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There is a growing market for the resale of life insurance policies to
third party investors. A key factor in the valuation of a policy is
how long the insured is likely to live. Various commercial rating
services offer to provide estimates of individuals’ likely longevity,
but the reliability of their estimates has rarely been correctly
evaluated. The question is how to compare the estimates provided
for a large group of policy-holders with the observed ‘‘truth data’’
— the actual mortality experience observed during follow-up.

Various approaches to this have been used in practice, some of
them quite wrong. The correct method does not seem to be
practiced or widely known in the life settlement industry. It is
based on a comparison of observed and expected deaths computed
on the basis of person-years of exposure rather than of individual
persons. The method is explained in detail here and illustrated with
the results from a large portfolio of policies.
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1. INTRODUCTION

Readers of this journal will be aware that
there is a growing market for the resale of life
insurance policies to third party investors.
Such investors pay a lump sum to the
policyholder, and assume annual premium
payments, in exchange for becoming the
beneficiary. These transactions are referred
to as life settlements (or senior settlements).

A critical factor in valuing such an
investment is how long the insured is likely
to live. If he lives much longer than expected
the investor not only pays more premiums
than expected, but also must wait longer to
receive the death benefit. To an extent that
we find surprising, many investors have not
obtained independent analysis of the accu-
racy of the predictions.

There is, of course, a risk that these rating
services lack the expertise to provide reliable
ratings. Perhaps equally seriously, there is
often a conflict of interest because the
customers of the rating services are primarily
the sellers of the policies, not the buyers. The
shorter the policyholder’s life expectancy is
considered to be, the more valuable the
policy becomes. Further, the brokers’ com-
missions are generally based on the selling
price. Thus both brokers and vendors prefer
short life expectancies, a preference that is
often made clear to the rating service.
Perhaps as a result of this, there have been
numerous lawsuits brought by investors
against rating services, alleging that – as a
result of either negligence or fraud – the
service has systematically underestimated
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the life expectancies, to the detriment of the
purchasers of the policies.

Suppose there is a portfolio of life insur-
ance policies, for each of which a rating
service has provided an estimate of life
expectancy (or some other measure of
prognosis for survival, such as the 80th

percentile of the survival distribution). Sup-
pose, too, that there is some follow-up on the
policyholders (‘‘truth data’’). For example, it
may be that the assessments were made four
years ago, and it is known whether each
policyholder is now alive, together with date
of death for those who died. The question
then arises: How do we use this information
to assess the performance of the rating
service? How do we rate the raters?

In extreme cases it will be obvious that the
ratings are not consistent with the truth
data. Suppose, for example, that there are 20
individuals rated, and all are estimated to
have a life expectancy of exactly two years.
If we find that 17 of the 20 individuals are
still alive 5 years later, it is clear that
survival times have been grossly underesti-
mated. In general, however, it is not
immediately obvious how the ratings and
the truth data are properly to be compared.
This may be why there have been recent
calls in the industry for a standard way to
measure the accuracy of life expectancy
reports.1

Our purpose here is to show precisely how
this should be done. To our knowledge, the
correct method has not been explained in
previous literature or textbooks. We will also
show that some alternative approaches,
which may seem plausible at first sight, are
in fact wrong. We illustrate the correct
methodology with several examples, includ-
ing a large-scale study of persons who
offered to sell their life insurance policies.
We note the methodology can also be
applied to situations other than the life
settlement industry. It can, for example, be
used to assess the ratings provided by life
insurance underwriters or other providers of
life expectancy estimates.

2. WHAT SHOULD THE RATING
SERVICE PROVIDE?

Perhaps the first issue to consider is what
precisely the rating service should provide
for a given individual. In practice it is
common to report a single number, such as
the median survival time (ie, the time at
which there is a 50% chance of being alive) or
the life expectancy (the average number of
additional years lived in a large group of
similar persons). Even if these estimates are
correct, however, they are not sufficient to
permit a rational analysis of the value of the
investment. What is needed is an estimate of
the individual’s mortality risk in the present
year and for every subsequent year. Equiv-
alently, one requires the individual’s complete
life table.

We give a simple example to illustrate this
point. Suppose that we are the beneficiary of
a life insurance policy with a $1 death
benefit, and the life expectancy is known to
be exactly 20 years. Assume a discount rate
of 3%; that is, a dollar to be paid to us next
year has a present value of 1/(1.03) 5

roughly 97 cents. For simplicity, let us ignore
the premiums that must be paid while the
insured is still alive. What is the present
value of the death benefit?

It turns out that we do not have sufficient
information. Consider, for example, Scenario
A, in which the insured is known to have
exactly 20 years of life left. In this case the
present value is $1 times 0.97 raised to the
20th power, which is 54 cents.

By contrast, consider Scenario B in which
there is a 50% chance that the insured will
die tomorrow and another 50% chance that
he will live 40 more years. The average
survival time, which by definition is the life
expectancy, is still exactly 20 years. But this
time the expected present value is: 0.50*0.970

+ 0.50*0.9740 5 0.50*1.0 + 0.50*0.30 5 65 cents.
That is, half the time we receive the benefit

immediately, with present value $1, and the
other half of the time we must wait 40 years,
with present value 30 cents. The average is
thus 65 cents, considerably more than the
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54 cents under Scenario A. The example
illustrates that a single summary statistic,
such as the life expectancy, is not sufficient: a
complete life table is needed.

An abbreviated life table for 65-year-old,
non-smoking males who recently qualified
for standard insurance10 is in Table 1.

Two quantities are of particular note here.
The first is the survivorship column, l(x),
which begins with 100,000 persons alive at
the initial age. With a simple re-scaling, these
values may also be viewed as a survival
curve beginning with 100%.

The second is the mortality rate at each age
x, denoted by m(x). These are computed as
the number of deaths per year, and may also
be referred to as ‘‘occurrence-exposure
rates’’ or the ‘‘instantaneous force of mortal-
ity’’. Note that they differ from the annual
mortality probabilities, q(x), or the number
of deaths per person, which must lie between
0 and 1 inclusive. Readers interested in
further technical details of the life table are
referred to standard sources.2,3

For the remainder of this article we
assume that a complete life table has been
provided for each insured. In practice the life
table may have to be constructed on the basis
of certain assumptions. For example, if the
rating service provided only the life expec-
tancy, it may be reasonable to multiply some
standard mortality rates at every age by a
suitable constant to produce the life table
that yields this target life expectancy. There
are many other possible methods.4 This

exercise involves extra work and extra
assumptions, but we emphasize that a
complete analysis of the survival estimates
provided by a rating service is not possible
without it.

3. THE FRAMEWORK FOR RATING
THE RATERS

We have information on the survival of n
persons. Let ti be the time of death or
censoring (ie, the end of the follow-up
period) for the ith person. We assume that
the rater has provided a survival function Si(t)
for the ith person, where Si(t) is the proba-
bility that he will be alive at time t . 0.

If a life table has been provided, the
function Si(t) is obtained from the ‘‘l(t)’’
column of the life table; it is simply l(t)/
l(0), where the radix l(0) is 100,000 in most
life tables. For example, if the life table
indicates that there are 40,000 persons still
alive at age t, then S(t) 5 0.40. As noted
previously, in practice most rating services
do not provide a complete life table for each
subject, and the table must be inferred from
information that they do provide.

Let di be 1 if the person died in the follow-
up period, and 0 if he did not. The observed
number of deaths is O 5 Sdi. [Note: In the
life settlement industry it is common to refer
to the actual number of deaths, denoted by A,
but we use the more standard notation ‘‘O’’
here.] The more difficult question is how to
compute E, the expected number of deaths.

Table 1. Life Table for 65-Year-Old Non-Smoking Males

Age l(x) d(x) q(x) m(x) L(x) T(x) e(x)

65 100000 247 0.0025 0.0025 99877 2000634 20.0

66 99753 408 0.0041 0.0041 99549 1900757 19.1
67 99345 579 0.0058 0.0058 99055 1801208 18.1

68 98766 759 0.0077 0.0077 98387 1702153 17.2

69 98007 940 0.0096 0.0096 97537 1603766 16.4

70 97067 1117 0.0115 0.0116 96509 1506229 15.5

80 74810 4182 0.0559 0.0575 72719 621855 8.3

90 26280 4463 0.1698 0.1861 24049 109640 4.2

100 1762 570 0.3235 0.3909 1477 4062 2.3
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In the simplest possible case, that of a
group of persons who are the same age and
sex, and followed for exactly one year each,
the expected number of deaths is merely the
number of people (times one year each)
multiplied by the expected annual rate of
death.

In general, one computes E as the sum –
over all possible combinations of age and sex
– of the product of the mortality rate and the
exposure time. This is because a mortality
rate is, by definition, the number of deaths
per exposure time and, thus, the rate
multiplied by the exposure time gives the
expected number of deaths.5,6

The methodology to be described here is
analogous to the traditional epidemiological
task of comparing the observed survival
experience of a study/target group to that of
a standard reference group/population (eg,
the general population).7 Readers of this
journal are familiar with the method in the
context of mortality abstracts.8 The difference
in our application here is that the comparison
is not to a standard reference group, but rather
is to determine the accuracy of the ratings
made for the reference group. That is, we are
not assessing whether the observed deaths, O,
are consistent with the known expected
number, E. Instead, we are assessing whether
the putative expected deaths, E, are consistent
with those observed, O.

The comparison of interest will be that of
the total observed number of deaths during
the follow-up time period (O), with the
expected number (E). The ratio of these, O/
E, is often called a standardized mortality ratio
(SMR).5,p.97

An SMR greater than 1 (or 100%) indicates
more deaths than ‘‘expected’’, and thus that
the raters are underestimating the actual
mortality. Conversely an SMR less than 1
indicates fewer deaths than expected and an
overestimation of mortality. SMRs can be
computed for specific groups (eg, only
males, or only heart patients) or specific
follow-up times (eg, the first 2 years after
rating). The key point in the evaluation of a

rating system is that a good system is one that
produces an SMR of approximately 1.0 for the
whole group and also for every relevant subgroup.

Of course there are issues of sampling
variation here. For example, in one small
group it may be that E 5 1.0 but O 5 zero.
This alone hardly constitutes evidence that
the rating system is inferior. It is clear that
technical issues of standard error and statis-
tical significance are to be considered.

In Sections 4 and 5 below, we note some
superficially plausible but unsatisfactory
methods for comparing the observed and
expected numbers of deaths. Next, in Section
6, we demonstrate the correct method and
give two simple examples of its use. In
Section 7, we apply the correct method to a
large data set of insureds. We conclude in
Section 8 with some comments on how these
ideas should be used in practice.

4. SOME UNSATISFACTORY
APPROACHES

Although we have not yet discussed the
computation of the expected number of
deaths, E, we have indicated the correct
approach to rating the raters: it is based on a
systematic comparison of O versus E for the
whole group and for relevant subgroups. We
think it may be helpful, however, to note
some incorrect approaches that may have
some superficial appeal, in part because of
their simplicity. We have frequently come
across these wrong approaches in our con-
sulting work.

a. Do the individuals generally die at a time
close to their life expectancies?

a. As a simple example, suppose that the
rating service concludes that the life
expectancy is 5 years for every insured.
Is it reasonable to expect that the actual
survival times ti should be close to
5 years?

a. The answer is, of course, no. Just as in
the general population, a wide range of
survival times is to be expected. When
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this very pattern is observed in practice, it
is in no sense evidence that the ratings are
incorrect. We mention this here because
we have seen financial models predicated
upon the insureds each living exactly to
his life expectancy, with no allowance
made for departures from this ‘‘term
certain’’ approach, or sensitivity analyses
to determine the possible ill effects. The
example in section 2, where half the
individuals died tomorrow and the other
half live 40 more years, shows how this
leads to an incorrect valuation.

b. Is the average of the actual survival times
fairly close to the average of the life
expectancies estimated by the raters?

b. This test has more merit than (a) above,
but there are two problems. Firstly, there
is a major technical problem: many, and
perhaps most, of the individuals will not
have died at all during the study period,
so it is not possible to compute the
average time until death. Secondly, even
if all the subjects have been followed until
their deaths, and the average survival
time matches that estimated by the raters,
it is possible that the pattern of mortality
over time is wrong. As an extreme
example, consider again the situation of
Section 2, where the test criterion has been
met but the expected value of the portfo-
lio is still incorrect.

c. Incorrect computation of E, the expected
number of deaths

c. We have come across the following
mistaken argument more than once. Sup-
pose again that each subject is followed
for a time period ti, which is the time of
death or of censoring. Before we had any
information on his survival, we would
have estimated his chance of being alive
at time ti as Si(ti). So the expected number
of deaths that this person contributes is:

1 � Probability person dies before time ti½ �

~1{Si tið Þ:

Hence the total expected number of deaths

is E~n{
X

Si tið Þ:

c. It is easy to see that this approach is
wrong. Suppose, for example, that the
follow-up period is long enough that all
the subjects die before it elapses. In this
case the observed number of deaths, O,
will be equal to n, the total number of
persons in the sample. But the above E
will always be less than n, because each
Si(ti) – which is the probability that the ith

person is alive at time ti – will be always
be greater than 0. Thus the method will in
this case always lead to the conclusion
that mortality has been underestimated,
even if the reverse happens to be true.

c. An even worse mistake would be to
apply the above method using the time of
death, ti, as the end of the period of
observation. According to this approach,
if the person dies at his median survival
time he would contribute 1 death to O but
only K a death to E. One would thus
conclude that mortality is being underes-
timated by 50% (SMR 5 O/E 5 2).

5. A USEFUL THOUGH
INCOMPLETE METHOD

The data we are given – survival times,
together with an indicator variable di of
whether the individual lived or died during
the study period – are in a suitable format for
the computation of a Kaplan-Meier survival
curve.9 This statistical method, which prop-
erly takes account of censoring, gives a
composite survival curve, S(t), that takes
the value 1.0 at time 0 and diminishes over
time as a step-function. The function is
known to be an unbiased estimator (in fact,
the ‘‘maximum likelihood estimator’’) of the
expected proportion of subjects who will be
still alive at time t.

To be useful, this empirical curve must be
compared (and plotted alongside) a suitable
‘‘expected’’ curve. By this we mean the
expected proportion of persons alive at each
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time on the assumption that the ratings are
correct. The interpretation of this curve
requires care because the n subjects are not
a sample from a common distribution.
Instead, each has his own survival function
Si(t), specified by the rater. In general, the
expected proportion alive at time t is
correctly computed as:

S tð Þ~ 1=nð Þ
X

Si tð Þ:
Thus, for each time t, S(t) is simply the
average of the n probabilities of survival.

The Figure above is an example. The
smooth expected survival curve is that for
65-year-old non-smoking males who recently
qualified for insurance at standard rates.10

The observed Kaplan-Meier curve, which is
in fact a step-function, is for a hypothetical
group of 10 persons who died after survival
times of 2, 4, 8, 13, 15, 22, 24, 32, 35, and
38 years. As can be seen, the observed
survival percentage closely agrees with the
expected values at times 0, 20, and 40 years.
One might therefore think that the survival
experience is ‘‘about as expected’’ and thus
that the SMR is close to 1.0. But it is not. It
can be shown that for this data E 5 15 (see
section 6) and thus the SMR 5 O/E 5 10/15

5 0.67. Further, the plot reveals quite clearly
that the observed survival was much worse
than expected during the first 10 years, say,
and much better in the later years. That is,
the pattern of mortality is not as expected. It
turns out that the 3 persons who lived the
longest contributed 12.4 of the 15.0 expected
deaths.

This method, which is recommended by
Finkelstein et al.,7 is certainly sound and can
be useful in practice. There is even a simple
statistical test for goodness-of-fit.7 The limi-
tation of the method is that it focuses solely
on the time since the rating was performed as
the variable of interest. Thus it would be
sensitive to deficient ratings that, as here,
seriously underestimate mortality in the early
years and overestimate it in later years. But
suppose that instead there was no time
effect, and the ratings were, for example,
too high for males and too low for females.
The graph would not reflect this at all.

An equivalent method has been adopted
in the life settlement industry by one of the
major life expectancy providers.11 They
compare the cumulative actual (A) percent-
age of deaths with the percentage expected
(E). This is, of course, merely the comple-

Figure. Comparison of observed and expected survival curves.
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ment of the above method (ie, 1 minus the
survival values). They then compute their ‘‘A
to E’’ by taking the ratio of these two
quantities. In statistical parlance, this is the
ratio of the empirical distribution function,
F(t), to the expected (or null) distribution
function, Fo(t), or F(t)/Fo(t).12 Many one-
sample goodness-of-fit statistical hypothesis
tests have been developed for this very
application,13,14 but the provider does not
appear to have used them.

Under either of the above two methods,
the actual and expected curves will agree
perfectly at the outset (100% survival or 0%
mortality, respectively) and after sufficient
time has elapsed for all insured to die (0%
survival or 100% mortality, respectively). In
the interim, the ratio (or the curves) may
vary, sometimes quite significantly if the
sample size is relatively small.

Thus the above two methods provide no
useful information at the two extremes of
follow up time (ie, at time t 5 0 and also when t
is very large). Further, their use is somewhat
problematic at intermediate values of t be-
cause the assessment of fit may vary over time.
Finally, there is no ‘‘overall’’ test that aggre-
gates across time. We thus cannot answer the
most important question: ‘‘How many deaths
were we short or in surplus?’’

6. THE CORRECT COMPUTATION OF
EXPECTED VALUES (E)

As noted in Section 3 above, the correct
method to rating the raters is based on
comparison of the observed number of
deaths, O, to the expected number E. These
should be sufficiently close, both over the
entire study group and also within subsets of
interest. We now turn to the computation of
the E’s. As will be familiar to readers of the
Journal, the correct units of analysis are
person-years of exposure time (rather than, for
example, the persons themselves).

We introduce this with a simple example.
Suppose that an individual’s mortality rate
in any given year is 40%, and that he has

been followed for exactly 4 years.15 If he is
still alive, then O, the observed number of
deaths, is zero for him, of course. If he died
at the end of the four years, then O 5 1.

The expected number of deaths in each of
these four years of exposure is 0.4, for a total
of 1.6 deaths. It may seem odd that the
expected number of deaths for one individ-
ual can exceed 1, but this is in fact perfectly
reasonable. Suppose, for example, there are
100 persons like our individual, all of whom
died after exactly 4 years. Then O 5 100 and
E 5 160. This leads to the correct conclusion
that the rating method has underestimated
survival, or overestimated mortality, even
though all the subjects have died. They have,
after all, lived rather longer than expected:
the average survival time can be shown to be
only 2.5 years.16

For the general case, let the population size
be n people. The total expected number of
deaths is E 5 SEi, where the summation is
over i51, 2, …, n, and Ei is the number of
deaths expected over the follow-up period of
ti years for person i.

Note: One typically thinks of E as applying
only to groups of persons. However, for each
single person there is an expected number of
deaths. Further, there is an expected number
of deaths for each sub-interval of the
person’s exposure time.

For simplicity assume that ti is an inte-
ger.17 Then Ei is the sum of the first ti

mortality rates in the life table for person i.18

That is, Ei 5 Smij, where mij is the estimated
mortality rate for person i at follow-up time j,
and the sum is over j51, 2, …, ti.

The mortality rates mij are shown in the
life table for person i, or can be derived from
survival or mortality probabilities.19 Note
that the Ei are not probabilities or rates of any
kind. The only interpretation of Ei is the expected
number of deaths based on the total exposure time
for the ith individual.

Example #1. This is given to illustrate the
computation of the expected number of
deaths for one person using the mathemat-
ical relationships described above.
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N According to the U.S. life table, 2.3% of
persons will survive from birth to age 100.
That is, S(100) 5 0.023.

N If a given individual is followed from birth
and is still alive at age 100 (or dies at that
age), the expected number of deaths
during this period is the sum of all the
mortality rates in the life table up to age
100. That is, E 5 Smj 5 2ln[exp(Smj)] 5

2ln[S(100)] 5 2ln(0.023) 5 3.8, where
‘‘ln’’ denotes the natural logarithm and
‘‘exp’’ is its inverse, obtained by raising
the transcendental number ‘‘e’’ to the
given power. See Footnote #18 for the
technical details.

N Thus even if the person dies at age 100,
contributing 1 death to the observed total
O, he contributes much more than that –
ie, 3.8 deaths – to the expected total. This
reflects that his survival is much better
than average.

N This is perfectly reasonable; if we had a large
group of persons, all of whom lived to age
100, we would correctly conclude that their
collective survival is much better than
predicted from the U.S. life table. In fact, if
all died at age 100 we would have SMR 5 O/
E 5 1/3.8 5 0.26, much less than 1.0.

Example #2. This is given to illustrate the
correct and incorrect methods on a small
data set.

N Suppose a group of 4 identical elderly
males were rated as having life expectan-
cies of exactly 2 years each.

N For simplicity assume that the estimated
mortality rate is constant. If so, it is 0.5 per
year.20

N Suppose that the 4 die after survival times
of 1, 1, 1, and 3 years.

N What is the SMR?
N Correct answer: O 5 4, E 5 1*0.5 + 1*0.5 +

1*0.5 + 3*0.5 5 3. So the SMR 5 O/E 5 4/3
5 1.33, or 133%. There are 33% more
deaths than were expected. Thus, the
ratings slightly underestimate mortality
and thus overestimate the survival rates
and life expectancy.

N Using the incorrect method in section 4(c)
above: Again, O 5 4. The chance of dying in
the first year is approximately 40%, and
the chance of dying in 3 years is approx-
imately 80%.21 Thus, the incorrect estimate
of E is 0.4 + 0.4 + 0.4 + 0.8 52.0. The
(incorrect) SMR is therefore O/E 5 4/2.0
5 2. This incorrect SMR would lead us to
the incorrect conclusion that the method of
estimating life expectancy greatly overesti-
mates survival.

As noted, in any application the observed
number of deaths will be known. We have
described how to compute correctly the
expected number of deaths for each person.
We emphasize that the observed and expect-
ed number are each attached, essentially, to a
person-year, not to a person. The person-
year contains all the current information
about the person (age, sex, time since
underwriting, medical risk factors, etc.).

These person-years can then be partitioned
and compared (SMR 5 O/E) in many ways,
according to the follow-ups times and person
characteristics (which include age, sex, and
all their lifestyle factors and medical condi-
tions).

There will typically be hundreds or even
thousands of individuals being assessed. A
first step is to compare the overall observed
and expected numbers of deaths as above.
This may show that a given rating service
systematically overestimates (SMR , 1) or
underestimates (SMR . 1) the actual mor-
tality.

This, however, is only a first step. Suppose
that a given rating system gives an SMR of
1.0. This looks satisfactory. But it may be that
there is overestimation of mortality for males
and underestimation for females. Or the
ratings are good during the first 3 years after
‘‘underwriting’’ and poor thereafter. Or it
works well for healthy people and not for
those with serious medical conditions.

Thus the data should be partitioned in
many ways – eg, by age, sex, severity of
health conditions, time since rating, source of
the policy, type of underwriter or underwrit-
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ing, face value, life expectancy (high/low),
rating service, etc. We then look for patterns of
systematic deviation of the SMRs from the ideal
value of 1.0. This is partly an art, and partly
involves statistical criteria such as signifi-
cance tests and confidence intervals for the
SMRs.22 It is not our intention to give all the
details here, but we believe that the examples
that follow are sufficiently illustrative.

7. APPLICATION TO A PORTFOLIO
OF POLICIES

We analyzed a portfolio of 4000+ persons
who submitted their demographic, medical,
and other information in anticipation of
selling their life insurance policies. There
were 286 deaths over the 5 years of available
mortality follow-up.

Risk factor information was used to
provide estimates of life expectancy. Table 2
shows partial information on the first 5
insureds. For brevity the ‘‘Medical Factors’’
are not shown here. MM is the mortality

multiplier (MM5100 being ‘‘standard insur-
ance’’) and ‘‘e’’ is the resulting life expectan-
cy.

As noted, however, a life expectancy
estimate alone is not sufficient to evaluate
the ratings. Table 3 shows the estimated
mortality rates for each insured over the
5 years of follow-up (although the life table
provided mortality rates up to age 110, not
all of these were necessary because the
follow-up time was only 5 years).

To evaluate the above ‘‘predictions’’ we
also required ‘‘truth data’’: the actual mor-
tality experience of the group. Table 4 shows
the survival time (ST) in years for each
insured. The resulting exposure time in
years, by time since underwriting, is given
in the subsequent columns.

As can be seen, individual #1 survived 3
full years and then was censored (that is, he
was still alive as of the date of the analysis).
He contributed a full year of exposure time
for years 1, 2, and 3, and nothing thereafter.

Table 2. Insured Information and Life Expectancy

Estimates

#

Covariates

MM eAge Sex Education
Medical
Factors

1 86 M College … 87 8.0
2 74 F Grad School … 129 13.3

3 63 F College … 164 18.0

4 74 M College … 103 14.4

5 80 M =High School … 81 12.0

Table 3. Estimated Mortality Rates for Each Insured by

Time Since Underwriting

# e

Time Since Underwriting (Years)

0.0–0.9 1.0–1.9 2.0–2.9 3.0–3.9 4.0–4.9

1 8.0 0.03 0.04 0.06 0.08 0.10

2 13.3 0.01 0.02 0.02 0.02 0.03

3 18.0 0.10 0.12 0.12 0.12 0.14
4 14.4 0.01 0.01 0.02 0.02 0.03

5 12.0 0.01 0.02 0.02 0.03 0.03

Table 4. Exposure Time for Each Insured by Time

Since Underwriting

#
Survival

Time 0.0–0.9 1.0–1.9 2.0–2.9 3.0–3.9 4.0–4.9

1 3.0 1 1 1 0 0

2 3.5 1 1 1 0.5 0

3 0.4 0.4 0 0 0 0

4 3.9 1 1 1 0.9 0

5 5.0 1 1 1 1 1

Total 4.4 4.0 4.0 2.4 1.0

Table 5. Expected Deaths (E) for Each Insured (5

Value in Table 3 * Value in Table 4)

#
Survival

Time 0.0–0.9 1.0–1.9 2.0–2.9 3.0–3.9 4.0–4.9 Total

1 3.0 0.03 0.04 0.06 0.13

2 3.5 0.01 0.02 0.02 0.01 0.06

3 0.4 0.04 0.04

4 3.9 0.01 0.01 0.02 0.02 0.06

5 5.0 0.01 0.02 0.02 0.03 0.03 0.11

Total 0.10 0.09 0.12 0.06 0.03 0.40
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Person #3 was censored after only 0.4 years
of follow-up, and thus contributed only
0.4 years in the first year.

The expected number of deaths (E) for
each insured is simply the appropriate
mortality rate in Table 3 multiplied by the
exposure time in Table 4. These are shown in
Table 5. The missing entries are in fact all
zeros; these have been left blank to empha-
size that there was no exposure during the
given time period for the given person.
Notice that there is an expected number of
deaths for each person-year.

Lastly, we must use information on the
timing of deaths. Table 6 presents this
information. As with the expected number
above, there is also an observed number of
deaths for each person-year.

From the limited data given above, we see
that there were 2 deaths, compared with the
total expected number of 0.40. Hence the
overall SMR 5 O/E 5 2/0.40 5 5.0, 500%, or
5 times as many deaths as predicted.

We now present results for the entire
group of 4379 insureds.

Table 7 provides preliminary results. As
can be seen, overall there were 20% more
deaths than expected (SMR 5 1.2), but the
excess was largely in the first year post
underwriting (SMR 5 1.5) and the second
and third years post underwriting (SMR 5

1.2). Thereafter, the SMR was approximately
100%.

Many analysts would either choose to end
their analysis at this point, or be forced to do
so by the limitations of their chosen methods.
As noted above, however, there is no need to

restrict the analysis to the single issue of time
since underwriting (TSU). The data can
usefully be partitioned in many different
ways. Table 8 shows the results of 3 other
ways of stratifying the data. The first is by
risk group. The best quintile is the 20% of the
group with the lowest mortality multipliers
(equivalently, they had the highest age-
adjusted life expectancies), the 2nd quintile
is the next group, and so on. The second is by
age (at time of rating) group, and the third is
by sex.

To aid in the interpretation of these results,
we include the number of people (n), the
average mortality multiplier in the group,
and the observed and expected numbers of
deaths overall. We do not show O and E
separately for the SMRs by TSU.

As can be seen, the predictions were
excellent for the first three risk quintiles –
those with the lowest mortality multipliers
(average MM of 68, 78 or 90) – the SMRs
being either 1.0 or 1.1. This indicates that (a)
the chosen baseline mortality rate was a
good fit to the empirical data, and (b) the
relatively mild adjustments were done
correctly.

The predictions were unsatisfactory in the
worst quintile, the SMR being 1.6. This,
however, was largely restricted to the first
3 years post underwriting. Further, we found
that ratings were best for the older ages
(70+), and tended to be far too optimistic at
the younger ages (O/E 5 3.3 at age 60–64, for
example, though this was based on only 10
actual deaths).

We also examined whether the mortality
estimates were accurate for a given medical
condition (eg, coronary artery disease) and

Table 6. Observed Deaths (O) for Each Insured by Time

Since Underwriting

# Died 0.0–0.9 1.0–1.9 2.0–2.9 3.0–3.9 4.0–4.9 Total

1 0 0 0 0 0 0 0
2 1 0 0 0 1 0 1

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 1 0 0 0 0 1 1

Total 0 0 0 1 1 2

Table 7. Preliminary Results

Statistic

Time Since Underwriting (Years)

All 0.0–0.9 1.0–2.9 3.0+

O 286 70 164 52

E 230 48 131 51

O/E 1.2 1.5 1.2 1.0
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the type or severity of the condition (eg, 2-
vessel). We found no clear pattern, and thus
do not show those results here. We did not
have information on the specific source, type,
or face value of the policy, and thus could
not stratify the analyses by these factors.
Lastly, and as expected, the incomplete
method of section 5 yielded rather different
results.23

8. DISCUSSION

The rigorous testing described here is not
merely for evaluation of the raters. It can and
should be used by the rating firms them-
selves to improve the quality of their ratings.
That is, the company can assess whether its
ratings are correct, either overall, by disease,
or by other stratification. Further, assuming
that the raters adhered to company policies
and the rating manual, the company can then
assess whether the ratings themselves are
adequate.

Additionally, the service can individually
evaluate its own raters/underwriters. Are
they systematically too optimistic or pessi-
mistic? Do they rate some types of cases

better than others? Are they becoming more
accurate with experience?

The firm can also assess whether its
accuracy varies by the type of investor,
source of the policy, type of policy, face
value, or other factors. If specific subsets
tend to die early or live too long, further
questions will arise.

Several rating services have advertised the
accuracy of their predictions. However, it
appears that they have done their testing on
the same data that they used to determine
the ratings. In statistics this would be
considered an inadequate test, as fitting
and testing are two distinct activities. It is a
basic principle that the training or calibration
data set should be separate from the valida-
tion set. Otherwise one is merely describing
the fit of the model to the extant data – which
can always be made better by post-hoc
adjustment – rather than independently
testing the methods or models.

Ideally, an independent actuarial firm
would have a rating contest, contestants
being invited to rate a portfolio of, say,
1000 persons whose actual mortality experi-
ence was known. Actuaries would then

Table 8. Further Results

Risk Group n Average MM O E

Overall
O/E by TSU

O/E 0 1–2 3+

Best Quintile 879 68 48 43 1.1 1.1 1.0 1.3

2nd Quintile 875 78 41 39 1.0 1.1 1.0 1.0

3rd Quintile 875 90 48 43 1.1 1.0 1.2 1.0
4th Quintile 875 107 54 46 1.2 1.4 1.1 1.1

Worst Quintile 875 165 95 58 1.6 2.6 1.7 0.8

Age
60–64 154 127 7 2 3.3 3.7 3.1 3.6

65–69 512 116 21 11 2.0 1.7 2.2 1.7

70–74 1031 104 36 31 1.2 0.9 1.4 1.0

75–79 1268 97 80 53 1.5 1.7 1.5 1.3

80–84 1003 95 76 73 1.0 1.6 1.0 0.8

85–89 339 97 53 48 1.1 1.5 1.0 0.7

90+ 71 86 11 14 0.8 0.9 0.7 1.1

Sex

Male 3836 107 184 145 1.3 1.6 1.3 1.0

Female 543 93 102 85 1.2 1.3 1.2 1.1
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evaluate the accuracy of the ratings and
publicize their findings. One would be
surprised, however, if many rating services
would agree to such a test. But investors can
already perform this test themselves. Inves-
tors typically have multiple ratings (‘‘life
expectancy predictions’’) on each insured.
And they have mortality information on each
insured. They are thus in a position to
evaluate the various rating services using
the same set of insureds. Questions that can
be answered include: What are the overall
SMRs for the various service providers, and
are they acceptably close to 1.0? Does one
service do better on one type of insured (eg,
older males) or policy (eg, large face value)?
Is a particular company getting better with
time? Are the newer companies more or less
accurate than the older ones? Certainly this is
a more principled and accurate approach to
evaluation than merely using the average of
the respective life expectancy opinions, as
some investors tend to do.
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