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Rating scales as outcome measures for clinical trials in 
neurology: problems, solutions, and recommendations
Jeremy C Hobart, Stefan J Cano, John P Zajicek, Alan J Thompson

Have state-of-the-art clinical trials failed to deliver treatments for neurodegenerative diseases because of shortcomings 
in the rating scales used? This Review assesses two methodological limitations of rating scales that might help to 
answer this question. First, the numbers generated by most rating scales do not satisfy the criteria for rigorous 
measurements. Second, we do not really know which variables most rating scales measure. We use clinical examples 
to highlight concerns about the limitations of rating scales, examine their underlying rationales, clarify their 
implications, explore potential solutions, and make some recommendations for future research. We show that 
improvements in the scientifi c rigour of rating scales can improve the chances of reaching the correct conclusions 
about the eff ectiveness of treatments.

Introduction
A recent review of UK health research funding1 emphasised 
the importance of translational research and highlighted 
an internationally recognised problem: success in basic 
science rarely leads to eff ective treatments. Why have state-
of-the-art clinical trials failed to deliver treatments? Are all 
candidate molecules that work in controlled laboratory 
settings worthless when studied in human beings? 
Conversely, do some of the methods used to test the 
effi  cacy of treatments hinder advances in basic science?

In this Review we focus on the latter point and, in 
particular, the rating scales used to measure the health 
outcomes of trials for the treatment of neurological 
diseases, which are increasingly selected as primary or 
secondary outcome measures in clinical trials.2–6 Rating 
scales are, therefore, the main dependent variables on 
which decisions are made that infl uence patient care and 
guide future research; the adequacy of these decisions 
depends directly on the scientifi c quality of the rating 
scales.

Two developments indicate an appreciation of this fact: 
the increased application of the science of rating scales 
(psychometrics) for the measurement of health outcomes 
in clinical neurology; and the impending US Food and 
Drug Administration’s (FDA) scientifi c requirements for 
patient-reported rating scales in clinical trials.7,8 The FDA 

requirements are likely to be emulated by the European 
Medicines Agency (EMEA)9 and will be pertinent to all 
rating scales, not just those that are patient-reported.

Our opening remarks might suggest that we think that 
published data from clinical trials are littered with type-2 
errors due to poor rating scales. We do not know whether 
this is the case; nor do we know the frequency of type-1 
errors that arise from problems with rating scales. We do 
know, however, that the reliability, validity, and 
responsiveness of diff erent scales will infl uence their 
ability to estimate accurately the eff ect of a disease, to 
detect clinical change, and will have implications for 
calculations of sample size.10 As such, the diff erences 
among rating scales have the potential to infl uence the 
outcome of clinical trials (panel 1).

Therefore, clinicians need to ensure that rating scales 
are fi t for purpose, and maximising the scientifi c rigour 
of rating scales improves the chances of coming to the 
correct conclusion about the effi  cacy of a treatment. On 
this basis, a fundamental requirement of rigorous clinical 
trials is that the numbers generated by rating scales 
satisfy established scientifi c criteria as measurements of 
explicit, clinically meaningful variables.

A review of the subject of rating scales as outcome 
measures is, therefore, timely. We introduce the basic 
principles of the mechanics of rating scales and the 
limitations of the data derived from them. We discuss the 
benefi ts of moving to new psychometric methods and 
make recommendations to bring rating scales into line 
with what they measure. We highlight two methodological 
limitations that require attention to ensure that state-of-
the-art clinical trials are underpinned by state-of-the-art 
measurements: the fi rst limitation is that the numbers 
generated by most rating scales do not satisfy criteria as 
rigorous measurements; the second limitation is that we 
do not really know what variables most rating scales are 
measuring. These facts have great potential to undermine 
clinical trials, patient care, and research. The extent to 
which the limitations of rating scales are to blame for the 
failure of clinical trials to deliver treatments is unknown. 
However, our review highlights the potential contribution 
of rating scales and the way their data are analysed. 
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Panel 1: The DATATOP study

The study of selegiline for Parkinson’s disease in the DATATOP study11 is an excellent 
example of how the quality of a rating scale might infl uence the results of a study. The 
problem with the DATATOP study was the determination of the mechanisms responsible 
for the apparent delay to needing treatment with levodopa in patients treated with 
selegiline: was selegiline neuroprotective or did the improvement in the symptoms of 
Parkinson’s disease mask ongoing neurodegeneration?12 Unfortunately, the unifi ed 
Parkinson’s disease rating scale (UPDRS), the primary outcome measure in the DATATOP 
study, confounds symptoms with disabilities. Thus, the validity of the UPDRS scores as 
measurements is likely to be more problematic than its sensitivity to change. Because the 
UPDRS was developed without established techniques of rating scale construction, and its 
evaluation to date is incomplete, this supports the argument for higher standards of scale 
construction and evaluation.
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Basis of rating scales as outcome measures
Some variables (eg, height and weight) can be measured 
directly. Other variables (eg, disability, cognitive function, 
and quality of life) are measured indirectly by how they 
manifest; therefore, we need a method to transform the 
manifestations of these “latent” variables into numbers 
that can be taken as measurements.13

Rating scales are a means to measure latent variables, 
and two types of rating scale are commonly used in 
neurology: single item scales (eg, Ashworth scale 
[fi gure 1],14 Kurtzke’s expanded disability status scale 
[EDSS],15 modifi ed Rankin scale,16 Hauser ambulation 
index,17 and Hoehn and Yar scale18) and multiple item 
scales (eg, Rivermead mobility index [table 1, fi gure 2],19 
Barthel index,20 and functional independence measure21).

Each type of scale has advantages and disadvantages. 
Single item scales generate scores that clinicians can 
easily identify with and communicate (eg, most 
neurologists recognise that someone with an EDSS of 
6·5 can walk about 20 metres with two sticks). However, 
single item scales are scientifi cally weak because they 
have poor reliability, poor validity, and poor 
responsiveness. The low reliability is because single 
items are associated with substantial random error, and 
adequately high levels of reproducibility are hard to 
achieve.22 Poor validity arises because it is diffi  cult to 
represent a complex construct, such as spasticity, 
disability, cognitive function, or quality of life, with a 
single question.22,23 As such, single items are often 
ambiguous. For example, the EuroQol24 question “Rate 
you own health state today” does not provide a frame of 
reference for interpretation. Consequently, diff erent 
people bring diff erent frames of reference, and it is an 
ambiguous question.

The limited responsiveness of single item scales is due 
to the division of wide variables into only a few levels 
(fi gure 1). As such, each level represents a thick band of 
the continuum. This also contributes to limited reliability 
because, by defi nition, people cannot be localised 
precisely on the continuum; rather, they are located 
somewhere within a band. The theoretical limitations of 
single item scales have been confi rmed empirically.25–31

The problems with single item scales led to the 
increased use of multiple item scales, where the scores 
from a set of items are combined to give a single value. 
The theory is clinically sensible:22 the combination of 
multiple items reduces random error; hence, reliability is 
improved. Multiple item scales enable complex variables 
to be broken down to their component parts. Thus, 
validity, responsiveness, and precision are improved 
because the continuum is divided into more parts. The 
theoretical advantages of multiple item scales are 
supported by empirical evidence.26,32–34

However, although multiple item scales are scientifi cally 
strong, they generate less clinically tangible scores. For 
example, what does a score of 50 mean in a disability 
scale that ranges from 0 to 100?

Statements about the relative scientifi c adequacy of 
single item and multiple item scales can be supported by 
theoretical reasoning and empirical confi rmation; 
however, although the scientifi c limitations of single item 
scales as measurement instruments have long been 
recognised,22,23 their continued use as outcome measures 
in clinical trials35–37 shows that clinicians do not fully 
appreciate the drawbacks. The relative value of single 
item and multiple item scales is, of course, not absolute. 
Some clinical scenarios lend themselves to single 
questions (eg, constipation),33 and multiple item scales 
need to be constructed appropriately and their scientifi c 
validity rigorously proven. Because we are concerned 
with the measurement of clinical variables, such as 
disability, for clinical trials, and to our knowledge there 
are no published studies that show the scientifi c 
superiority of single item scales over multiple items 
scales, this Review focuses on multiple item rating 
scales. 

SpasticityLess
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No increase in muscle tone
Slight increase in muscle tone (catch and release)
Slight increase in muscle tone (catch and minor release)
Marked increase in muscle tone through most of ROM,
but affected parts easily moved
Considerable increase in muscle tone; passive
movement difficult
Affected part(s) rigid in flexion or extension
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Figure 1: Modifi ed Ashworth scale for measuring spasticity 
A. The scale comprises six ordered categories of increasing spasticity that are, by 
convention, assigned sequential integer scores (0–5). B. The spasticity variable 
marked out by the Ashworth scale. Each category represents a range on the 
continuum. C. The spasticity ruler. The marks represent the points of transition 
between adjacent categories (ie, the points at which the degree of spasticity is 
such that they are equally likely to score in either of the categories [eg, 0 or 1]). 
The use of sequential integers implies that the categories represent equal 
amounts of spasticity and, therefore, that a change or diff erence of one point has 
the same meaning in terms of the underlying variable (spasticity) anywhere on 
the continuum. This implication, shown by giving each category the same size, is 
clearly an improbable assumption. D. The more probable scenario; however, one 
of the main limitations of all single item scales is the inability to locate accurately 
the points of transition relative to each other, so that the ranges of spasticity of 
each category are in appropriate proportions. ROM=range of movement.
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Multiple item rating scales comprise a set of items, 
each of which has two or more ordered response 
categories that are assigned sequential integer scores. 
Typically, the item scores are summed to give a total score 
(also called the raw, summed, or scale score), which is a 
measure of the variable quantifi ed by the set of items 
(fi gure 2). Therefore, the use of multiple item rating 
scales has two fundamental requirements: evidence that 
the values produced are actually rigorous measurements 
and not just numbers; and evidence that the set of items 
map out the variable they purport to measure.

The requirement for rating scales to generate 
rigorous measurements
Phase III clinical trials need rating scales that generate 
rigorous measurements. Unfortunately, this is rarely 

achieved because most rating scales generate ordered 
scores that are only suitable for group comparison studies, 
rather than precise measurements of an individual.

Ordered scores are not scientifi c measurements
The raw data generated by rating scales, both item scores 
and total scores, are ordinal level, which means that the 
values are rank ordered. For example, the Ashworth scale 
has six categories that are ordered in terms of increasing 
spasticity: from none to rigid (fi gure 1). Although each 
category represents more spasticity than the previous 
category, the diff erence between categories in terms of 
amount of spasticity is unknown, and by assigning the 
categories sequential integer scores, the implication is 
that the diff erences are equal.

Multiple item scales extrapolate this process. For 
example, the multiple sclerosis walking scale 
(MSWS-12)34,38 has 12 items and fi ve item response 
categories—1=not at all; 2=a little; 3=moderately; 4=quite 
a bit; and 5=extremely—which are summed to give a 
total. Scoring the items with sequential integers implies 
equal diff erences in walking ability at the item level 
(diff erences between each response category is implied 
to be equal) and the total score level (a change of one 
point implies an equal change in walking ability across 
the range of the scale). But does this mean that the ordinal 
level scores that are produced by scales are measurements? 
The “no” lobby argue that a constant unit is an absolute 
requirement for measurement,39–44 whereas the “yes” 
lobby argue that ordinal scores are weaker forms of 
measurement44,45 or adequately approximate interval level 
measurements.22,45,46

The careful consideration of the relation between the 
scores assigned to item response categories and generated 
by scales and the measurements they imply is required. 
We believe that state-of-the-art clinical trials should, 
whenever possible, use rating scales that generate interval 
level measurements. The analysis and interpretation of 
diff erences in scores and changes during time are most 
meaningful when the unit of measurement is constant, 
and the numerical meaning of the numbers is maintained 
when they are subjected to statistical analysis.41,42 Thus, a 
change or diff erence of one point has the same meaning 
throughout the continuum, which is not the case for 
ordinal scores, where a change or diff erence of one point 
varies in meaning across the continuum (eg, the 
Rivermead mobility index [RMI]; table 1, fi gure 2).

Clearly, a linear relationship between scale scores and 
the measurements they imply is unlikely, and the 
relationship must be determined rather than assumed. In 
fact, the relationship is S-shaped (fi gure 3), and empirical 
studies show that the meaning of a one point change in 
ordinal score varies up to 15-fold across the scale range, 
and that the variation is scale dependent.47,48 This has 
obvious and serious implications for clinical trials, in 
which the analytical cornerstones are the examination of 
change in people and diff erences among groups.

Please pick “Yes” or “No” for each question No Yes

1. Turning over in bed +

Do you turn over from your back to your side without help?

2. Laying to sitting +

From laying in bed do you get up to sit in the edge of the bed on your own?

3. Sitting balance +

Do you sit on the edge of the bed without holding on for more than 10 seconds?

4. Sitting to standing +

Do you stand up from any chair in less than 15 seconds (using hands, and with an aid if 
necessary)?

5. Standing unsupported +

Observe standing for 10 seconds without any aid

6. Transfer +

Do you manage to move from the bed to a chair and back again without any help?

7. Walking inside and with an aid if needed +

Do you walk 10 metres with an aid if necessary but with no standby help?

8. Stairs +

Do you manage a fl ight of stairs without help?

9. Walking outside (even ground) +

Do you walk around outside on pavements without help?

10. Walking inside with no aid +

Do you walk 10 metres inside with no calliper, splint, or aid or standby help?

11. Picking item off  the fl oor +

If you drop something on the fl oor, do you manage to walk 5 metres, pick it up and then 
walk back?

12. Walking outside (uneven ground) +

Do you walk over uneven ground (grass, gravel, dirt, snow, ice, etc) without help?

13. Bathing +

Do you get in/out of bath or shower unsupervised and wash yourself?

14. Up and down four steps +

Do you manage to go up and down four steps with no rail but using an aid if necessary?

15. Running +

Do you run 10 metres without limping in four seconds (fast walk is acceptable)

Score=total number of “Yes” responses 8

The Rivermead mobility index is a 15 item, clinician reported scale for the measurement of mobility. Each item has two 
response categories: No=I am unable to do this task (score 0); or Yes=I am able to do this task (score 1). The score (total 
number of “Yes” answers) is used to generate measurements with traditional and new psychometric methods (fi gure 2).

Table 1: Example response for the Rivermead mobility index
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4 Sitting to standing
13 Bathing
5 Standing unsupported
7 Walking inside, and with an aid it needed
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10 Walking inside with no aid
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14 Up and down four steps
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Figure 2: How measurements are generated from a multiple item rating scale with traditional and new psychometric methods
A. Traditional psychometric methods, such as the Rivermead mobility index (RMI), generate mobility measurements from the answers given in table 1. Item scores are 
summed to give a total score that ranges from 0 (all “No” responses) to 15 (all “Yes” responses). The score (in this case 8) is the measure of mobility. This approach implies 
that the same change or diff erence in mobility is required to change a person’s score by one unit or that the items are spread equally across the continuum, which is highly 
unlikely. Such assumptions underpin the use of traditional psychometric methods but are untestable with those methods. B–D. An example of how new psychometric 
methods (Rasch measurement in this case) generate measurements from the answers to the RMI given in table 1. B. Rasch measurement theory states that the response of a 
person to any item is governed by the diff erence between the location of a person on the mobility ruler (β) and the location of the item on the mobility ruler (δ), shown in 
the graph. The relationship between the probability of responding “Yes” (y-axis) to an item and the diff erence (β – δ) between person and item locations (x-axis) is S-shaped 
(an ogive). The equation is the mathematic expression (model) that reproduces this ogive and represents explicitly Rasch’s measurement theory. Note: when the person 
location (β) is equal to the item location (δ), the probability of responding “Yes” or “No” is equal (50%) because β–δ=0. Thus, for any RMI item, the point at which the 
probability of responding “Yes” and “No” is equal is the transition point for that item and where it is located on the ruler. C. Computer software analyses of the dataset of 
responses from a sample of people to a set of items, to estimate the locations of people and items. The 2D plot shows the transition points between Yes and No for each of 
the 15 RMI items. Note the transition points diff er across items. D. The ruler marked out by the RMI; the 15 items are shown relative to each other in equal interval units. 
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Another related problem with ordinal scores is that 
they are only suitable for group-level comparisons; the 
confi dence intervals around the ordinal score of an 
individual are wide. Two previous studies on the Barthel 
Index and MSWS-12 have shown that the confi dence 
intervals around individual scores are +/–3·5 and +/–15·4 
points, respectively, which equate to more than 30% of 
their respective total scale ranges.49,38 Consequently, 
clinical trials cannot legitimately compare changes and 
diff erences among individuals,50 which is important 
because treatment eff ects are typically variable, and 
group-based analyses only inform on the extent to which 
one treatment is statistically and generally better than 
another treatment. Understanding the complexities of 
why individuals undergo diff erent levels and directions 
of change would be advantageous to interpret the results 
of clinical trials (panel 2).

The root of the problem: classical test theory
The root of these problems is the measurement theory 
that underpins the psychometric methods most widely 
used to analyse data from rating scales and determine 
the reliability and validity of a rating scale to the constructs 
they seek to estimate: classical test theory (CTT).51–56 

A measurement theory is a theory of how the numbers 
generated by rating scales relate to measurements of the 
constructs they seek to estimate. CTT postulates that a 
person’s rating scale score (the observed score [O]) is the 
sum of the unobservable measurement to be estimated 
(true score [T]) and the associated measurement error 
(E), where O=T+E. CTT assumes that measurement 
errors are randomly distributed and not correlated with 
the true score; furthermore, for any individual the 
measurement error associated with one scale is not 
correlated with the true score or measurement error of 
another scale.57,58

The simple theory of CTT and its associated 
assumptions expand to form the methods to test 
reliability and validity that are known as traditional 
psychometric methods.57–59 However, because they are 
derived from CTT, their appropriateness requires that 
the theory and assumptions of CTT are supported by the 
data. If these requirements are not met, the conclusions 

of the data analysis might be incorrect. Therefore, CTT 
is a theory that cannot be tested, verifi ed, or—more 
importantly—falsifi ed in any dataset60 because the 
parameters of the theory (T and E) cannot be determined 
in a way that enables the evaluation of their accuracy.57,61

This has four important implications. First, untestable 
measurement theories are, by defi nition, weak theories 
that lead to only weak inferences about the performance 
of a rating scale and what it measures. Second, theories 
that cannot be challenged are easily satisfi ed by 
datasets.57,61 Third, because the parameters can not be 
estimated with confi dence, only the ordinal raw scores 
(O) can be analysed. Finally, the equation derived from 
CTT for calculating the confi dence intervals around the 
scores for individuals (95% CI=observed score +/–1·96 
SEM) gives large values that indicate a lack of confi dence 
when comparing changes and diff erences among 
individuals. Therefore, CTT has been called weak true 
score theory,57,61 a tautology43 and a theory that has no 
theory.60

Approaches to overcome the limitations of ordinal scores 
The fact that rating scales generate ordinal scores is well 
known, and several potential solutions to manage this 
problem have been suggested, including dichotomising 
of scale scores and the use of parametric statistics to 
analyse the data.

Dichotomising of scale scores
Dichotomising is the assignment of clinically meaningful 
cut-off  points (eg, Rankin scale scores are frequently 
dichotomised into disabled [scores 3–5] and not disabled 
[scores 0–2]). Although the simplifi cation of outcomes is 
clinically appealing, there are three important concerns. 
The fi rst concern is whether it is meaningful to interpret 
ordinal rating scale data at the level of the individual, 
which, as we have discussed, is not legitimate because the 
confi dence intervals around the scores of individuals are 
wide. The second concern is that the dichotomising of 
scale scores reduces a spectrum of outcomes into two 
crude categories (eg, disabled or not disabled; normal or 
abnormal). The limitations of this have been discussed 
recently.62 The third problem is that the dichotomising of 
scale scores does not deal with unequal scale increments; 
rather, by forming binary categories, the dichotomising of 
scale scores moves us further away from the goal of 
accurate outcomes measurement.

Parametric statistics
The use of parametric statistics with multiple item rating 
scale data has been the source of a long-standing debate. 
One side, which advocates the classifi cation of scales as 
categorical, ordinal, interval, or ratio,63 argues that the 
nature of the scale dictates which statistical tests can be 
used. Parametric statistics (those based on addition, 
subtraction, multiplication, or division) are only 
meaningful when the data are interval level (interval or 

Panel 2: MRC spine stabilisation study

The results of the Medical Research Council spine stabilisation study4 of people with lower 
back pain who were suitable for surgical stabilisation found no signifi cant diff erences in 
outcome between rehabilitation and surgery. However, there was substantial variability in 
outcome in both treatment arms, which suggested that some people who were suitable 
for surgery had a poor outcome, whereas others had an excellent outcome with 
rehabilitation. Such variability makes it diffi  cult to detect diff erences at the group 
comparison level, and it could be argued that this study should have compared  the 
clinical features of responders and non-responders to treatment within and across 
treatment groups. Hence, the identifi cation, revisitation, and re-evaluation of people who 
respond diff erently has the potential to enrich the inferences from trial data, build 
hypotheses for future research, and benefi t studies that investigate clinical uncertainty.
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ratio scales); therefore, ordinal scales must be analysed 
with non-parametric statistics. The other side argues that 
the nature of a rating scale should not infl uence the 
choice of statistics.64–66 Two diff erent justifi cations are 
given for this: fi rst, statistical tests merely report a fact 
about a set of measurements and, as such, attempts to 
ban such reports are unreasonable;46,67 second, the scores 
produced when items are summed approximate interval 
level measurements adequately enough to warrant 
analysis with parametric statistics. The evidence to 
support this argument is the high correlation between 
summed scores and the interval measurements they 
imply (fi gure 3), which was fi rst reported by Likert,68 and 
that parametric statistics, such as t-tests, can deal with 
the weaknesses of ordinal measurements.66 Consequently, 
most rating scale data is analysed using parametric 
statistics. Neither justifi cation, however, accounts for the 
real issue: ordered scores have unequal intervals. To solve 
this problem, a method is required that constructs equal 
interval measurements from ordinal rating scales data; 
when this is achieved, the debate about what statistics are 
permissible becomes redundant.

Latent trait theories
The value of being able to construct measurements with 
equal intervals from ordinal rating scale data,39 and the 
need to develop strong measurement theories,69 were 
stated in the early 1900s. However, it was not until the 
1960s that two related but diff erent solutions were 
proposed: item response theory (IRT)61,70–72 and Rasch 
measurement.13,73–77 Together, these solutions are 
sometimes thought of as latent trait theories (LTTs), new, 
or modern psychometric methods.78 

LTTs, like CTT, are measurement theories that are 
presented as equations (mathematical models); from 
these models, statistical methods are derived to analyse 
rating scale data and test the reliability and validity of the 
scale. However, unlike CTT, LTTs are thought of as strong 
theories because they can be tested, verifi ed, or falsifi ed. 
LTTs also diff er from CTT because they focus on the 
relationship between a person’s measurement and the 
probability of them responding to an item, rather than 
the relationship between a person’s measurement and 
their observed total score on the scale. This is exemplifi ed 
by Rasch measurement theory, which postulates that the 
probability of a person’s response to each of the categories 
of a rating scale item is governed by the diff erence 
between where the person is on the scale and where the 
item is on the continuum measured by the item set 
(fi gure 2). In essence, a Rasch analysis, typical of any 
analysis of LTTs, assesses the extent to which the 
responses of the observed item accord with the responses 
predicted by the mathematical model.

When the data fi t the LTT model, the estimates derived 
from the model are deemed robust because the 
measurement theory is supported by the data. When the 
data do not fi t the model, two lines of inquiry are possible: 

one questions the suitability of the mathematical model as 
a representation of the theory embodied in the data; 
the other questions the suitability of the data as a 
representation of the measurement theory embodied in 
the model. These divergent lines of inquiry are the 
fundamental diff erence between IRT and Rasch 
measurement.

Essentially, albeit an oversimplifi cation, when the data 
do not fi t the chosen LTT model, the IRT approach is to 
fi nd a mathematical model that best fi ts the observed 
item response data. By contrast, the Rasch measurement 
approach is to explore why the data do not fi t the Rasch 
model. Thus, proponents of IRT use a range of item 
response models that diff er in the number of parameters 
(components of the mathematical model that can be 
estimated), whereas proponents of Rasch measurement 
use only one (Rasch) model.

The IRT approach is consistent with data modelling 
and is easy to comprehend. The Rasch measurement 
approach is less common, less easy to understand, and 
warrants explanation because it has inherent 
mathematical properties that are not found in any other 
person–item response model.43,47,78 The main property is 
the ability to test for, and thus achieve, invariance 
(stability).78 This is achieved because the central tenet of 
measurement is that the instrument of measurement is 
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measurements that can be constructed from them with new psychometric methods 
A. In the graph, in which both axes have been transformed to have a range of 0–100, the correlation between the 
ordinal scores and the interval measurements is 0·95; however the relationship is an ogive (S-shaped curve) rather 
than linear. Thus, a change of 1 point in ordinal score corresponds to a change in interval measurement that varies 
across the range of the scale. For example, a 10 point change in ordinal score, from 50–60, corresponds to a change 
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changes of 0–35 and 68–100 interval units, respectively. Thus, in this example, the meaning in equal interval units 
of a one point change in raw score varies 12-fold across the scale. B. The implications of this are shown by the 
‘ruler’ produced from this graph. 
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stable—not sample dependent—and the property being 
measured is stable at one point in time—not instrument 
dependent. Only Rasch measurement can test stability of 
instruments and people; other parameters in IRT models 
render these estimates sample dependent.43,78

IRT and Rasch measurement have substantial advantages 
over CTT for clinical trials and, as such, clinicians should 
use them. However, the above discussion raises two 
questions. Which approach is better? And does it matter 
which approach is used? The answer to both questions 
depends on which central philosophy is followed: IRT or 
Rasch measurement. Because IRT prioritises the observed 
data, it sees the one-model Rasch perspective as too 
restrictive, and the selection of data to meet that model as a 
threat to the validity of the content.79,80 However, because 
Rasch measurement prioritises the mathematical model, 
proponents of Rasch measurement see the process of 
modelling data as a bar to the core requirements of 
measurement, too accepting of poor quality data, and a 
threat to the validity of the construct.80 Not surprisingly, 
IRT and Rasch measurement are suggested to have 
irreconcilable diff erences,78 and the two groups have come 
into confl ict about which approach is preferable.78,81–83

The requirement to know precisely what 
variables are measured
Clinical trials require rating scales that actually measure 
the health constructs that they claim to (ie, the scales are 
valid) and health constructs that are clinically meaningful 
and can be interpreted. Unfortunately, current methods 
to establish the validity of a rating scale rarely meet these 
goals. 

The current methods to establish validity are weak
When a set of items is used as a scale, a claim is made that 
a construct is being measured,84 and some theory of that 
construct (a construct theory) is implicit.85 Thus, by 
implication, the aim of validity testing is to establish the 
extent to which the construct theory is supported. Current 
methods to establish the validity of a scale are weak 
because they lack formal methods that defi ne and test 
construct theories.85 Although scales and the constructs 
they claim to measure always have names, they are rarely 
underpinned by a deduced theory of the construct being 
measured. This situation is surprising; explicit defi nitions 
of constructs would seem to be a prerequisite for the 
development and validation of a scale. The consternation 
is, in part, because the constructs measured by many 
scales are determined during their development. Typically, 
scale developers generate a large pool of items that they 
group—either statistically or thematically—into potential 
scales; they then decide what construct each group seems 
to measure, and remove unwanted or irrelevant items. 
The main limitation of this approach is that the content of 
the scale, rather than the construct intended for 
measurement, defi nes what the scale measures. Grouping 
items statistically or thematically does not ensure that the 

items in a group measure the same construct but does 
explain why items such as “having trouble meeting the 
needs of my family” and “few social contacts outside the 
home” are in widely used scales purporting to measure 
mobility and fatigue, respectively. Furthermore, both 
methods to group items avoid the process of defi ning and 
conceptualising variables, which is central to valid 
measurement.86–89

However, even if scales are underpinned by explicit 
construct theories, standard methods of validity testing 
would not enable those theories to be tested adequately. 
Why? Because current methods, which integrate evidence 
from statistical and non-statistical tests, provide at best 
circumstantial evidence that a set of items measures a 
specifi c construct.

Non-statistical tests of validity typically assess content 
validation and face validation. Content validation assesses 
whether all the relevant or important content is sampled 
during scale development,90 sensible methods were used 
to construct the scale, and a representative collection of 
items were assessed.91 Face validation assesses whether 
the fi nal scale measures what it is supposed to.90,91 More 
than 50 years ago, Guilford named these evaluations 
“validity by assumption” and “faith validity”92 and they are 
essentially unchallenged, with the exception of Alvan 
Feinstein’s contribution of “clinimetrics” (webappendix 1).

Statistical tests of scale validity are more formal than 
their non-statistical counterparts but are still weak 
evaluations of the extent to which a set of items measures 
a construct. For example, statistical examinations of 
internal construct validity93 (eg, factorial validity94 or 
internal consistency) test the extent to which the items of 
a scale are related statistically. This does not confi rm that 
a set of items mark out a clinically meaningful variable 
nor tell us what a scale measures.

Statistical tests of external construct validity consist of a 
range of examinations, including correlations with other 
measures,95,96 tests of known group diff erences,97 and 
hypothesis testing.93,95 The tests assess the extent to which 
scale scores behave as predicted and seek to determine if 
a scale does what it is intended to do.22 

Testing convergent and discriminant construct validity96 
is deemed the strongest statistical evidence of scale 
validity. Here, multiple scales, which measure similar 
and dissimilar constructs, are applied to a sample. The 
scores are correlated, and the pattern and magnitude of 
the correlations determine if the scale being validated 
correlates higher with scales that measure similar 
constructs rather than scales that measure dissimilar 
constructs. The limitation of this approach is that to show 
that a scale does not correlate highly with measures of a 
dissimilar construct tells us nothing about what the scale 
actually measures. Similarly, to show that a scale 
correlates highly with measures of similar constructs 
tells us only that the two are related.

A key problem with all statistical tests of validity is their 
focus on people scores and how these scores vary among 

See Online for webappendix 1
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people. There is no independent means to assess the 
extent to which the aim of the scale is satisfi ed.98 

Consequently, these validation techniques are based on 
circular reasoning,98 generate circumstantial evidence,43 
enable only limited development of construct theories, 
and result in only a basic understanding of what is being 
measured.85 However, in keeping with their non-statistical 
counterparts, they have been, essentially, unchallenged for 
decades.

Theory-referenced measurement
Two requirements are needed to advance our 
understanding of precisely what scales measure: explicit 
theories of the constructs being measured; and explicit 
methods to test those theories. Although several 
researchers have investigated these requirements,85,98–103 
one group has developed their ideas to an advanced 
level.85,98,101 However, their work is largely inaccessible to 
clinicians because it concerns the measurement of 
reading ability. The central premise of this group’s 
approach is to change from studying people to studying 
items.85 A logical rationale underpins this approach. 
Multiple item scales consist of a set of items that aim to 
measure a single construct. Thus, the aim of these items 
is to mark out the construct as a continuum on which 
people can be located, which implies that the individual 
items of a scale are located across the continuum, 
analogous to the way that the locations of individual 
people are spread out across the continuum. If a scale 
developer can explain why items are located at diff erent 
points on the continuum (ie, if the scale developer can 
defi ne the characteristics that determine the location of 
an item) they are justifi ed in saying that they know what 
construct is being measured.85,98 To do this, scale 
developers need to propose and test explicit construct 
theories. The validity of a construct theory is, then, the 
extent to which the theory predicts variation in the 
locations of items. This process is made explicit if the 
construct theory can be articulated as a mathematical or 
construct specifi cation equation (fi gure 4).85

Construct specifi cation equations are developed by 
regression analysis of item locations on selected item 
characteristics. They aff ord a test of fi t between scale-
generated observations and theory.98 In essence, the 
greater the proportion of variation in item location 
explained by the selected item characteristics, the greater 
the support for the proposed construct theory, the greater 
the evidence for scale validity, and the more clinically 
meaningful the interpretation of person locations. 
Moreover, construct specifi cation equations enable 
diff erent construct theories to be articulated and 
challenged; thus, enabling dynamic interplay between 
theory and scale,85 and a thorough investigation of 
individual items to aid item development and selection. 
An example from educational measurement of theory-
referenced measurement—the Lexile system for 
measuring reading ability—is provided (webappendix 2).

Recommendations
The FDA draft recommendations for patient-reported 
rating scales in clinical trials highlight the importance of 
“conceptually sound, reliable, and valid measures”.8 Such 
an acknowledgment is a vital, albeit fi rst, step. 
Surprisingly, the document barely mentions new 
psychometric methods, despite their clear advantages 
and increased use;104–109 furthermore, despite the emphasis 
on the improvement of methods to establish validity, they 
do not provide detailed guidance on how this can be 
achieved. Here we off er some recommendations to build 
on the FDA draft guidelines for clinical trials and rating 
scale development and evaluation.

Clinical trials
Increased awareness of the crucial role of rating scales is 
needed. State-of-the-art clinical trials continue to use 
rating scales that are scientifi cally weak4,5 or report scores 
for scales that are invalid.4,110–113 Furthermore, scales 
continue to be developed without adequate recourse to 
recognised methods for scale construction.114 More 
clinicians need to be formally trained in rating scale 
methods, to ensure that health measurement develops 
clinically meaningful scales; furthermore, journal editors, 
reviewers, and grant-giving bodies should include or 
have direct access to people who are trained in the 
development and evaluation of rating scales.

The clinically meaningful advantages of new 
psychometric methods mean that future (and present) 
clinical trials rating scale data ought to be reanalysed with 
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Figure 4: Results from the Rasch analysis of RMI data from the CAMS study2

The columns in the top half are the person locations; the columns in the lower half are the item locations (n=15). 
The locations of both items and persons are on the same, equal-interval metric. The metric is unbounded and, 
therefore, runs (theoretically) from –∞ to + ∞ and is centred around 0 because the analysis always centres the 
mean of the item locations at zero. Clearly, people located at diff erent places on the continuum are assumed to 
have diff erent levels of mobility. Likewise, RMI items (mobility tasks) located at diff erent places on the continuum 
need diff erent amounts of mobility.85 Theory-referenced measurement is based on the latter statement, and 
suggests that investigators propose and test, “construct” theories about the factors that determine the locations 
of the RMI items. This process is made explicit by articulating the construct theory as a mathematical equation or 
construct specifi cation equation.85 The validity of any construct theory is the extent to which the construct 
specifi cation equation predicts variation in item locations. When the equation predicts the vast majority of the 
variance in the item locations, a scale developer can explain why items are located at diff erent points on the 
continuum: that is, they can defi ne the characteristics that determine item locations. At this point they are justifi ed 
in saying that they know what construct is being measured.85,98 This graph was produced by the Rasch 
measurement software program RUMM 2020. 

See Online for webappendix 2

For more information on RUMM 
2020 see http://www.rummlab.
com



1102 http://neurology.thelancet.com   Vol 6   December 2007

Review

new psychometric methods. In addition, the diff erences 
between Rasch measurement and IRT need to be better 
publicised because these methods answer fundamentally 
diff erent questions about rating scales. Although this is 
acknowledged by some,43,58,78,115,116 many reports104–109 and 
standard measurement texts57,90,117 imply that there is no 
diff erence and, as such, inaccurate representations are 
common.79,82,83,118 

Development and evaluation of rating scales
Scale development would benefi t from being bottom up 
(a construct defi nition), rather than top down 
(a method of grouping items), to ensure that construct 
theory determines scale content and validation tests 
construct theories. This requires robust guidelines to 
defi ne constructs and explicit defi nitions for content 
and face validity. Evaluation of rating scales should fully 
acknowledge the equally important and complementary 
roles of qualitative and quantitative evaluations. Scale 
evaluation could be rethought under these two headings, 
rather than the more traditional headings of reliability 
and validity. The aim of qualitative evaluation could be 
defi ned as the determination of the extent to which the 
items of a scale map a construct as a clinically 
meaningful continuum and, when available, the extent 
to which construct theory is supported. The aim of 
quantitative evaluation could be defi ned as the 
determination of the extent to which the numbers 
generated by scales are measurements rather than 
numerals.

Clinicians should aspire to theory-referenced 
measurement. Although construct specifi cation equations 
are some way off , the measurement of neurological 
outcomes would benefi t from the development of 
consensus guidelines to strengthen the theory that 
underpins new and existing scales. We recommend 
greater use of qualitative assessments, including the 
adoption of inductive and deductive approaches to 
construct theory development, evaluation of the extent to 
which the items of a scale map out the construct to be 
measured, the application of the most appropriate item 
phrasing, structuring, and context, and cognitive 
debriefi ng to ensure consistency in meaning.

Conclusions
In this Review we posed a question: why have state-of-the-
art clinical trials in neurology failed to deliver treatments? 
Our aim was to highlight the potential contribution to 
this failure of the currently available rating scales and the 
way their data are analysed. However, rating scales are not 
always to blame. Indeed, the extent to which rating scales 
undermine inferences from clinical trials is diffi  cult to 
determine. Our message is simple: when rating scales are 
used, they must be fi t for purpose. We believe strongly 
that there can be no compromise in the eff orts made to 
advance this area because rating scales will have an 
increasingly crucial role in the determination of patient 

care, the guidance of research directions, and the 
evaluation of advances in basic science.

We have not discussed the ability of scales to detect 
change, nor the relationship between clinically and 
statistically signifi cant change. Although this is an area 
of great importance, research,33,109 and debate, we believe 
that this relationship cannot be studied rigorously until 
we have rating scales that generate numbers that satisfy 
scientifi c criteria as measurements of explicit, clinically 
meaningful variables. We do not suggest that traditional 
methods of analysing rating scale data are valueless. We 
do, however, advocate the advantages of moving to 
methods of analysis that articulate quantities in linear 
units because these enable clinicians to compare and 
study meaningfully the diff erences between people and 
how they change with time. Moreover, the ability to 
measure an individual’s score accurately and estimate 
the confi dence intervals around the score at any time 
point off ers the legitimate and meaningful study of 
diff erences and changes at the level of the individual, 
which is the unit of clinical practice.

A comment we commonly hear is that more sensitive 
scales will simply lead to type-1 errors. This concern is 
often used as a justifi cation for blunt scales, which must 
be clinically meaningful if they detect statistically 
signifi cant change. Certainly, the greater the ability of a 
scale to detect change, the greater the possibility that a 
clinical trial will detect change that is not clinically 
signifi cant. But the reverse is also true. To avoid type-1 or 
type-2 errors, we must rely on the clarifi cation of which 
changes in scores on rating scales are clinically 
signifi cant, which is a matter of interpretation of the 
scale score. With respect to this, two things are 
noteworthy: logically, for a scale to detect clinically 

Search strategy and selection criteria 

Our Review is a focused critique of the literature on the basis 
of articles, reports, and book chapters that span more than a 
century of research in three areas: psychometrics, health 
measurement, and neurological clinical trials. These were 
collected as part of the general strategy in our unit 
(Neurological Outcome Measures Unit) during the past 15 
years to develop a clear and detailed understanding of the 
science behind rating scales. Our search strategy included 
searches of electronic databases (including Medline, Cochrane 
library, PubMed, Psychoinfo, and Embase) from 1950 to 
September, 2007, or whenever the database started if it was 
later than 1950). The key search terms included: “neuro”, 
“multiple sclerosis”, “Parkinson’s disease”, “spine”, “treatment 
trial”, “questionnaire”, “scale”, “measure”, “instrument”, 
“validity”, “reliability”, “responsiveness”, and “psychometric”. 
In addition, we checked reference lists of selected articles and 
hand-searched relevant journals, reports, and books. The 
remaining articles were identifi ed from the authors’ 
collections and by consultations with experts.
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signifi cant change and distinguish the change from 
clinically unimportant change, the threshold to detect 
change must be greater than the threshold of clinically 
signifi cant change. Also, the assignment of meaning to 
measurements and how they change or diff er is typically 
done after a rigorous method of quantifi cation has been 
developed.

Measurement of health outcomes is a new and 
developing fi eld. Our perspectives come from a critical re-
evaluation of our own work and experiences during the 
past 15 years. During this time, we have made many of 
the mistakes we identify, perhaps because the fi eld 
continues to move quickly, lacks consensus, is often 
inaccessible to clinicians, is frequently complex, and is 
often abstract. The solutions to the problems discussed in 
this Review are a challenge for clinicians. The mathematics 
of new psychometric methods and the development of 
construct theories and specifi cation equations for health 
variables require considerable intellectual investment, 
which makes it far easier for neurologists and other 
clinicians to use current methods than to meet those 
challenges. However, the patients we treat, whose interests 
we profess to advocate and whom we will ultimately 
become, have much to lose from that action.
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