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Ratio-based Multi-temporal SAR Images Denoising:

RABASAR
Weiying Zhao, Charles-Alban Deledalle, Loı̈c Denis, Henri Maı̂tre, Jean-Marie Nicolas,

Florence Tupin, Senior Member, IEEE

Abstract—In this paper, we propose a fast and efficient multi-
temporal despeckling method. The key idea of the proposed
approach is the use of the ratio image, provided by the ratio
between an image and the temporal mean of the stack. This
ratio image is easier to denoise than a single image thanks to its
improved stationarity. Besides, temporally stable thin structures
are well preserved thanks to the multi-temporal mean.

The proposed approach can be divided into three steps:
1) estimation of a “super-image” by temporal averaging and
possibly spatial denoising; 2) denoising of the ratio between the
noisy image of interest and the “super-image”; 3) computation
of the denoised image by re-multiplying the denoised ratio by
the “super-image”.

Because of the improved spatial stationarity of the ratio
images, denoising these ratio images with a speckle-reduction
method is more effective than denoising images from the orig-
inal multi-temporal stack. The amount of data that is jointly
processed is also reduced compared to other methods through
the use of the “super-image” that sums up the temporal stack.
The comparison with several state-of-the-art reference meth-
ods shows better results numerically (peak signal-noise-ratio,
structure similarity index) as well as visually on simulated and
SAR time series. The proposed ratio-based denoising framework
successfully extends single-image SAR denoising methods to
time series by exploiting the persistence of many geometrical
structures.

Index Terms—Multi-temporal SAR series, ratio image, super-
image, SAR, speckle reduction

I. INTRODUCTION

S
YNTHETIC aperture radar (SAR) imaging is widely used

in the monitoring of land surfaces, disasters or the environ-

ment, due to its all-time acquisition capability, its sensitivity

to geometric structures, its penetration characteristics, etc.

However, the system-inherent speckle noise visually corrupts

the appearance of images and severely diminishes the analysis

and interpretation of SAR images. Therefore, a preliminary

speckle reduction step is often necessary for the successful

exploitation of SAR images.

The recent and unprecedented availability of long time

series with Sentinel-1 constellation has opened new ways for

SAR speckle reduction. This highly redundant information

offers a new paradigm. Taking inspiration from temporal

multi-looking and residual noise analysis we propose in this
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paper a ratio-based denoising approach (first presented in [1]),

dedicated to long multi-temporal stacks.

The main problems of SAR image despeckling are the spa-

tial resolution preservation, the edges and textures restoration,

and the preservation of point-like targets. Spatial multilooking

is a common way to reduce speckle fluctuations in a single

SAR image, at the cost of a significant spatial resolution

loss [2]. To effectively estimate the noise-free reflectivity as

well as preserve the spatial resolution, many single-channel

SAR speckle reduction methods have been proposed during

the past decades. Detailed introductions of the methods are

given by Touzi et al. [3], Argenti et al. [2] and Deledalle

et al. [4]. These methods mainly belong to four categories:

Bayesian methods in the spatial domain (Lee filter [5], Lee

refined filter [6]), Bayesian methods in a transformed domain

[7], selection-based filtering (IDAN [8], PPB [9] and NL-

SAR [10]) and sparse-based approaches [11]. Many single-

SAR-image denoising methods are designed by combining

information in different domains (the spatial domain and a

transformed domain), with different estimation criteria and

various statistical models of speckle and radar reflectivities

[2]. Several state-of-the-art single-image despeckling methods

perform a weighted average of selected surrounding pixels

values to estimate the speckle-free values. If the surrounding

pixels are not well selected or if their associated weights are

badly chosen, an estimation bias occurs which is generally

visible in the form of a spatial resolution loss (over-smoothing

and spreading of thin structures). The accurate selection of

pixels is very challenging in single-look SAR images given

the large fluctuations due to speckle phenomenon. Even when

using state-of-the-art spatial denoising approaches (such as

SAR-BM3D [12] or NL-SAR [10]), the smallest and least

contrasted structures can be damaged or some noticeable

speckle fluctuations can remain after filtering.

Recently, convolutional neural networks have shown a high

capability of denoising data affected by additive white Gaus-

sian noise (AWGN) [13]. Application to SAR images has also

been proposed, either through an homomorphic approach [14]

or directly applying gamma distribution based methods [15].

Unlike traditional SAR image denoising approaches, these

methods predict the noise-free value through the estimation of

the speckle component. These recent techniques reach com-

parable despeckling results w.r.t. state-of-the-art approaches,

both in terms of signal to noise ratio (simulated data) and in

terms of spatial feature preservation. However, the training of

these networks is time consuming and requires to building a

training set with pairs of speckle-free / speckled SAR images.
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With the launch of the latest generation of SAR satel-

lites (Cosmo-SkyMed, TerraSAR-X, ALOS-2, Sentinel-1, etc.)

[16], more and more SAR images, with shorter revisit time

or higher resolution, are now available. With multi-temporal

images, both spatial and temporal information can be com-

bined in the denoising process, which gives the potential of

reaching better speckle reduction results than is achievable

when processing a single image. This is the path followed by

several kinds of multi-temporal denoising methods, proposing

temporal weighted average [17], [18], [19], temporal weighted

average in a transformed domain (M-TSF [20] and MSAR-

BM3D [21]), change-detection-aware multi-temporal average

(Lê’s method [22], [23] and 2SPPB [24]), or filtering us-

ing three-dimensional adaptive neighborhoods [25], [26]. A

drawback of such approaches is the increased computational

complexity with longer time series.

Multi-temporal denoising methods take advantage of the

increasing availability of SAR image time-series to solve the

spatial denoising problems, for the benefit of a better spa-

tial resolution preservation. Most of multi-temporal denoising

methods process the whole time series in order to produce

a denoised image at a given date. In this paper, we take

a different approach by forming a summary of the multi-

temporal series (which we call a “super-image”, the speckle

in that image being strongly reduced), and by using only

this “super-image” in addition to the speckle-corrupted image

(rather than the whole time series) to obtain a denoised image

at any given date.

This ratio-based multi-temporal denoising method fully

exploits the significant information of the multi-temporal stack

through the “super-image”. After forming the ratio image

between the noisy image and the “super-image”, the proposed

method takes advantage of the state-of-the-art single-image

speckle reduction methods to denoise the ratio image [1]. We

consider multi-temporal images acquired on the same orbit

(i.e., either all ascending orbits, or all descending orbits),

with similar incidence angles, and which have been accurately

registered [27]. For the sake of reproducible research, we have

released an open-source code at https://www.math.u-bordeaux.

fr/∼cdeledal/rabasar.php.

The contributions of this paper are the following:

• we introduce a generic ratio-based multi-temporal denois-

ing framework, called RABASAR, to process a single

SAR image using a multi-temporal stack;

• we design a denoiser, called RuLoG, adapted to the

statistical distribution of the ratio image formed between

a speckle-corrupted image and a “super-image” with

reduced speckle, by extending the MuLoG method pro-

posed in [28];

• we demonstrate the interest of the proposed method on

simulated and SAR time series.

The remainder of this paper is organized as follows. In

Sec. II, we introduce the general framework of the proposed

method. Section III presents different ways to compute the

“super-image”. Then the filtering of the ratio image is de-

scribed in Sec. IV. Experimental results are presented in

Sec. V. Finally, some conclusions and perspectives are drawn

in Sec. VI.

II. PRINCIPLE OF THE PROPOSED METHOD

The temporal averaging (also called temporal multi-looking)

of SAR time series produces an image with reduced speckle

and a preserved spatial resolution. We call such a reduced-

speckle image a “super-image”. In this paper, we propose

to exploit this super-image to build a ratio-based denoising

framework.

The proposed method is composed of three main steps,

illustrated in Fig. 1:

1) In the first step, a super-image is calculated from a time

series of spatially registered and radiometrically calibrated

SAR images. Averaging temporal intensity samples is the

simplest way to obtain an image with reduced speckle. This

corresponds to the maximum likelihood estimation of the

reflectivity when speckle is considered temporally decorrelated

and temporal fluctuations of the reflectivity are neglected (ob-

servations at a given pixel are then independent and identically

distributed). In practice, changes impacting some regions of

the image may occur at some dates. Rather than averaging all

dates, it can be beneficial to select only relevant dates when

forming the “super-image”, as done for instance in [24], [23],

[29]. Moreover, because speckle is temporally correlated (by

spatially varying correlation levels), some amount of spatial

denoising helps to produce a “super-image” where speckle is

reduced everywhere. Computation of the super-image, denoted

ûm in the sequel, will be presented in Sec. III.

2) In the second step, the super-image is used to form the

ratio τt between the image vt at time t and the super-image,

at each spatial location s:

τt(s) =
vt(s)

ûm(s)
(1)

We refer to τt as the “ratio image” at time t. It contains

the residual speckle noise between the two images, and the

radiometric shifts when changes occur. When the length of the

time series increases and in the absence of change, the super-

image ûm converges to the reflectivity ut. The ratio image τt
then tends to pure speckle (i.e., a collection of independent

identically distributed gamma random variables with unitary

mean and the same number of looks as the original image). In

contrast, when changes occur in the time series, these changes

impact the super-image which then differs from the reflectivity

ut of the image at time t. Processing the ratio image τt is

necessary to correctly recover the reflectivity ut. Both the

noisy image vt and the super-image ûm suffer from speckle

(the speckle in the super-image, though, is strongly reduced).

The processing of the ratio image requires to account for the

specific noise statistics arising from this ratio of speckled

images. A denoiser dedicated to the statistics of the ratio-

image is derived in Sec. IV.

3) In the third step, the filtered image is recovered by

multiplying the denoised ratio image with the original super-

image.

III. COMPUTATION OF THE SUPER-IMAGE

The super-image can be computed from a time series by

different ways. First, different Hölder means (such as the
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Fig. 1: Summary of RABASAR method for speckle reduction of SAR time series and associated sections of the paper.

arithmetic or the geometric means) could be chosen; then,

these means may be applied either on the intensity data or

on the amplitude data. We may expect from these choices to

enhance different pieces of information [30]. In this paper,

registered and radiometrically corrected intensity SAR images

are used. We propose to use the arithmetic mean for its good

properties [30], in particular in terms of modeling the statistics

of the super-image, with the option of using binary weights to

discard the intensity at some dates when a change occurred.

A. Statistics of SAR images

We briefly recall in this section the statistics of fully

developed speckle. Under Goodman’s hypothesis [31], fully

developed intensity speckle follows a gamma distribution

G(u, L) depending on the number of looks L and the mean

reflectivity u (the aftersought signal of interest) of the scene:

pv
(
v
∣∣u, L

)
=

L

uΓ(L)

(
Lv

u

)L−1

e−
Lv
u (2)

Speckle in SAR images acts like a multiplicative noise and

the speckle model can be expressed as [5]:

v = uw (3)

where w follows a gamma distribution G(1, L), the expectation

is E[v] = u and the variance is Var[v] = u2/L. With the

increase of the number of looks L, the variance decreases.

The proportionality between the variance and u2 reflects that

noise is signal-dependent and multiplicative.

B. Arithmetic mean

Given a time series of T intensity values {vt(s)}Tt=1 indexed

by time t, the arithmetic mean is calculated at location s by:

ûAM
m (s) =

1

T

T∑

t=1

vt(s) 1 ≤ t ≤ T (4)

Theoretically, with (i) no change in the time series, u1(s) =
u2(s) = · · · = uT (s), and (ii) T large enough and speckle

sufficiently decorrelated from one image to an other, averaging

the temporal intensity data is a simple yet effective approach

to reduce the speckle [32]. When speckle is fully decorrelated,

the arithmetic mean ûAM
m (s) corresponds to the maximum

likelihood estimation of u(s) and the multi-look image ûAM
m

follows a gamma distribution G(u, LT ). In practice, because

of temporal correlations of the speckle, the resulting equivalent

number of looks (ENL) may be less than this theoretical

value (LT ), especially in case of images in interferometric

configuration. The associated ENL will be denoted by Lm in

the following, and its estimation is discussed in Sec. III-D.

When changes occur in the time series, the arithmetic mean

ûAM
m (s) no longer matches the scene reflectivity at time t.

We can reduce this discrepancy between the temporal average

and the reflectivity at date t by averaging only the unchanged

temporal samples, as described in the next paragraph.

C. Binary weighted arithmetic mean

Instead of computing the super-image from the time series

without considering the date t of the image under study,
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another option is to compute a dedicated super-image that is

closer to the reflectivity ut. Only samples with similar and

stable reflectivities can be considered in the average. To detect

these samples, we suggest using a patch-based selection based

on the generalized likelihood ratio (GLR) test. The GLR test

between two independent observed intensity values v1 and v2
(with same number of looks L) confronts the following two

hypotheses: the null hypothesis corresponding to a common

reflectivity value u12 accounting for the observed intensities

v1 and v2, and the alternative hypothesis where a different

reflectivity is considered for each observation (u1 for v1 and

u2 for v2) to account for a change in the reflectivity between

the observations. The generalized likelihood ratio (GLR) test

corresponding to this hypothesis test is given by [33]:

GLR(v1, v2) =
v1v2

(v1 + v2)2
, (5)

where constant terms are omitted. Taking the log and extend-

ing the comparison to the image patches centered at location

s in the images at date t and t′ lead to [9], [24]:

dt,t′(s) =
∑

δ

log

(√
vt(s+ δ)

vt′(s+ δ)
+

√
vt′(s+ δ)

vt(s+ δ)

)
(6)

where vt(s+ δ) is the value in the noisy patch at date t. The

sum is taken over all pixel shifts δ such that pixels with index

s + δ are located inside a patch centered on s (small square

window). Then, a binary weight wt,t′(s), expressing whether

there are temporal changes or not, is computed as:

wt,t′(s) =

{
1, if dt,t′(s) < σ
0, otherwise

(7)

where σ is a threshold chosen as σ = quantile(dt,t′(s), α)
under the null hypothesis and is estimated with Monte Carlo

simulations using gamma distributed data and α = 0.92 as

proposed in [24].

Then, the binary weighted arithmetic mean (denoted by

BWAM in the sequel) is calculated at date t by:

ûBWAMt
m (s) =

1
∑T

t′=1 wt,t′(s)

T∑

t′=1

wt,t′(s)vt′(s) (8)

where the notation BWAMt is used to highlight that the super-

image depends on the targeted date t. For each pixel s and each

date t of the stack, the weights wt,t′(s) select the dates t′ for

which no significant change occurred with respect to the image

at date t. Thus, the binary weighted mean ûBWAMt
m (s) provides

a more faithful estimation of ut(s). This improvement is

obtained at the cost of an increased complexity since the super-

image is date specific: the stack has to be processed for each

date t, while a single super-image is computed once and for all

with the (unweighted) arithmetic mean. The interest of using

such a temporal mean will be evaluated in Sec. V.

In practice, the selection performed by the binary weights

affects the associated ENL Lm of the super-image. In the next

paragraph, we describe how Lm is estimated.

D. ENL estimation

The super-image may have a spatially varying ENL because

of temporally changing areas, because of spatially-varying

coherence, or because of the use of locally-computed binary

weights. To robustly estimate Lm in the super-image calcu-

lated with medium or high resolution temporal SAR images,

the log-cumulant method [34] is used within sliding windows.

Empirical expressions for the local first and second order log-

cumulant estimators are (for N samples):

k̂1(s) =
1

N

∑

δ

log ûm(s+ δ) (9)

and k̂2(s) =
1

N

∑

δ

[log ûm(s+ δ)− k̂1(s)]2 (10)

The sums are computed over all pixel shifts δ such that pixels

with index s + δ are located inside a square window with

N -pixels centered on s (in practice, we use N = 30 × 30
pixels). Assuming all samples in the local window are iid,

we can obtain a local estimation of the ENL by inverting the

following relationship (theoretical expression):

k̂2(s) = ψ(1, L̂m(s)) (11)

where ψ is the first-order Polygamma function [34]. Note

that the traditional estimation method (by means of the ra-

tio E[ûm]2/Var[ûm]), the moment estimation method or the

maximum likelihood (ML) estimation method could also be

used for the ENL estimation [35].

Nevertheless, samples within local windows centered on

s are usually not iid, and the subsequent statistic L̂m(s)
underestimates Lm(s). For this reason, once the ENLs have

been locally estimated in all sliding windows, we consider a

global ENL for the whole super-image obtained by L̂m =
quantile(L̂m(s), α) where α = 0.98 (almost the maximum).

While it may be argued that the ENL varies spatially in the

image, we found on several images obtained by different

sensors that using a constant ENL value leads to satisfying

results in the subsequent denoising steps.

E. Denoising the super-image

When the number of dates T is not large enough or

when the temporal correlation of speckle is too strong, the

super-image obtained by (weighted) averaging suffers from

significant remaining speckle fluctuations. A spatial filtering

step is then necessary to improve the quality of the super-

image ûm. At this step, any speckle reduction method can

be used. In this paper, we use MuLoG-BM3D [28] to perform

this spatial filtering. MuLoG-BM3D will be discussed in more

details in Sec. IV-B where we describe how it can be extended

to process ratio images.

In summary, 4 super-images can be computed: the arith-

metic mean image (according to Eq. (4)), the binary weighted

arithmetic mean image (according to Eq. (8)), the denoised

arithmetic mean image (DAM) and the denoised binary

weighted arithmetic mean image (DBWAM). The impact of

the method used to build the super-image on the output of

RABASAR is evaluated in Sec. V. In the following, these four

super-images will be indifferently denoted as ûm.
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(a) (b) (c) (d)

Fig. 2: (a) Sentinel-1 noisy image, (b) Arithmetic mean image, (c) Ratio image, (d) Denoised result on ratio image. Appearing

(dark areas in (d)) and disappearing buildings (clear areas) are located in the middle of the image.

After temporal averaging and spatial filtering, the remaining

noise in the super-image follows a distribution without known

closed-form. It can nonetheless be approximated by a gamma

distribution G(um, Lm) where Lm is a constant parameter that

can be re-estimated from the data in order to fit at best the

empirical distribution as described in Sec. III-D.

IV. RATIO IMAGE DENOISING

The ratio image τt formed at date t contains both the

fluctuations due to the speckle component of the noisy image

vt (pure speckle) and some structures that appear due to the

discrepancy between the super-image ûm and the reflectivity

ut (changes of reflectivity). Compared to the noisy image vt,
the ratio image τt is spatially far more homogeneous so that

denoising the ratio image is advantageous.

A. Statistical analysis of the ratio

Denoising a ratio image requires a denoising method

adapted to the statistics of the ratio between the SAR image

vt at date t and the super-image ûm. Despite the temporal

averaging (and possibly, the spatial filtering) of the super-

image, remaining fluctuations are present in ûm. The statistical

distribution of the ratio τt = vt/ûm therefore differs from the

gamma distribution G(ut/um, L) followed by the more ideal

ratio vt/um. Note that, for the sake of notation simplicity,

we drop in this section the dependency with s and each

formula must be understood pixelwise. The Mellin framework

developed in [35] provides an efficient way to derive the pdf of

τt. Indeed, the pdf of the product of two independent random

variables is the Mellin convolution of the pdf of the two vari-

ables. The details of the computation are given in Appendix.

It is shown that the ratio τt = vt/ûm follows a Fisher pdf

F(ρt, L, Lm) with the three parameters ρt = ut/um, L and

Lm:

pτ
(
τt
∣∣ ρt, L, Lm

)
∝ τL−1

t

ρLt
·
(
Lm + L

τt
ρt

)−L−Lm

, (12)

where the normalization constant depends solely on the num-

ber of looks L and Lm. Fisher random variables have a

multiplicative behavior, τt = ρtwt, where wt follows a Fisher

distribution F(1, L, Lm). We have E [τt] = ρt
Lm

Lm−1 , for

Lm > 1, and Var [τt] = ρ2t
L2

m(Lm+L−1)
L(Lm−2)(Lm−1)2 , for Lm > 2 .

The proportionality between Var [τt] and ρ2t reveals again that

noise is signal-dependent.

B. Denoising of the ratio image: RuLoG algorithm

To denoise the ratio images, we need a method that can

account for the Fisher distribution that arises when forming

the ratio between gamma-distributed random variables with

differing number of looks. To this end, we describe in this

paragraph the MuLoG framework [28] and how it can be

extended in order to apply general-purpose Gaussian denoisers

to Fisher-distributed noise.

MuLoG first stabilizes the variance by applying a logarithm

transform to the image. We denote by y the log of the ratio

image τt at date t (the dependency to t is dropped to simplify

the notations) and by x = log ρt = log ut/um the log of

the ratio of the reflectivities. Thanks to the log transform, the

multiplicative noise in the ratio image is mapped to an additive

signal-independent noise with expectation E[y] = x−log L
Lm

+
Ψ(L) − Ψ(Lm) and variance Var[y] = ψ(1, L) + ψ(1, Lm)
where Ψ(·) denotes the digamma function. This shows that,

like for gamma-distributed noise, taking the log of the ratio

image stabilizes the variance of the Fisher-distributed noise.

Unlike standard homomorphic approaches, and inspired by

[36], MuLoG considers next the exact distribution of log-

transformed data. Specifically, the n-pixels image x is obtained

by maximum a posteriori estimation expressed as the solution

of an optimization problem of the form:

x̂ ∈ argmin
x∈Rn

[− log py(y|x) +R(x)] (13)

where the first term − log py(y|x) is the exact likelihood of

the log-transformed ratio y, and the second term R(x) =
− log px(x) is a prior enforcing some spatial regularity on

the solution. MuLoG solves Problem (13) iteratively by the

alternating direction method of multipliers (ADMM) algorithm
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that repeats, for β > 0, the updates

ẑ ← argmin
z∈Rn

[
β

2
‖z − x̂+ d̂‖2 +R(z)

]
(14)

d̂← d̂+ ẑ − x̂ (15)

x̂← argmin
x∈Rn

[
β

2
‖x− ẑ − d̂‖2 − log py(y|x)

]
(16)

In practice, six iterations are considered with β = 1+ 2/L+
2/Lm as suggested in [28].

Regarding Problem (16), in the case of gamma-distributed

speckle considered in the original MuLoG method [28], the

likelihood term was corresponding to a Fisher-Tippett distri-

bution. As discussed in the previous section, the distribution

of ratio-images is not gamma-distributed but follows a Fisher

distribution. Therefore the optimization of (16) has to be

modified compared to the original MuLoG algorithm. By

applying a change of variable, it can be shown that, after the

log transform, Fisher-distributed random variables follow a z-

Fisher pdf [37] given by:

pr

(
y(s)

∣∣∣∣x(s), L, Lm

)
∝ exp

[
L
(
y(s)− x(s)

)]

· (Lm + L exp[y(s)− x(s)])−L−Lm (17)

which leads to:

− log py(y|x) = Cst +

N∑

s=1

[
Lx(s)

+ (L+ Lm) log (Lm + L exp[y(s)− x(s)])
]
. (18)

Injecting this expression in (16) leads to solve N separable

convex problems whose solutions can be obtained by a few

iterations of Newton’s method defined by:

x̂(s)← x̂(s)− β(x̂(s)− ẑ(s)− d̂(s)) + L (1− c(s))
β + Lc(s)(1− L

Lm+L
c(s))

(19)

where c(s) = (Lm+L) exp[y(s)− x̂(s)]/{Lm+L exp[y(s)−
x̂(s)]}. Interestingly, when Lm → ∞, the z-Fisher pdf tends

to the Fisher-Tippet pdf, and taking the limit in (19) leads to

the original MuLoG algorithm [28].

Regarding Problem (14), MuLoG adopts the strategy of

plug-and-play ADMM (see for instance [38]) which consists

in replacing the minimization problem involving R(x) by the

solution of a denoiser adapted to additive white Gaussian

noise with variance 1/β. In this paper, we consider using

BM3D [39], an algorithm based on patch similarity and

three-dimensional wavelet shrinkage, and reaching remarkable

results with fast computation. We refer to this method for ratio

image denoising as Ratio adaptation of MuLoG (RuLoG), see

Algorithm 1.

After obtaining the estimated noise-free value ρ̂t(s) =
exp(x̂(s)) of the ratio, we obtain the denoised image ût
through:

ût(s) = ûm(s) · ρ̂t(s) (20)

Algorithm 1 Extension of MuLoG to ratio images (RuLoG)

Input: ratio image τt
number of looks L̂ of the numerator

number of looks L̂m of the denominator

Output: Denoised ratio image ρ̂t

1: maxADMMiter← 6 (typical value)

2: maxNewtoniter← 10 (typical value)

3: d̂← 0
4: y ← log(τt)
5: x̂← log(τt) + log(L̂/L̂m) + ψ(L̂m)− ψ(L̂)
6: β ← 1 + 2

L̂
+ 2

L̂m

7: for k from 1 to maxADMMiter

8: ẑ ← BM3D denoise(x̂− d̂, noise std = 1/
√
β)

9: d̂← d̂+ ẑ − x̂

update x̂ with a few Newton iterations:

10: for ℓ from 1 to maxNewtoniter

11: c← (Lm + L) exp[y − x̂]/{Lm + L exp[y − x̂]}

12: x̂← x̂− β(x̂− ẑ − d̂) + L (1− c)
β + Lc(1− L

Lm+L
c)

13: end

14: end

15: return exp(x̂)

Algorithm 2 Multi-temporal speckle reduction (RABASAR)

Input: T co-registered SAR images {vt}Tt=1,

targeted date t, input number of looks L.

Output: Image with reduced speckle ût.

Step 1: computation of the super-image (AM or BWAM)

1: ûm ← compute super image(y, t)
2: L̂m ← estimate looks

(
ûm

)

Step 2 (optional): denoising of the super-image

3: ûm ← MuLoG BM3D(ûm, L = L̂m)
4: L̂m ← estimate looks

(
ûm

)

Step 3-4: denoising of the ratio image

5: τt ← vt / ûm
6: ρ̂t ← RuLoG BM3D(τt, L, Lm = L̂m)

Step 5: computation of the restored image

7: ût ← ûm · ρ̂t
8: return ût

The application of this pipeline – RABASAR – is illustrated

Fig. 2. A typical filtering result on a ratio image is presented

on Fig. 2(d) along with the original image, super-image and

the ratio image. The pseudo-code is given in Algorithm 2.

V. EXPERIMENTAL RESULTS

To evaluate the performances of the proposed method,

different experiments have been conducted on simulated
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(a) (b)

Fig. 3: TerraSAR-X series: (a) one image of the temporal

series, (b) arithmetic mean of the 26 images.

(a) (b)

Fig. 4: Images used for data simulation (a) optical image

used as a noise free image, (b) arithmetic mean of Sentinel-1

images with the location of different land-cover types used to

simulate temporal changes (green: farmland changes, yellow:

forest changes, red: appearing building, blue: appearing then

disappearing building.

and SAR images. Recall that an open-source code of

RABASAR is available at https://www.math.u-bordeaux.fr/
∼cdeledal/rabasar.php.

The influence of different super-images on RABASAR de-

noising results are commented in Sec. V-C. Then, RABASAR

is compared to some selected methods from the literature:

UTA [17], [18], NLTF[21], 2SPPB [24] and MSAR-BM3D

[21] (Sec. V-D).

A. Data presentation

1) Sentinel-1 and TerraSAR-X images: The proposed meth-

ods are tested on a time series of 69 descending Sentinel-1 IW

SLC Level-1 images acquired from December 24, 2014 to May

6, 2017 with VV polarization over Saclay area, south of Paris1

(see Fig. 2(a) and (b)). Saclay plateau is mostly an agricultural

area with pieces of forests and dispersed academic buildings.

In the last five years, many new buildings and infrastructures

have been under development.

In addition, 26 single-look TerraSAR-X images (13 images

are sensed in 2009 and the other 13 images in 2011) ac-

quired over Saint-Gervais-les-Bains, south-east of Geneva, are

1All the Sentinel-1 images can be downloaded from Copernicus Open
Access Hub (https://scihub.copernicus.eu/dhus/).

used (project DLR-MTH0232). These images are taken over

a highly mountainous countryside, with a narrow inhabited

valley concentrating many human artifacts (roads, bridges,

dams) (see Fig.3).

In this paper we are dealing with images acquired in

interferometric configuration (same orbit and incidence angle).

In this case, the registration step can be done accurately using

the sensor parameters provided by the space agencies. Be-

sides Sentinel-1 and TerraSAR-X images are radiometrically

calibrated.

It often happens that SAR pixels are not spatially inde-

pendent because of a slight over-sampling creating a spatial

correlation. This spatial correlation should be taken into ac-

count during the denoising. However, most of the denoising

methods are based on the hypothesis that the speckle noise is

white. When applied directly to images with correlated noise,

reduced performances may be expected from these methods.

Therefore, we recommend to perform a spatial decorrelation

before despeckling. In this paper, the noisy TerraSAR-X

images are decorrelated using the method proposed in [40] and

the Sentinel-1 images are decorrelated by resampling because

of its special acquisition model (the beam both steering in

range direction and steering from backward to forward in

azimuth direction). All the SAR images are co-registered using

subpixel image registration applied on the single look complex

data [27].

2) Simulated data: Simulated SAR images are obtained

according to Eq. (3), by multiplying a reflectivity map with

a random gamma distributed noise.

Many simulations are based on reflectivity maps obtained

from optical images. However, SAR images exhibit strong and

persistent scatterers, especially in urban areas which can hardly

be simulated using optical images. Therefore, we propose to

use the arithmetic mean image of long time-series of SAR

images, considered as a noise free image (a reflectivity map

u) to create realistic simulations of SAR images. This map

u is multiplied by a gamma distributed noise wt providing

an image vt = uwt of the series. These simulated data

correspond to the case without change and are an ideal case

(pure iid samples of noise). Images of Fig.2(b), Fig.3(b) and

4(a) are used for the simulated case without changes.

Concerning changes in the temporal series, to deal with

changes in a realistic way, temporal sequences have been

introduced over various areas: forests, farmlands, building

areas, etc. as shown in Fig. 4(b). The introduced temporal

changes have been chosen according to changes observed in

SAR time series and have the temporal profiles shown in

Fig. 6.

B. Evaluation method

Measurement of speckle reduction performances is a chal-

lenging task, especially when noise-free data are unavailable.

Visually checking the despeckling results is an immediate and

important way for quality evaluation, but it lacks objectivity.

To overcome this limitation, we use the peak signal-noise-

ratio (PSNR) and structure similarity (SSIM) indexes, even

though they suffer from some limitations that have been well

discussed in the literature.
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(a) (b)

Fig. 5: RABASAR performances obtained with different super-images, in the absence of change, as measured with the PSNR

(a) and the MSSIM (b). The solid line represent the mean value computed over 50 different noise realizations. For each index

box, the bottom and top edges indicate the 25th and 75th percentiles, respectively. The outliers are plotted individually using

the ’+’ symbol.

1) PSNR: Peak signal-noise-ratio: The PSNR is a com-

monly used approach to evaluate the quality of restoration

results. We consider the PSNR expressed on amplitude images

uA =
√
u and ûA =

√
û:

PSNR = 10 · log10
|uA|2max

E[(uA(s)− ûA(s))2]
(21)

where |uA|max is the maximum amplitude value in the noise

free data, E[·] represents the spatial average and ûA is the

denoised amplitude value.

2) MSSIM: Mean structure similarity index: To evaluate the

preservation of image features, the SSIM index [41] (structural

similarity index measurement) is often preferred to PSNR.

From the SSIM, we derive the mean structural similarity index

measurement (MSSIM) values which provide a comprehensive

measure over the whole image:

MSSIM =
1

N

N∑

i=1

[
2 · Ê[uA] · Ê[ûA] + α1

Ê[u2A] + Ê[û2A] + α1

2 · Ĉov[uA, ûA] + α2

V̂ar[uA] + V̂ar[ûA] + α2

]

where uA and ûA are noise free and denoised amplitude

patches, Cov[·, ·] is the measure of covariance, α1 and α2

are suitable constants, and N is the number of local windows

in the image.

C. Which super-image gives the best denoising?

We presented in Sec. III-E different ways to compute the

super-image (AM, BWAM and their spatially denoised ver-

sions). This section presents quantitative (Fig. 5) and qualita-

tive (Fig. 7) denoising results obtained when using different

super-images, and considering different time series lengths T .

In the binary weight computation (methods BWAM and

DBWAM), a window of size 7×7 is used in Eq. (6), as

suggested by the analysis in [42].

1) Using simulated radar images: Simulated images allow

to evaluate quantitatively the performances obtained with each

of the four different super-images by measuring averaged

PSNR and MSSIM values (50 different noise realization are

computed in order to compute the average PSNR and MSSIM

values). The number of images T in the time series varies

from 5 to 95.

For temporal images without reflectivity changes (Fig. 5(a-

b)), using denoised super-images provides better PSNR and

MSSIM values when using a small number of images, but

this benefit disappears with longer stacks of images (more

than 60). When using denoised super-images, the obtained

PSNR/MSSIM values is notably impacted by the value of the

ENL.

In the case of changing areas, we performed restorations of

50 speckle realizations in the four different change scenarios

discussed in paragraph V-A2. We report in Fig. 6 the mean

value and 1σ confidence interval obtained by RABASAR.

It can be observed that, in the case of fluctuations typically

observed in farmland and forest areas (Fig. 6 (a) and (b)), both

RABASAR-AM and RABASAR-BWAM perform well and

produce an estimate with no significant bias (the reflectivity

varies up to a factor 2 in our simulations). Because a smaller

number of dates is selected in the case of RABASAR-BWAM,

the estimation variance is very slightly larger. In Fig. 6 (c)

and (d) we consider the case of much larger changes that

typically occur in urban areas: an appearing large reflectivity

or a temporarily large reflectivity. In this case, RABASAR-AM

leads to a bias of the same order as the estimation standard

deviation. The origin of this bias, observed in Fig. 6(c) for

t ≥ 29, can be ascribed to the difference between the true

reflectivity and the mean intensity. This difference is too small

to be compensated when denoising the ratio. When t < 29,

the difference is much larger and no bias can be observed

(after denoising, the ratio image correctly compensates for the

misfit of the super-image value). By selecting only similar

dates, RABASAR-BWAM is more robust to this phenomenon:

the bias is negligible compared to the estimation standard

deviation. In the case of an appearing, then disappearing

structure (Fig. 6(d)), no significant bias is visible with either

method because the super-image with RABASAR-AM differs

significantly from the true reflectivity and that difference is

correctly recovered when denoising the ratio image (the signal-

to-noise ratio is sufficient so that it be recovered).

2) Using Sentinel-1 images: The temporal series of 69

Sentinel-1 images on the Saclay area is used to test the method
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Fig. 6: Evaluation of RABASAR estimators in 4 different change scenarios: typical temporal variations of reflectivities in

(a) farmland areas; (b) forest areas; (c) urban areas when a new building appears; (d) urban areas with an appearing then

disappearing structure. The mean and 1σ confidence interval are displayed for RABASAR-AM (top curve) and RABASAR-

BWAM (bottom curve).

on SAR images. Figure 7 can be used to visually assess the

efficiency of speckle reduction when using different “super-

images”. RABASAR provides satisfying denoising results

with each of the four different super-images. The use of an

additional spatial filtering step to form the super-image seems

beneficial in terms of restoration quality: the obtained images

are smoother.

When using AM and DAM, small areas with low values

were sometimes smoothed, leading to the apparition of new

points in the denoised results (Fig. 7(a-b) red rectangular).

This phenomenon is obvious for impulsive and abrupt changes

in building areas. Using BWAM and DBWAM reduces this

problem (Fig. 7(c-d)). In some changing parts of the image,

using BWAM, however, leads to poor filtering results because

very few similar dates could be combined when computing

the super-image.

3) Computation time: The computation time of the algo-

rithm depends on the adopted RABASAR version (type of

super-image -binary weighted or not-, ENL estimation method

and choice of the spatial denoising).

When running the experiments on a time serie of 69 SAR

images of size 512 × 768 (Saclay) in the MATLAB environ-

ment on a computer (4 cores, Intel(R) Core(TM) i7-7600U

CPU @ 2.80GHz), the averaged elapsed time of RABASAR-

DBWAM is given in Table I.

As can bee seen, the main part of RABASAR computing

time is due to the denoising step. If both the super-image

and the ratio image are denoised, the time is multiplied by

2. The similarity and weight computation represents only 1%
of the total time. Nevertheless, when using binary weighted

TABLE I: AVERAGED COMPUTATION TIME OVER TEN

RUNS OF THE DIFFERENT STEPS FOR A TIME SERIE

OF 69 IMAGES WITH SIZE 512 × 768 PIXELS

Step Averaged time

BWAM super-image (step 1) 0.74 sec (1.0%)
ENL estimation (step 1 and 2) 0.18 sec (0.3%)
MuLog-BM3D (step 2) 34.3 sec (50.5%)
RuLog-BM3D (step 4) 32.7 sec (48.2%)

→ ADMM itself (step 2 & 4) 1.90 sec (2.8%)
→ BM3D itself (step 2 & 4) 65.1 sec (95.9%)

Total time 67.9 sec.

arithmetic mean, the super-image has to be computed again for

each image to process, whereas the super-image computation

is done only once for AM or DAM versions of RABASAR.

D. Denoising performances of RABASAR compared to exist-

ing methods

The proposed method is compared with state-of-the-art

multi-temporal denoising methods, both on simulated and

SAR images. Numerical and visual results are provided when

comparing RABASAR with the chosen methods: UTA [18],

NLTF [21], 2SPPB [24] and MSAR-BM3D [21].

1) Quantitative comparison: As in the previous sections,

to quantitatively compare the filtering performance of these

methods, averaged PSNR and MSSIM are computed. Only

RABASAR-AM and RABASAR-DAM performances are pre-

sented in the curves of Fig. 8.

In this simulation, we see from Fig. 8, that RABASAR

generally provides better PSNR than other filtering methods.
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Noisy AM DAM BWAM DBWAM

(a) RABASAR-AM (b) RABASAR-DAM (c) RABASAR-BWAM (d) RABASAR-DBWAM

Fig. 7: RABASAR denoising results on Sentinel-1 images over the Saclay area (middle row) and corresponding ratio-images

(lower row) based on the use of: (a) AM, (b) DAM, (c) BWAM, (d) DBWAM. 69 Sentinel-1 images are used. The zoom of

the red box is enlarged in the first row together with the original noisy image to ease the comparison.

TABLE II: NUMERICAL RESULTS PROVIDED BY DIFFERENT METHODS WITH 32 IMAGES IN THE SERIES.

EVALUATION IS MADE BY PSNR AND MSSIM. FOR PSNR AND MSSIM, LARGER VALUES EXPRESS BETTER

DENOISING RESULTS. THE MEAN VALUES OF 20 TIMES TEST ARE USED.

Sentinel-1 Evaluation UTA NLTF 2SPPB MSAR RABASAR
methods -BM3D -AM -DAM -BWAM -DBWAM

without PSNR 25.37 19.49 25.16 21.90 27.34 28.61 26.72 28.15
changes MSSIM 0.84 0.82 0.83 0.67 0.86 0.89 0.85 0.88

With few images in the stack, MSAR-BM3D and 2SPPB also

provide competitive PSNR and MSSIM. However, with the

increase of the number of images, MSAR-BM3D curve does

not rise as fast as 2SPPB. When using less than 4 images,

MSAR-BM3D provides the best MSSIM values. With an

increasing number of images, UTA PSNR and MSSIM values

keep increasing.

Table II presents some results about PSNR and MSSIM

results. It shows that RABASAR-DAM provides the best

results in this ideal situation when there is no change in the

temporal series.

2) Sentinel-1 and TerraSAR-X image denoising: This sec-

tion presents and discusses the results obtained when denoising

Sentinel-1 and TerraSAR-X images. Since the noise free

images are not available, the denoised results and the residual

noise (ratio of the original image by the denoised image)

are visually evaluated. The residual noise should correspond

to pure gamma-distributed noise samples of mean 1. Resid-

ual structures, homogeneous areas, and radiometric variations

correspond to the following perturbations: the destruction of

structures, the absence of filtering, and bias introduction.

First, compared to MuLoG-BM3D applied on a single

image, RABASAR-DAM provides a much better result, pre-

serving fine strucures and isolated objects, see Fig. 11. This

experiment shows that the exploitation of the super-image

and the ratio image, which is much more stationary than the

original noisy image, helps preserving the original resolution.

Figure 9 presents different filtering results on a Sentinel-

1 time serie of Saclay. Compared to 2SPPB and MSAR-

BM3D methods, RABASAR-DAM and RABASAR-DBWAM
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Fig. 8: Comparison of different temporal denoising methods: UTA, NLTF, 2SPPB, MSAR-BM3D, RABASAR-AM and

RABASAR-DAM. Averaged PSNR (upper row) and MSSIM (lower row) as a function of the number of images for two

data sets: (a) simulated time serie without changes using Fig. 4(a)), (b) realistic simulated SAR data without changes using

Fig. 4(b)). Each experiment is repeated 50 times, with the same noise free value multiplied by different gamma distribution

noise. The line features shows the mean value of PSNR (top) and MSSIM (bottom)over the 50 experiments.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9: Denoising Sentinel-1 images over the region of Saclay (RuLoG results) (the original noisy image is shown in Fig. 2(a)):

(a) filtered with 2SPPB, (b) with MSAR-BM3D, (c) with RABASAR-DAM, (d) with RABASAR-DBWAM, (e-h) residual

noise images between the noisy image and denoised results. 69 Sentinel-1 images are used.

provide better denoising results since they take both the ratio

results and the texture characteristics into account. Some noisy

areas can be observed in the RABASAR-DBWAM results due

to the temporal samples selection (for some pixels, only few

similar temporal samples can be found to compute the binary

weighted arithmetic mean). 2SPPB method does not give good

results for seasonal changing farmland areas, and shows an

obvious bias in the residual noise (see for instance the blue

circle area in Fig. 9(e)).

Since MSAR-BM3D method detects the bright points in

advance and prohibits any denoising around these points [21],

building areas in the residual noise are homogeneous (Fig. 9(f)

red circle area) showing that no filtering has been applied in

these areas (Fig. 9(b) red circle area).

This also explains why MSAR-BM3D has lower PSNR

values. In addition, some of the textures in MSAR-BM3D

results are over smoothed, such as the blue circle area in

Fig. 9(b).

Similar phenomena can be observed on the TerraSAR-X

images presented Fig. 10. Whereas Fig. 10(c) and (d) visually

provide satisfying results and homogeneous residual noise

images, both 2SPPB and MSAR-BM3D smoothed out some
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10: Denoising results of TerraSAR-X images over Saint-Gervais (using Rulog). The original noisy image is available in

Fig. 4(f). (a) 2SPPB, (b) MSAR-BM3D, (c) RABASAR-DAM, (d) RABASAR-DBWAM, (e-h) residual noise images (ratio of

noisy image and denoised results). 26 TerraSAR-X images are used.

textures (Fig. 10 blue circle areas), or keep unchanged some

noisy areas.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a ratio-based multi-temporal de-

noising framework. During the restoration of each SAR image,

it exploits the temporal information through a super-image.

The use of different strategies to compute the super-images

has been analyzed. RABASAR can provide better PSNR and

MSSIM values when using a spatially denoised super-image.

With the increase of the number of images in the time series,

the differences of using different super-images decrease. When

there are changes in the time series, using a binary weighted

arithmetic mean can also provide good results. Based on the

processing of time-series corrupted by simulated speckle noise,

actual Sentinel-1 stacks and TerraSAR-X stacks, the qualitative

and quantitative comparisons with UTA, NLTF, MSAR-BM3D

and 2SPPB methods showed the potential of RABASAR to

better preserve structures in multi-temporal SAR images while

efficiently removing speckle. Besides, the super-image can be

easily updated when a new data becomes available so as to

process new images on-line.

Future work will be devoted to the updating framework,

specially for the “re-computation” of the super-image and to

the further processing of denoised time series.

APPENDIX

DISTRIBUTION OF THE RATIO IMAGE

In this appendix we present a simple way of deriving the

distribution (pdf) followed by the ratio τt =
vt

ûm
. The pdf of

the ratio of 2 gamma-distributed random variables has been

established in [43], and used in [44] for edge detection in SAR

images. Following [45] [46], the Mellin framework allows a

straightforward derivation.

We assume that the numerator vt follows a gamma dis-

tribution G(ut, L), the denominator ûm follows a gamma

distribution G(um, Lm), and that vt and ûm are independent.

We will denote by ×̂ the Mellin convolution, and H(u) the

homothetic pdf defined by H(u)(ν) = 1
u
δ( ν

u
− 1). We have

the following relationship between a gamma distributed pdf of

mean 1 and a gamma pdf of mean ut [35]:

G(ut, L) = H(ut) ×̂ G(1, L)

In the same way, we have the following relation for the pdf

of ûm:

G(um, Lm) = H(um) ×̂ G(1, Lm)

The variable û−1
m follows an inverse gamma distribution GI

given by:

pû−1

m

(
û−1
m

∣∣um, Lm

)
=

[
H(u−1

m ) ×̂ GI(1, Lm)
]
(û−1

m )

with GI(µ,M)(ν) =
1

Γ(M)

1

Mµ

(
Mµ

ν

)(M+1)

e−
Mµ

ν

Multiplying the variables vt and 1
ûm

, we thus have the Mellin

convolution of H
(

ut

um

)
, G(1, L) and GI(1, Lm) which leads
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(a) Noisy image

(b) MuLoG-BM3D

(c) RABASAR-DAM

Fig. 11: Noisy image (a) and denoising results (b-c)

of MuLoG-BM3D and RABASAR-DAM. 64 resampled

Sentinel-1 images are used to calculate the arithmetic mean

image.

to a Fisher pdf F(ρt, L, Lm) [35] [46], noting ρt =
ut

um
:

pτt
(
τt
∣∣ ρt, L, Lm

)
=

[
H (ρt) ×̂G(1, L)×̂GI(1, Lm)

]
(τt)

=
[
H (ρt) ×̂F(1, L, Lm)

]
(τt)

= F (ρt, L, Lm) (τt)

=
L

Lm

1

ρt

Γ(L+ Lm)

Γ(L)Γ(Lm)

( L
Lm

τt
ρt
)L−1

(1 + L
Lm

τt
ρt
)(L+Lm)
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