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RATES OF CONVERGENCE OF POSTERIOR DISTRIBUTIONS

By Xiaotong Shen1 and Larry Wasserman2

Ohio State University and Carnegie Mellon University

We compute the rate at which the posterior distribution concentrates
around the true parameter value. The spaces we work in are quite gen-
eral and include infinite dimensional cases. The rates are driven by two
quantities: the size of the space, as measured by bracketing entropy, and
the degree to which the prior concentrates in a small ball around the true
parameter. We consider two examples.

1. Introduction. Nonparametric Bayesian methods have become quite
popular lately, largely because of advances in computing; see Dey, Mueller
and Sinha (1998) for a recent account. Because of their growing popularity, it
is important to understand the properties of these methods.
There are now many results about the asymptotic properties of posterior

distributions in infinite dimensional parameter spaces. For example, see Bar-
ron, Schervish and Wasserman (1999), Cox (1993), Diaconis and Freedman
(1986, 1993, 1995, 1997a, b, 1998), Doob (1948), Freedman (1963, 1999),
Ghosal, Ghosh and Ramamoorthi (1997, 1999a, b), Schwartz (1965), Shen
(1995), Wasserman (1998) and Zhao (1993, 1998). However, there are few
general results about rates of convergence. This paper provides such results.
Specifically, let p�Y�η� be a density for the random variable Y where η ∈ �
is an unknown parameter and let π be a prior for η. We bound the posterior
probability π�Acn�Yn� where An is a shrinking neighborhood of the true pa-
rameter value θ and Yn = �Y1
 � � � 
Yn� are the data. We write the posterior
probability as

π�Acn�Yn� =
∫
Acn

∏n
i=1

p�Yi�η�
p�Yi�θ�dπ�η�∫ ∏n

i=1
p�Yi�η�
p�Yi�θ�dπ�η�


(1.1)

then we separately upper bound the numerator and lower bound the denomi-
nator of (1.1).
In Section 2 we introduce some notation. In Section 3 we lower bound the

denominator of (1.1). In Section 4 we combine the lower bounds on the denom-
inator with upper bounds on the numerator and give some general results
on rates of convergence. Section 5 is devoted to an example involving non-
parametric regression. Section 6 treats the problem of estimating infinitely
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688 X. SHEN AND L. WASSERMAN

many normal means. Related literature on this problem includes Diaconis
and Freedman (1997a), Freedman (1999), Zhao (1993, 1998) and Cox (1993).
In Section 7 we discuss the results. Some technical lemmas are contained in
the appendix.
We would like to mention that after submitting the first version of this pa-

per, we received a report by Ghosal, Ghosh and Van der Vaart (1998) based on
their independent work on the same topic. Their paper has many interesting
results, and inevitably, there is some overlap.

2. Notation. The data Yn = �Y1
 � � � 
Yn� are assumed to be i.i.d. and
take values in a sample space � with σ-field �. In our examples, � is a
subset of �k and � is the Borel σ-field. The model is �Pη�η ∈ �� where
each Pη is a probability on �� 
�� with density p�y�η� with respect to a
common, dominating, σ-finite measure λ. Assume that the parameter space
� is endowed with an appropriate σ-field and let π be a prior distribution on
this σ-field. Because the distributions �Pη�η ∈ �� are dominated by a common
σ-finite measure, Bayes’ theorem applies so the posterior may be written as
in (1.1). Our goal is to study the behavior of π�Acn�Yn� when An is a small
shrinking neighborhood, of the true parameter value θ.
Let ��η
Y� = logp�Y�η� and let
K�θ
η� = Eθ	��θ
Y� − ��η
Y�� and V�θ
η� = Varθ	��η
Y� − ��θ
Y��

be the Kullback-Leibler divergence (sometimes called Kullback-Leibler pseudo-
distance) and the variance of the log-likelihood ratio based on a single obser-
vation Y, respectively. The sample Kullback-Leibler divergence is defined as

Kn�θ
η� = 1
n

n∑
i=1

log
p�Yi�θ�
p�Yi�η� �

We will use the Kullback-Leibler divergence to bound the denominator of (1.1).
We shall use two other distances: Hellinger distance, defined by

h�θ
η� =
{∫

�p1/2�y�θ� − p1/2�y�η��2dλ�y�
}1/2

�

and the ρα distance [Wong and Shen (1995)], defined by

ρα�θ
η� = 1
α

∫ [(p�y�θ�
p�y�η�

)α
− 1
]
dPθ�y�

where α ∈ �0
1�. The main use of the ρα distance is to bound the denominator
of (1.1). However, the ρα metric gives a.s. bounds while Kullback-Leibler gives
bounds in probability. Corresponding to the different distances we also define
the following neighborhoods:

S�t� = �η� max	K�θ
η�
V�θ
η�� ≤ t�

Sα�t� = �η� ρα�θ
η� ≤ t��
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It is convenient to express the posterior probability as

π�A�Yn� = mn�A
Yn�
mn��
Yn�

(2.1)

where

mn�B
Yn� =
∫
B
exp�−nKn�θ
η��dπ�η��

We will bound π�A�Yn� by upper bounding the numerator mn�A
Yn� and
lower bounding the denominator mn��
Yn�.
Now we recall a result due to Wong and Shen (1995). Let � be a set of

density functions. A set of pairs of functions ��fLj 
 fUj �
 j = 1
 � � � 
N� is a
Hellinger u-bracketing of � if h�fLj 
 fUj � ≤ u for j = 1
 � � � 
N and, for every
p ∈ � there is a j ∈ �1
 � � � 
N� such that fLj ≤ p ≤ fUj a.e.-λ. The bracketing
Hellinger metric entropy of � , denoted by HB�u
� �, is the logarithm of the
cardinality of the u-bracketing of � of smallest size. If � = �p�·�η��η ∈ ��
then we also write HB�u
�� instead of HB�u
� �. For δ > 0 define

��δ� = �p�·�η� ∈ ��h�θ
η� ≤ 2δ��
Then, HB�u
��δ�� is called the local bracketing entropy of � .

Theorem 1 [Wong and Shen (1995)]. Let Y1
 � � � 
Yn be i.i.d. from distri-
bution P0 with density p0. There are positive constants c
 a
 c1
 c2 such that,
for any ε > 0, if ∫ √

2ε

ε2/28
H

1/2
B �u/a
� �du ≤ c√nε2

then

P∗
0

(
sup
p∈Ac

n∏
i=1

p�Yi�
p0�Yi�

≥ e−c1nε2
)

≤ 4e−c2nε
2

where

A = �p�h�p0
 p� ≤ ε��
The constants c and c1 may be chosen to be in �0
1�� In particular, we can take
c = �2/3�5/2/512.

Remark. As Wong and Shen note, the theorem is still true if HB�u/a
� �
is replaced with the local entropy HB�u/a
� ∩ �p�h�p0
 p� ≤ 2ε��.
Let ρ�·
 ·� be a metric (or pseudo-distance) on �. We say that the rate of

convergence of the posterior is εn > 0 if for every sequenceKn → ∞, π�Acn�Yn�
tends to 0 in Pθ probability where An = �η�ρ�θ
η� ≤Knεn�. Note that in this
paper we are concerned with pointwise, rather than minimax rates.
We write an ∼ bn to mean that an = O�bn� and bn = O�an�. We write

an � bn to mean that an ≥ cbn for some c > 0, for all sufficiently large n.
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Similarly, we write an � bn to mean an ≤ cbn for some c > 0, for all sufficiently
large n.

3. Lower bounds on mn��
Yn�. To bound the posterior, we need to
lower bound the denominator mn��
Yn�. The first result controls the denom-
inator in probability.

Lemma 1. Let tn be a sequence of positive numbers and let Sn = S�tn�.
Then,

Pnθ

(
mn��
Yn� ≤ 1

2
π�Sn�e−2ntn

)
≤ 2
ntn

�

Consequently, if ntn → ∞, then
mn��
Yn� ≥ 1

2π�Sn�e−2ntn
except on a set of probability tending to 0�

Proof. For any η we have, by Chebyshev’s inequality, that

Pnθ

(
Kn�θ
η� −K�θ
η�

V1/2�θ
η� ≥ t1/2n
)

≤ Pnθ
((
Kn�θ
η� −K�θ
η�

V1/2�θ
η�
)2

≥ tn
)

≤ 1
ntn

�

Let

Wn =
{
�η
yn�� Kn�θ
η� −K�θ
η�

V1/2�θ
η� ≥ t1/2n
}
�

Let Wn�yn� = �η� �η
yn� ∈Wn� and Wn�η� = �yn� �η
yn� ∈Wn�. Then,
mn��
Yn� =

∫
exp�−nKn�θ
η��dπ�η�

≥
∫
Sn∩Wc

n�Yn�
exp�−nKn�θ
η��dπ�η�

=
∫
Sn∩Wc

n�Yn�
exp

{
−nV1/2�θ
η��Kn�θ
η� −K�θ
η��

V1/2�θ
η�
}

× exp�−nK�θ
η��dπ�η�
≥ π�Sn ∩Wc

n�Yn�� exp
{−nt1/2n t1/2n

}
exp �−ntn�

= 	π�Sn� − π�Sn ∩Wn�Yn��� exp�−2ntn��
By Fubini’s theorem,

Enθπ�Sn ∩Wn�Yn�� =
∫ ∫

I�Sn ∩Wn�yn��dπ�η�dPnθ �yn�

=
∫ ∫

I�Sn�I�Wn�dπ�η�dPnθ �yn�
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=
∫
I�Sn�Pθ�Wn�η��dπ�η�

≤ 1
ntn

π�Sn�

where I�·� is the indicator function. So,

Pnθ

(
mn��
Yn� ≤ 1

2
π�Sn�e−2ntn

)
≤ Pnθ

(
	π�Sn� − π�Sn ∩Wn�Yn���e−2ntn ≤ 1

2
π�Sn�e−2ntn

)
= Pnθ

(
π�Sn ∩Wn�Yn�� ≥ 1

2
π�Sn�

)
≤ 2
π�Sn�

Enθ �Sn ∩Wn�Yn�� ≤ 2
ntn

�

This completes the proof. ✷

The next result controls the denominator almost surely using the ρα metric.

Lemma 2. Let tn be a sequence of positive numbers, let α ∈ �0
1� and let
Sn = Sα�tn�. Then,

Pnθ
(
mn��
Yn� ≤ 1

2π�Sn�e−2ntn
) ≤ 2e−nαtn �

Moreover, if

ntn
log n

>
1
α

for all large n then, with Pθ probability one,

mn��
Yn� ≥ 1
2π�Sn�e−2ntn

for all large n.

Proof. See the Appendix.

4. General results. In this section we give some general results about
rates of convergence.

4.1. Compact sets. In some cases it is possible to bound the global behav-
ior of the likelihood function outside a shrinking neighborhood of the true
parameter. In this section, we give results for such cases. First we give a gen-
eral result that relies on regularity conditions on the log-likelihood ratios and
the prior distribution. Then we give a result based on bracketing entropy. In
the following, Ln�η� = n−1∑n

i=1 ��η
Yi�.
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Theorem 2. Let d�·
 ·� be a distance �or pseudo-distance� on �. Suppose
there exists a positive sequence rn → 0 and a positive constant c1 such that, if
sn ≥ rn then

P∗
(

sup
η�d�θ
η�≥sn

	Ln�η� −Ln�θ�� > −c1s2n
)

= o�1��(4.1)

Let tn satisfy

π�S�tn�� � e−2ntn
and define

εn = max
{
rn
 t

1/2
n

}
�

If nε2n → ∞, then, for sufficiently large K > 0,

π�Acn�Yn� � exp
{
−nK

2c1ε
2
n

2

}
except on a set of probability tending to 0
 where

An = �η�d�θ
η� ≤Kεn��

Proof. Note that from (4.1), the fact that εn ≥ rn, and the fact that K is
large,

mn�Acn
Yn� ≤ e−c1K2nε2n

with probability tending to one. By Lemma 1,

mn��
Yn� ≥ 1
2π�S�tn��e−2ntn � e−4ntn

with probability tending to one. Now, for large K > 0, we have tn ≤ ε2n ≤
c1K

2ε2n/8, so

π�Acn�Yn� = mn�Acn
Yn�
mn��
Yn�

� e
−c1K2nε2n

e−4ntn

≤ exp
{
−c1K

2nε2n
2

}
� ✷

To use Theorem 2, we need a way to control the likelihood ratio. We can do
this using bracketing entropy.

Theorem 3. Suppose there exists a positive constant a and a positive se-
quence rn such that ∫ √

2rn

r2n/28
�HB�u/a
���1/2du ≤ c√nr2n(4.2)



RATES OF CONVERGENCE OF POSTERIOR DISTRIBUTIONS 693

where c = �2/3�5/2/512. Then, the rate of convergence is εn as defined in The-
orem 2 where d�·
 ·� = h�·
 ·� is the Hellinger distance.

Proof. Using Theorem 1, (4.2) implies that condition (4.1) of Theorem 2
holds. ✷

Remark. The entropy HB�u/a
�� can be replaced by the local entropy
HB�u/a
��rn�� and the Theorem still holds. Note that if (4.2) holds for rn and
if 1 ≥ sn > rn then (4.2) holds for sn too. This follows since the entropy function
is non-increasing and hence,

∫√
2r

r2/28�HB�u/a
���1/2du/r2 is non-increasing for
0 ≤ r ≤ 1.

These results say that for any true parameter θ, as data come in, the pos-
terior is concentrated in an εn-shrinking neighborhood of θ with probability
tending to one. The rate εn (depending on θ), is governed by two things: (i)
the prior assignment in the neighborhood of θ and (ii) the rate of convergence
of the supremum of log-likelihood ratios rn. When the prior assigns a small
probability to the neighborhood of θ
 that is, when tn is large, the posterior
distribution may converge at a suboptimal rate εn � t

1/2
n since then εn � rn

and rn is the best possible achievable rate by the variants of the maximum
likelihood estimator (such as the sieve maximum likelihood estimate). In other
words, when the prior assignment to the neighborhood is relatively small, the
likelihood fails to wash out the prior as the sample size increases.

4.2. Non-compact spaces. When the supremum of log-likelihood ratios can
be controlled then the rate of convergence of the posterior can be calculated
using Theorems 2 and 3. However, when the parameter space is not compact,
the supremum of log-likelihood ratios there may be infinite. Consequently, the
prior needs to assign a small probability to the parameter values which may
possibly give very large values to the likelihood. Thus we need a tail condition
on the prior.

Theorem 4. Suppose there exists a positive sequence rn, constants a > 0
and d > 0 and a sequence of subsets �1
�2
 � � � ⊂ � such that∫ √

2rn

r2n/28
�HB�u/a
�n��1/2du ≤ c√nr2n(4.3)

where c = �2/3�5/2/512 and
π��cn� ≤ e−dε2nn(4.4)

where

εn = max
{
rn
 t

1/2
n

}
and tn satisfies

π�S�dtn/16�� � e−dntn/8�
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Then, for K > 0 sufficiently large, if nε2n → ∞,

π�Acn�Yn� � exp
{
−nK

2ε2n
2

}
+ exp

{
−ndε

2
n

4

}
except on a set of probability tending to 0
 where

An = �η�h�θ
η� ≤Kεn��

Proof. See the Appendix.

4.3. Bayes estimates. In this section we provide rates for Bayes estimates.
Let us focus on the case where we are interested in estimating the density
p�·�θ�. A commonly used estimator is the predictive density

p̂�·� ≡
∫
p�·�η�dπ�η�Yn��

We will bound the rate of convergence of this estimator.

Theorem 5. Assume that the conditions of Theorem 2 or 3 hold. Then,

h2�p�·�θ�
 p̂�·�� � ε2n + 2 e−c1nε
2
n/2

in probability.

Proof. LetAn be as defined in Theorem 2. Note that squaredHellinger dis-
tance is convex in both its arguments and that Hellinger distance is bounded
above by

√
2. Then by Theorem 2 (or 3),

h2�p�·�θ�
 p̂�·�� = h2�p�·�θ�

∫
p�·�η�dπ�η�Yn��

≤
∫
h2�p�·�θ�
 p�·�η��dπ�η�Yn�

=
∫
An

h2�p�·�θ�
 p�·�η��dπ�η�Yn�

+
∫
Acn

h2�p�·�θ�
 p�·�η��dπ�η�Yn�

≤ ε2nπ�An�Yn� + 2 π�Acn�Yn�
� ε2n + 2 e−c1nε

2
n/2

in probability, for large n. ✷

Remark. This result can be generalized to other loss functions and more
general functions of interest g�η�. The rate then involves conditions on the
function g.
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4.4. Discussion. In parametric models, Bayes’ rule can yield estimates
with good frequentist properties; see Section 2 of Diaconis and Freedman
(1986) and Berger (1986) for discussions. It is natural to believe that Bayes’
rule would yield optimal estimates in non-parametric models. As we men-
tioned earlier, there are published instances where the Bayes estimate can
be suboptimal in the frequentist sense, that is, for some values of θ, and loss
function L, lim supn→∞EθL�θ
T∗

n�/EθL�θ
TBn � = 0, where T∗
n can be the

standard, sieve, or penalized MLEs and TBn is the Bayes estimate. This states
that for some parameter values, eventually, the variants of MLEs have smaller
risks locally. By the Bayes rule, the variants of MLEs cannot have smaller
risks than the Bayes estimate in the average sense that is, EEθL�θ
T∗

n� ≥
EEθL�θ
TBn �. This implies that for any n ≥ 1, there exists a set Mn with
π�Mn� > 0 such that EθL�θ
T∗

n� ≥ EθL�θ
TBn � for any θ ∈ Mn. However,
this sub-optimality phenomenon says Mc

n can be a non-negligible part of the
parameter space.
It is interesting to note that the Bayes estimate, which is optimal in the

average sense, may not be optimal in the local sense. This occurs in a large
parameter space in which the prior assigns small probability in the neighbor-
hood of any true parameter value.

5. Example 1: Regression. Let

Yi = η�Xi� + ei
 i = 1
 � � � 
 n

where the ei’s are independent N�0
1� random variables, the Xi’s are in-
dependent U�0
1� random variables, and η�·� is a regression function. Let
ψ1
 ψ2
 � � � be an orthonormal basis for L2	0
1� such that, for some C > 0,
supx∈	0
1� �ψj�x�� ≤ C for all j. For example, take ψ1�x� = 1, ψ2�x� =√
2sin�2πx�, ψ3�x� = √

2cos�2πx�, ψ4�x� = √
2sin�4πx�, ψ5�x� = √

2cos�4πx�,
� � � . Let

� =
{
η ∈ L2	0
1�� η�x� =

∞∑
j=1
ηjψj�x�


∞∑
j=1
η2jj

2p <∞
}

for some fixed integer p ≥ 1 and let

�M =
{
η ∈ �


∞∑
j=1
η2jj

2p < M

}
for some fixed M > 0. Let us emphasize that for this example, the param-
eter space is �M, not �. We will construct a prior for the parameter η by
constructing a prior on its Fourier coefficients η1
 η2
 � � � �
Let d�θ
η� = ��θ− η�� be the L2 norm. The optimal rate of convergence for

point estimators in �M in this distance is known to be rn = n−p/�2p+1�. We will
construct a prior that achieves this rate for all θ ∈ �M. In other words, we will
find a prior such that the posterior probability of Acn tends to 0 in probability,
where An = �η� ��η − θ�� ≤ Krn�. For this purpose we will first construct a
prior on � then truncate this prior to the parameter space �M. The prior on
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� will be a sieve prior as in Zhao (1993, 1998) which means it is built from
a sequence of priors that live on finite dimensional spaces. Specifically, let
λj = eβ�1− e−β�e−βj for some β > 0, let d = p+ �1/2� and define a prior π by
π�A� = ∑∞

j=1 λjπj�A� where πj is a prior on the coefficients η1
 η2
 � � � such
that the coefficients are independent and ηi ∼ N�0
 i−2d� for i = 1
 � � � j and
ηi ≡ 0 for i > j. It is easy to see that π��M� > 0. Hence, we can define a new
prior γ by γ�A� = π�A ∩�M�/π��M�. Thus γ��M� = 1.
The reader may wonder why we use a sieve prior instead of just using a

prior directly on the infinite sequence η1
 η2
 � � � such that ηi ∼ N�0
 i−2d�.
The problem with such a prior is that if we set d = p + �1/2� then the prior
puts zero prior mass and zero posterior mass on �M. If we set d > p+ �1/2�
then the prior does give positive mass to �M but appears to yield sub-optimal
rates. The latter point is made precise in a related problem in Zhao (1993,
1999). A referee has pointed out that one can certainly use a prior that puts
no mass on the parameter space. However, in our calculations, we prefer to
use a prior that does put positive probability on the parameter space.
Now we note some properties of �M and then we apply Theorem 3. First

note that there is a constant a1 such that supθ∈�M supx∈	0
1� �θ�x�� ≤ a1. To see
this, let r�p� =∑∞

j=1 j
−2p. Then, for any θ ∈ �M, supx∈	0
1� �θ�x�� ≤ C∑j �θj� =

C
∑
j �θj�jpj−p ≤ C

√∑
j θ

2
jj

2p
√
r�p� ≤ C

√
Mr�p� ≡ a1. Hence, uniformly

for θ
η ∈ �M, supx∈	0
1��θ�x� − η�x��2 ≤ 4a21. Direct calculations show that
K�θ
η� = O���θ − η��2� and V�θ
η� = O�∫ �θ�x� − η�x��4dx� = O���θ − η��2�.
Thus, there is a constant a2 > 0 such that S�t� ⊂ S�t� where S�t� = �η� ��η−
θ��2 ≤ a2t�.
We are interested in showing that the posterior concentrates on shrinking

L2 balls An. We next relate An to Hellinger neighborhoods. Recall that the
marginal density of X is uniform and that the distribution of Y given X is
Normal. Let fθ denote the joint density of Y and X when the parameter is θ.
Then,

h2�fθ
 fη� = 2
∫ 1
0

[
1− exp

{
−1
8

�θ�x� − η�x��2
}]
dx

= 2
∫ 1
0
exp

{
−1
8

�θ�x� − η�x��2
}[

exp
{
1
8

�θ�x� − η�x��2
}

− 1
]
dx

≥ 2e−a
2
1/2
∫ 1
0

[
exp

{
1
8

�θ�x� − η�x��2
}

− 1
]
dx

≥ e−a
2
1/2

4

∫ 1
0

�θ�x� − η�x��2dx

= a23 ��θ− η��2

where a23 = e−a
2
1/2/4. Hence, Acn ⊂ Bcn where Bn = �η�h�θ
η� ≤ a3Krn�.

Hence, to show that γ�Acn�Zn� = oP�1�, it suffices to show that γ�Bcn�Zn� =
oP�1� where Zn denotes �X1
Y1�
 � � � 
 �Xn
Yn�.
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Let fθ�x
y� = fθ�y�x�f�x� = �2π�−1/2 exp
{−�1/2��y− θ�x��2} denote the

joint density of X and Y. Let � = �fη�η ∈ �M�. Note that∣∣∣∣√fθ�x
y� −
√
fη�x
y�

∣∣∣∣ ≤M�x
y���η− θ��∞

where ��g��∞ = supx�g�x�� and

M�x
y� = �2π�−1/4
( �y� + a1

2

)
exp

{
−1
4

��y� − a1�2
}
exp

{
a21/4

}
�

Moreover,
∫ 1
0

∫∞
−∞M

2�x
y�dydx <∞. It follows that the Hellinger bracketing
entropy of� ,HB�u
� �, is bounded by a constant times theL∞ metric entropy
of �M, denoted by H�u
�M
 �� · ��∞�. According to Theorem 2.4 of van de Geer
(2000), H�u
�M
 �� · ��∞� ≤ Au−1/p for some A > 0; see also Birman and
Solomjak (1967). Thus, HB�u
� � ≤ bu−1/p for some b > 0. It follows that
equation (4) of Theorem 3 holds with rn proportional to n−p/�2p+1�.
To finish verifying the conditions of Theorem 3, it remains to be shown

that γ�Sn� � e−nr
2
n where Sn = �η� ��η − θ��2 ≤ a2r

2
n�. Now, γ�Sn� = π�Sn ∩

�M�/π��M� ≥ π�Sn ∩�M� = ∑j λjπj�Sn ∩�M� ≥ λkπk�Sn ∩�M� where k is
an integer that depends on n. Let θk�x� = ∑k

j=1 θjψj�x�. Then ��θ − θk��2 =∑
j=k+1 θ

2
j =∑j=k+1 θ

2
jj

2pj−2p ≤ k−2p∑
j=k+1 θ

2
jj

2p ≤ k−2pM. Hence, if we set
k ≡ kn to be the smallest integer greater than or equal to �2M/�a2r2n��1/�2p�

then we have that ��θ − θk��2 ≤ a2r
2
n/2 uniformly for all θ ∈ �M. Note that

k = O�r−1/p
n �. Thus,

πk�Sn ∩�M� = πk
( ∞∑
i=1

�ηi − θi�2 < a2r2n

∞∑
j=1
η2jj

2p < M

)

= πk
(
k∑
i=1

�ηi − θi�2 +
∞∑

i=k+1
θ2i < a2r

2
n


k∑
j=1
η2jj

2p < M

)

≥ πk
(
k∑
i=1

�ηi − θi�2 < a2r2n/2

k∑
j=1
η2jj

2p < M

)
�

Note that, for sufficiently small a3 > 0 (depending on θ) we have that{
η�

k∑
i=1

�ηi − θi�2 ≤ a23r2n
}

⊂
{
η�

k∑
i=1

�ηi − θi�2 < a2r2n/2 

k∑
j=1
η2jj

2p < M

}
�

To see this, note that if η is in the set on the left hand side then clearly it is
in the set {

η�
k∑
i=1

�ηi − θi�2 < a2r2n/2
}
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as long as a23 < a2/2. Next we show that η also satisfies
∑k
j=1 η

2
jj

2p < M. To
show this note first that

∑∞
j=1 θ

2
jj

2p = M − δ for some δ > 0. Also note that
k2pr2n = �2M/a2� ≡ c, say. So,

k∑
j=1
η2jj

2p ≤
k∑
j=1

��ηj − θj� + �θj��2j2p

=
k∑
j=1

�ηj − θj�2j2p +
k∑
j=1
θ2jj

2p + 2
k∑
j=1

�ηj − θj� �θj�j2p

≤ k2p
k∑
j=1

�ηj − θj�2 +
∞∑
j=1
θ2jj

2p + 2

√√√√k2p k∑
j=1

�ηj − θj�2
√√√√ ∞∑
j=1
θ2jj

2p

≤ ca23 + �M− δ� + 2
√
M− δ

√
ca23�

The latter quantity is less than M − δ/2 for a3 sufficiently small. Hence,∑k
j=1 η

2
jj

2p < M.
So,

πk�Sn ∩�M� ≥ πk
(
k∑
i=1

�ηi − θi�2 ≤ a23r2n
)

≥ e−a4kF�a23r2nk2d�k/2�
= e−a4kF�a23ck�k/2�

whereF�·�k/2� is the cdf for a Gamma random variable with shape parameter
k/2. The last two lines follows from Lemma 4 in the Appendix and the fact
that d = p+ �1/2�.
To lower bound the Gamma cdf we proceed as follows. Note that

F�b�α� = 1
>�α�

∫ b
0
xα−1e−xdx

≥ e−b

>�α�
∫ b
0
xα−1dx

= e−bbα

α>�α�
� eαe−bbαα−αα−1/2

where the last line follows from Stirling’s approximation. It thus follows that
F�a24ck�k/2� > e−a5k for some a5 > 0.
Combining all these facts we conclude that γ�Sn� � e−a6k for some a6 >

0. From the definition of k it follows that γ�Sn� � e−a7nr
2
n for some a7 >
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0. Applying Theorem 3 we conclude that γ�Bcn�Zn� = oP�1� so the rate of
convergence is rn.

Remark. One can carry out similar calculations with an “un-sieved prior,”
that is, start with a prior π that makes ηi ∼ N�0
 i−2d� for i = 1
2
 � � �
then truncate the prior to �M. In this case, if we want π to have positive
probability on �M we must take d > p + �1/2�. One can do similar calcu-
lations, replacing Lemma 4 with Lemma 5, and these lead to sub-optimal
rates. This does not prove that the rates are sub-optimal since our results
only give upper bounds on the rates. However, we conjecture that the rates
are indeed suboptimal. This conjecture is based on the close similarity with
the regression problem and the many normal means problem for which Zhao
(1993, 1998) has shown that unsieved priors yield Bayes estimates with sub-
optimal rates. We investigate the many normal means problem in the next
section.

6. Example 2: Many normal means. Here we consider the problem of
estimating infinitely normal means. This problem is known to be intimately
related to the nonparametric regression problem. We suspect, based on the re-
sults of Brown and Low (1996), that the rates for the posteriors in this problem
correspond directly to the rates in the nonparametric regression problem; see
also Cox (1993). However, a rigorous proof is not yet available.
Diaconis and Freedman (1997a), Freedman (1999) and Zhao (1993, 1998)

have also studied Bayes estimates for this problem. Cox and Diaconis and
Freedman considered a Bernstein-Von Mises theorem for this case while Zhao
investigated the minimax behavior of Bayes estimates assuming the true pa-
rameter is in a Sobolev ball. We treat the same case as Zhao though we study
the behavior of the posterior (as opposed to the point estimator). Also, we will
study the pointwise behavior of the posterior instead of the minimax behavior.
The model is as follows. The parameter is η = �η1
 η2
 � � �� and the data

are Y = �Y1
Y2
 � � �� where Yi = ηi + n−1/2εi and the εi’s are i.i.d. N�0
1�.
We will assume that the true value θ is in � = �η�∑∞

i=1 η
2
i i

2p < ∞�. (At the
end of this section, we will show that the results still hold when the prior is
truncated to the set �M = �η�∑∞

i=1 η
2
i i

2p < M�.)
For the prior, let ηi ∼N�0
 i−2d� independently. Following Zhao, our goal is

to use a prior that puts positive mass on the parameter space �. This requires
that d > p + �1/2�. As we remarked in the last section, it is possible to set
d = p + �1/2� (which then yields a Bayes estimator that achieves optimal
rates over the truncated Sobolev ball) but this has the undesirable property
of putting zero prior (and posterior) mass on the parameter space. Unlike the
last section, we shall not use a sieve prior. This leads to a posterior whose
rate of convergence varies over the parameter space. Our goal is to exhibit
a variety of pointwise rates as θ varies over �. We will find both lower and
upper bounds on the rates. In this example, it is possible to compute the rates
directly without recourse to the general theorems in Section 4.



700 X. SHEN AND L. WASSERMAN

By Bayes rule, ηi�Yi is distributed asN�Ti
 σ2i �, whereTi = ciYi, σ2i = ci/n
and ci = n/�n+ i2d�. Let T = �T1
T2
 � � ��. Note that we have suppressed the
dependence of T on n.
We now calculate the risk:

Rn�θ� = Eθ�T− θ��2

=
∞∑
i=1
Eθ�Ti − θi�2

=
∞∑
i=1

(
i−2d

i−2d + n−1

)2
n−1 +

∞∑
i=1

(
n−1

i−2d + n−1 θi

)2

=
∞∑
i=1

(
i−2d

i−2d + n−1

)2
n−1 +

∞∑
i=1

i4dθ2i
�i2d + n�2

= I+ II
where I is the variance and II is the squared bias.
We will show that for every b satisfying

p

d
< b < 1− 1

2d
(6.1)

there exists a θ ∈ � such that Rn�θ� ∼ n−b. [Note that the optimal rate for the
truncated space is n−2p/�2p+1� which is in the interval �p/d
1−�1/2d��. Hence,
the Bayes rate can be faster or slower than this rate.] To this end, consider
θ = �θ1
 θ2
 � � �� of the form θi ∼ i−q where q = bd + �1/2�. Since b > p/d it
follows that

∑
i θ

2
i i

2p <∞ so that θ ∈ �.
The variance term can be bounded as follows:

I ∼ n−1
∫ ∞

0

t−4d

�n−1 + t−2d�2dt = b2n−�1−1/2d�


where b2 = ∫∞
0

1
�1+t2d�2dt. This follows from Lemma 2 of Diaconis and Freed-

man (1997a); see Lemma 7 of the Appendix of this paper. Now,

II =
∞∑
i=1

i4dθ2i
�i2d + n�2

=
∞∑
i=1

i4d−2q

�i2d + n�2

∼ n−�2q−1�/�2d� = n−b�

The last line also follows from Lemma 2 of Diaconis and Freedman (1997a).
We see that

Rn ∼ n−�1−1/2d� + n−b ∼ n−b

as claimed.
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These results parallel others; Cox (1993) studied the coverage of posteriors
in nonparametric regression; Diaconis and Freedman (1997a) and Freedman
(1999) studied the asymptotic Bayesian and sampling distribution of ��T−θ��2
assuming only that θ is in L2; Zhao (1993, 1998) studied the minimax rates
of convergence for this problem.
Now consider the posterior. Let Wn = π�Acn�Y� where An = �η� ��θ− η��2 ≤

K2ε2n�. We will show that if ε2n ∼ n−b then for some K > 0,Wn bounded away
from 0 in probability. On the other hand, if K is replaced with any increasing
sequence Kn then Wn = oP�1�. The result is stated in the next theorem.

Theorem 6. Let θ = �θ1
 θ2
 � � �� where θi ∼ i−q, q = bd + �1/2� and b ∈
�p/d
1−1/�2d��. LetWn = π�Acn�Y� where An = �η� ��θ−η��2 ≤K2

nε
2
n� where

ε2n = n−b. If Kn = K > 0 is sufficiently small, then Pθ�Wn ≥ 1/2− δ� → 1 for
every δ > 0. On the other hand, if Kn → ∞ then Wn = oP�1�.

To prove this theorem we need some preliminary results. Recall that the
data Y = �Y1
Y2
 � � �� have a distribution that depends on n. When we need
to be explicit about this, we will write the data as Yn = �Yn1 
Yn2 
 � � ��. We
could similarly subscript θ by n but, in the calculations that follow we will
use the same θ for each n so this will not be necessary. Note that Yni =
θi + n−1/2Zni where the Zni ’s are independent, standard Gaussian random
variables. Generally, we will write probabilities, expectations and variances
as Pθ
Eθ and Vθ rather than P

n
θ
E

n
θ and V

n
θ .

Let Wn�yn� = Pr���η − θ�� ≥ K2ε2n�Yn = yn� where ε2n = n−b and K > 0.
Here, η denotes a draw from the posterior. The first claim is that Wn�Yn�
does not tend to 0 in probability. To prove this, we need the following results.
Throughout, C denotes an arbitrary positive constant but need not represent
the same constant in different expressions.

Proposition 1. LetMn = ��T− θ��2. Then,
Eθ�Mn� =∑

i

θ2i �ci − 1�2 + n−1∑
i

c2i ∼ n−b

and

Vθ�Mn� = 4n−1∑
i

c2i �ci − 1�2θ2i + 2n−2∑
i

c4i ∼ n−b−1�

Moreover,

Eθ�Mn −Eθ�Mn��4
V2
θ�Mn�

→ 0�

Hence, Lyapounov’s condition holds and so

Mn −Eθ�Mn�
V

1/2
θ �Mn�

d→N�0
1��
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Proof. Note that Yi
d= θi + n−1/2Zi where the Z′

is are i.i.d and Zi ∼
N�0
1�. Also, recall that Ti = ciYi where ci = n/�n+ i2d�. So,

Mn = ��T− θ��2 =∑
i

�Ti − θi�2

=∑
i

�θi�ci − 1� + cin−1/2Zi�2

=∑
i

θ2i �ci − 1�2 + 2n−1/2∑
i

ci�ci − 1�θiZi + n−1∑
i

c2iZ
2
i �

Taking the mean and variance of the last expression gives the claimed formu-
lae for Eθ�Mn� and Vθ�Mn�. The fact that Eθ�Mn� ∼ n−b follows from the
earlier risk calculation. Next, note that

Vθ�Ti − θi�2 = Vθ��Ti − ciθi� + �ciθi − θi��2

= Vθ��Ti − ciθi�2 + 2�Ti − ciθi��ciθi − θi� + �ciθi − θi�2�

= Vθ��Ti − ciθi�2� + 4θ2i �ci − 1�2Vθ�Ti − ciθi�

= 2c4i
n2

+ 4θ2i �ci − 1�2c2i
n

= 2
n2

n4

�n+ i2d�4 + 4
n

i−2qi4dn2

�n+ i2d�4

since Ti ∼N�ciθi
 c2i /n�. Hence,

Vθ�Mn� = Vθ���T− θ��2�

∼ n2∑
i

1
�n+ i2d�4 + n∑

i

i4di−2q

�n+ i2d�4

∼ 1
n2−1/�2d� + 1

nb+1

∼ 1
nb+1

�

Now we verify the Lyapounov condition. First, note that �a+b�4 ≤ 8�a4+b4�.
Hence,

1
8 �Mn −Eθ�Mn��4 =∑

i

�n−1c2i �Z2
i − 1� + 2n−1/2ci�ci − 1�θiZi�4

≤n−4∑
i

c8i �Z2
i − 1�4 + 16n−2∑

i

c4i �ci − 1�4θ4iZ4
i �
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Thus,

Eθ�Mn −Eθ�Mn��4 ≤ C
{
n−4∑

i

c8i + n−2∑
i

c4i �ci − 1�4i−4q
}

= C
{
n−4∑

i

n8

�n+ i2d�8 + n−2∑
i

n4i8di−4q

�n+ i2d�8
}

∼ n4

n8−1/�2d� + n2

n8−�1+8d−4q�/�2d�

= O
(

1
n4−�1/�2d�� + 1

n2+2b+1/�2d�

)
= O

(
1

n2+2b+1/�2d�

)
�

We have already shown that Vθ�Mn� ∼ n−b−1. So,

Eθ�Mn −Eθ�Mn��4
V2
θ�Mn�

= O
(
n−2−2b−1/�2d�

n−2�b+1�

)
= O

(
1

n1/�2d�

)
= o�1�� ✷

Proposition 2. For K > 0 sufficiently small,

Pθ�Mn ≥K2ε2n� → 1�

Proof. Note that

Pθ�K2ε2n −Mn ≤ 0� = Pθ
(
Mn −Eθ�Mn�
V

1/2
θ �Mn�

≥ K2ε2n −Eθ�Mn�
V

1/2
θ �Mn�

)
�

The first term in the parentheses tends to a standard Gaussian by Proposition
1. The second term tends to −∞ also by Proposition 1. Hence, the result
follows. ✷

Proposition 3. With probability tending to 1
 Wn�Yn� ≥ W̃n�Yn�, where

W̃n�Yn� = Pr
(∑
i

σ2i Z
2
i + 2

∑
i

σiZi�Ti − θi� > 0

)
�

In the above display, Z = �Z1
Z2
 � � �� are i.i.d. standard Gaussians, indepen-
dent of Yn.

Proof. Let Cn be the set of yn for which K2ε2n −Mn < 0. According to
the previous proposition, Cn has probability tending to 1� Restrict attention to
this set. With respect to the posterior, we have that ηi = σiZi+Ti where Z =
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�Z1
Z2
 � � �� denotes a sequence of i.i.d. standard normal random variables.
Thus, on Cn,

Pr���η− θ��2 ≥K2ε2n�Yn = yn�

= Pr

( ∞∑
i=1

�ηi − θi�2 ≥K2ε2n�Yn = yn
)

= Pr

( ∞∑
i=1

�σiZi +Ti − θi�2 ≥K2ε2n

)

= Pr

( ∞∑
i=1
σ2i Z

2
i + 2

∞∑
i=1
σiZi�Ti − θi� +∑

i

�Ti − θi�2 ≥K2ε2n

)

= Pr

( ∞∑
i=1
σ2i Z

2
i + 2

∞∑
i=1
σiZi�Ti − θi� ≥K2ε2n −Mn

)

≥ Pr

( ∞∑
i=1
σ2i Z

2
i + 2

∞∑
i=1
σiZi�Ti − θi� ≥ 0

)

= W̃n�Yn�� ✷

The next proposition is needed to establish a central limit theorem for
W̃n�Yn�.

Proposition 4. Let a be such that 4− �1/d� < a < 6− 1/�2d�. Let

Dn =
{
Zn� n2

∞∑
i=1

�Zni �4
�n+ i2d�8 < n

−a
}
�

Then, Pr�Dn� → 1.

Proof. Let c = E��Zni �4� = 3. Then,

Pr

(
n2

∞∑
i=1

�Zni �4
�n+ i2d�8 > n

−a
)

≤ n2+a∑
i

c

�n+ i2d�8

∼ n2+a 1
n8−1/�2d� = o�1�� ✷

Let D̃n = �yn� yn = θ+n1/2zn
 zn ∈ Dn� be the set of yn’s that correspond
to zn ∈ Dn.

Proposition 5. Let Z = �Z1
Z2
 � � �� be i.i.d. standard Gaussians and let
Q denote the distribution of Z. Let An ≡ An�yn� = ∑i σ

2
i Z

2
i + 2

∑
i σiZi�Ti −
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θi�. Then EQ�An� =∑i σ
2
i and VQ�An� = 2

∑
i σ

4
i +4

∑
i σ

2
i �Ti−θi�2. Further-

more, for yn ∈ D̃n, we have that
An −EQ�An�
V

1/2
Q �An�

d→N�0
1��

Proof. The mean and variance are immediate. Now we verify the Lya-
pounov condition. We have

EQ�An −EQ�An��4
V2
Q�An�

= E�∑i σ
2
i �Z2

i − 1� + 2
∑
i σiZi�Ti − θi��4

	2∑i σ
4
i + 4

∑
i σ

2
i �Ti − θi�2�2

≤ C
∑
i σ

8
i +∑i σ

4
i �Ti − θi�4

	2∑i σ
4
i + 4

∑
i σ

2
i �Ti − θi�2�2

≤ C
∑
i σ

8
i +∑i σ

4
i �Ti − θi�4

	∑i σ
4
i �2

= C
∑
i σ

8
i

	∑i σ
4
i �2

+C
∑
i σ

4
i �Ti − θi�4

	∑i σ
4
i �2

�

Now,
∑
i σ

8
i ∼ n−4+1/�2d� and

∑
i σ

4
i ∼ n−2+1/�2d�, hence,∑

i σ
8
i

	∑i σ
4
i �2

∼ 1
n1/�2d� = o�1��

Now, for yn ∈ D̃n we have∑
i

σ4i �Ti − θi�4 = C∑
i

σ4i 	θi�ci − 1� + cin−1/2Zni �4

≤ C∑
i

σ4i 	θ4i �ci − 1�4 + c4i n−2�Zni �4�

= C∑
i

i−4q�ci − 1�4
�n+ i2d�4 +C 1

n2
∑
i

c4i �Zni �4
�n+ i2d�4

= C∑
i

i−4qi8d

�n+ i2d�8 +Cn2∑
i

�Zni �4
�n+ i2d�8

∼ 1
n8−�8d−4q+1�/�2d� + n2∑

i

�Zni �4
�n+ i2d�8

= O
(

1
n8−�8d−4q+1�/�2d� + n−a

)
�

So, ∑
i σ

4
i �Ti − θi�4

	∑i σ
4
i �2

= O
(
n−8+�8d−4q+1�/�2d� + n−a

n−4+�1/d�

)
= o�1�

since a > 4− �1/d�. ✷
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Proof of Theorem 6. Finally, we are ready to prove the theorem. We have
shown that Wn�yn� ≥ W̃n�yn� on a set of yn with probability tending to one.
Now, W̃n�yn� = Pr�∑i σ

2
i Z

2
i +2

∑
i σiZi�Ti−θi� ≥ 0� = Pr�An ≥ 0�. Note that

EQ�An� ≥ 0. Thus, for yn ∈ D̃n,

W̃n�yn� = Pr�An ≥ 0�

= Pr

(
An −EQ�An�
V

1/2
Q �An�

≥ −EQ�An�
V

1/2
Q �An�

)

≥ Pr

(
An −EQ�An�
V

1/2
Q �An�

≥ 0

)

→ 1
2

from Proposition 5. Hence, for any δ > 0, Pr�Wn�Yn� ≥ 1/2 − δ� → 1. This
proves the first claim.
To prove the second, letKn be any sequence of positive numbers tending to

∞. For the remainder of the proof, letWn�yn� = Pr���η−θ��2 ≥K2
nε

2
n�Yn = yn�.

Then,

Wn�yn� = Pr���η− θ��2 ≥K2
nε

2
n�Yn = yn�

≤ 1
K2
nε

2
n

E���η− θ��2�Yn = yn�

=
∑
i σ

2
i +Mn

K2
nε

2
n

=
∑
i σ

2
i

K2
nε

2
n

+ Mn

K2
nε

2
n

�

Consider the first term. We see that∑
i σ

2
i

K2
nε

2
n

= 1
K2
nε

2
n

∑
i

1
n+ i2d

∼ 1
K2
nε

2
n

1
n1−1/�2d� = o�1�

since ε2n = n−b and b < 1− �1/�2d��. Hence,

Eθ�Wn�Yn�� = o�1� + Eθ�Mn�
K2
nε

2
n

= o�1� + Cnb

K2
nn

b
= o�1��

This completes the proof. ✷
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We now show that Theorem 6 continues to hold if we truncate the prior to
the set �M = �η�∑i η

2
i i

2p < M�. Define γ�A� = π�A∩�M�/π��M�. Note that
d > p+ �1/2� implies that π��M� > 0 so this prior is well defined.

Theorem 7. The results of Theorem 6 also hold for the prior γ.

Proof. From Bayes’ theorem, we see that for any A,

γ�A�Yn� = π�A ∩�M�Yn�
π��M�Yn� �

Below, we will show that for every θ ∈ �M we have that π��M�Yn� = 1+oP�1�.
Thus,

γ�A�Yn� = π�A ∩�M�Yn�
1+ oP�1� = π�A ∩�M�Yn� + oP�1��

Case 1. Let An = �η� ��θ − η��2 ≤ K2
nε

2
n� where Kn → ∞ and εn is

as defined in Theorem 6. Then, γ�Acn�Yn� = π�Acn ∩ �M�Yn� + oP�1� ≤
π�Acn�Yn� + oP�1� = oP�1� since π�Acn�Yn� = oP�1� from Theorem 6.

Case 2. Let An = �η� ��θ − η��2 ≤ Kε2n� for K > 0 sufficiently small. We
showed in Theorem 6 that π�Acn�Yn� ≥ 1/2 on a set of probability tending to 1.
On this set we have γ�An�Yn� = π�An∩�M�Yn�+oP�1� ≤ π�An�Yn�+oP�1� =
1−π�Acn�Yn�+oP�1� ≤ 1−�1/2�+oP�1� = 1/2+oP�1�. Hence, with probability
tending to 1, we have that γ�Acn�Yn� ≥ 1/2.
To complete the proof, we now show that π��M�Yn� converges to 1 in prob-

ability. For any c > 0 define H�yn
 c� = Pr�∑∞
i=1�ηi − θi�2i2p > c�Yn = yn�.

Let Z1
Z2
 � � � denote iid N�0
1� random variables. Then,

H�yn
 c� ≤ 1
c

∑
i

E�i2p�ηi − θi�2�Yn = yn�

= 1
c

∑
i

E�i2p�Ti + σiZi − θi�2�

≤ 2
c

∑
i

σ2i i
2p + 2

c

∑
i

i2p�Ti − θi�2�

Now, ∑
i

σ2i i
2p =∑

i

i2p

n+ i2d ∼ 1
n�2d−2p−1�/�2d� = o�1�

since d > p+ �1/2�. Hence,

Eθ�H�Yn
 c�� ≤ 2
c

∑
i

i2pEθ�Ti − θi�2 + o�1�

= 2
c

∑
i

i2pEθ�θi�ci − 1� + cin−1/2Zi�2 + o�1�
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≤ 4
c

∑
i

i2pθ2i �ci − 1�2 + 4
n

∑
i

i2pc2i + o�1�

= 4
c

∑
i

i2pθ2i

(
i2d

n+ i2d
)2

+ 4
n

∑
i

i2pn2

�n+ i2d�2 + o�1�

∼ o�1� + 1
n�2d−2p−1�/�2d� + o�1� = o�1�

where the first term goes to zero by dominated convergence and the second
term goes to zero since d > p+ �1/2�. Hence, for every c > 0, Eθ�H�Yn
 c�� =
oP�1� which implies that Pr�∑∞

i=1�ηi − θi�2i2p ≤ c�Yn = yn� tends to 1 in
probability. Finally, note that for sufficiently small c (depending on θ) we have
that {∑

i

�ηi − θi�2i2p < c
}

⊂
{∑
i

η2i i
2p < M

}
�

This follows since
∑
i θ

2
i i

2p =M−δ for some δ > 0. Hence, if
∑
i�ηi−θi�2i2p < c

then,∑
i

η2i i
2p =∑

i

��ηi − θi� + θi�2i2p

≤ ∑
i

��ηi − θi� + �θi��2i2p

=∑
i

�ηi − θi�2i2p +∑
i

θ2i i
2p + 2

∑
i

�ηi − θi��θi�i2p

≤ ∑
i

�ηi − θi�2i2p +∑
i

θ2i i
2p + 2

√∑
i

�ηi − θi�2i2p
√∑

i

θ2i i
2p

< c+ �M− δ� + 2
√
c
√
M− δ

< M− δ

2

for c sufficiently small. Thus, Pr�∑∞
i=1 η

2
i i

2p < M�Yn = yn� tends to 1 in
probability. ✷

7. Discussion. In regular, finite dimensional models, Bayes estimators
share the same asymptotic behavior as maximum likelihood estimators if the
prior is smooth. Consequently, when the sample size is moderately large, the
choice of prior is not crucial. In particular, the posterior will be consistent
under very weak conditions.
In infinite dimensional models, the situation is quite different. As Freed-

man (1963) and Diaconis and Freedman (1986) showed, consistency is not
even guaranteed. Still, it is possible to achieve consistent posteriors as long
as the prior obeys certain regularity conditions; see Barron (1988) and Bar-
ron, Schervish and Wasserman (1998) for example. From the results in those
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papers, it is clear that there are rich sets of priors that lead to consistent
posteriors.
In this paper we have studied the question of rates of convergence. We have

seen that the choice of prior is much more delicate. Although it is too early
to draw general conclusions, it appears that the choice of prior in an infinite
dimensional problem is more difficult if one wants to achieve good rates.

APPENDIX: TECHNICAL PROOFS

Proof of Lemma 2. For any η ∈ Sn we have

Pnθ �Kn�θ
η� ≥ 2tn� = Pnθ
(
n∏
i=1

p�Yi�θ�
p�Yi�η� ≥ e2ntn

)

= Pnθ
(
n∏
i=1

(
p�Yi�θ�
p�Yi�η�

)α
≥ e2nαtn

)

≤ e−2nαtn
[
Eθ

(
p�Y�θ�
p�Y�η�

)α]n
= e−2nαtn�1+ αρα�θ
η��n

= e−2nαtnen log�1+αρα�θ
η��

≤ e−2nαtnenαρα�θ
η�

≤ e−2nαtnenαtn
= e−nαtn �

Define

Wn = ��η
yn�� Kn�θ
η� ≥ 2tn��
Let Wn�yn� = �η� �η
yn� ∈Wn� and Wn�η� = �yn� �η
yn� ∈Wn�. Then,

mn��
Yn� =
∫
e−nKn�θ
η�dπ�η�

≥
∫
Sn∩Wc

n�Yn�
e−nKn�θ
η�dπ�η�

≥ 	π�Sn� − π�Sn ∩Wn�Yn���e−2ntn �
By Fubini’s theorem,

Enθπ�Sn ∩Wn�Yn�� =
∫ ∫

I�Sn ∩Wn�yn��dπ�η�dPnθ �yn�

=
∫ ∫

I�Sn�I�Wn�dπ�η�dPnθ �yn�

=
∫
I�Sn�Pθ�Wn�η��dπ�η�

≤ π�Sn�e−nαtn �
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So,

Pnθ

(
mn��
Yn� ≤ 1

2
π�Sn�e−2ntn

)
≤ Pnθ

(
	π�Sn� − π�Sn ∩Wn�Yn��� e−2ntn ≤ 1

2
π�Sn�e−2ntn

)
= Pnθ

(
π�Sn ∩Wn�Yn�� ≥ 1

2
π�Sn�

)
≤ 2
π�Sn�

Enθ �Sn ∩Wn�Yn�� ≤ 2e−nαtn �

The last claim follows from the first Borel-Cantelli lemma. ✷

Proof of Theorem 4. Write

π�Acn�Yn� = mn�Acn ∩�n�
mn��
Yn�

+ mn�Acn ∩�cn�
mn��
Yn�

≡ a1 + a2�

Now,

a1 � exp
{
−nK

2c1ε
2
n

2

}
in probability, by Theorem 3. Apply Markov’s inequality and Fubini’s theorem
to the numerator of a2 to conclude that

Pnθ �mn�Acn ∩�cn
Yn� > e−dnε
2
n/2� ≤ ednε2n/2

∫
� n

∫
Acn∩�cn

e−nKn�θ
η�dπ�η�dPθ�yn�

= ednε2n/2π�Acn ∩�cn� ≤ e−dnε2n/2�
Thus, mn�Acn ∩�cn
Yn� ≤ e−dnε2n/2 in probability. Apply Lemma 1 to see that

mn��
Yn� � e−2Bntnπ�S�Btn�� � e−4Bntn

in probability where B = d/16. Since 4tnB ≤ 4ε2nB = dε2n/4,

a2 � e−dnε
2
n/2

mn��
Yn�
≤ e−dnε2n/4

in probability. ✷

The following lemma may be proved by induction.

Lemma 3. For r ≥ 0 and any integrable function f,∫
∑n
i=1 x

2
i≤r2

f

(√
n∑
i=1
x2i

)
dx1 · · ·dxn = rn πn/2

>�n/2�
∫ 1
0
un/2−1f�r√u�du�
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Lemma 4. Let Z1
 � � � 
Zk be independent standard Normal random vari-
ables, let ai = i−d, d > 0 and let θ1
 � � � 
 θk be real numbers. If δ > 0 then

Pr

(
k∑
i=1

�aiZi − θi�2 ≤ δ2
)

≥ ce−k2−k/2 exp

{
−

k∑
i=1
i2dθ2i

}
F�k2dδ2�k/2�

where F�·� b� is the distribution function for a Gamma random variable with
b scale parameter and c > 0 is a constant.

Proof. In what follows, we will apply the previous Lemma with the func-
tion with f�x� = e−j

2dx2 . Let Wi = aiZi − θi ∼ N�−θi
 i−2d� and let Ak =
��w1
 � � � 
wk��

∑k
i=1w

2
i ≤ δ2�. Also, define

E = exp

{
−

k∑
i=1
i2dθ2i

}
�

Then, by the previous lemma and the fact that x! ≥ xxe−x,

Pr

(
k∑
i=1
W2
i ≤ δ2

)

=
(
1
2π

)k/2
�k!�d

∫
Ak

exp

{
−1
2

k∑
i=1
i2d�wi + θi�2

}
dw1 · · ·dwk

≥
(
1
2π

)k/2
�k!�d

∫
Ak

exp

{
−

k∑
i=1
i2d�w2

i + θ2i �
}
dw1 · · ·dwk

= E
(
1
2π

)k/2
�k!�d

∫
Ak

exp

{
−

k∑
i=1
i2dw2

i

}
dw1 · · ·dwk

≥ E
(
1
2π

)k/2
�k!�d

∫
Ak

exp

{
−k2d

k∑
i=1
w2
i

}
dw1 · · ·dwk

= E
(
1
2π

)k/2
�k!�d δ

kπk/2

>��k/2��
∫ 1
0
u�k/2�−1 exp�−k2dδ2u�du

≥ E
(
1
2π

)k/2
kkd exp�−kd� δ

kπk/2

>��k/2��
∫ 1
0
u�k/2�−1 exp�−k2dδ2u�du

≥ E
(
1
2π

)k/2
kkd exp�−kd� δ

kπk/2

>��k/2��k
−dkδ−k

∫ k2dδ2
0

u�k/2�−1 exp�−u�du

≥ E exp�−dk�2−k/2F�k2dδ2�k/2�� ✷

Lemma 5. Let Z1
Z2
 � � � 
 be independent standard Normal random vari-
ables, let ai = i−d, d ≥ p, and let θ1
 θ2
 � � � be real numbers such that
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c =∑∞
i=1 θ

2
i i

2p <∞. Let δ > 0 and let N be the smallest integer such that

∞∑
j=N+1

�i−2d + θ2i � ≤ δ2/4�(A.1)

Then

Pr

( ∞∑
i=1

�aiZi − θi�2 ≤ δ2
)

≥ c′e−2cN2�d−p�

where c′ > 0.

Proof. Let Wi = aiZi − θi ∼N�−θi
 i−2d�. First note that
N∑
j=1
θ2i i

2d =
N∑
j=1
θ2i i

2pi2�d−p� ≤N2�d−p�
N∑
j=1
θ2i i

2p ≤ cN2�d−p��

Then, from Markov’s inequality and Lemma 4,

Pr

( ∞∑
i=1
W2
i ≤ δ2

)
≥ Pr

(
N∑
i=1
W2
i ≤ δ2/2

)
Pr

( ∞∑
i=N+1

W2
i ≤ δ2/2

)

= Pr

(
N∑
i=1
W2
i ≤ δ2/2

)[
1− Pr

( ∞∑
i=N+1

W2
i > δ

2/2

)]

≥ Pr

(
N∑
i=1
W2
i ≤ δ2/2

)[
1− 2

δ2

∞∑
N+1

E

( ∞∑
i=N+1

W2
i

)]

≥ 1
2
Pr

(
N∑
i=1
W2
i ≤ δ2/2

)

≥ 1
2
e−dN2−N/2e−cN

2�d−p�
F�N2dδ2�N/2�

≥ 1
2
e−2cN

2�d−p�
F�N2dδ2�N/2��

Now, (A.1) implies that N2d−1δ2 ≥ 4 ≥ 1/2 so that N2dδ2 ≥ N/2. Thus, for
large N, F�N2dδ2�N/2� ≥ 1/4. ✷

When the θi’s =0, the last lemma gives a tight bound. This is evident from
the next lemma.

Lemma 6 [Dembo, Mayer-Wolf and Zeitouni (1995)]. Let Z = ∑∞
i=1 a

2
iZ

2
i ,

where �Zi� are independently distributed according to density s�x� = Cr�x�r
exp�−x2/2� for r > −1, and ai = i−b, where Cr is a normalizing constant

lim
t→0

P�Z ≤ t2��exp�I�ψ�−1 = �2π�−1
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where

I = c′1t−2/�2b−1��1+ o�1��

ψ2 = c′2t−2/�2b−1��1+ o�1��


c′1 = �b− 1/2�
[

π/2b
sin�π/2b�

]2b/�2b−1�
and

c′2 =
[

π/2b
sin�π/2b�

]1/�2b−1� [ 2b− 1
�2b�2 sin��2b− 1�π/2b�

]
�

The following result is Lemma 2 from Diaconis and Freedman (1997a) and
is very useful in the normal means problem.

Lemma 7 [Diaconis and Freedman (1997a)]. Let b
 c and α be such that
1 < b <∞, 0 ≤ c <∞ and αb > c+ 1. Suppose that γn → ∞. Then,

lim
n→∞gn

∞∑
i=1

ic

�γn + iα�b =
∫ ∞

0

uc

�1+ uα�b du

where gn = γb−�1+c�/α
n .
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