JMLR: Workshop and Conference Proceedings 75-97

Rating Prediction with Informative Ensemble of
Multi-Resolution Dynamic Models

Zhao Zheng ZHENGZHAOZZQCSE.UST.HK
Hong Kong University of Science and Technology, Hong Kong

Tianqi Chen TQCHEN@QAPEX.SJTU.EDU.CN
Shanghai Jiao Tong University, Shanghai, China

Nathan Liu NLIUQCSE.UST.HK
Hong Kong University of Science and Technology, Hong Kong

Qiang Yang QYANGQCSE.UST.HK
Hong Kong University of Science and Technology, Hong Kong

Yong Yu YYUQAPEX.SJTU.EDU.CN
Shanghai Jiao Tong University, Shanghai, China

Abstract

The Yahoo! music rating data set in KDD Cup 2011 raises several interesting challenges:
(1) The data covers a lengthy time period of more than eight years. (2) Not only are train-
ing ratings associated date and time information, so are the test ratings. (3) The items
form a hierarchy consisting of four types of items: genres, artists, albums and tracks. To
capture the rich temporal dynamics within the data set, we design a class of time-aware
matrix/tensor factorization models, which adopts time series based parameterizations and
models user/item drifting behaviors at multiple temporal resolutions. We also incorporate
the taxonomical structure into the item parameters by introducing sharing parameters
between ancestors and descendants in the taxonomy. Finally, we have identified some
conditions that systematically affect the effectiveness of different types of models and pa-
rameter settings. Based on these findings, we designed an informative ensemble framework,
which considers additional meta features when making predictions for a particular pair of
user and item. Using these techniques, we built the best single model reported officially,
and our final ensemble model got third place in KDD Cup 2011.

1. Introduction

Recommender systems have become an indispensable tool for helping users tackle infor-
mation overload as new content (e.g., news, products) are growing at an explosive rate.
Collaborative filtering (CF) is one of the most promising technologies for recommender sys-
tems. It works by discovering the correlation between users and items based on observed
user preferences (i.e., ratings, clicks, etc.) so that unobserved user preferences can be in-
ferred from the observed ones. For example, the well-known user based algorithm first finds
the similarities between users based on their past ratings, then a target user’s rating on
a new item can be predicted from the ratings on that item from other similar users, also
known as the user’s neighborhood. Thanks to the widely publicized Netflix prize competi-

© Z. Zheng, T. Chen, N. Liu, Q. Yang & Y. Yu.

ZHENG CHEN LIU YANG YU

tion, there has been a surging interests in CF algorithm design in the research community
in recent years.

In contrast to the Netflix prize competition which deals with the movie domain, this
year’s KDD Cup 2011 (Dror et al., 2011) provides access to one of the largest music rating
data sets, which contains nearly thirty times more ratings than the Netflix movie ratings
data set. In addition to the differences in data size, we also noted several other interesting
new challenges raised by the Yahoo! music data set:

e The data set spans a very long time period of more than 6,000 days and there is a
significant number of users that have been active in the system for multiple years.
People’s tastes in music are arguably much more diverse and unpredictable than in
movies due to the much larger number of choices available. In the mean time, the
popularity of genres and artists is also changing fast. The effect of temporal dynamics
has to be carefully taken into account to cope with various drifting and transient
characteristics of users/items over such a long period of time.

e Each rating in both the training and test data sets is associated with both date
and time information. While previous work (Koren, 2009) has demonstrated the
value of considering date information, there has been no previous work that jointly
considers both date and time information in a single model. Intuitively, people’s
musical preference can naturally change over the day and people often prefer different
types of music depending on his current context/status (e.g., at home vs. at work).
Therefore, considering time in addition to date as an additional context dimension can
lead to more accurate modeling of user behaviors as we will demonstrate. In addition,
the task of rating prediction given a specific temporal context described by date plus
time is also a novel task that has not been addressed in the Netflix prize competition
or existing literature.

e Unlike traditional data sets which contain a single set of homogeneous items (e.g.,
movies), the Yahoo! music data set consists of 4 types of items: genres, artists,
albums and tracks, which are naturally linked together as a directed acyclic graph
(DAG) based on predefined taxonomical relations. Intuitively, a user’s preference for
a particular track can be highly influenced by whether he likes the singer or the genre
of the song. Similarly, if a user hates a particular artist, he can hardly rate any of this
artist’s songs highly. To capture such correlated user preference over linked items,
we also design a downward parameter sharing scheme such that the parameters of an
item lower in the taxonomy will depend on the parameters of its ancestors, but not
vice versa.

e The data set contains a huge number of items, which is nearly 30 times more than that
of the Netflix data set. As a result, although the number of ratings is much larger,
the data sparsity is actually much more severe than the Netflix data set. This also
leads a user/item population with highly diverse characteristics, which can hardly be
served using a single model. As we will show, different models or parameter settings
perform differently on particular user/item segments. To more flexibly fuse multiple
models so as to serve different user /item segments differently, we design an informative
ensemble learning strategy, which augments the model predictions with an additional

76

RATING PREDICTION WITH INFORMATIVE ENSEMBLE OF MULTI-RESOLUTION DYNAMIC MODELS

set of meta features describing various user/item characteristics, and then train a
nonlinear model to make predictions based on this representation.

To solve these problems, we have designed various kinds of extensions of the well known
matrix factorization model to handle the many unique aspects of the Yahoo! music data
set. Based on extensive experiments, we find that incorporating date, time and taxonomy
informationcan lead to significant improvement over basic matrix factorization and the
informative ensemble of a collection of models can further significantly improve upon the
best single model.

2. Preliminaries

In this section, we will give a concise overview of the matrix factorization model, which
forms the foundation of our KDD Cup 2011 solution. We will also describe some of its
recent extensions specifically designed for collaborative filtering problems. Before formally
describing the models, we first define our notational conventions. Suppose we have m users
and n items. Generally, we use u, v to denote users and ¢, j to denote items. Day and time
indices are denoted by d and t respectively. The ratings are arranged in a m X n matrix
R = ry;. In the matrix, some cells have values, the others are empty and we let S denote
the set of (u,) indices for which ratings are observed.

Using the model-based approach to recommendation, one needs to develop a parametric
model of the user ratings. Let the parameters in such a model be denoted by ©. For any pair
of user v and item 7, the model enables us to make a prediction 7,; based on the parameters
O. As in any machine learning algorithm, building recommendation models involves three
critical steps. First of all, one needs to specify the parametrization, which governs how the
prediction 7; is produced by the model parameters ©. Secondly, a learning criterion needs
to be chosen that allows us to evaluate how well a particular model fits the observed user
ratings. Finally, a learning algorithm provides the procedures for optimizing the learning
criteria in order to find the best model parameters ©*. In this section, we describe how
each of these steps are instantiated for the basic matrix factorization model, which forms
the foundation for more complicated extensions such as time and taxonomy awareness.

2.1. Matrix Factorization Model for Collaborative Filtering

Matrix factorization is one of the state of the art models for large scale collaborative filtering
as demonstrated by its success in the Netflix prize competition (Koren et al., 2009). In its
basic form, every user u and item i is associated with a vector p,, ¢ € R* and a scalar a,
and b;. The vectors p, and g; are generally referred to as the user and item factors where
as a, and b; are referred to as the user and item biases. Under this model, the predictor
Twi 1s parameterized as follows:

Tui = o(pLai + ay + by), (1)

where the function o(+) is the sigmoid function that maps any real value to a value between
0 and 1:)

T 1+ exp(—z)’

o(x) (2)

77

ZHENG CHEN LIU YANG YU

which can then be easily mapped to the scale of the Yahoo! music ratings by multiplication
with 100 so the predicted ratings would be between 0 and 100.

The model’s parameter collection © thus consists of the following {a € R™, b € R", P €
R™*k Q e R™*k }, where elements of a and b correspond to the user and item biases and
the rows of P and Q correspond to user and item factors.

2.2. Learning Criterion

The matrix factorization model is highly flexible as the number of free parameters can be
huge given a high dimensionality and this can easily cause overfitting. So a good learning
criterion should balance between the goodness of fit on the training data and the model
complexity. One particularly popular learning criterion is the following optimization prob-
lem:
min Y (ru; —7i(©))? + All0]%, 3)
(u,i)es

which is known as the regularized least squares problem. The first quantity of the objective
function is the sum of the squared differences between the predicted ratings and the true
ratings, which measures the model’s accuracy. The second quantity is known as the £2 norm,
which is the sum of squares of every parameter of the model and quantifies the complexity
of the model. The parameter A € R allows us to trade off between model accuracy and
complexity.

2.3. Learning Algorithm

As the learning objective derived in the previous section is differentiable, an algorithm based
on gradient descent would be a natural choice for optimizing this criterion. A general form
of the gradient of the objective, denoted as £, with respect to the model parameters is as
follows: iy o
Tui
— = eui - =~ + A0, 4
", D eui g (4)

u,i)ES

where e,; = (ry; — Tw;) denotes the prediction error on the pair (u,1).

One commonly used algorithm for gradient descent is the full gradient descent, where in
each step the full gradient over all training data is computed and used to update the data.
However, this was found to have slow convergence for training matrix factorization models
over large data sets. In this work, we use the other type of algorithm, which does stochastic
gradient descent (SGD) over one randomly chosen rating each time, and update the model
parameters with a learning rate «, as shown in Algorithm 1.

3. Incorporating Temporal Information

This section discusses a variety of techniques for utilizing the available date and time infor-
mation associated with each rating. The key to incorporating temporal dynamics into the
matrix factorization framework is to let the user/item factors and biases become time depen-
dent. In the following two subsections, we discuss several schemes we attempted to design
date-time dependent versions of user/item factors p,(d, t), ¢;(d, t) and biases a,(d, t), b;(d, t).

78

RATING PREDICTION WITH INFORMATIVE ENSEMBLE OF MULTI-RESOLUTION DYNAMIC MODELS

Algorithm 1: Stochastic Gradient Descent

initialize © ;
repeat
randomly draw (u,i) from S ;

@(—@—a(eui-%—k)\@);

until convergence;

3.1. Date-Time Dependent User/Item Biases

The user bias a, in basic matrix factorization is used to capture the general tendency of a
user to assign high or low ratings, which is a rather person-dependent effect. For example,
there are very picky users who rarely give high ratings and there are casual users who give
high ratings to most items they find acceptable. On the other hand, the item bias b; is used
to capture the overall popularity of an item.

The date can have the following effects on the user/item biases as first suggested in
(Koren, 2009): Firstly, a user may change their rating scale over time as they become more
adept at use rating to express personal preferences or become more picky in the music
listened to. Secondly, item popularity may change over time, which is especially true for
the highly dynamic music domain where new artists and genres quickly rise and fall whereas
a small number of classics may remain popular over time.

In addition to date, the time may also affect music ratings in the several ways. Firstly,
a user may rate differently during different hours. For example, in the day time, as one
is often busy with work at hand and less willing to spend time to rate items, a user may
mostly assign low ratings for songs that he finds really annoying as a way to filter out bad
songs. Secondly, different songs may be more (or less) popular during different hours. For
example, dance music may be more preferred at night whereas light music may be generally
more preferred in the morning.

3.1.1. BINNING BASED DATE/TIME DEPENDENT B1as MODEL

One simple approach to design date-time dependent biases is to assume date and time have
independent effects and then simply assign a separate bias value to each date and time
point. An important decision in this scheme is the granularity at which to treat data and
time. Our design is based on dividing the 6,000 days and 24 hours of a day into equal sized
bins such as every week and every 30 minutes and then designating a user/item bias for
each date bin and time bin, which leads to the following formulation:

au(d7 t) = ay + Ay, Bin(d) + Qy, Bin(t) (5)
where Bin(d) and Bin(t) denote the bin index associated with the particular date and time.

3.1.2. TENSOR BASED BiAs MODEL

There are two major drawbacks of the previous two models for modeling date-time depen-
dent user/item biases. Firstly, they are not capable of extrapolating into unseen date values

79

ZHENG CHEN LIU YANG YU

or unseen hours. More specifically, the bias at any date later than the date of the latest
rating or earlier than the first rating in the training data set can not be predicted at all.
A second drawback is that they do not consider the interaction effects between date and
time, such as songs with a happy mood are more popular at night during Christmas sea-
sons. In this subsection, we describe a tensor factorization based framework for modeling
date-time dependent user/item biases. The key idea is to treat the collections of date-time
dependent biases a,(d,t) as being represented as a 3- dimensional tensor with dimensions
corresponding to user, date and time.

au(d,t) = wf "PBin(d) T wg * 4Bin(t) +p£m(d) " 4Bin(t)> (6)

where we learn a new factor w,, for each user as well as a factor pp,q) and qpi,) for
each date bin and time bin. The user’s bias on at a specific time of a specific day is then
produced the pairwise interactions between these three factors.

3.2. Date-Time Dependent User/Item Factors
3.2.1. BINNING BASED DYNAMIC FACTOR MODEL

Making the user and item biases date/time dependent enables a model to capture the chang-
ing trend of a user or item’s ratings. However, it is not able to capture more complicated
temporal dynamics such as a user’s dynamic preferences over the item space. For example,
a user may be into Dance/Rock music when he is young but may gradually start to like
Jazz/Classical music as he grow older. Also, a user may prefer different types of music
during working hours versus during the night time. To handle such dynamic interactions
between users and items, which we refer to as second-order effects, we need to also have a
date-time dependent user factor p,(d,t), which leads to the following predictor:

Suppose each user factor is of £ dimensions, our idea is to partition the k& dimensions
into three subsets, py(d,t) = [p%, pu(d), pu(t)], where p0 € R*0 is a static portion that is
independent of date and time whereas p,(d) € R¥* and p,(t) € R¥? are two portions that
depend on date and time respectively and are implemented by dividing the time line into
bins and having a set of factors for each bin (i.e., py(d) = ppin(a))- By adjusting the values
of kg, k1 and ko, one can easily control the number of features devoted to modeling different
types of dynamic properties of the user.

While the above formulation only emphasizes capturing time dependent user properties,
we can apply the same idea to design a dynamic item factor g;(d,t). However, based on our
experiments on the data set, making the item factor time-dependent resulted in much less
improvement over a static model compared with making the user factor time-dependent.
This seems to indicate that in the music domain it is the user properties which are more
dynamic over time.

3.2.2. TiME CENTERED FACTOR

We also tried a simpler way of making the user factor time-dependent by augmenting p,
with a center decay-style factor as follows:

pult) = py + e el)

80

RATING PREDICTION WITH INFORMATIVE ENSEMBLE OF MULTI-RESOLUTION DYNAMIC MODELS

Here c(u) is the center point of user u’s time line and pq(f) is the time-centered user factor.

The factors at other time points are interpolated from the centered user factor via an
exponential decay function with a decay rate parameter 3,. [, and pz(f) is trained by
the data set. Unlike the bin based model where the parameters of individual bins are
independently learnt from each other, the time centered factor is learnt based on ratings

from the user’s entire history but with a stronger emphasis on the middle part of the history.

3.3. Session Locality

A quite common phenomenon that we have found in the KDD Cup 2011 data set is the
presence of rating sessions, in which users rate multiple items consecutively. In this work,
we define user’s rating sessions as a sequence of ratings such that any pair of consecutive
ratings are less than five minutes apart. One interesting effect we observed about rating
sessions is that while a user can have both high and low ratings, the values of the ratings
within a rating session are nevertheless highly correlated. As one way to demonstrate such
correlation, we computed the mean of the standard deviations of a every user’s full set of
ratings, which has a value of 19.38. Similarly, we also computed the mean of the standard
deviations of every identified sessions’ set of ratings, which has a much lower value of 13.85.
We refer to such temporal correlation in user’s rating behavior as session locality.

To exploit session locality in order to improve prediction accuracy on the test data, we
did some analysis and found that 72% of the ratings in test set can be found to be within
some rating sessions in the combined training and validation data, which implies that we
can use the observed ratings in the same session as a feature when predicting many of the
test ratings. To achieve this goal, we first extract all the user rating sessions and compute
a mean rating in each user session 5. Then for each rating that were included in session s,
we extend the predictor as follows:

?m' = U<bi + ay +p5%’ + ws - (TS - bu))v (9)

where a constant bias with value (rs — Bu) is added to the prediction with weight ws as a
learnable parameter.

3.4. Multi Resolution Dynamic Models

A critical design choice in both our date-time dependent factor and bias modeling is the
number of bins, which controls the granularity at which the model deal with time varying
user/item characteristics. Models with large number of bins can capture transient behaviors
of users/items more effectively but may be subject to overfitting whereas a small number of
bins can capture slowly drifting behaviors. So there seems to be a natural trade off between
granularity and generalization. Even trickier is the fact that the optimal granularity for
different users and items can be quite different and a particular setting with the best overall
accuracy can be suboptimal for some users and items. To tackle this difficulty, our solution
is to train a collection of dynamic factorizations with varying number of bins, each of which
can capture temporal dynamics with different granularity. The final prediction will then
be based on the combination of this collection of models rather than any single one. We
refer to this framework as multi-resolution dynamic factorization model. In the experiment

81

ZHENG CHEN LIU YANG YU

a0 Le7 Itrack‘ . a0 7 . Ialbuml .
25 . N 2.5p : : : :
1.0 e B | = | : < 1o i L -
osi ¢ ¢ 0 b0 os}p 4@
ool = . I T 1 0.0 i I i

0 20 40 i 60 80 100 0 20 40 60 80 100
4.0 1e7 Ial’tISt‘ | 40 1le7 | Igen rel |
30k e 30]
251 251
20 0 20
1off : 4 10

00 - I e I - I i 00 L A L m L I m

o 20 40 60 80 100 0 20 40 60 80 100

Figure 1: The Distribution of Ratings Scores on Each Category of Items

section, we systematically evaluate ways to deliberately generate and combine models with
different temporal resolutions.

4. Incorporating Taxonomical Information

One interesting property of the Yahoo! music data set is that items belong to multiple
categories, namely tracks, albums, artists, and genres. The relations among these items
naturally form a directed acyclic graph (DAG) structure, where artists are above albums,
which then contains tracks, whereas genres can annotate all the other three items. How to
utilize this taxonomical structure thus raises another interesting challenge.

We hypothesize that the hierarchical relationships between items can have the following
effect. Firstly, the user’s rating behavior on different types of items may be intrinsically
different. Secondly, a user’s preferences over two hierarchically connected items are expected
to be correlated. For example, a user who favors an artist is more likely to assign high
ratings to his songs. Similarly, a user who hates a genre rarely give good ratings on songs
in that genre. In the following subsections, we describe several further enhancements to
the proposed matrix factorization model in order to exploit these two effects caused by
taxonomy.

To verify the first hypothesis, we tried to examine the user’s rating behaviors on different
categories of items. In particular, we examine the distribution of rating values on each of
the four types of items, which are plotted in Figure 1. It can be clearly seen that users
do exhibit highly distinct rating behaviors across item types. In particular, we can note
ratings on genres are much more polarized than ratings on other types of items.

82

RATING PREDICTION WITH INFORMATIVE ENSEMBLE OF MULTI-RESOLUTION DYNAMIC MODELS

In order to see the correlations of user ratings on hierarchically connected item pairs, we
produced the following scatter plots showing user ratings on artists against the same user’s
ratings on the artist’s tracks. We randomly choose two artists with more than 1000 ratings.
Then for those users who have rated both the artist and some of his tracks, we plot a point
with x and y coordinate corresponding to the track and artist rating minus the user’s mean
rating respectively. From these plots, we can see a clear positive correlation between users’
ratings on the artist and the tracks.

Another observation we made about the KDD Cup 2011 data set is that the rating
sparsity within different categories of items are highly different. From the Table 1, we can
see that on average genres tend to receive the most ratings, followed by artists and then
albums with tracks tend to have the fewest ratings on average. Such skewed data sparsity
over different items will imply that user preference over more frequently rated items such
as genres and artists can be estimated more robustly.

Table 1: Rating Statistics on Each Type of Items

Category | Num of Items | Total Num of Ratings | Avg Num of Ratings
Genre 992 13,829,235 13,940
Artist 27,888 74,985,515 2,688
Album 88,909 48,485,593 545
Track 507,172 119,503,892 235

In the following two subsections, we describe techniques for extending both the biases
and factors of the matrix factorization model that try to capitalize on such patterns related
to taxonomies.

4.1. Taxonomical Bias

To capture the effect that a user tends to rate different types of items differently, we augment
the user bias a, with 4 additional biases for track, album, artist and genre, which adjusts
the predicted rating value based on the type of the item. To exploit the correlation between
ratings on artists with ratings on other items, we conducted some further analysis on the
data composition. Note that while the training data contains ratings on all four types of
items, the validation and test data consists exclusively of ratings on tracks only. Moreover,
we also found that for 15% of the ratings on tracks, the user’s rating on the track’s artist
is already known. This provides an opportunity to use the artist rating as another bias
when predicting ratings on albums and tracks. In particular, this leads to the following
parametrization for predicting track and album ratings:

Tui = U(bz + ay + Qy,Cat(i) +w; (Tu,A’rt(i) - Eu) + pZQi)7 (10)
where Cat(i) and Art(i) denote the category and the artist of item i respectively. The artist
bias w;(ry, Are(s) — bu) is only used when 7, 4,4(;) is already known and an additional item

specific parameter w; is learnt to capture the extent to which a rating on item ¢ correlate
with the rating on its corresponding artist.

83

ZHENG CHEN LIU YANG YU

100 T T T T T T T T T

80

B0

201

Artist Rate

B0 F

B0 L L I L L L L L L LNy

Track Rate

100 T T T T T T T T

401

201

Artist Rate
o
T

20F

Aol

B0 F

a0k J

100 . . 1 1
-ijoo 80 B0 40 20 1] 20 40 B0 a0 100

Track Rate

(b)

Figure 2: Correlation between Artist Ratings and Track Ratings.

84

RATING PREDICTION WITH INFORMATIVE ENSEMBLE OF MULTI-RESOLUTION DYNAMIC MODELS

4.2. Taxonomical Factorization

In addition to extending the bias component with taxonomy information, we can also cap-
ture the correlation between artist ratings and album/track ratings through coupling the
latent factor of an artist with those of his albums and tracks. This leads to the following
parametrization for predictors on tracks and albums:

?ui :U(au"i_bi"i_pz;(w'qi"i_(l_w)'QArt(i)))> (11)

where the parameter w € [0, 1] controls the relative importance of the target item’s factor
versus its artist’s factor. Using this parametrization, the factors of both the track/album
and its artist need to be updated when we process a track/album rating. The artist factor
serves as the base feature or prior knowledge for the factors of all the albums and tracks of
this artist.

5. Other Extensions

5.1. Integrate Neighborhood Information

The traditional neighborhood methods focus on computing the relationships between items
or, alternatively, users. They are most effective at detecting very localized relationships and
base predictions on a few very similar neighbors, but they may fall short when there are
no or few observed ratings within the neighborhood. In contrast, the latent factor model
is effective at capturing global information and has a much better generalization capability
due to its capability to more abstractly represent user/items via learnable parameters.

The neighborhood-based prediction model can be easily combined with the matrix fac-
torization model additively:

~ . _1 _
Pui = U<au b+ g+ IN(w i k)72 Y wi(ruy — ?”u))- (12)
JEN (u,i;k)

Here the set N(u,i; k) consists of all the items that are selected as k-nearest neighbors of
the item ¢ and have been rated by the user u. Traditional neighborhood methods rely on
some arbitrary similarity metric such as Cosine or Pearson Correlation Coefficient to define
the parameters w;;. In this work, we used a shrunken variant of Pearson Correlation. We
treat w;; as free parameters which are learnt together along with the matrix factorization
model parameters as first suggested by (Bell and Koren, 2007). During computation, we
only need to store and update the parameters for k-nearest neighbors of each item instead
of all the item pairs, which results in k x n parameters where n is number of items. The
k-nearest neighbors are precomputed using a map-reduce cluster (Pearson Coefficient as
metric). Then we precompute N (u,i;k) on a single machine for each rating record. With
the precomputed information, we can efficiently train the model using the method described
in Section 7.

The neighborhood-based component of our model can also take time into account by
emphasizing the user’s more recent ratings with an exponentially decay time weighting

85

ZHENG CHEN LIU YANG YU

function. The idea is shown as follows

~

Tui; =0 <au +b; + pf%

FINiR) Y el —b,) 13)
JEN (u,i;k)

At; is the amount of time between the time of r,; and the prediction time. o, is initialized
with 0 and trained by the data set. This setting can make the recent history contribute
more influence over the prediction, and yield better prediction.

5.2. Incorporating Implicit Feedback

In general, implicit feedback can refer to any types of actions users performed on items
other than ratings. Implicit feedback is a less precise indicator of user preferences but is
generally more abundant and easier to obtain. For music recommendation, ideally the user’s
listening history such as how many times he listened to a song can be a very useful type of
implicit feedback. Unfortunately, such information is not available in the KDD Cup 2011
data set. Instead, we consider another type of simple implicit feedback: whether a user
rated an item or not. This type of implicit feedback allows us to utilize the test data, which
consists of no ratings, in addition to the training data. To incorporate the information of
implicit feedback, we adjust our estimation function as follows:

o _1
Fui = 0 (@ + b+ (0 + 1R Y y])ar), (14)
JER(u)
where R(u) denote the set of items that are rated by the user u. Every item j is assigned

a feature vector y; with the same dimension £ as the user/item factors py, ¢;. |R(u)|_% is

an empirical parameter for normalization of implicit feedback.

Equation 14 shows the implicit feedback extension to basic matrix factorization. We
point out that the extension to other models (e.g. neighborhood model) is straightforward.
In the restof the paper, we will also show extensions over basic matrix factorization for
simplification.

6. Learning with Preference Drift via Importance

Our analysis on the composition of the training and test data of the Yahoo! music data set
reveals that all the ratings of a particular user in the test data are dated on or after the
last day of their rating in the training and validation data. Furthermore, we also find that
the validation data are all dated later than the training data as well. This indicates that
the evaluation of this track actually emphasizes predicting each user’s latest preferences.
Given the lengthy period of time covered by the training data, it is important to inform
the model learning strategy to focus more on the latest data rather than equally treating
both historical and recent data. It should be noted that the model has already incorporated
some mechanisms for supporting date-time awareness, which should be able to remove the
global influence of certain non-stationary data characteristics within particular time periods.

86

RATING PREDICTION WITH INFORMATIVE ENSEMBLE OF MULTI-RESOLUTION DYNAMIC MODELS

———-= Question —-—-— ‘
! ' "User Factor! === Meied User Factor - ---
ser Factor !
! U 1 Merging 1 l. ...:
il |] et e
i —II——?:— - -~~~ Merged Item Factor- -
em Factor
i | Merging 1 E......
[R 2 el i ' mmmmmmmmmmmmmmmmme e i—Answer—;
R I e l bD— r, |
: |
- ---User Features - - -'- - - - - I 1—- Item Features - - ---1-- ! Pt Global Features ------- . —————
DDDD m} ‘ ’OOOO--‘O’
i 1 \ i
.________________________J .________________________J e e
—————— User Feature Bias ------~ \~-----Item Feature Bias ------~ - ---- Global Feature Bias -----+
! 1
' [l
' T
' 1
i

Figure 3: Feature-based matrix factorization

However, our training objective is still to maximize the model’s accuracy over all training
data. Therefore, we should adapt the training objective to make it cost-sensitive.

One common method to implement cost-sensitive model learning is simply to assign a
weight to each training rating instance based on its recency and uses a weighted sum of
prediction errors in the objective function (Ting, 1998). Intuitively, a user’s more recent
ratings should be assigned a larger weight whereas his older ratings should have a smaller
weight. As incorporating such instance weights does not change the additive form of the
objective, the resulting stochastic gradient update rule can be easily adapted by scaling the
step length v with an instance-dependent weight w;;. Unfortunately, we find this simple
technique does not work well with the stochastic gradient descent algorithm and does not
led to improved performance on the test set.

The basic stochastic gradient descent algorithm can be regarded as randomly sampling a
rating instance from a uniform distribution over the available training data in each update
step. This inspires us to design an alternative strategy for cost-sensitive learning based
on importance sampling using a nonuniform distribution over the training data (Zadrozny
et al., 2003; Sheng and Ling, 2007). In particular, we let the probability of each rating being
sampled be proportional to its recency-based weight, which naturally lets the algorithm
more frequently update its parameters based on more recent data. While there exist many
possible design choices for the recency weight, we nevertheless find the following simple
strategy to work very well. More specifically, we sample the validation data for each user
three times more often than the ratings in the training data. Using this simple importance
sampling technique, we have achieved RMSE improvement ranging between 0.1 to 0.3 for
various different models.

7. Implementation

In implementing the ideas proposed in previous sections, we face two major problems: (1)
There are so many variants of models we want to experiment with. (2) The Yahoo! music
data set is so big that we must design a scalable solution. In this section, we will discuss
how to solve these problems.

87

ZHENG CHEN LIU YANG YU

We have described many variants of matrix factorization models in the previous sections.
Instead of implementing each variant one a time, we design a toolkit to solve the following
abstract model in Equation 15

y(oa,ﬂ,’y) :f(,u + Zbg.g)fyj + Zbg‘U)O‘j + Z b;i)ﬁj
J j J

T
+{ Dopies | | Db)
j j

The input consists of three kinds of features < «, 5,y >, we call « user features, [item fea-
tures and «y global features. « describes the user aspects that are related to user preference.
£ describes the item properties. v describes some global bias effects. Figure 3 shows the
idea of the model. We find that most of the models we described in the previous sections
can fit into this abstract framework.

A similar idea has been proposed before with factorization machines. Compared with
their approach, our model divides the features into three types, while there is no distinction
of features in libFM. This difference allows us to include a global feature that does not need
to be taken into the factorization part, which is important for bias features such as user day
bias and neighborhood-based features. The division of features also gives hints for model
design. For global features, we shall consider what aspect may influence the overall rating.
For user and item features, we shall consider how to describe user preference and item
property better. Basic matrix factorization is a special case of Equation 15. For predicting
user/item pair < u,i >, we can define

1 h=u :{1 h=i (16)

Vzwaah:{o h#u’ﬁh 0 h?él

If we want to integrate neighborhood information, simply redefine v as Equation 17. Here
index is a map that maps the possible pairs in the k-nearest neighborhood set to consecutive
integers.

IN (i) . (17)

~rwil b index(4,), j € N(u,i;k)
Th =
otherwise

We can also include time-dependent user factors by defining new «. Taxonomy information
can be integrated into 5. We have released the source code of our toolkit' 2. Using the
toolkit, we can implement most of the described ideas simply by generating features.

8. Combining Different Models

Different model design choices and parameter settings may have their respective pros and
cons. The single model with the best overall performance over a large population of users

1. http://apex.sjtu.edu.cn/apex_wiki/svdfeature
2. We make the ready-to-run experiment scripts for the most effective models available at
http://apex.sjtu.edu.cn/apex_wiki/kddtrackl

88

RATING PREDICTION WITH INFORMATIVE ENSEMBLE OF MULTI-RESOLUTION DYNAMIC MODELS

and items can hardly be the most accurate on every instance. As a result, combining the
predictions of multiple models to form a final prediction (aka. ensemble) can often yield
much more accurate predictions compared with any individual modelsEnsemble methods
were key to the success of the Netflix prize winning solutions (Jahrer et al., 2010) as well as
the winning solutions of most previous KDD Cup contests. In this section, we first describe
the basic stacking framework for combining multiple models. We then conduct a series of
detailed error analyses to identify a set of conditions under which different models would
perform more or less effectively. Based on such findings, we describe a novel information
ensemble learning framework which augments the normal stacking model with an additional
set of meta-feature.

8.1. Stacking-based Ensemble

To use stacking methods to combine different models, we first build a set of models (i.e.,
component models) using the original training data and then learn another regression model
with the component models’ predictions as input features using an additional set of valida-
tion data (Breiman, 1996). The training instances for the stacking model is of the format
(<70 70 7 > 1y), where 7, denote the prediction for (u,i) pair by the t-th model.
Once the regression model for model combination is learnt, the component models are then
retrained using the combined training and validation. In the end, the ensemble regression
model is used to combine component models’ predictions on the test data to make the final

predictions.

8.2. Informative Ensemble with Meta Features

The stacking model presented earlier applies the same set of weights to combine different
component models irrespective what the users and items are. However, it would be inter-
esting to investigate whether different models perform more or less effectively under certain
conditions. For example, the empirical study carried out by Cremonesi et. al. (Cremonesi
et al., 2010) demonstrated that a matrix factorization model with more latent factors tends
to perform better on tail items (i.e., items with few ratings) but may be less accurate on
popular items due to over-fitting. In this section, we conduct detailed error analysis on the
performance of various models and try to identify specific conditions under which different
models or parameter settings would systematically work better or worse. We then describe
an extension of the stacking model called informative ensemble, which introduces a set of
additional features to describe the conditions based on which the component models can be
more effectively combined.

8.2.1. EFFECT OF REGULARIZATION

The regularization controlled by parameter A is used to guard against overfitting when
learning with high dimensional models. We conduct a set of experiments to study if there
is any inherent trade off in choosing between weak and strong regularization. In particular,
we want to see if these two parameters have different effects on head vs. tail items and
heavy vs. light users. We construct user and item segments based on the number of ratings
associated with a user or item, and then try to measure the performance within each segment
separately as we vary A\. We choose the basic matrix factorization model Equation (1) as

89

ZHENG CHEN LIU YANG YU

the underlying algorithm and the results were plotted in Figure 4 below. In Figure 4-(a),
bin 1 contains the set of users with the fewest ratings whereas bin 4 contains those users
with the most ratings. In Figure 4-(b), bin 1 contains the set of items with the fewest
ratings whereas bin 4 contains those items with the most ratings. From the results, we can
clearly see that regularization has a very different effect on different bins. For bin 1, a more
strongly regularized model tends to work better whereas for the other bins, a moderate
regularization strength tends to produce the optimal performance.

8.2.2. EFFECT OF TAXONOMY AWARENESS

In section 4, we introduced several techniques for exploiting the correlation between user
preferences on an artist and his albums/tracks. Since artists are more frequently rated in the
Yahoo! Music data set, user preference on artists can often be more reliably predicted. We
hypothesize that considering a user’s preference for the artist should be most useful when
making predictions on tracks and albums with few ratings. To see if taxonomy awareness
could have distinct effect on tracks with many or few ratings, we vary the parameter w in
Equation (11) to observe its effect on different item segments, which is plotted in Figure 5.
We can see the performance in different bins did exhibit distinct trends with respect to w.
On the least rated items, a larger w value, which enforces stronger taxonomical correlation,
tends to produce better results, whereas on the frequently rated items, performance only
gets worse as w increases.

8.2.3. STACKING WITH META FEATURES

As shown in the above experiments, different kinds of models and parameter settings appear
to work more or less effectively on users and items under different conditions. Thus it is
desirable to have an ensemble method that can adjust how different component models are
combined based on the properties of the pair of user and item for which prediction needs
to be made. To achieve such a goal, we propose to augment the input representation of
training instances for the stacking model with an additional set of meta features, each of
which describes a certain property of the user or item. So the instances to the ensemble
model would be in the form (< fi1, fa, oo, fpy 7oy 7oy ooy T >, 14i), where f1, fo, ..., f, are
the p meta features. We refer to this stacking framework based on both component model
predictions and meta features as an informative ensemble. In the ensemble model used in
our final solution, there are a total of 16 meta features, which are listed in Table 2. In the
experiment section, we will report detailed results on the degree of improvement resulting
from including these meta features.

9. Experiments

In this section, we empirically evaluate the effectiveness of various techniques proposed in
the paper. We measure the performance in terms of root mean squared error (RMSE).
Given a test set .S consisting of held out user ratings, the RMSE is computed by:

; Tui — ?uz 2
RMSE = \/ 2 (uies ‘(5 * (18)

90

RATING PREDICTION WITH INFORMATIVE ENSEMBLE OF MULTI-RESOLUTION DYNAMIC MODELS

C=0.002

C=0.004
7+

il

c=0.008

265 —

RMSE

% 8

Different Bin

(a)

28 T T T T

B oo
25| L] c=0004
[S

2r

RMSE

26

Differant Bin

(0)

Figure 4: Effect of Regularization on the number of ratings associated with item and user

91

ZHENG CHEN LIU YANG YU

X5 I:l We=0.004 —
2B —
&
9 x5k —
g
et o —
a5 —
24

Different Bin

Figure 5: Effect of Taxonomy Awareness on Items Segmented by Number of Ratings

So a lower RMSE value corresponds to higher prediction accuracy. In all the experiments
hereafter, the reported RMSE values were measured on the Testl set provided by the KDD
Cup 2011 organizers.

9.1. Single Model Experiments

In this section, we conduct experiments to evaluate the effectiveness of the various extensions
to the basic matrix factorization (MF) model in Equation (1) using the Yahoo! Music data.
The lowest RMSE obtained by a MF model is 23.4881. For each of the extensions listed
in Table 3, we report its best performance as well as the amount of improvement over MF.
This allows us to see the usefulness of each of these individual tricks. As can be seen,
considering temporal information resulted in the most significant improvement. Date and
session features are more useful than time.

Note that the various extensions can be easily combined additively into a single model
and the parameters introduced by different tricks could be learnt jointly via the regularized
least squares model. We have tried many different combinations of these extensions and
found the one shown in the last row of Table 3 to perform best; this is our best single model.
For all the single model experiments, we used different regularization constants, and the
regularization constant was fixed at 0.004. The learning rate was set as 0.005.

92

RATING PREDICTION WITH INFORMATIVE ENSEMBLE OF MULTI-RESOLUTION DYNAMIC MODELS

Table 2: Meta Features Used in the Informative Ensemble

1D Type Feature Description

1 Numeric | Number of ratings of the user

2 Numeric | Number of ratings of the item

3 Numeric | Mean rating of the user

4 Numeric | Mean rating of the item

5 Numeric | Variance of the ratings of the user

6 Numeric | Variance of the ratings of the item

7 Numeric | Number of days on which the user have ratings in the training data

8 Numeric | Number of days between the user’s first and last rating in the training
data

9 Binary Whether the user has any ratings on the artist of the track in the training
data

10 Binary Whether the user has any observed ratings in the session of the target
rating

11 Binary Whether the user has any observed ratings on the day of the target
rating

12 Binary Whether any nearest neighbors of ¢ have been rated by «

13 | Categorical | Type of the item ¢, which may be genre, artist, album and track

Table 3: Summary of Proposed Extensions to Matrix Factorization

ID | Name Reference RMSE | % Improvement

A | bin based date bias Equation (5) 22.89 2.50

B | bin based time bias Equation (5) 23.21 1.15

C | tensor based date bias (date only) Equation (6) 22.67 3.46

D | tensor based time bias (time only) Equation (6) 22.67 3.47

E | date dependent factor Equation (7) | 22.70 3.33

F | time dependent factor Equation (7) 22.81 2.87

G | date-centered user factor Equation (8) 23.17 1.35

H | session bias Equation (9) 23.20 1.22

I | taxonomical bias Equation (10) | 23.35 0.58

J | taxonomical factorization Equation (11) | 23.44 0.18

K | neighborhood model (k=10) Equation (12) | 23.30 0.79

L | time-dependent neighborhood model (k=10) | Equation (13) | 23.31 0.73

M | implicit feedback Equation (14) | 22.89 2.51

N | MF+C+D+E+F+H+I1+J+M+L 22.09 5.94

93

ZHENG CHEN LIU YANG YU

Table 4: Models with Different Temporal Resolutions

bin size (date factor) | bin size (time factor) | bin size (date bias) | bin size (time bias) | RMSE
150 days 2 hours 10 days 20 mins 22.40
300 days 4 hours 10 days 20 mins 22.47
600 days 8 hours 10 days 20 mins 22.59
150 days 2 hours 20 days 40 mins 22.44
300 days 4 hours 20 days 40 mins 22.48
600 days 8 hours 20 days 40 mins 22.66
150 days 2 hours 40 days 60 mins 22.49
300 days 4 hours 40 days 60 mins 22.53
600 days 8 hours 40 days 60 mins 22.72

Table 5: Combination of Multi-Resolution Dynamic Models

Scheme RMSE

LR 22.55

LR with meta feature 22.50
GBRT 22.21

GBRT with meta feature | 21.87

9.2. Ensemble Experiments

We also conducted several groups of experiments evaluating various techniques related to
ensembles. We have tried both linear regression (LR) and the gradient-boosted regression
tree (GBRT) as the learning algorithms used in the stacking model. The LR model linearly
combines different component models while the GBRT model combines the input features
nonlinearly.

9.2.1. ENSEMBLE OF MULTI-RESOLUTION DYNAMIC MODELS

As we have noted in section 3.4, an important parameter in the tensor-based bias model
Equation (6) and the dynamic factor model Equation (7) is the number of bins to divide
the time line into, which controls the temporal resolution of the model. As we have argued,
models with fine and coarse resolutions tend to work better or worse under different con-
ditions, so we suggest combining a collection of models with different temporal resolutions
which complement each other. To demonstrate the effectiveness of the idea of ensemble of
multi-resolution dynamic models, we built a set of models with varying temporal resolutions
as listed in Table 4 and measured each individual model’s performance. We also compare
the different methods for combining these models with results reported in Table 5. It can
be seen that while the individual models with different resolutions appeared to have similar
performance, combining them nonlinearly via GBRT with meta features reduces the best
single model’s RMSE by 0.53 or more than 2%.

94

RATING PREDICTION WITH INFORMATIVE ENSEMBLE OF MULTI-RESOLUTION DYNAMIC MODELS

Table 6: Component Models Used in the Ensemble

ID | Description RMSE
1 | matrix factorization with category and artist bias (100 latent factors) 23.75
2 | matrix factorization with category and artist bias (200 latent factors) 23.54
3 1 + category-artist bias+taxonomy aware predictor (w = 0.1) 23.45
4 1 + category-artist bias+taxonomy aware predictor (w = 0.2) 23.45
) 2 + category-artist bias+taxonomy aware predictor (w = 0.1) 23.60
6 | 2 + category-artist bias+taxonomy aware predictor (w = 0.2) 22.83
7 | 2 + tensor date bias (binsize 10 days) and piecewise date linear fac- | 23.15

tor(binsize 150 days)
8 | 2 + tensor date bias (binsize 20 days) and piecewise date linear fac- | 22.71
tor(binsize 300 days)
9 | 2 + tensor date bias (binsize 40 days) and piecewise date linear fac- | 22.84
tor(binsize 600 days)
10 | 7 + implicit feedback 22.75
11 | 2 + tensor date-time bias (binsize 10 days, 15 mins) and piecewise date- | 22.83
time linear factor(binsize 150 days, 2 hours)

12 | 2 + tensor date-time bias (binsize 20 days, 30 mins) and piecewise date- | 22.70
time linear factor(binsize 300 days, 4 hours)
13 | 2 + tensor date-time bias (binsize 40 days, 1 hour) and piecewise date- | 23.59
time linear factor(binsize 600 days, 8 hours)
14 | model N in Table 3, 512 latent factors 22.06

Table 7: Combination of Heterogeneous Models

Scheme RMSE

LR 22.77

LR with meta feature 22.50
GBRT 21.52

GBRT with meta feature | 21.26

9.2.2. ENSEMBLE OF HETEROGENEOUS MODELS

In this previous section, we have the effectiveness of homogeneous ensemble, or combination
of instances of the same model learnt with different parameters settings. In this section,
we further experiment with the combination of heterogeneous models, which yielded the
best performance. Our final ensemble model consists of a total 14 models, which are a
superset of the models tested in the previous subsection. We tried to create a collection of
highly diverse models by deliberately creating models with different subsets of tricks listed
in Table 6 as well as including several versions of the same model trained with different
parameter settings. Again, we compare different methods of combining models as shown in
Table 7. We can see that the nonlinear GBRT model is much more effective than the linear
regression model, and incorporating the meta features could further reduce the RMSE by
more than 0.2, which is about 1% improvement.

95

ZHENG CHEN LIU YANG YU

10. Conclusion

In this paper, we describe the design of matrix factorization models and ensemble learning
methods for accurate rating prediction on the Yahoo! music data used for KDD Cup
2011. We study different extensions of matrix factorization to handle temporal dynamics
and taxonomical information. We also propose a meta-feature based ensemble learning
framework for combining multiple models. Experimental results on KDD Cup 2011 data
sets demonstrated the effectiveness of the various techniques proposed.

Acknowledgments

The team is supported by grants from NSFC-RGC joint research project HKUST 624/09
and 60931160445. We greatly appreciate the computing support from Professor Lin Gu.

References

R. Bell and Y. Koren. Scalable collaborative filtering with jointly derived neighborhood
interpolation weights. In ICDM, pages 43-52, 2007.

Leo Breiman. Stacked regressions. Mach. Learn., 24:49-64, July 1996. ISSN 0885-6125. doi:
10.1023/A:1018046112532. URL http://portal.acm.org/citation.cfm?id=230972.
230977.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender algo-
rithms on top-n recommendation tasks. In RecSys, pages 39-46, 2010.

Gideo Dror, Noam Koenigstein, @ Yehuda Koren, and Markus Weimer.
The Yahoo! Music Dataset and KDD-Cup’l11. In KDD-Cup Workshop 2011, 2011.

Michael Jahrer, Andreas T6scher, and Robert Legenstein. Combining predictions for ac-
curate recommender systems. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD 10, pages 693702, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0055-1.

Yehuda Koren. Collaborative filtering with temporal dynamics. In Proc. of SIGKDD 2009,
2009.

Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. IEEE Computer, 42(8):30-37, 2009.

Victor S. Sheng and Charles X. Ling. Roulette sampling for cost-sensitive learning. In
ECML, pages 724-731, 2007.

Kai Ming Ting. Inducing cost-sensitive trees via instance weighting. In Proceedings of the
Second FEuropean Symposium on Principles of Data Mining and Knowledge Discovery,
PKDD 98, pages 139-147, London, UK, 1998. Springer-Verlag. ISBN 3-540-65068-7.
URL http://portal.acm.org/citation.cfm?id=645802.669183.

96

http://portal.acm.org/citation.cfm?id=230972.230977
http://portal.acm.org/citation.cfm?id=230972.230977
http://portal.acm.org/citation.cfm?id=645802.669183

RATING PREDICTION WITH INFORMATIVE ENSEMBLE OF MULTI-RESOLUTION DYNAMIC MODELS

Bianca Zadrozny, John Langford, and Naoki Abe. Cost-sensitive learning by cost-
proportionate example weighting. In Proceedings of the Third IEEE International Con-

ference on Data Mining, ICDM ’03, pages 435—, Washington, DC, USA, 2003. IEEE

Computer Society. ISBN 0-7695-1978-4. URL http://portal.acm.org/citation.cfm?
1d=951949.952181.

97

http://portal.acm.org/citation.cfm?id=951949.952181
http://portal.acm.org/citation.cfm?id=951949.952181

	Introduction
	Preliminaries
	Matrix Factorization Model for Collaborative Filtering
	Learning Criterion
	Learning Algorithm

	Incorporating Temporal Information
	Date-Time Dependent User/Item Biases
	Binning based Date/Time Dependent Bias Model
	Tensor based Bias Model

	Date-Time Dependent User/Item Factors
	Binning based Dynamic Factor Model
	Time Centered Factor

	Session Locality
	Multi Resolution Dynamic Models

	Incorporating Taxonomical Information
	Taxonomical Bias
	Taxonomical Factorization

	Other Extensions
	Integrate Neighborhood Information
	Incorporating Implicit Feedback

	Learning with Preference Drift via Importance
	Implementation
	Combining Different Models
	Stacking-based Ensemble
	Informative Ensemble with Meta Features
	Effect of Regularization
	Effect of Taxonomy Awareness
	Stacking with Meta Features

	Experiments
	Single Model Experiments
	Ensemble Experiments
	Ensemble of Multi-Resolution Dynamic Models
	Ensemble of Heterogeneous Models

	Conclusion

