDUCTION

PRINCIPLE IN REGRESSION1

By Theodoros Nicoleris and Yannis G. Yatracos

Université de Montréal

L1-optimal minimum distance estimators are provided for a projection
pursuit regression type function with smooth functional components that
are either additive or multiplicative, in the presence of or without interac-
tions. The obtained rates of convergence of the estimate to the true param-
eter depend on Kolmogorov’s entropy of the assumed model and confirm
Stone’s heuristic dimensionality reduction principle. Rates of convergence
are also obtained for the error in estimating the derivatives of a regression
type function.

1. Introduction. Let �X1;Y1�; : : : ; �Xn;Yn� be a random sample of n in-
dependent pairs, copies of �X;Y� with density f�x; y; θ� in a regression setup.
The random vector X belongs to a compact subset X in Rd; d ≥ 1; and Y
is the corresponding real-valued response. Assume without loss of generality
that X = �0;1�d and that conditionally on X1 = x1; : : : ;Xn = xn; the random
variablesY1; : : : ;Yn are independent, each having density f�y � xi; θ�xi��; i =
1; : : : ; n: The unknown function θ is an element of 2q;d; the space of q-smooth
real-valued functions in X (defined in Section 2).

For the classical regression model, when θ�x� = E�Y�X = x�; θ ∈ 2q;d;
optimal consistent estimators for θ based on local polynomials have been con-
structed by Stone (1982) with respect to an Lv-distance, 1 ≤ v ≤ ∞: Truong
(1989) and Chaudhuri (1991) provided optimal estimators when θ is a local
median and a quantile of the conditional density, respectively. Truong and
Stone (1994) provided optimal local polynomial estimators for θ for a station-
ary time series in L2-distance and pointwise. The rate of convergence of the
optimal estimator of θ in all previously mentioned cases is n−q/�2q+d�:

In Yatracos (1989a, 1992) it is only assumed that θ�x� is a parameter of the
conditional density without specifying its statistical interpretation, whether
for example it is either a mean or a median. Therefore, θ�x� will hereafter be
named a regression type function and the corresponding estimation problem
a regression type problem that may be regarded as a combination of several
density estimation problems, each occurring at the observed value of the inde-
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pendent variable. The space 2q;d is discretized and an L1-optimal estimator
is constructed using a minimum distance criterion. Under mild assumptions
the estimator converges at the rate n−q/�2q+d�: This rate depends on the di-
mensionality of 2q;d; expressed via discretization in terms of Kolmogorov’s
entropy (defined in Section 2). In Roussas and Yatracos (1996) it is assumed
that, for n = 1;2; : : : ; ��Xn;Yn�� is a stationary sequence of observations that
is φ-mixing and minimum distance estimators are provided for the regression
type function θ. The upper bound on the L1-error depends on Kolmogorov’s
entropy and the mixing coefficient φ and under suitable conditions on φ is of
the order n−q/�2q+d� as in the independent case.

As can be noted from these results, the rate of convergence of the optimal
estimator in a nonparametric regression problem depends on the dimension
d of the space X and the smoothness q: The lower the dimension of X , the
better the rates that are achieved, for the same amount of smoothness. For a
model that is restricted to a smaller class of functions the question that arises
is whether the rates of convergence will be affected, as far as the dimension
is concerned. Such a model occurs, for example, if θ�x� is the sum of func-
tions with the same smoothness, defined in spaces with lower dimension than
X : These functions are called the functional components of θ [Stone (1985)].
The dimension r of such a model is the largest dimension of the functional
components of θ: Stone (1985) conjectured that in an r-dimensional model of
q-smooth regression functions defined on X the optimal rate of convergence
will be of the form n−q/�2q+r� (Stone’s heuristic dimensionality reduction prin-
ciple). Thinking in terms of Kolmogorov’s entropy of the parameter space for
such a model, one sees clearly the intuition behind the principle.

In the context of classical regression, Stone (1985) examined the L2-rates of
convergence of estimators of a completely additive regression function defined
in X : For a pair of random variables �X;Y� such that X = �X1; : : : ;Xd�; con-
sider the regression function θ of Y on X: Suppose that Y is real-valued with
mean µ and finite variance. Let θ∗�x� = µ + θ∗1�x1� + · · · + θ∗d�xd� be chosen
to minimize E�θ�X� − θ∗�X��2; subject to the constraints Eθ∗i �Xi� = 0; i =
1; : : : ; d: Spline estimates of θ∗i and of its derivatives were then constructed
based on a random sample having the same distribution as �X;Y�; i =
1; : : : ; d: When θ∗i ∈ 2q;1; i = 1; : : : ; d; these estimates achieve the opti-
mal rate of convergence n−q/�2q+1�; confirming the dimensionality reduction
principle in a special case �r = 1�:

Similar results in an additive projection pursuit type model have been ob-
tained by Chen (1991). In this model, the conditional mean θ�x� of Y given
X = x; is the sum of no more than d smooth functions of bTi x; where bi is
an element of the unit sphere centered at the origin, i = 1; : : : ; n: Based on a
sample of size n from the distribution of �X;Y�; estimators were constructed
using a least squares polynomial spline and a prediction error criterion. Un-
der some assumptions on θ; including q-smoothness, the estimates achieve
the best rate of convergence n−q/�2q+1�:

Stone (1994) provided estimates for a smooth function θ and its compo-
nents; θ is either a regression, a generalized regression, a density or a con-
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ditional density. The estimates are sums of tensor products of polynomial
splines obtained via least squares or maximum likelihood methods. The func-
tion θ follows (or can be approximated by) a specified r-dimensional hierarchi-
cal additive model with interactions. The estimates of θ and its components
achieve the L2-optimal rate of convergence n−q/�2q+r�; subject to the restriction
0:5r ≤ q that holds for all but the regression case.

In this paper minimum distance estimators for r-dimensional models of
q-smooth functions will be constructed. The model need not be hierarchical
and there is no restriction for q and r: The regression type function is of the
projection pursuit type, either additive or multiplicative in the presence of or
without interactions. The L1-rate of convergence of the estimator to the true
parameter θ depends on the dimension of the model via Kolmogorov’s entropy,
thus confirming Stone’s heuristic dimensionality reduction principle.

2. Definitions, the models, the assumptions. Related methods. Let
Xm be a compact subset in Rm and assume without loss of generality that
Xm = �0;1�m; m = 1; : : : ; d: Let 2q;m be a space of q-smooth functions in
Xm with values in a known compact G of the real line. Every θ ∈ 2q;m is p-
times differentiable, with the pth derivative satisfying a Lipschitz condition
with parameters �L;α�y that is, � θ�p��x� − θ�p��y� �≤ L�x− y�α; θ�p��x� is any
pth-order mixed partial derivative of θ evaluated at x, q = p+ α, 0 < α ≤ 1:
L1-optimal estimates will be constructed for the models that follow, recon-

firming the dimensionality reduction principle. Models I and II are special
cases of the additive supermodel but are considered separately to make eas-
ier the presentation of the discretization of the supermodels. In the models
x = �x1; x2; : : : ; xd�; θj ∈ 2q;1; θ1j ∈ 2q;1; ψj ∈ 2q; rj ; b is an element of
the unit sphere centered at the origin, bTx denotes the scalar product of the
vectors b and x; �m1; : : : ;mrj

� and �s1; : : : ; sk� are such that mi 6= mj and
si 6= sj for i 6= j; k;K;K1;K2 are either known or unknown but bounded by
the known constants d;D;D1;D2, respectively; 2 ≤ rj ≤ d − 1. The models
are:

1. model I, θ�x� = θ1�xs1
� + · · · + θk�xsk� +

∑K
j=1ψj�xm1

; : : : ; xmrj
�;

2. model II, θ�x� = θ1�bTx�;
3. the additive supermodel, θ�x� =∑K1

j=1 θ1j�bTj x� +∑K2
j=1ψj�xm1

; : : : ; xmrj
�;

4. the multiplicative supermodel, θ�x�=∏K1
j=1θ1j�bTj x�∏K2

j=1ψj�xm1
; : : : ; xmrj

�:

The additive model I without interactions and the projection pursuit model
II both appear in Stone (1982, 1985). The additive supermodel without inter-
actions and K1 bounded appears in Chen (1991). The supermodels without
interactions appear in Friedman and Stuetzle (1981) and in Huber (1985)
with K1 not necessarily bounded and are called projection pursuit regression
(PPR) models. The PPR models seem to have the potential of overcoming the
curse of dimensionality but this is not always the case; see the discussion in
Chen [(1991), pages 143, 144] concerning the additive PPR model. By impos-
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ing in the models the restrictions k ≤ d, K ≤ D, K1 ≤ D1, K2 ≤ D2 as both
Stone (1985, 1994) and Chen (1991) did (but with D = D1 = d�; the curse of
dimensionality is by-passed.

Definition 2.1. The L1�dx� and sup-norm distances of any two functions
θ and θ̃ in Xd are respectively given by

�θ− θ̃� =
∫

Xd

� θ�x� − θ̃�x� � dx

and

�θ− θ̃�∞ = sup
{
� θ�x� − θ̃�x� �yx ∈ Xd

}
:

The notation zn ∼ wn denotes that zn ∼ O�wn� and wn ∼ O�zn�; 2ε is an ε-
ρ-dense subset of a metric space �2;ρ� if every point in 2 is at a ρ-distance not
exceeding ε from some point in 2ε: Kolmogorov and Tikhomirov (1959) have
shown that, given radius an > 0; the most economical an-� · �∞-dense sub-
set 2nq;m of 2q;m has cardinality Nm�an� such that log2Nm�an� ∼ �1/an�m/qy
2nq;m is a discretization of 2q;m: The quantity log2Nm�a�; a > 0; is called
Kolmogorov’s entropy of the space 2q;m and measures the dimensionality of
the parameter space. For each of the above models a discretization will be pre-
sented in Section 4 with cardinality depending on the dimension of the model
via Kolmogorov’s entropy. The proposed estimates will be chosen in each case
from the discretization rather than the parameter space.

Le Cam (1973) was the first to construct estimates of a probability mea-
sure using a multiple testing procedure under dimensionality restrictions in
Hellinger distance. Developing the procedure proposed by Le Cam (1973),
Birgé (1983) showed that the obtained rates of convergence are the best pos-
sible in several situations including the estimation of densities restricted to
lie in Sobolev balls. Yatracos (1985) constructed minimum distance estimates
under the assumption of independent identically distributed observations and
related the L1-rate of convergence of the estimates to Kolmogorov’s entropy
of the parameter space; when the parameter space consists of q-smooth den-
sities the estimate is L1-optimal. Roussas and Yatracos (1997) provided min-
imum distance estimates of the unknown probability measure on the basis
of a segment of observations X1; : : : ;Xn from a φ-mixing sequence of ran-
dom variables and showed that an upper convergence rate of the proposed
estimate depends on Kolmogorov’s entropy of the parameter space and the
mixing coefficient φ: When the parameter space consists of q-smooth densi-
ties and φ�n� = cn−�1+δ�; c > 0; δ > 0; the rates of convergence coincide
with those in the i.i.d. case. All these methods use discretization and are close
relatives of Grenander’s method of sieves that is based on the likelihood of the
observations [Grenander (1981)].

The minimum distance method of estimation was formalized as a principle
by Wolfowitz (1957). A lot of work has been devoted ever since to this topic.
In particular it was shown that under some regularity conditions the mini-
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mum distance estimator is robust and asymptotically efficient [Beran (1977),
Millar (1982) and Donoho and Liu (1988a)]. Pathologies of some minimum
distance estimators for the normal model are examined in Donoho and Liu
(1988b). The interested reader should consult Le Cam (1986) and Le Cam and
Yang (1990) for a modern approach in abstract estimation theory, Devroye and
Györfi (1985) and Devroye (1987) for the use of the L1-distance and related
results in nonparametric estimation problems.

It is of interest to consider alternative potential routes to our results, es-
pecially those of Birgé (1983) and Barron, Birgé and Massart (1997). In the
latter, which is inspired by Barron and Cover (1991), performance bounds for
criteria for model selection are developed based on sieves. The model selec-
tion criteria are based on a loss with an added penalty term. The penalized
minimum contrast estimator that is obtained is adaptive in the sense that it
is minimax-rate optimal for each of the class of models considered. Applica-
tions of the method include density estimation and classical nonparametric
regression estimation with errors that are additive, centered either at their
expectation (for least squares regression) or at their median (for minimum
L1-regression) and subject to boundedness of the moment generating function
of their absolute values. It is instructive to recall that the starting point in
Yatracos (1988, 1989a, 1992), in Roussas and Yatracos (1996) and in this work
was the observation that a regression-type problem can be viewed as a multi-
ple density or parameter estimation problem occurring at each observed value
of the X’s. The minimum distance estimation method that we have used as
well as other methods such as, for example, the maximum likelihood method
[Fisher (1922, 1925)] and the methods of Le Cam (1973), Birgé (1983), Grenan-
der (1981) and Barron, Birgé and Massart (1997) do not require knowledge of
the statistical nature of the estimand when estimating the finite-dimensional
parameter of a density. Therefore in principle all these other methods properly
modified are potential routes for obtaining results similar to ours (via min-
imum distance) in the estimation of regression-type functions and the con-
firmation of the dimensionality reduction principle. It remains to be seen if
this is indeed feasible and it is expected that the associated proofs and tech-
nicalities will not be less involved than those in the above mentioned papers.
On the other hand in our setup the smoothness q of the unknown regression
type function is assumed to be known, and therefore we do not face a model
selection problem as in Barron, Birgé and Massart (1997). Our method could
also be applied when the smoothness q is not known as in the additive and
multiplicative supermodels when K1 and K2 are unknown but bounded by a
known constant. A family of discretizations 2n;1; : : : ; 2n;kn would be consid-
ered and the minimum distance criterion in Definition 5.1 would apply to each
separately. From the set of minimum distance estimates so obtained the one
with the smallest value in the objective function (of Definition 5.1) would be
chosen as our estimate; if two (or more) such estimates exist, the less smooth
estimate will be selected. It is expected that the resulting estimate will be
adaptive in the sense of Barron, Birgé and Massart (1997) but the details
remain to be checked.
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Definition 2.2. The L1-distance of two probability measures Q;S; defined
on the probability space �W ;A �; is defined as

�Q−S� = 2 sup��Q�A� −S�A��y A ∈ A �y
their Kullback information is given by K�Q;S� = EQ log�dQ/dS�; if Q is
absolutely continuous with respect to S; and is equal to +∞ otherwise.

Definition 2.3. A sequence of estimators �Tn� is optimal in probability
for θ; with respect to a distance ρ; if there is a sequence �δn�; n = 1;2; : : : ;
decreasing to zero such that

�2:1� lim
C→∞

lim sup
n→∞

sup
θ
P
[
ρ�Tn; θ� > Cδn

]
= 0

and

�2:2� lim
C→0

lim inf
n→∞

inf
Sn

sup
θ
P
[
ρ�Sn; θ� > Cδn

]
= 1:

If only (2.1) holds, δn is an upper convergence rate in probability.
The sequence of estimators �Tn� is risk optimal with respect to ρ with rate

of convergence δn, n = 1;2; : : : ; if there are positive constants CL, CU such
that

CLδn ≤ inf
{
sup�Eρ�Sn; θ�y θ ∈ 2�ySn

}
(2.3)

≤ sup
{
Eρ�Tn; θ�y θ ∈ 2

}
≤ CUδn:(2.4)

If only (2.4) holds, δn is a risk upper convergence rate.

The following distributional assumptions are made:

(A1) c1 � t − s �≤ �f�· � x; t� − f�· � x; s�� ≤ c2 � t − s �y c1; c2 are constants
greater than zero, independent of x, � · � is the L1-distance of the conditional
densities and t; s take real values in the compact G where the elements of
2q;m take values.

(A2) The form of the conditional density f�y�x; θ�x�� is known.
(A3) The density g�x� of X is bounded below and above, by the positive,

finite constants A and B; respectively.
(A4) K�Ps;Pt� ≤ c�s − t�2; for every s; t; possible values of θ�x�y c is a

positive constant, Ps denotes the probability measure with density f�y � x; s�.
Assumptions (A1)–(A3) are used to construct the proposed minimum dis-

tance estimate and calculate upper convergence rates. Assumption (A1) holds
in most of the commonly assumed models for the Y’s; see Examples 1–7 in
Yatracos [(1989a), pages 1600, 1601]. Without assumption (A2) we cannot ob-
tain the separating sets Ak;m; i used in the minimum distance criterion; see
Definition 5.1. A similar and more specific assumption has been used in Stone
[(1994), pages 119, 120], where the conditional densities are assumed to be ei-
ther Bernoulli or Poisson, and also in Donoho, Johnstone, Kerkyacharian and
Picard (1995), where in addition to normal errors the parameter of interest
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is known to be a conditional mean [Donoho, Johnstone, Kerkyacharian and
Picard (1995), Section 2, page 302, Section 3.1, page 308] and the obtained
estimates are nearly optimal [Donoho, Johnstone, Kerkyacharian and Picard
(1995), Section 3.2, page 312]. Neither Stone (1982, 1985) nor Chen (1991) nor
Chaudhuri (1991) used (A2) because the nature of the estimand in the condi-
tional density was known to be either a mean, a median or another quantile. It
is the price to pay in a regression type problem where the nature of the param-
eter θ in the conditional density is unknown. Therefore, one cannot determine
the functional of the Y’s that should be used to estimate θ: Assumption (A3)
has been used by Chaudhuri (1991), Chen (1991), Stone (1982, 1985, 1994),
Truong and Stone (1994) and several other authors. It allows in our calcu-
lations the passage, without much loss, from the L1-distance �θ̂n − θ� to the
expectation E�θ̂n�X� − θ�X�� that is used in proving Proposition 3.1 and leads
to the dimensionality reduction principle. It also confirms indirectly that the
sample X1; : : : ;Xn provides enough information about θ over all its domain.

Assumption (A4) is satisfied in several models for the Y’s [see Yatracos
(1988), page 1186, Example 1]. Without (A4) the proposed estimate may not
be L1-optimal; the lower convergence rates may not coincide with the upper
convergence rates. This occurs when the conditional density is uniform but
also for other models; see Yatracos [(1988), Example 2, page 1186] for such
situations and for the use of Fano’s lemma and lower convergence rates in
regression type problems. In the same paper [Yatracos (1988), Proposition 1,
page 1184] it is also shown that Stone’s (1982) assumptions imply (A4).

Our main interest is the estimation of θ rather than its components. Under
assumptions (A1) and (A3) the elements of the models considered are iden-
tifiable; if θ1 6= θ2 the L1-distance between the joint densities �f�·; ·; θ1� −
f�·; ·; θ2�� is positive.

The proofs of Proposition 3.1 and 5.1 are based on the following.

Hoeffding’s inequalities [Hoeffding (1963)]. (i) Let U1; : : : ;Un be inde-
pendent random variables such that 0 ≤ Uj ≤ 1; j = 1; : : : ; n: Let Sn =
U1 +U2 + · · · +Un;ESn = np: Then

P�Sn ≥ np+ k� ≤ exp�−k2/2�np+ k��

and

P�Sn ≤ np− k� ≤ exp�−k2/2np�1− p��:

(ii) Let W1; : : : ;Wn be independent random variables, 0 ≤ Wj ≤ b; j =
1; : : : ; n; W̄ = �W1 +W2 + · · · +Wn�/n;EW̄ = µ: Then

P�W̄− µ ≥ t� ≤ exp�−2nt2/b2�; 0 < t < b− µ

and

P�W̄− µ < −t� ≤ exp�−2nt2/b2�; 0 < t < µ:
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3. Some results for a general parameter space. Let 2 be the parame-
ter space for a regression type problem, 2n a finite subset of it with cardinality
N�an�; the sequence �an� decreasing to 0: Let θ̃n be an estimate of the un-
known regression type function θ; with values in 2n; let θk; θm be elements
of 2n: Let Pθ�xi� be a probability measure with density f�y�xi; θ�xi��; i =
1; : : : ; ny Q is the distribution of any of the X’ s. Let Qn;Q∞;Pn denote, re-
spectively, the joint distribution of �X1 = x1; : : : ;Xn = xn�; the distribution of
the infinite vector of the X’s, and the product measure of the Y’s conditionally
on the X’s. Define the following quantities:

E � θk − θm � = E � θk�X� − θm�X� �y

En � θk − θm � =
1
n

n∑
i=1

� θk�Xi� − θm�Xi� �y

1n�θk; θm� =
∣∣∣∣E � θk�X� − θm�X� � −

1
n

n∑
i=1

� θk�Xi� − θm�Xi� �
∣∣∣∣y

An�εn;m� =
N�an�⋃
k=1

{
�X1;X2; : : : ;Xn�x 1n�θk; θm� > cεn

}
y

An�εn� =
N�an�⋃
m=1

An�εn;m�:

The following proposition is fundamental in proving the dimensionality re-
duction principle holds for both models. All the proofs follow in the Appendix.
From now on, the letters c; c1; c2 : : : will denote generic, positive constants,
independent of ny IA�x� = 1; if x ∈ A; it is 0 otherwise.

Proposition 3.1. Let θ̃n;An�εn�;An�εn;m�; 1n�θk; θm� be defined as
above, for a regression type problem. Then, for εn ∼ ��logN�an��/n�1/2 ↓ 0:

(a) Qn�An�εn;m�� ≤ N�an�1−c2�c�y the constant c may be chosen large
enough such that 1 < c2�c�;

(b) P���X1;Y1�; : : : ; �Xn;Yn�x 1n�θ̃n; θm� > cεn�� ≤ Qn�An�εn;m��;
(c) For sequences �N�an��; such that

∑∞
n=1N�an�1−c2�c� <∞; then

P
[
lim inf�1n�θ̃n; θm� ≤ cεn�

]
= 1:

Thus, there is a set of measure 1 such that 1n�θ̃n; θm� ≤ cεn almost surely.
(d) Qn�An�εn�� ≤ N�an�2−c2�c�y the constant c may be chosen large enough

that 2 < c2�c�;
(e) P�⋃N�an�

m=1 ��X1;Y1�; : : : ; �Xn;Yn�x 1n�θ̃n; θm� > cεn�� ≤ Qn�An�εn��y
(f) For sequences �N�an��; such that

∑∞
n=1N�an�2−c2�c� <∞;

P

[
lim inf

(N�an�⋃
m=1

�1n�θ̃n; θm� > cεn�
)c]
= 1:

A different version of the next lemma appears in Yatracos (1989a, 1992).
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Lemma 3.1. Let 8n = �Ak;m; ix 1 ≤ k < m ≤Mn; i = 1; : : : ; n� be a family
of sets. Conditionally on X1 = x1; : : : ;Xn = xn; Ak;m; i is an element of the σ-
field where Pθ�xi� is defined, θ ∈ 2; i = 1; : : : ; n: Let �γn� be a sequence such

that �γn� ∼ ��logMn�/n�1/2 ↓ 0: Then

lim
n→∞

Pn
[
n−1 sup

1≤k<m≤Mn

∣∣∣∣
n∑
i=1

�IAk;m; i
�Yi� −Pθ�xi��Ak;m; i��

∣∣∣∣ > γn
]
= 0:

4. Discretization. To construct the proposed estimates a discretization of
the parameter space 2 is needed for all models. For convenience, the definition
of the models will be repeated.

Model I. We have θ�x� = θ1�xs1
� + · · · + θk�xsk� +

∑K
j=1ψj�xm1

; : : : ; xmrj
�,

θi ∈ 2q;1, 1 ≤ i ≤ k, ψj ∈ 2q; r; 1 ≤ j ≤ Ky �s1; : : : ; sk� and �m1; : : : ;mr� are
such that si 6= sj and mi 6= mj for i 6= j; 1 ≤ k ≤ d; 2 ≤ rj ≤ d − 1; K is
either known or unknown but bounded by a known constant D:

When K is unknown but bounded by a known constant D it is viewed as an
additional finite-dimensional parameter of the model, with possible values in
�1;2; : : : ;D�: It is selected at the same time as the other parameters using the
minimum distance criterion. The same approach is taken when k is unknown
but also in the other models of Section 2 when only the bounds D1 and D2 are
known.

To discretize the parameter space that corresponds to model I assume for
now that k is known and that there is only one interaction, that is, θ�x� =
θ1�xs1

� + · · · + θk�xsk� +ψ�xm1
; : : : ; xmr

�: Let 2nq;1 be an an-� · �∞-dense subset
of 2q;1 with cardinality N1�an�, and let 2nq; r be an an-� · �∞-dense subset of
2q; r with cardinality Nr�an�: Define the set 2nI with elements

θi�x� = θi1�xs1
� + · · · + θik�xsk� + ψik+1

�xm1
; : : : ; xmr

�;
where θij ∈ 2

n
q;1; ψik+1

∈ 2nq; r; 1 ≤ ij ≤ N1�an�; 1 ≤ j ≤ k; 1 ≤ ik+1 ≤
Nr�an�; 1 ≤ i ≤NI�an�:

Therefore, the cardinality NI�an� of 2nI satisfies the relation NI�an� ∼
�N1�an��kNr�an�: In the presence of K interactions

NI�an� ∼ �N1�an��k
K∏
j=1

Nrj
�an�y

if k and K are only known to be bounded, respectively, by d and D, replace
both by their bounds in the expression for the cardinality NI�an�:

Lemma 4.1. The set 2nI is a can-� · �∞-dense subset for model I.

Model II. We have θ�x� = θ1�bTx�; θ1 ∈ 2q;1; q ≥ 1, b is an element of
the unit sphere centered at the origin, bTx denotes the scalar product of the
vectors b and x:
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To discretize the parameter space that corresponds to this model let 2nq;1 be
an an-� · �∞-dense subset of 2q;1 with cardinality N1�an�: Let bi, 1 ≤ i ≤ hn;
be the n−1/2-discretisation of �0;1�; that is, the centers of successive intervals
of length n−1/2 needed to cover �0;1�: The quantity hn is defined as the integer
part of n1/2 augmented by 1, if n1/2 is not an integer, and as n1/2 otherwise.
Since hn is of the same order of magnitude as n1/2; without loss of generality it
will be replaced from now on by n1/2: Define the setFn; a dn−1/2-discretization
of �0;1�d; with elements bi = �bi1; : : : ; bid�; 1 ≤ ij ≤ n1/2; 1 ≤ j ≤ d; 1 ≤ i ≤
nd/2, bij is an element of the n−1/2-discretization of �0;1� already described.
The cardinalityNFn

ofFn is of the order nd/2: Define the set 2nII with elements

θk�x� = θij�b
T
im

x�; θij ∈ 2
n
q;1; 1 ≤ ij ≤N1�an�; bim

∈ Fn; 1 ≤ im ≤ nd/2:

It follows that the cardinality NII�an� of 2nII satisfies the relation NII�an� ∼
nd/2N1�an�:

Lemma 4.2. Let θr be the nearest neighbor of θ1 in 2nq;1, and let br be the
nearest neighbor of b in Fn: Then

∣∣ θ�x� − θr�bTr x�
∣∣ ≤ an + cn−1/2:

It follows that the set 2II
n is a �an + cdn−1/2� − � · �∞-dense subset for model II.

The additive supermodel. We have

θ�x� =
K1∑
j=1

θ1j�bTj x� +
K2∑
j=1

ψj�xm1
; : : : ; xmrj

�;

θ1; j ∈ 2q;1; ψj ∈ 2q; rj; q ≥ 1, bTj x is the scalar product of bj and x, bj is
an element of the unit sphere centered at the origin, �m1; : : : ;mrj

� are such
that mi 6= mj for i 6= j; K1;K2 are either known or unknown but bounded
by known constants D1;D2, respectively, 2 ≤ rj ≤ d− 1:

When K1;K2 are known, a c�an + n−1/2�-� �∞-dense subset for the corre-
sponding model has cardinality of the order of NK1

1 �an�nK1d/2
∏K2
j=1Nrj

�an�:
Such a dense subset may be obtained by a straightforward generalization
of Lemma 4.2; every θ1j will be approximated by an element of 2nII; every
ψj will be approximated by an element of 2nq; rj and θ�x� will be approxi-
mated by the sum of such elements of 2nII and 2nq; rj : For a discretization of
the supermodel for unknown K1;K2 we will put together all discretizations
for K1 = 1; : : : ;D1; K2 = 1; : : : ;D2: The cardinality NA�an� of this superdis-
cretization is of the order of ND1

1 �an�ndD1/2
∏D2
j=1Nrj

�an�: Index the elements
of the superdiscretization with k, 1 ≤ k ≤ NA�an�: Note that the results of
Proposition 3.1 and of Lemma 3.1 hold, with 2nA denoting the discretization
of the additive supermodel.
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The multiplicative supermodel. We have

θ�x� =
K1∏
j=1

θ1j�bTj x�
K2∏
j=1

ψj�xm1
; : : : ; xmrj

�:

(See the previous model for details about θ1j;bj; ψj;K1;K2.)

To discretize the parameter space that corresponds to this model assume for
now that there is only one interaction, θ�x� = ∏K1

j=1 θ1j�bTj x�ψ�xm1
; : : : ; xmr

�:
When K1 is known a c�an + n−1/2�-� �∞-dense subset for the correspond-
ing model has cardinality of the order of NK1

1 �an�nK1d/2Nr�an�: Every θ1j
is approximated by an element of 2nII; ψ�xm1

; : : : ; xmr
� is approximated

by an element of 2q; r; θ�x� is approximated by the product of such el-
ements. A bound on the approximation of θ is obtained using the rela-
tion �∏K

j=1 fj�x� −
∏K
j=1 gj�x�� ≤

∑K
j=1 cj�fj�x� − gj�x�� that holds when

the f’s and the g’s are uniformly bounded, c1; : : : ; cK are known con-
stants. When K1 is not known we consider all possible discretizations
for K1 = 1; : : : ;D1: The cardinality NM�an� of this superdiscretization is
of the order of ND1

1 �an�nD1d/2Nr�an�: In the presence of K2 interactions
NM�an� ∼ N

D1
1 �an�nD1d/2

∏K2
j=1Nrj

�an� and if it is only known that K2 is
bounded by D2, then NM�an� ∼ N

D1
1 �an�nD1d/2

∏D2
j=1Nrj

�an�: Index the
elements of the superdiscretization with k; 1 ≤ k ≤ NM�an�: Note that
the results of Proposition 3.1 and of Lemma 3.1 hold, with 2nM denoting
the discretization of the multiplicative supermodel.

Remark 4.1. For the implementation of the proposed estimation method
the dense subsets used in discretization should become available. This could be
done along the lines of Devroye (1987) or Kolmogorov and Tikhomirov (1959)
but will represent a major task. Nevertheless, this approach remains a useful
tool providing simple solutions in estimation problems using only Hoeffding’s
inequalities.

5. Estimates and rates of convergence. For the regression type prob-
lem let the parameter space 2 follow one of the models already defined. Let
�an� be a sequence decreasing to 0, and let 2n be a c�an+ζn−1/2�-� · �∞-dense
subset of 2 with cardinality N�an�; 2n could be any of the dense subsets
2nI ;2

n
II;2

n
A;2

n
M of the models that were described in the previous section; ζ

takes the values 0 or 1: Given X1 = x1; : : : ;Xn = xn; define the sets

Ak;m; i =
{
yx f�y � xi; θk�xi�� > f�y � xi; θm�xi��

}
;

θk ∈ 2n; θm ∈ 2n; 1 ≤ k < m ≤N�an�; i = 1; : : : ; n:

Definition 5.1. Let �X1;Y1�; : : : ; �Xn;Yn� be a random sample of n inde-
pendent pairs in the setup of the regression type problem already described.



2504 T. NICOLERIS AND Y. G. YATRACOS

The minimum distance estimator θ̂n of θ is defined, such that

sup
1≤k<m≤N�an�

{
1
n

∣∣∣∣
n∑
i=1

�IAk;m; i
�Yi� −Pθ̂n�xi��Ak;m; i��

∣∣∣∣
}

= inf
1≤r≤N�an�

sup
1≤k<m≤N�an�

{
1
n

∣∣∣∣
n∑
i=1

�IAk;m; i
�Yi� −Pθr�xi��Ak;m; i��

∣∣∣∣
}
:

When all the x’s are the same the obtained estimate is the minimum dis-
tance estimate of the unknown probability measure of the Y’s that belongs
to an L1-totally bounded space of measures [Yatracos (1985)]. Note that, in
the case of model II, θ̂n�x� = θ̂1; n�b̂Tn x�; θ̂1; n and b̂n are estimates of θ1
and b; respectively. For the supermodel and the multiplicative model with-
out interactions θ̂n�x� will be the sum and the product, respectively, of such
estimates.

Lemma 5.1. Let θ̂n�x� be the minimum distance estimator of θ, θr the
nearest neighbor of θ in 2n: Then, under assumption (A1), given X1=
x1; : : : ;Xn = xn;

n−1
n∑
i=1

� θ̂n�xi� − θr�xi� �

≤ c1�an + ζn−1/2�

+ c2n
−1 sup

1≤k<m≤N�an�

{ ∣∣∣∣
n∑
i=1

�IAk;m; i
�Yi� −Pθ�xi��Ak;m; i��

∣∣∣∣
}
:

The theorem confirming Stone’s dimensionality reduction principle for all
the models follows.

Theorem 5.1. Let �X1;Y1�; : : : ; �Xn;Yn� be a random sample of n indepen-
dent pairs, in a regression type problem. The random vectors Xi take values in
�0;1�d, d ≥ 1; andYi are the corresponding real-valued responses, i = 1; : : : ; n:
Conditionally on X1 = x1; : : : ;Xn = xn; the random variables Y1; : : : ;Yn are
independent, each having as density f�y�xi; θ�xi��, i = 1; : : : ; ny the unknown
function θ follows one of the models already defined. If assumptions (A1)–(A3)
are satisfied and n−1/2 = o�an� the minimum distance estimator is uniformly
consistent with upper rate of convergence in probability an; in L1-distance,
such that

an ∼
{

logN�an�
n

}1/2

:

Corollary 5.1. Under the assumptions of Theorem 5.1 and (A4) the
minimum distance estimator is optimal in probability with rates of con-
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vergence an:

(a) for model I and the additive and the multiplicative supermodels with
interactions an ∼ ��logNr�an��/n�1/2 ∼ n−q/�2q+r�, r is the dimension of the
model;

(b) for model II and the additive and the multiplicative supermodels without
interactions an ∼ ��logN1�an��/n�1/2 ∼ n−q/�2q+1�:

Corollary 5.2. Under the assumptions of Theorem 5.1 and (A4) the min-
imum distance estimator is risk-optimal with rates of convergence as in Corol-
lary 5.1. Moreover, these rates of convergence hold almost surely.

Remark 5.1. If the unknown parameter θ does not follow exactly one of
the models in Section 2, let θ∗ be its closest approximation in the chosen model
such that �θ − θ∗�∞ < ε: Following Proposition 2 in Yatracos (1985) and (A1)
it is easy to see that �θ̂n − θ� ≤ c1ε + c2an; with an satisfying the relation of
Theorem 5.1. The optimal rates of convergence also hold when the constant
L in the Lipschitz condition is bounded by a known constant M: Otherwise
we may consider a sequence (of bounds) Mn going to infinity; we discretize
for every Mn and construct the minimum distance estimate. Finally, L will
be smaller than one of the Mn’s and the parameter θ will be an element of
the parameter space from then on. The rate will be as close as we like to
the optimal depending on how fast the sequence Mn increases. The situation
is different if α is unknown even if it is bounded by 1: The reason is that α
appears through the total smoothness q as exponent of the radius an in the
entropy of the space 2 for the model considered.

Let θ�s� be an �s�th-order mixed partial derivative of θ; not identically 0,
�s� = s1+· · ·+sd: An upper bound in probability will be computed for �θ̂�s�n −θ�s��
with the help of the following proposition, showing it is easier to estimate θ
than its derivative θ�s�:

Proposition 5.1 [Yatracos (1989b), Proposition 2]. Let θ be a real-valued
function, θ̃n an estimator of θ, both defined on a compact set in Rd; having
mixed partial derivatives of order p; the pth derivative having a modulus of
continuity w�z�, z > 0:

Then, for 1 ≤ �s� ≤ p;
�θ̃�s�n − θ�s��v ≤ c1b

p−�s�
n w�bn� + c2b

−�s�
n �θ̃n − θ�v;

� · �v is an Lv-distance, 1 ≤ v ≤ ∞:
If �θ̃n − θ�v ∼ an in probability, a value of bn that gives an upper convergence
rate in probability satisfies the relation b

p
nw�bn� ∼ an:

In all assumed models the rate of convergence an ∼ n−q/�2q+r�; r ≥ 1,
w�bn� ∼ bαn: Thus, choosing bn ∼ a

1/q
n ; since �θ̂n − θ� ∼ an; it holds that

�θ̂�s�n − θ�s�� ≤ cn−�q−�s��/�2q+r�; in probability.
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APPENDIX

Proof of Proposition 3.1. (a) For εn ↓ 0 it holds that

Qn�An�εn;m�� = Qn

(N�an�⋃
k=1

��X1; : : : ;Xn�x 1n�θk; θm� > cε�
)

≤
N�an�∑
k=1

Qn��X1; : : : ;Xn�x 1n�θk; θm� > cε�

≤N�an� sup
1≤k≤N�an�

Qn��X1; : : : ;Xn�x 1n�θk; θm� > cεn�

≤N�an� exp�−c1nε
2
n�:

The last inequality was obtained using Hoeffding’s inequality since the func-
tions θ ∈ 2q;d are uniformly bounded. Choosing εn ∼ ��logN�an��/n�1/2 we
obtain Qn�An�εn;m�� ≤ N�an�1−c2�c�: The constant c may be chosen large
enough that c2�c� > 1:

�b� P��X1;Y1�; : : : ; �Xn;Yn�x 1n�θ̃n; θm� > cεn�

= P
[N�an�⋃

k=1

��X1;Y1�; : : : ; �Xn;Yn�x θ̃n = θk; 1n�θ̃n; θm� > cεn�
]

= P
[N�an�⋃

k=1

��X1;Y1�; : : : ; �Xn;Yn�x θ̃n = θk; 1n�θk; θm� > cεn�
]

≤ P
[N�an�⋃

k=1

��X1;Y1�; : : : ; �Xn;Yn�x 1n�θk; θm� > cεn�
]

= Qn�An�εn;m��;

since 1n�θk; θm� does not depend on the Y’s.

�c� P�1n�θ̃n; θm� > cεn; infinitely often n)

≤ lim
k→∞

∞∑
n=k

P��X1;Y1�; : : : ; �Xn;Yn�x 1n�θ̃n; θm� > cεn�

≤ lim
k→∞

∞∑
n=k

Qn�An�εn;m��

≤ lim
k→∞

∞∑
n=k

N�an�1−c2�c� = 0:

The proofs of (d), (e) and (f) are analogous to those of (a), (b) and (c). 2
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Proof of Lemma 3.1. Let

Sn =
n∑
i=1

IAk;m; i
�Yi�; np =

n∑
i=1

Pθ�xi��Ak;m; i�y

assume without loss of generality that p ≤ 0:5: Using Hoeffding’s inequality
we obtain

Pn
[
n−1 sup

1≤k<m≤Mn

{∣∣∣∣
n∑
i=1

�IAk;m; i
�Yi� −Pθ�xi��Ak;m; i��

∣∣∣∣
}
> γn

]

≤
∑

1≤k<m≤Mn

Pn
[
n−1

∣∣∣∣
n∑
i=1

�IAk;m; i
�Yi� −Pθ�xi��Ak;m; i��

∣∣∣∣ > γn
]

≤M2
n

{
exp

(
− nγ2

n

2�p+ γn�

)
+ exp

(
− nγ2

n

2p�1− p�

)}

≤ 2M2
n exp

{
− nγ2

n

1+ 2γn

}

≤ 2M2
n exp

{
−nγ

2
n

2

}

for large n. Choosing γn ∼ c��logMn�/n�1/2 and an appropriate constant c we
get convergence to 0: 2

Lemma 4.1 has a simple proof that is omitted.

Proof of Lemma 4.2. Let θr be the nearest neighbor of θ1 in 2nq;1 and br
be the nearest neighbor of b in Fn: Then, we have

�θ�x� − θr�bTr x�� = �θ1�bTx� − θr�bTr x��
≤ � θ1�bTx� − θr�bTx� �
+ � θr�bTx� − θr�bTr x� �
≤ an + cdn−1/2 ≤ an + cn−1/2: 2

Proof of Lemma 5.1. We have
n∑
i=1

�Pθ̂n�xi� −Pθr�xi�� ≤ 2 sup
1≤k<m≤N�an�

∣∣∣∣
n∑
i=1

�Pθ̂n�xi��Ak;m; i� −Pθr�xi��Ak;m; i��
∣∣∣∣

≤ c1 sup
1≤k<m≤N�an�

∣∣∣∣
n∑
i=1

�Pθ̂n�xi��Ak;m; i� − IAk;m; i
�Yi��

∣∣∣∣

+ c2 sup
1≤k<m≤N�an�

∣∣∣∣
n∑
i=1

�Pθr�xi��Ak;m; i� − IAk;m; i
�Yi��

∣∣∣∣

≤ c sup
1≤k<m≤N�an�

∣∣∣∣
n∑
i=1

�Pθr�xi��Ak;m; i� − IAk;m; i
�Yi��

∣∣∣∣
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≤ c1n�an + ζn−1/2�

+ c2 sup
1≤k<m≤N�an�

{∣∣∣∣
n∑
i=1

�IAk;m; i
�Yi� −Pθ�xi��Ak;m; i��

∣∣∣∣
}
:

The result follows using assumption (A1). 2

Proof of Theorem 5.1. Let an > 0 to be determined later in order to
achieve optimality of the proposed estimate. Let2n be any of the dense subsets
constructed in Section 4. Let θ̂n be the minimum distance estimator of θ and
let θr be the nearest neighbor of θ in 2n: Define the quantities

E � θk − θm � = E � θk�X� − θm�X� �;

En � θk − θm � =
1
n

n∑
i=1

� θk�Xi� − θm�Xi� �:

Using assumption (A3) and the condition n−1/2 = o�an� we have

�5:1�

�θ̂n − θ� =
∫
�0;1�d

� θ̂n�x� − θ�x� � dx

≤ c1�an + ζn−1/2�

+
∫
�0;1�d

� θ̂n�x� − θr�x� � dx

≤ c1an +A−1E � θ̂n − θr �:
From Proposition 3.1 with εn ∼ ��logN�an��/n�1/2 ↓ 0 we obtain almost

surely

�5:2� E � θ̂n − θr �≤ c2εn +En � θ̂n − θr �:
Thus (5.1) becomes

�5:3� �θ̂n − θ� ≤ c1an + c2εn + c3En � θ̂n − θr �:
A sequence �δn� will be determined such that

�5:4� P��θ̂n − θ� > cδn� → 0 as n→∞:
Thus, we have

P
[
�θ̂n − θ� > cδn

]

≤ P
[
c1an + c2εn + c3En � θ̂n − θr �> cδn

]

= EQn

{
Pn
[
c1an + c2εn + c3En � θ̂n − θr �> cδn

]}

≤ EQn

{
Pn
[
n−1 sup

1≤k<m≤NI�an�

{ ∣∣∣∣
n∑
i=1

�Pθ�xi��Ak;m; i� − IAk;m; i
�Yi��

∣∣∣∣
}

> cδn − c1an − c2εn

]}
:
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The last inequality was obtained using Lemma 5.1. Applying Lemma 3.1
with the family 8n consisting of the sets Ak;m; i used to define the mini-
mum distance estimator θ̂n; 1 ≤ k < m ≤ N�an�; 1 ≤ i ≤ n; with γn =
cδn − c1an − c2εn; an ∼ εn ∼ δn ∼ ��logN�an��/n�1/2 and an appropriate con-
stant c such that γn > 0; (5.4) is obtained using the bounded convergence
theorem. Therefore,

γn ∼ an ∼
{

logNr�an�
n

}1/2

: 2

Proof of Corollary 5.1. The discretization results of Section 4 will be
used.

For model I the cardinality NI�an� of the largest discretization set 2nI with
K unknown but bounded by D is of the order of �N1�an��d

∏D
j=1Nrj

�an� and
the resulting upper rate of convergence is an ∼ n−q/�2q+r�; r is the largest
dimension of the functional components in the model.

For model II the cardinality NII�an� of the set 2nII is of the order of
nd/2N1�an� and the resulting upper rate of convergence is an ∼ n−q/�2q+1�:

For both the additive and the multiplicative supermodels with interac-
tions the cardinality of the largest discretization set with K1;K2 unknown
but bounded by D1;D2 is of the order of ND1

1 �an�nD1d/2
∏D2
j=1Nrj

�an� and
the upper rate of convergence is an ∼ n−q/�2q+r�; r is the largest dimension
of the functional components in the model. When there are no interactions
an ∼ n−q/�2q+1�:

Assumption (A4) and the results of Yatracos (1988) on lower bounds for
convergence rates show that this rate is optimal. Note that the condition
n−1/2 = o�an� is satisfied for all models. 2

Proof of Corollary 5.2. The proof of Proposition 2 in Yatracos (1985) is
followed. Recall that the parameter space 2 (of the chosen model) is uniformly
bounded. Let c1 > 0 to be determined. Then

E�θ̂n − θ� = E�θ̂n − θ�I��θ̂n − θ� > c1an� +E�θ̂n − θ�I��θ̂n − θ� ≤ c1an�
≤ c1an + c2P��θ̂n − θ� > c1an� ≤ c1an + c2N�an�−c3�c1� ≤ can;

for an appropriate choice of c1 that makes N�an�−c3�c1� converge to 0 faster
than an: Assumption (A4) and the results of Yatracos (1988) on lower bounds
for convergence rates show that this rate is risk-optimal.

From the relation P��θ̂n − θ� > c1an� ≤N�an�−c3�c1� and for an appropriate
choice of c1 it holds that

∑∞
n=1N�an�−c3�c1� <∞: Therefore, by Borel–Cantelli

the rates of convergence hold almost surely. 2
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