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Abstract
This paper suggests two ratio-cum-product estimators of finite population mean using known coefficient of

variation and co-efficient of kurtosis of auxiliary characters. The bias and mean squared error of the proposed
estimators with large sample approximation are derived. It has been shown that the estimators suggested by
Upadhyaya and Singh (1999) are particular case of the suggested estimators. Almost ratio-cum product estimators
of suggested estimators have also been obtained using Jackknife technique given by Quenouille (1956). An
empirical study is also carried out to demonstrate the performance of the suggested estimators.

Keywords: Ratio-cum-product estimator, population mean, coefficient of variation, coefficient of
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1. Introduction

Use of auxiliary information has been in practice to increase the efficiency of the estimators. When
the population mean of an auxiliary variate is known, so many estimators for population parameter(s)
of study variate have been discussed in the literature. When correlation between study variate and
auxiliary variate is positive (high) ratio method of estimation (Cochran, 1940) is used. On the other
hand if the correlation is negative, product method of estimation (Robson, 1957; Murthy, 1967) is
preferred. In practice information on coefficient of variation(CV) of an auxiliary variate is seldom
known. Sisodia and Dwivedi (1981) suggested a modified ratio estimator for population mean of
the study variate. Later on Upadhyaya and Singh (1999), derived another ratio and product type
estimators using coefficient of variation and coefficient of kurtosis of the auxiliary variate. Singh
(1967) utilized information on two auxiliary variates x1 and x2 and suggested a ratio-cum-product
estimator for population mean. Singh and Tailor (2005) utilized known correlation coefficient between
auxiliary variates (ρx1 x2 ) x1 and x2.

Singh and Tailor (2005) motivates authors to suggest ratio-cum-product estimators of population
mean utilizing the information on co-efficient of variation of auxiliary variates i.e. Cx1 and Cx2 and
co-efficient of kurtosis of auxiliary variates β2(x1) and β2(x2) besides the population means (X̄1 and
X̄2) of auxiliary variates x1 and x2.

Let U = {U1,U2, . . . ,UN} be a finite population of N units. Suppose two auxiliary variates x1 and
x2 are observed on Ui (i = 1, 2, . . . ,N), where x1 is positively and x2 is negatively correlated with
the study variate y. A simple random sample of size n with n < N, is drawn using simple random
sampling without replacement(SRSWOR) from the population U to estimate the population mean(Ȳ)
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of study character y, when the population means X̄1 =
∑N

i=1 x1i/N and X̄2 =
∑N

i=1 x2i/N of x1 and x2
respectively are known.

Usual ratio and product estimators given by Cochran (1940) and Robson (1957) respectively for
estimating the population mean Ȳ respectively are defined as

ȳR = ȳ
(

X̄1

x̄1

)
, (1.1)

ȳP = ȳ
(

x̄2

X̄2

)
. (1.2)

Utilizing the information on co-efficient of variations (Cx1 and Cx2 ) and co-efficient of kurtosis
(β2(x1) and β2(x2)), Upadhyaya and Singh (1999) suggested ratio and product estimators as

ˆ̄Y1 = ȳ
(

X̄1Cx1 + β2(x1)
x̄1Cx1 + β2(x1)

)
, (1.3)

ˆ̄Y2 = ȳ
(

x̄2Cx2 + β2(x2)
X̄2Cx2 + β2(x2)

)
, (1.4)

ˆ̄Y3 = ȳ
(

X̄1β2(x1) +Cx1

x̄1β2(x1) +Cx1

)
, (1.5)

ˆ̄Y4 = ȳ
(

x̄2β2(x2) +Cx2

X̄2β2(x2) +Cx2

)
. (1.6)

To estimate Ȳ , Singh (1967) suggested a ratio-cum-product estimator as

ˆ̄Y5 = ȳ
(

X̄1

x̄1

) (
x̄2

X̄2

)
. (1.7)

Assuming that the correlation coefficient (ρx1 x2 ) between auxiliary characters x1 and x2 is known,
Singh and Tailor (2005) suggested a ratio-cum-product estimator of Ȳ

ˆ̄Y6 = ȳ
(

X̄1 + ρx1 x2

x̄1 + ρx1 x2

) (
x̄2 + ρx1 x2

X̄2 + ρx1 x2

)
. (1.8)

To the first degree of approximation the mean squared error(MSE) of the estimators ȳR, ȳP, ˆ̄Y1, ˆ̄Y2, ˆ̄Y3,
ˆ̄Y4, ˆ̄Y5 and ˆ̄Y6 respectively are

MSE (ȳR) = θȲ2
[
C2

y +C2
x1
− 2ρyx1CyCx1

]
, (1.9)

MSE (ȳP) = θȲ2
[
C2

y +C2
x2
+ 2ρyx2CyCx2

]
, (1.10)

MSE
( ˆ̄Y1

)
= θȲ2

[
C2

y + λ1C2
x1
− 2ρyx1λ1CyCx1

]
, (1.11)

MSE
( ˆ̄Y2

)
= θȲ2

[
C2

y + λ2C2
x2
+ 2ρyx2λ2CyCx2

]
, (1.12)

MSE
( ˆ̄Y3

)
= θȲ2

[
C2

y + γ
2
1C2

x1
− 2ρyx1γ1CyCx1

]
, (1.13)

MSE
( ˆ̄Y4

)
= θȲ2

[
C2

y + γ
2
2C2

x2
+ 2ρyx2γ2CyCx2

]
, (1.14)

MSE
( ˆ̄Y5

)
= θȲ2

[
C2

y +C2
x1

(
1 − 2Kyx1

)
+C2

x2

{
1 + 2

(
Kyx2 − Kx1 x2

)}]
(1.15)
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and

MSE
( ˆ̄Y6

)
= θȲ2

[
C2

y + µ
∗
1C2

x1

(
µ∗1 − 2Kyx1

)
+ µ∗2C2

x2

{
µ∗2 + 2

(
Kyx2 − µ∗1Kx1 x2

)}]
, (1.16)

where

Kyx1 = ρyx1

(
Cy

Cx1

)
, Kyx2 = ρyx2

(
Cy

Cx2

)
, Kx1 x2 = ρx1 x2

(
Cx1

Cx2

)
, Cy =

S y

Ȳ
, λi =

X̄iCxi

X̄iCxi + β2(xi)
,

γi =
X̄iβ2(xi)

X̄iβ2(xi) +Cxi

, µ∗1 =
X̄i

X̄i + ρx1 x2

, θ =

(
1
n
− 1

N

)
, Cxi =

S xi

X̄i
, ρyxi =

S yxi

S yS x1

,

S 2
y =

∑N
j=1(y j − Ȳ)2

N − 1
, S 2

xi
=

∑N
j=1(xi j − X̄i)2

N − 1
and S 2

yxi
=

∑N
j=1(y j − Ȳ)(xi j − X̄i)

N − 1
,

where (i = 1, 2).

2. Proposed Estimator

Assuming that the information on coefficient of variation (Cx1 and Cx2 ) and co-efficient of kurtosis
(β2(x1) and β2(x2)) of auxiliary variate x1 and x2, are known, the proposed estimators are

ˆ̄Y7 = ȳ
(

X̄1Cx1 + β2(x1)
x̄1Cx1 + β2(x1)

) (
x̄2Cx2 + β2(x2)
X̄2Cx2 + β2(x2)

)
, (2.1)

ˆ̄Y8 = ȳ
(

X̄1β2(x1) +Cx1

x̄1β2(x1) +Cx1

) (
x̄2β2(x2) +Cx2

X̄2β2(x2) +Cx2

)
. (2.2)

To obtain the bias and mean squared error of the proposed estimators, we assume that ȳ = Ȳ(1 + e0),
x̄1 = X̄1(1 + e1), x̄2 = X̄2(1 + e2) such that E(e0) = E(e1) = E(e2) = 0 and E(e2

0) = θC2
y , E(e2

1) = θC2
x1

,
E(e2

2) = θC2
x2

, E(e0e1) = θρyx1CyCx1 , E(e0e2) = θρyx2CyCx2 and E(e1e2) = θρx1 x2Cx1Cx2 .

Expressing the ˆ̄Y7 in terms of e′i s, we get

ˆ̄Y7 = Ȳ(1 + e0)
(

X̄1Cx1 + β2(x1)
X̄1(1 + e1)Cx1 + β2(x1)

) (
X̄2(1 + e2)Cx2 + β2(x2)

X̄2Cx2 + β2(x2)

)
= Ȳ(1 + e0)

(
X̄1Cx1 + β2(x1)

X̄1Cx1 + β2(x1) + X̄1Cx1 e1

) (
X̄2Cx2 + β2(x2) + X̄2Cx2 e2

X̄2Cx2 + β2(x2)

)
= Ȳ(1 + e0) (1 + λ1e1)−1 (1 + λ2e2)

= Ȳ(1 + e0)
(
1 − λ1e1 + λ

2
1e2

1

)
(1 + λ2e2)

= Ȳ(1 + e0)
(
1 − λ1e1 + λ

2
1e2

1 + λ1λ2e1e2 + λ2e2

)
ˆ̄Y7 = Ȳ

(
1 − λ1e1 + λ

2
1e2

1 + λ1λ2e1e2 + λ2e2 + e0 − λ1e0e1 + λ2e0e2

)
( ˆ̄Y7 − Ȳ

)
= Ȳ

(
−λ1e1 + λ

2
1e2

1 + λ2e2 − λ1λ2e1e2 + e0 − λ1e0e1 + λ2e0e2

)
. (2.3)

Taking expectation of both sides of (2.3)

E
( ˆ̄Y7 − Ȳ

)
= ȲE

(
−λ1e1 + λ

2
1e2

1 + λ2e2 − λ1λ2e1e2 + e0 − λ1e0e1 + λ2e0e2

)
.
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Substituting the values of E(e0), E(e1), E(e2), E(e2
1), E(e0e1), E(e0e2) and E(e1e2) we get the bias of

ˆ̄Y7 as

B
( ˆ̄Y7

)
= θȲ

[
λ1C2

x1

(
λ1 − Kyx1

)
+ λ2C2

x2

(
Kyx2 − λ1Kx1 x2

)]
. (2.4)

To find the mean squared error of the suggested estimator ˆ̄Y7 up to first degree of approximation,
squaring and taking expectation of (2.3)

E
( ˆ̄Y7 − Ȳ

)2
= Ȳ2E (e0 − λ1e1 + λ2e2)2 ,

MSE
( ˆ̄Y7

)
= Ȳ2E

(
e2

0 + λ
2
1e2

1 + λ
2
2e2

2 − 2λ1e0e1 + 2λ2e0e2 − 2λ1λ2e1e2

)
.

After substituting the values of E(e2
0), E(e2

1), E(e2
2), E(e0e1), E(e0e2) and E(e1e2) we have mean

squared error of ˆ̄Y7 as

MSE
( ˆ̄Y7

)
= θȲ2

[
C2

y + λ1C2
x1

(
λ1 − 2Kyx1

)
+ λ2C2

x2

{
λ2 + 2

(
Kyx2 − λ1Kx1 x2

)}]
. (2.5)

Similarly bias and mean squared error of ˆ̄Y8 can be obtained as

B
( ˆ̄Y8

)
= θȲ

[
γ1C2

x1

(
γ1 − Kyx1

)
+ γ2C2

x2

(
Kyx2 − γ1Kx1 x2

)]
, (2.6)

MSE
( ˆ̄Y8

)
= θȲ2

[
C2

y + γ1C2
x1

(
λ1 − 2Kyx1

)
+ γ2C2

x2

{
γ2 + 2

(
Kyx2 − γ1Kx1 x2

)}]
. (2.7)

3. Efficiency Comparison

We know that the variance of sample mean ȳ in simple random sampling without replacement(SRSW
OR) is

V(ȳ) =
(

1
n
− 1

N

)
S 2

y . (3.1)

From (1.9) to (1.16), (2.5), (2.7) and (3.1) we have

(i) MSE
( ˆ̄Y7

)
< MSE (ȳ) if

Kyx1 >
λ1

2
and Kyx2 >

(
λ1Kx1 x2 −

λ2

2

)
(3.2)

(ii) MSE
( ˆ̄Y7

)
< MSE (ȳR) if

Kyx1 <

(
1 + λ1

2

)
and Kyx2 <

(
λ1Kx1 x2 −

λ2

2

)
(3.3)

(iii) MSE
( ˆ̄Y7

)
< MSE (ȳP) if

Kyx1 >
(
λ1

2
− λ2Kx2 x1

)
and Kyx2 > −

(
1 + λ2

2

)
(3.4)



Ratio-Cum-Product Estimators of Population Mean 159

(iv) MSE
( ˆ̄Y7

)
< MSE

( ˆ̄Y1

)
if

Kyx2 <
(
λ1Kx1 x2 −

λ2

2

)
(3.5)

(v) MSE
( ˆ̄Y7

)
< MSE

( ˆ̄Y2

)
if

Kyx1 > −λ2Kx2 x1 +
λ2

2
(3.6)

(vi) MSE
( ˆ̄Y7

)
< MSE

( ˆ̄Y3

)
if

either Kyx1 >
(
γ1 + λ1

2

)
if γ1 < λ1 and Kyx2 <

(
λ1Kx1 x2 −

λ2

2

)
(3.7)

or Kyx1 <
(
γ1 + λ1

2

)
if γ1 > λ1 and Kyx2 <

(
λ1Kx1 x2 −

λ2

2

)
(3.8)

(vii) MSE
( ˆ̄Y7

)
< MSE

( ˆ̄Y4

)
if

either Kyx2 > −
(
γ2 + λ2

2

)
if γ2 > λ2 and Kyx1 >

(
λ1

2
− λ2Kx2 x1

)
(3.9)

or Kyx2 < −
(
γ2 + λ2

2

)
if γ2 < λ2 and Kyx1 >

(
λ1

2
− λ2Kx2 x1

)
(3.10)

(viii) MSE
( ˆ̄Y7

)
< MSE

( ˆ̄Y5

)
if

Kyx1 > −
(

1 + λ2

2

)
if λ2 < 1 and Kyx1 >

{
1 + λ1

2
− Kx2 x1 (λ1λ2 − 1)

λ1 − 1

}
(3.11)

Kyx1 < −
(

1 + λ2

2

)
if λ2 > 1 and Kyx1 >

{
1 + λ1

2
− Kx2 x1 (λ1λ2 − 1)

λ1 − 1

}
(3.12)

(ix) MSE
( ˆ̄Y7

)
< MSE

( ˆ̄Y6

)
if one of the following conditions is satisfied

Kyx1 <

(
µ∗1 + λ1

2

)
if λ1<µ

∗
1 and Kyx2 >

{
Kx1 x2 (λ1λ2 − µ∗1µ∗2)

λ2 − µ∗2
−
λ2 + µ

∗
2

2

}
if λ2<µ

∗
2 (3.13)

Kyx1 <

(
µ∗1 + λ1

2

)
if λ1<µ

∗
1 and Kyx2 <

{
Kx1 x2 (λ1λ2 − µ∗1µ∗2)

λ2 − µ∗2
−
λ2 + µ

∗
2

2

}
if λ2>µ

∗
2 (3.14)

Kyx1 >

(
µ∗1 + λ1

2

)
if λ1>µ

∗
1 and Kyx2 >

{
Kx1 x2 (λ1λ2 − µ∗1µ∗2)

λ2 − µ∗2
−
λ2 + µ

∗
2

2

}
if λ2<µ

∗
2 (3.15)

Kyx1 >

(
µ∗1 + λ1

2

)
if λ1>µ

∗
1 and Kyx2 <

{
Kx1 x2 (λ1λ2 − µ∗1µ∗2)

λ2 − µ∗2
−
λ2 + µ

∗
2

2

}
if λ2>µ

∗
2 (3.16)

(x) MSE
( ˆ̄Y8

)
< MSE

( ˆ̄Y7

)
if of the following conditions is satisfied

C2
x1

C2
x2

<
γ2C2

x2

{
γ2 + 2

(
Kyx2 − γ1Kx1 x2

)}
− λ2C2

x2

{
λ2 + 2

(
Kyx2 − λ1Kx1 x2

)}
λ1 − γ1

. (3.17)
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It is observed that the proposed estimators ˆ̄Y j ( j = 7, 8) are biased. Bias is disadvantageous in many
situations. Keeping this in view, a family of almost unbiased estimators is also proposed using Ran-
dom Group technique envisaged by Quenouille (1956).

4. A Family of Unbiased Estimators of Population Mean Ȳ Using Random Group
Method

Suppose a simple random sample of size n = gm is drawn without replacement and split at random
into g sub-samples, each of size m. Then Jack-knife type ratio-cum-product estimator for population
mean Ȳ , using ˆ̄Y7 is given as

ˆ̄Y7J =
1
g

g∑
j=1

ȳ′j

 X̄1Cx1 + β2(x1)
x̄′1 jCx1 + β2(x1)

  x̄′2 jCx2 + β2(x2)

X̄2Cx2 + β2(x2)

 , (4.1)

where ȳ′j = (nȳ−mȳ j)/(n−m) and x̄′i j = (nx̄i −mx̄i j)/(n−m), i = 1, 2; are the sample means based on
a sample of (n − m) units obtained by omitting the jth group and ȳ j and x̄i j (i = 1, 2; j = 1, 2, . . . , g)
are the sample means based on the jth sub samples of size m = n/g.

The bias of ˆ̄Y7J , upto the first degree of approximation can be easily obtained as

B
( ˆ̄Y7J

)
=

N − n + m
N(n − m)

Ȳ
[
λ1C2

x1

(
λ1 − Kyx1

)
+ λ2C2

x2

(
Kyx2 − λ1Kx1 x2

)]
. (4.2)

From (2.4) and (4.2) we have

B
( ˆ̄Y7

)
B

( ˆ̄Y7J

) = (N − n)(n − m)
n(N − n + m)

or B
( ˆ̄Y7

)
− (N − n)(n − m)

n(N − n + m)
B

( ˆ̄Y7J

)
= 0 (4.3)

⇒ λ∗B
( ˆ̄Y7

)
− δ∗λ∗B

( ˆ̄Y7J

)
= 0 (4.4)

for any scalar λ∗, where

δ∗ =
(N − n)(n − m)
n(N − n + m)

. (4.5)

From (4.4), we have

λ∗E
( ˆ̄Y7 − Ȳ

)
− δ∗λ∗E

( ˆ̄Y7J − Ȳ
)
= 0 or λ∗E

( ˆ̄Y7 − ȳ
)
− δ∗λ∗E

( ˆ̄Y7J − ȳ
)
= 0 or

E
[
λ∗ ˆ̄Y7 − λ∗δ∗ ˆ̄Y7J − ȳ {λ∗ (1 − δ∗) − 1}

]
= Ȳ .

Thus we get a general family of almost unbiased ratio-cum-product estimators of Ȳ as

ˆ̄Y7u =
[
ȳ {1 − λ∗(1 − δ∗)} + λ∗ ˆ̄Y7 − λ∗δ∗ ˆ̄Y7J

]
. (4.6)

Remark 1. For λ∗ = 0, ˆ̄Y7u yields the usual unbiased estimator ȳ while λ∗ = (1 − δ∗)−1, gives an
almost unbiased estimator for Ȳ as

ˆ̄Y∗7u =
(N − n + m)

N
gȳ

(
X̄1Cx1 + β2(x1)
x̄1Cx1 + β2(x1)

) (
x̄2Cx2 + β2(x2)
X̄2Cx2 + β2(x2)

)
− (N − n)(g − 1)

Ng

g∑
j=1

ȳ′j

 X̄1Cx1 + β2(x1)
x̄′1 jCx1 + β2(x1)

  x̄′2 jCx2 + β2(x2)

X̄2Cx2 + β2(x2)

 . (4.7)
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Which is Jack-knifed version of the proposed estimator ˆ̄Y7.
Different suites values of λ∗ provides many almost unbiased estimators in (4.6).

5. An Optimum Estimator In Family ˆ̄Y7u

The family of almost unbiased estimator ˆ̄Y7u at (4.6) can be expressed as

ˆ̄Y7u = ȳ − λ∗ȳ1, (5.1)

where ȳ1 = [(1 − δ∗)ȳ − ȳ2] and ȳ2 =
ˆ̄Y7 − δ∗ ˆ̄Y7J .

The variance of ˆ̄Y7u is given by

V
( ˆ̄Y7u

)
= V (ȳ) + λ∗2V (ȳ1) − 2λ∗Cov(ȳ, ȳ1) (5.2)

which is minimized for

λ∗ = Cov(ȳ, ȳ1)/V (ȳ1) . (5.3)

Substitution of (5.3) in (5.2) yields minimum variance of ˆ̄Y7u as

min .V
( ˆ̄Y7u

)
= V (ȳ) − {Cov(ȳ, ȳ1)}2

V (ȳ1)
= V (ȳ)

(
1 − ρ2

01

)
, (5.4)

where ρ01 is the correlation coefficient between ȳ and ȳ1.
From (5.4) it is clear that min .V( ˆ̄Y7u) < V (ȳ).
To obtain the explicit expression of the variance of ˆ̄Y7u, we write the following results upto terms

of order n−1, as

MSE
( ˆ̄Y7J

)
= Cov

( ˆ̄Y7,
ˆ̄Y7J

)
= MSE

( ˆ̄Y7

)
(5.5)

and

Cov
(
ȳ, ˆ̄Y7

)
= Cov

(
ȳ, ˆ̄Y7J

)
= θȲ2

[
C2

y − λ1ρyx1CyCx1 + λ2ρyx2CyCx2

]
, (5.6)

where MSE( ˆ̄Y7) is given by (2.5).
Using (2.5), (3.1) and (5.6) in (5.2), the variance of ˆ̄Y7u upto the terms of order n−1 is given as

V
( ˆ̄Y7u

)
= θȲ2

[
C2

y + λ
∗2 (1 − δ∗)2

(
λ2

1C2
x1
+ λ2

2C2
x2
− 2ρx1 x2Cx1Cx2λ1λ2

)
−2λ∗ (1 − δ∗)

(
λ1ρyx1CyCx1 − λ2ρyx2CyCx2

)]
, (5.7)

which is minimized for

λ∗ =
λ1ρyx1CyCx1 − λ2ρyx2CyCx2

(1 − δ∗)
(
λ2

1C2
x1
+ λ2

2C2
x2
− 2λ1λ2ρx1 x2Cx1Cx2

) = λ∗opt. (5.8)

Substitution of the value of λ∗opt in ˆ̄Y7u yields the optimum estimator ˆ̄Y7u(opt) (say). Thus the resulting

minimum variance of ˆ̄Y7u is given by

min .V
( ˆ̄Y7u

)
= θȲ2C2

y

1 −
(
λ1ρyx1Cx1 − λ2ρyx2Cx2

)2

λ2
1C2

x1
+ λ2

2C2
x2
− 2λ1λ2ρx1 x2Cx1Cx2

 = V
( ˆ̄Y7u(opt)

)
. (5.9)
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The optimum value λ∗opt of λ∗ can be obtained quite accurately through past data or experience.

Adopting the similar procedure, using proposed estimator ˆ̄Y8, we can obtain an almost unbiased
family of estimators ˆ̄Y8u.

Further the variance of the proposed almost unbiased family of estimators ˆ̄Y8u to the first degree
of approximation is given by

V
( ˆ̄Y8u

)
= θȲ2

[
C2

y + λ
∗2 (1 − δ∗)2

(
γ2

1C2
x1
+ γ2

2C2
x2
− 2ρx1 x2Cx1Cx2γ1γ2

)
−2γ∗ (1 − δ∗)

(
γ1ρyx1CyCx1 − γ2ρyx2CyCx2

)]
λ∗ =

γ1ρyx1CyCx1 − γ2ρyx2CyCx2

(1 − δ∗)
(
γ2

1C2
x1
+ γ2

2C2
x2
− 2γ1γ2ρx1 x2Cx1Cx2

) = γ∗opt

and resulting min .V( ˆ̄Y8u) is obtained as

min .V
( ˆ̄Y8u

)
= θȲ2C2

y

1 −
(
γ1ρyx1Cx1 − γ2ρyx2Cx2

)2

γ2
1C2

x1
+ γ2

2C2
x2
− 2γ1γ2ρx1 x2Cx1Cx2

 = V
( ˆ̄Y8u(opt)

)
.

6. Empirical Study

To observe the relative performance of different estimators of Ȳ , a natural population data sets is being
considered

• Population [Source: Steel and Torrie (1960, p.282)]

y : Log of leaf burn in sec.,
x1: Potassiam percentage,
x2: Clorine percentage.

The required population parameters are

Ȳ = 0.6860, Cy = 0.4803, ρyx1 = 0.1794, N = 30,
X̄1 = 4.6537, Cx1 = 0.2295, ρyx2 = −0.4996, β2(x1) = 1.56, n = 6,
X̄2 = 0.8077, Cx2 = 0.7493, ρx1 x2 = 0.4074, β2(x2) = 1.40.

To see the performance of the various estimators in comparison to ȳ, we calculate the percent
relative efficiency of all estimators with respect to ȳ which is the ratio of the variance of ȳ to the mean
squared error of the estimator multiplied by 100. The Percent relative efficiency(%) of the estimators
ȳ, ȳR, ȳP, ˆ̄Y1, ˆ̄Y2, ˆ̄Y3, ˆ̄Y4, ˆ̄Y5, ˆ̄Y6, ˆ̄Y7, ˆ̄Y (opt)

7 , ˆ̄Y8 and ˆ̄Y (opt)
8 have been computed and presented in Table 1.

Formulae for percent relative efficiencies of different estimators are given below:

PRE (ȳR, ȳ) =
V(ȳ)

MSE(ȳR)
=

C2
y

C2
y +C2

x1
− 2ρyx1CyCx1

× 100

PRE (ȳP, ȳ) =
V(ȳ)

MSE(ȳP)
× 100 =

V(ȳ)
C2

y +C2
x1
+ 2ρyx1CyCx1

× 100

PRE
( ˆ̄Y1, ȳ

)
=

V(ȳ)

MSE
( ˆ̄Y1

) × 100 =
C2

y

C2
y + λ1C2

x1
− 2ρyx1λ1CyCx1

× 100
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Table 1: Percent relative efficiencies of different estimators of with respect to

Estimators ȳ ȳR ȳP
ˆ̄Y1

ˆ̄Y2
ˆ̄Y3

ˆ̄Y4
PREs 100.00 94.62 53.33 97.21 58.74 95.39 106.06

Estimators ˆ̄Y5
ˆ̄Y6

ˆ̄Y7
ˆ̄Y (opt)

7
ˆ̄Y8

ˆ̄Y (opt)
8

PREs 75.50 142.17 155.10 169.81 156.96 165.14

PRE
( ˆ̄Y2, ȳ

)
=

V(ȳ)

MSE
( ˆ̄Y2

) × 100 =
C2

y

C2
y + λ2C2

x2
+ 2ρyx2λ2CyCx2

× 100

PRE
( ˆ̄Y3, ȳ

)
=

V(ȳ)

MSE
( ˆ̄Y3

) × 100 =
C2

y

C2
y + γ

2
1C2

x1
− 2ρyx1γ1CyCx1

× 100

PRE
( ˆ̄Y4, ȳ

)
=

V(ȳ)

MSE
( ˆ̄Y4

) × 100 =
C2

y

C2
y + γ

2
2C2

x2
+ 2ρyx2γ2CyCx2

× 100

PRE
( ˆ̄Y5, ȳ

)
=

V(ȳ)

MSE
( ˆ̄Y5

) × 100 =
C2

y

C2
y +C2

x1

(
1 − 2Kyx1

)
+C2

x2

{
1 + 2

(
Kyx2 − Kx1 x2

)} × 100

PRE
( ˆ̄Y6, ȳ

)
=

V(ȳ)

MSE
( ˆ̄Y6

) × 100 =
C2

y

C2
y + µ

∗
1C2

x1

(
µ∗1 − 2Kyx1

)
+ µ∗2C2

x2

{
µ∗1 + 2

(
Kyx2 − µ∗1Kx1 x2

)} × 100

PRE
( ˆ̄Y7, ȳ

)
=

V(ȳ)

MSE
( ˆ̄Y7

) × 100 =
C2

y

C2
y + λ1C2

x1

(
λ1 − 2Kyx1

)
+ λ2C2

x2

{
λ2 + 2

(
Kyx2 − λ1Kx1 x2

)} × 100

PRE
( ˆ̄Y (opt)

7 , ȳ
)
=

V(ȳ)

MSE
( ˆ̄Y (opt)

7

) × 100 =
1

1 −

(
λ1ρyx1Cx1 − λ2ρyx2Cx2

)2

λ2
1C2

x1
+ λ2

2C2
x2
− 2λ1λ2ρx1 x2Cx1Cx2

× 100

PRE
( ˆ̄Y8, ȳ

)
=

V(ȳ)

MSE
( ˆ̄Y8

) × 100 =
C2

y

C2
y + γ1C2

x1

(
γ1 − 2Kyx1

)
+ γ2C2

x2

{
γ2 + 2

(
Kyx2 − γ1Kx1 x2

)} × 100

PRE
( ˆ̄Y (opt)

8 , ȳ
)
=

V(ȳ)

MSE
( ˆ̄Y (opt)

8

) × 100 =
1

1 −

(
γ1ρyx1Cx1 − γ2ρyx2Cx2

)2

γ2
1C2

x1
+ γ2

2C2
x2
− 2γ1γ2ρx1 x2Cx1Cx2

× 100.

Table 1 shows that the suggested estimators ˆ̄Y7(or ˆ̄Y (opt)
7 ) and ˆ̄Y8(or ˆ̄Y (opt)

8 ) with λ∗ = λ∗(opt) and α∗ =
α∗(opt) are more efficient than usual unbiased estimator ȳ, ratio estimator ȳr, product estimator ȳP, ratio-
cum-product estimators suggested by Singh (1967) and Singh and Tailor (2005) with considerable
gain in efficiency. Thus, if coefficient of variation (Cx1 and Cx2 ) and coefficient of kurtosis (β2(x1)
and β2(x2)) are known of auxiliary variates x1 and x2, both estimators are recommended for use in
practice.
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