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Ratio Shift Keying Modulation for Time-Varying
Molecular Communication Channels

M. Okan Araz*, Ahmet R. Emirdagi*, M. Serkan Kopuzlu*, and Murat Kuscu

Abstract—Molecular Communications (MC) is a bio-inspired
communication technique that uses molecules to encode and
transfer information. Many efforts have been devoted to devel-
oping novel modulation techniques for MC based on various
distinguishable characteristics of molecules, such as their con-
centrations or types. In this paper, we investigate a particular
modulation scheme called Ratio Shift Keying (RSK), where the
information is encoded in the concentration ratio of two different
types of molecules. RSK modulation is hypothesized to enable
accurate information transfer in dynamic MC scenarios where
the time-varying channel characteristics affect both types of
molecules equally. To validate this hypothesis, we first conduct
an information-theoretical analysis of RSK modulation and
derive the capacity of the end-to-end MC channel where the
receiver estimates concentration ratio based on ligand-receptor
binding statistics in an optimal or suboptimal manner. We
then analyze the error performance of RSK modulation in a
practical time-varying MC scenario, that is mobile MC, in which
both the transmitter and the receiver undergo diffusion-based
propagation. Our numerical and analytical results, obtained for
varying levels of similarity between the ligand types used for
ratio-encoding, and varying number of receptors, show that
RSK can significantly outperform the most commonly considered
MC modulation technique, concentration shift keying (CSK), in
dynamic MC scenarios.

Index Terms—Molecular communications, modulation, ratio
shift keying, concentration shift keying, channel capacity, maxi-
mum likelihood estimation, Fisher information, mobile molecular
communications

I. INTRODUCTION

B IO-INSPIRED Molecular Communications (MC), which
relies on biochemical molecules to encode and exchange

information, is promising for interconnecting heterogeneous
bio-nano things, e.g., engineered bacteria and nanobiosensors,
thereby enabling unprecedented healthcare applications, such
as intrabody continuous health monitoring within the Internet
of Bio-Nano Things (IoBNT) framework [2]–[4]. Over the
last 15 years, there has been significant research interest in
theoretical aspects of MC, such as channel modeling, detection
and modulation techniques [5]. More recently, experimental
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studies have started to accompany this theoretical body of
work [6], [7].

As the nature of information carriers in MC, i.e., molecules,
is fundamentally different than that of the electromagnetic
(EM) waves utilized in conventional communication technolo-
gies, researchers have developed novel modulation techniques
that can exploit the distinguishable properties of molecules,
such as concentration (concentration-shift-keying - CSK) [8],
molecule type (molecule-shift-keying - MoSK) [9], and release
time of molecules from the transmitter (release-time-shift-
keying - RTSK) [10]. Relatively less interest has been devoted
to exploiting the concentration ratio between different types of
molecules released simultaneously. This so-called ratio-shift-
keying (RSK) modulation was first investigated in [11] as
part of a large set of MC modulation techniques exploiting
the properties of isomers. Accordingly, the authors proposed
encoding information into the concentration ratio of trans-
mitted isomers that differ in the arrangement of constituent
monomers. However, except for this initial investigation of the
isomer-based RSK modulation scheme, a thorough numerical
performance analysis of RSK for practical MC scenarios is
absent in the current literature.

RSK can have significant advantages over other MC modu-
lation techniques under certain conditions of the MC channel
and the MC transceivers. First, the same concentration ratios
encoding a particular symbol set can be obtained with different
absolute concentrations of individual types of molecules, offer-
ing extended opportunities for energy-efficient (i.e., molecule-
efficient) information exchange. Second, RSK can be more
robust against dynamic variations in transmit power and chan-
nel impulse response (CIR) if the effect of these variations is
molecule-type invariant. This can be exemplified by the mobile
MC case where the diffusion coefficients of different types of
molecules are equal. In that case, the time-varying CIR due
to the mobility of the transceivers would be the same for both
types of molecules at all times, preserving the concentration
ratio in the received signal as demonstrated in Fig. 1. Similarly,
RSK can be relatively robust in cases where the channel has
enzymes that degrade both types of molecules at the same rate,
which would not alter the received concentration ratio. We can
also exemplify the potential advantages of RSK by considering
cases where the transmitter, with a finite reservoir of molecules
or fluctuating molecule generation or harvesting mechanisms,
which can result in time-varying transmission profiles in
terms of the absolute number of transmitted molecules. If the
transmitter is able to maintain the transmitted concentration
ratios under such conditions, RSK can preserve its reliability.
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Fig. 1: Demonstration of ligand transmission from transmitter
to receiver in a time-varying MC channel using RSK and CSK.
Even though the concentration of ligands changes, the concen-
tration ratio between these two ligands is preserved since both
types of ligands are equally affected by the variations in CIR.

All of the aforementioned advantages of RSK, however,
are contingent upon the ability of the MC receiver to ac-
curately detect the transmitted concentration ratios. In this
paper, we investigate the performance of RSK modulation
for both stationary and mobile transmitter-receiver scenarios,
considering a physically-relevant MC receiver architecture that
is equipped with a single type of ligand receptors interacting
with different types of information molecules (i.e., ligands) in
a cross-reactive manner. By exploiting the difference in the
affinity of the different types of ligands with the receptors,
which is reflected in the difference in receptor-ligand bound
time duration statistics, the receiver is able to estimate the
received concentration ratio in a maximum-likelihood (ML)
manner [12]. However, due to the complexity of this optimal
ML estimation scheme, we also consider a practical and
suboptimal estimation method based on the biological kinetic
proof-reading (KPR) mechanism [13].

To evaluate the performance of RSK modulation, we first
conduct an information theoretical analysis and analytically
derive the approximate capacity of an end-to-end MC chan-
nel and the corresponding optimal input distribution with a
receiver performing either optimal or suboptimal ratio estima-
tion. The numerical results obtained by varying system pa-
rameters, such as the similarity between ligand types used for
modulation and the number of receptors, are compared to the
capacity of the MC channel using the more conventional CSK
modulation. In the second part of our analysis, we evaluate
the error performance of both RSK and CSK modulation in a
practical mobile MC scenario, where both the transmitter and
receiver are mobile. We analytically derive the symbol error
probability (SEP) for both modulation schemes which are then
compared to the numerical results obtained via Monte Carlo

simulations. In addition to the system configurations examined
in the information-theoretical analysis, we also investigate the
effects of the diffusion coefficient of the transmitter-receiver
pair on the performance of both modulation schemes in our
analysis of mobile MC.

The results of the information theoretical analysis in the first
part show that an end-to-end MC channel with RSK manifests
similar capacity as CSK, but significantly outperforms CSK
if the transmit power is limited. The performance of the
suboptimal estimator, which is more applicable to biologi-
cal mechanisms due to its low computational complexity, is
revealed to be quite close to that of the optimal estimator.
These results indicate the potential of RSK in time-varying
channel and transceiver conditions, and hint at its advantages
over CSK and potentially other modulation techniques for
the design of energy-efficient (i.e., molecule-efficient) MC
systems. The results of the error performance analysis in the
second part demonstrate the potential of RSK when both
receiver and transmitter are mobile in a time-varying end-
to-end MC channel. Numerical results show that RSK has a
better error performance than CSK in mobile MC cases, which
becomes more prominent as the mobility of transmitter and
receiver increases. As a general conclusion, MC channel with
RSK has a similar capacity as the one with CSK, however,
in time-varying MC scenarios, such as mobile MC, RSK
outperforms CSK when the CIRs for both type of ligands are
affected equally.

The remainder of this paper is organized as follows. In
Section II, we provide a brief overview of the statistics of
ligand-receptor binding reactions. In Section III, we present
the mathematical framework for the concentration ratio and
concentration estimation from ligand-receptor binding statis-
tics. In Section IV, we introduce the MC model setting used in
the derivations and analyses in subsequent sections. We derive
and evaluate the information-theoretical MC channel capacity
with RSK and CSK modulation in Section V. In Section VI,
we present the error performance analysis of RSK and CSK
for a practical mobile MC scenario. Lastly, we conclude the
paper in Section VII.

II. STATISTICS OF LIGAND-RECEPTOR BINDING
REACTIONS

Ligand-receptor interactions are key to communication and
sensing in nature, as most biological cells, e.g., most bacteria,
T-cells, express surface receptors as selective biorecognition
elements, which undergo reversible reactions with specific
types of molecules [14]. These interactions are then translated
into molecular representations inside the cell, which in turn,
inform the cell’s subsequent actions. On the other hand, MC
literature has so far mostly focused on receiver architectures
that neglect the presence of receptors and ligand-receptor in-
teractions. However, recent studies highlighted the significant
impact of these interactions on the overall MC performance,
and hinted at unique opportunities that can be obtained from
their statistics [6], [15].

Ligand-receptor binding interactions, if monovalent, can be
formulated by a two-state continuous-time stochastic process
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with the states corresponding to the bound (B) and unbound
(U) states of the receptor:

U
cL(t)k

+



k−

B (1)

where, cL(t) is the time-varying ligand concentration in the
vicinity of the receptor, k+ and k− are the binding and
unbinding rates of the ligand-receptor pair, respectively.

Due to the low-pass characteristics of the diffusion-based
MC channel, the bandwidth of cL(t) is typically significantly
smaller than the characteristic frequency of the binding reac-
tions, i.e., fB = cL(t)k

+ + k− [12]. Hence, ligand-receptor
reactions can be assumed to be in equilibrium with a stationary
ligand concentration in a time window of interest, and cL(t)
can be simplified to cL. Under these equilibrium conditions,
the process (1) can be represented by a continuous-time
Markov process (CTMP), and the probability of a receptor
being in the bound state is given as follows:

pB =
cL

cL +KD
, (2)

where KD = k−/k+ is the dissociation constant, which is
inversely proportional to the ligand-receptor binding affinity.
Considering that there are NR number of receptors that do
not interact with each other, and are exposed to the same
ligand concentration, the number of bound receptors can be
expressed as a binomial distribution, nB ∼ Bin(pB , NR).
Following from the memoryless property of the CTMP, the
bound and unbound times of the receptors at equilibrium are
exponentially distributed with the rate parameters depending
on the binding and unbinding rates of the ligand-receptor pair,
respectively.

In the case of two different types of ligands in the receptors’
vicinity, both ligands can bind to the same receptors, but with
different affinities, i.e., different KD, which are reflected to
the bound state probability of the receptors as follows

pB =
c1/KD,1 + c2/KD,2

1 + c1/KD,1 + c2/KD,2
, (3)

where c1 and c2 are the concentrations of type-1 and type-
2 ligands whose dissociation constants are denoted by KD,1

and KD,2 respectively. Due to the interchangeability of the
summands, (3) cannot be used to estimate the individual ligand
concentrations, c1 and c2. As a result, in cases where different
ligand types coexist in the channel, necessary statistics re-
garding individual ligand concentrations can only be obtained
by analyzing the continuous history of ligand binding and
unbinding events over receptors.

In diffusion-limited cases, the characteristic rate of diffusion
is much smaller than the ligand-receptor binding reaction rates,
which allows for the simplification of the binding rates for
circular receptors as k+ = 4Da, with D and a denoting the
diffusion constant of molecules and the effective receptor size,
respectively [16]. Assuming that the size difference between
different ligand types is negligible, the diffusion constant,
which then only depends on the temperature and viscosity of
the channel medium, can be assumed to be equal for all ligand
types. Under these assumptions, the probability of observing a

particular bound time duration p (τb) in a single receptor can
be written as a mixture of exponential distributions:

p(τb) =

2∑
j=1

αjk
−
j e
−k−j τb . (4)

where αj = cj/ctot is the concentration ratio of the jth
ligand, and ctot is the total ligand concentration. Then, the log-
likelihood function for observing a set of bound time durations
over NR independent receptors can be written as

L({τb}|α) =
NR∑
i=1

ln p(τb,i), (5)

where τb,i is the bound time duration observed on the ith

receptor.

III. PARAMETER ESTIMATION BASED ON LIGAND
RECEPTOR BINDING STATISTICS

A. Optimal Estimation of the Ligand Concentration Ratios
The optimal estimation of ligand concentration ratios can be

obtained using an ML approach by setting the first derivative
of the likelihood function for bound time durations (5) with
respect to the concentration ratio of type-1 ligands, i.e., α, to
zero:

NR∑
j=1

k−1 e
−k−1 τb,j

αk−1 e
−k−1 τb,j + (1− α)k−2 e−k

−
2 τb,j

= 0. (6)

However, solving this equation for the optimal ratio estima-
tion requires the use of computationally complex algorithms,
which may not be feasible for resource-constrained bio-nano
devices. As an alternative, we will investigate a practical and
suboptimal concentration ratio estimation scheme which can
be implemented by biological circuits [12].

B. Suboptimal Estimation of the Ligand Concentration Ratios
To address the computational complexity of the optimal

estimation scheme for bio-nano devices, Kuscu et al. proposed
an alternative method for concentration ratio estimation based
on the Method of Moments (MoM) [12] . This method involves
counting the number of receptor binding events with bound
time durations that fall within specific time intervals, which
are demarcated by time thresholds determined by using the
inverse of the ligands’ unbinding rates. In the case of two
types of ligands that can bind to receptors, there is only one
time threshold value as demonstrated in Fig. 2, which is set
by the unbinding rate of the lower affinity ligand, k−1 , i.e.,

T1 = v/k−1 . (7)

where v is called the proportionality constant, which can be
optimized for improved estimation performance, and type-1
ligand is the lower affinity ligand. The probability of a binding
event to have a duration that falls into a time interval between
two time thresholds can be obtained as

pl =

∫ Tl

Tl−1

p(τ ′b)dτ
′
b =

2∑
i=1

αi(e
−k−i Tl−1 − e−k

−
i Tl) (8)

= α(e−k
−
1 Tl−1 − e−k

−
1 Tl) + (1− α)(e−k

−
2 Tl−1 − e−k

−
2 Tl),



4

0
0

T1

(p1, n1)

Type-2
ligands

only

Type-1
ligands

only

Mixture

Bound Time Duration, τb

P
robability

(p2, n2)

Fig. 2: Probability distribution of bound time durations for
two ligands and mixture of these ligands. The distribution
is separated into two regions by a time threshold (T1). The
number of binding events and the probability of observing a
binding time duration are given for the corresponding regions.

where we set T0 = 0 and T2 =∞. In matrix notation, (8) can
be written as follows

p = Sα, (9)

where p is a (2×1) probability vector with elements pl, α is
the (2×1) vector of ligand concentration ratios, i.e., [α, 1−α],
and S is an (2× 2) matrix given by

S =

(
e−k

−
1 T0 − e−k

−
1 T1 e−k

−
2 T0 − e−k

−
1 T1

e−k
−
1 T1 − e−k

−
2 T2 e−k

−
2 T1 − e−k

−
2 T2

)
. (10)

Assuming that binding events are independent from each
other, the number of binding events with bound time durations
that fall within specific time intervals follows a binomial
distribution, with the mean and variance given as follows

E[n] = pNR,

Var[n] = (p� (1− p))NR, (11)

where n is a (2 × 1) vector with elements ni which is
the number of binding events whose durations fall into the
ith time interval between Ti−1 and Ti, and � denotes the
element-wise product. Using MoM, we can now estimate
ligand concentration ratios by comparing the expected number
of binding events with durations that fall within specific time
interval to the observed number of binding events in the same
interval. In other words, we use the first moment to match the
predicted and actual number of binding events for each time
interval, i.e.,

n = p̂NR = Sα̂NR,

α̂ =
1

NR
S−1n =

1

NR
Wn, (12)

where hat indicates the estimated parameters, and W = S−1

is a (2 × 2) matrix with elements denoted by ωi,j . The

estimated concentration ratios of type-1 and type-2 ligands
are then given by

α̂l =

(
1

NR

) 2∑
i=1

niωl,i =

(
1

NR

)
n1ωl,1 + n2ωl,2, (13)

where l ∈ {1, 2}. The mean and the variance of the ratio
estimator can then be obtained as

E[α̂] =
1

NR
WE[n] =Wp = S−1p = α

Var[α̂l] =
1

N2
R

2∑
i=1

2∑
j=1

ωl,iωl,jCov[ni, nj ], (14)

where the covariance function is given as follows

Cov[ni, nj ] =

{
Var[ni], if i = j,
−pipjNR, otherwise. (15)

with Var[ni] being the ith element of the vector Var[n].

C. Estimation of Ligand Concentrations

If a single type of ligand is used in the modulation scheme,
e.g., CSK, ligand concentration can be estimated from the
number of bound receptors sampled at equilibrium of the
ligand-receptor binding interaction.

Under equilibrium conditions, the state of a single receptor
can be represented with Bernoulli distribution with the success
probability pB given in (2) as the probability of success.
For NR receptors, the number of bound receptors nB can be
represented by a binomial distribution i.e., nB ∼ B(pB , NR),
with the mean and variance given by

µnB = pBNR

σ2
nB = pB(1− pB)NR. (16)

The unbiased estimator of pB , i.e., p̂B , is given by

p̂B =
nB
NR

. (17)

By inverting the input-output relation between c and pB in (2),
estimator for the ligand concentration, i.e., ĉ, can be written
as follows

ĉ = KD
p̂B

1− p̂B
. (18)

IV. MC SYSTEM MODEL

We study an MC system with a single pair of MC transmitter
and receiver, where the transmitter employs RSK modulation
by using two distinct ligand types (type-1 and type-2). The
similarity between the two ligand types is quantified by a
parameter γ, defined as the ratio of their unbinding rates, i.e.,
γ = k−1 /k

−
2 . The information is encoded in the concentration

ratio of the first ligand type, i.e., α ∈ [0, 1], where the
subscript is omitted for ease of notation. To decode the trans-
mitted symbol, the receiver estimates the concentration ratio
from the bound time statistics of the resulting ligand-receptor
interactions on its surface. As a benchmark for evaluating
the performance of RSK modulation in this setting, we also
consider CSK modulation, in which the information is encoded
in the concentration of a single type of ligands, i.e., type-1
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ligand. The following assumptions are made for the considered
MC system:
• The transmitter releases molecules to the channel as an

impulse, i.e., x(t) = Ntxδ(t), where x(t) is the number
of transmitted molecules, and Ntx is the number of
molecules to be transmitted. Note that in the case of
RSK, the transmitter releases two types of molecules at
the same time instant. The transmitted molecules then
propagate in the channel via free diffusion.

• Intersymbol interference (ISI) is neglected on the grounds
that the signaling interval length Ts is sufficiently large,
or there are auxiliary enzymes in the channel that degrade
the information molecules [17].

• The binding rates of all ligand types are equal to each
other. All ligands and receptors are assumed to be mono-
valent, i.e. a ligand can bind to only one receptor at a
time, and vice versa.

• The receiver employs only a single type of receptors on
its surface, and all copies of the receptors are independent
of each other. Each independent receptor is exposed to the
same ligand concentration.

• Due to the low-pass characteristics of the MC channel,
during the sampling of bound time intervals or the
number of bound receptors, the ligand concentrations in
the vicinity of the receptors are assumed to be stationary.
Variations in the concentration of ligands due to the
binding reactions are also assumed to be negligible.

• The receiver is assumed to know the unbinding rates of
the ligand types used for modulation.

Based on this system model, we first investigate the MC
channel capacity with RSK in the next section.

V. MC CHANNEL CAPACITY WITH RSK
Channel capacity is the maximum rate at which information

transfer can be transfered reliably through a communication
channel and is equal to the mutual information maximized over
all input distributions. The input distribution that achieves the
channel capacity is called the optimal input distribution and is
denoted by P∗(x).

Under regularity conditions, which are discussed in detail
in [18], [19], the optimal input distribution P∗(x) converges
asymptotically to the Jeffreys Prior, P∗jp(x), as the number of
independent receivers, which corresponds to the number of in-
dependent receptors in the context of our study, increases [18],
[20], [21]. It has also been shown that P∗jp(x) is proportional
to the square root of the determinant of the Fisher information
matrix [22], indicating a direct link between information and
estimation theories. By combining these two results, for one-
dimensional inputs, the optimal input distribution asymptot-
ically becomes proportional to the square root of the scalar
Fisher information [23], [24]:

P∗(x) ∝
√
I(x), (19)

resulting in the approximate channel capacity as follows

C∗A = log2

(
(2πe)−

1
2

∫
X

√
I(x)dx

)
, (20)

where X is the one-dimensional input symbol space.

A. MC Channel Capacity with RSK Modulation

Here we derive the capacity of an point-to-point MC channel
where the transmitter employs RSK modulation, and the
receiver estimates the ligand concentration ratio in its vicinity
from the ligand-receptor binding statistics on its surface in
order to decode the transmitted symbol. We consider both
cases where the receiver employs optimal and suboptimal ratio
estimation.

1) MC Channel Capacity with RSK Modulation and Opti-
mal Ratio Estimation: The ratio of the received ligand con-
centrations can be estimated in an ML manner by maximizing
the likelihood of observing a set of bound time intervals
{τb} over the input space, which, in this case, corresponds
to the concentration ratio of ligands, i.e., α ∈ [0, 1]. The log-
likelihood of observing {τb} given the concentration ratio of
type-1 ligands can be written by transforming (5) as follows

L({τb}|α) =
NR∑
i=1

ln

(
k−2 e

−k−2 τb,i
(
1− α+ αγe(1−γ)k

−
2 τb,i)

))
.

(21)
The Fisher information can then be derived from the log-

likelihood function as follows

IRSK(α) = −E
[
∂2

∂α2
L ({τb}|α)

]
(22)

= NRk
−
2

∫ ∞
0

(
−1 + γe(1−γ)k

−
2 τb
)2

1− α+ αγe(1−γ)k
−
2 τb

e−k
−
2 τbdτb.

By plugging this expression into (19) and (20), the optimal
input distribution and the approximate channel capacity CRSK
can be obtained, respectively, as follows

P∗RSK(α) ∝
√
IRSK(α), (23)

CRSK = log2

(
(2πe)−

1
2

∫ 1

0

√
IRSK(α)dα

)
. (24)

2) MC Channel Capacity with RSK Modulation and Sub-
optimal Ratio Estimation: In Section III-B, a suboptimal
concentration ratio estimation scheme is introduced to estimate
the ratio based on predetermined time intervals that separate
binding events according to their bound time durations. Since
RSK relies on only two different ligand types, the proposed
scheme will have only one time threshold T , which distin-
guishes long binding events from short binding events. Given
the concentration ratio of type-1 ligands, α, the probability of
observing a binding event with a bound time duration longer
than T can be written as

pT ≡ p(τb ≥ T |α) = αe−k
−
1 T + (1− α)e−k

−
2 T

= e−k
−
2 T
(
αe(1−γ)k

−
2 T + 1− α

)
(25)

Assuming that only a single binding event is sampled from
each independent receptor, the number of binding events that
satisfy τb > T is given by a binomial distribution.

nT ∼ B(pT , NR). (26)
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Fisher information for the suboptimal concentration ratio es-
timator can then be written as follows

IRSK,sub(α) = −E
[
∂2

∂α2
L (nT |α)

]
=
(
e−γk

−
2 T − e−k

−
2 T
)2

×
NR∑
nT=0

[
nT
p2T

+
NR − nT
(1− pT )2

](
NR
nT

)
pnTT (1− pT )

NR−nT ,

(27)

where the subscript sub indicates the suboptimality of the
estimation scheme employed by the receiver.

Finally, IRSK,sub(α) can be plugged into (19) and (20)
to obtain the optimal input distribution and the approximate
capacity of the MC channel with the suboptimal ratio estimator
as follows

P∗RSK,sub(α) ∝
√
IRSK,sub(α), (28)

CRSK,sub = log2

(
(2πe)−

1
2

∫ 1

0

√
IRSK,sub(α)dα

)
. (29)

B. MC Channel Capacity with CSK Modulation

We also investigate the approximate capacity of an MC
channel with CSK modulation as a benchmark for an in-depth
evaluation of the RSK performance. In CSK, information is
encoded in the concentration of a particular type of ligands,
and the detection is performed by sampling the number of
bound receptors in each signaling interval at a pre-defined
sampling time, which is typically taken as the peak time of
the ligand concentration in the vicinity of the receiver. The
Fisher information in this case can be calculated as follows:

ICSK(c) =− E

[
∂2

∂c2
L (nB |c)

]
=−

NR∑
nB=0

(
∂2pB
∂c2

[
nB
pB
− NR − nB

1− pB

]
(30)

−
(
∂pB
∂c

)2[
nB
p2B

+
NR − nB
(1− pB)2

])

×
(
NR
nB

)
pnBB (1− pB)

NR−nB .

In an MC system with a power-limited transmitter, the input
symbol space in (20) is limited by the maximum concentration
of ligands that the transmitter can release into the channel.
In this case, the approximate capacity of the channel can be
obtained as

CCSK = log2

(
(2πe)−

1
2

∫ cRx,max

0

√
ICSK(c)dc

)
, (31)

where cRx,max is the ligand concentration in the vicinity of
the receptors at the sampling time, which corresponds to the
maximum ligand concentration that can be transmitted by
the transmitter, scaled by the CIR of the diffusion-based MC
channel. Finally, the optimal input distribution can be obtained
by plugging (30) into (19) as follows:

P∗CSK(c) ∝
√
ICSK(c). (32)

C. Information Theoretical Analysis
We numerically evaluate the approximate capacity of the

end-to-end MC channel with RSK and CSK modulation under
varying system settings. We analyze the channel capacity with
RSK with respect to the level of similarity between the two
ligand types and the number of receptors, whereas the channel
capacity with CSK is analyzed as a function of the maximum
received concentration and the number of receptors. We also
present the corresponding optimal input distributions for the
RSK and CSK scenarios. Default values of the number of
receptors and the similarity parameter used in the analyses
are NR = 1000 and γ = 5, respectively.

1) Optimal Input Distribution: The optimal input distri-
bution that achieves the capacity for the MC channel with
RSK modulation is given in Figs. 3a and 3b, for cases where
the receiver utilizes optimal and suboptimal concentration
ratio estimators, respectively. Here, we take the input as the
ratio of the concentration of the first ligand type to the total
ligand concentration, i.e., α ∈ [0, 1], and the optimal input
distributions are shown for different values of the similarity
parameter, γ = k−1 /k

−
2 .

Our first observation is that the optimal input distribution
is symmetric for γ = a and γ = 1/a, with a ∈ (0, 1).
Additionally, the optimal input distribution favors the ligand
type with lower affinity for the receptors, i.e., the one with
higher unbinding rate. This can be explained by the fact that
it is less likely to find a receptor bound to a ligand with
higher unbinding rate at equilibrium, decreasing the number
of samples informative of this particular ligand type. As a
result, the optimal input distribution shifts the concentration
ratio towards the less likely binding ligand, increasing their
proportion among all the bound ligands at equilibrium. This
preference becomes more prominent as the similarity between
the ligand types decreases. The same trend can be observed in
both the optimal and suboptimal cases, although the preference
for the less cognate ligand is more prominent in the optimal
case.

The optimal input distribution for MC channel with CSK
is given in Fig. 3c. The numerical analysis for the calculation
of the optimal input distribution does not have a constraint
on the maximum received concentration cRx,max, where the
input is the ligand concentration in the vicinity of the receiver.
We observe that the optimal input distribution favors low
ligand concentrations, which is consistent with the results of
Einolghozati et al. in [25].

2) End-to-End Channel Capacity: We first analyze the
impact of the similarity between the ligand types, quantified
by γ = k−1 /k

−
2 , on the capacity of the MC channel with RSK.

The results are provided in Fig. 4a for cases where the receiver
estimates the ligand concentration ratio either optimally or
suboptimally. As γ increases, the similarity between the ligand
types in terms of their unbinding rates from the receptors
decreases, increasing their distinguishability by the receiver.
As is seen in Fig. 4a, this leads to higher channel capacities,
which saturate around 4 bits/channel use. When γ ≈ 1,
the ligand types are hardly distinguishable, resulting in a
channel capacity close to 0. However, even a small difference
in the unbinding characteristics of the ligands significantly
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Fig. 3: Optimal input distribution for end-to-end MC channel (a) with RSK modulation and optimal ratio estimator, (b) with
RSK modulation and suboptimal ratio estimator, (c) with CSK modulation.
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Fig. 4: End-to-end MC channel capacity (a) with RSK modulation as a function of similarity parameter γ, (b) with RSK and
CSK modulation as a function of number of receptors NR, (c) with CSK modulation as a function of maximum received
concentration cRx,max.

improves the channel capacity. More importantly, the channel
capacity obtained with the suboptimal estimator is close to that
obtained with the optimal estimator, while having much lower
complexity. This makes RSK modulation feasible for resource-
constrained bio-nano devices, as the suboptimal estimator
can be implemented with a simple single-threshold kinetic
proofreading (KPR) scheme, similar to those already used in
living cells [26].

Our next analysis focuses on the impact of the number of
receptors, NR, on the channel capacity. As the receptors are
considered to be independent of each other, NR determines the
number of independent samples taken from the receptors in
each signaling interval for estimating the ligand concentration
ratio in the case of RSK, and the ligand concentration in the
case of CSK. In Fig. 4b, we compare the performance of
RSK and CSK modulatiosn under power-limited conditions,
where the transmitter has an upper bound on the number
of molecules it can transmit. We see that increasing the
number of independent samples, i.e., NR, has a significant
effect on the capacity, as it improves the accuracy of the
estimation performed by the receiver. The power limitation
of the transmitter is translated into an upper-bound on the

ligand concentration in the vicinity of receptors, as the free
diffusion channel is deterministic in terms of molecule con-
centration. Accordingly the maximum received concentration
is set to cRx,max = 0.1 KD, cRx,max = 0.25 KD and
cRx,max = 0.4 KD for CSK modulation. We do not consider
the effect of power limitation on the RSK performance, as
the concentration ratio is invariant to the total number of
molecules released by the transmitter. These results align with
our discussion in the Introduction, showing that RSK becomes
advantageous in terms of channel capacity when the received
concentration is upper-bounded. This advantage of RSK over
CSK can be particularly significant when the transmitter has
a limited molecule reservoir or relies on fluctuating molecule
harvesting or production processes. Additionally, RSK may
have advantage over CSK in mobile MC scenarios, which we
will discuss in Section VI. In these cases, the mobility of
the transmitter and/or the receiver can result in a time-varying
CIR and received concentration profile, which can degrade the
performance of the MC system.

For the completeness of the analysis, we also provide the
approximate channel capacity for CSK as a function of max-
imum received concentration cRx,max in Fig. 4c. The results
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show that the asymptotic channel capacity obtained when the
cRx,max is much larger than the dissociation constant of the
ligand-receptor pair KD saturates around 4.5 bits/channel use,
which is only slightly higher than the asymptotic channel
capacity of the RSK obtained when the similarity between
the utilized ligand types is low (see Fig. 4a).

The results of the information theoretical analysis demon-
strate that the RSK modulation may be able to address some
of the limitations of the CSK modulation without sacrificing
channel capacity. This is further investigated in the error per-
formance analysis, where we consider a mobile MC scenario
with a time-varying CIR.

VI. ERROR PERFORMANCE OF RSK IN MOBILE MC

In this section, we analyze the error performances of
Quadrature-RSK (Q-RSK) and Quadrature-CSK (Q-CSK)
modulations in a mobile MC scenario. In this scenario, the
transmitter and receiver undergo random walk, which is a
widely used model for the random movement of living cells
and passive micro/nano robots [27]. We assume that all the
symbols have equal probability of being transmitted for both
Q-RSK and Q-CSK, and the receiver utilizes the suboptimal
estimation of concentration ratio for Q-RSK.

We assume that the transmitter and receiver have equal
diffusion coefficients that are much lower than the diffusion
coefficient of the information molecules (i.e., ligands). Time-
varying position of the transmitter, i.e., Xtx(t), Ytx(t), Ztx(t),
and the receiver, i.e., Xrx(t), Yrx(t), Zrx(t), undergoing ran-
dom walk can be modeled in Cartesian coordinates as follows

Xtx(t) ∼ N (x0,tx, 2Dtx,rxt), Xrx(t) ∼ N (x0,rx, 2Dtx,rxt),

Ytx(t) ∼ N (y0,tx, 2Dtx,rxt), Yrx(t) ∼ N (y0,rx, 2Dtx,rxt),

Ztx(t) ∼ N (z0,tx, 2Dtx,rxt), Zrx(t) ∼ N (z0,rx, 2Dtx,rxt),
(33)

where N (µ, σ2) denotes Gaussian distribution with mean µ
and variance σ2, (x0,tx, y0,tx, z0,tx) corresponds to the initial
position coordinates of the transmitter, (x0,rx, y0,rx, z0,rx) are
the initial position coordinates of the receiver, Dtx,rx is the
common diffusion coefficient of the transmitter and receiver.
Without loss of generality, we assume that the transmitter is
initially located in the origin, i.e., ~rtx(t = 0) = [0, 0, 0] and
the receiver is at the position ~rrx(t = 0) = [x0,rx, 0, 0] where
~rtx and ~rrx denotes the position vectors of transmitter and
receiver, respectively.

We adopt the notation and formulation introduced in [28]
to model the CIR of the mobile MC channel as follows

h(t, τ) =
1

(4πDτ)3/2
exp

(
− r(t)2

4Dτ

)
, (34)

where r(t) is the transmitter-receiver distance at time t, τ is
the relative time of sampling at the receiver with respect to the
time of release of molecules from the transmitter t = tR, such
that τ = t−tR. For a particular signaling interval starting with
the transmission time t = tR, CIR can be assumed to be time-
independent, since the diffusion coefficients of the transmitter
and receiver are much lower than that of the information
molecules. Based on this assumption, for a particular signaling

interval, CIR becomes h(τ). We assume that the receiver takes
its samples at the peak time of received ligand concentration,
i.e., τ = τpeak.

A. Statistics of Transmitter-Receiver Distance

With the given initial coordinate choices of the transmitter
~rtx(t = 0), and the receiver ~rrx(t = 0), the distributions of
the transmitter-receiver distances at each individual coordinate
XD(t), YD(t), ZD(t) become Gaussian distributions given by

XD(t) = Xrx(t)−Xtx(t) ∼ N (x0,rx, 4Dtx,rxt),

YD(t) = Yrx(t)− Ytx(t) ∼ N (0, 4Dtx,rxt),

ZD(t) = Zrx(t)− Ztx(t) ∼ N (0, 4Dtx,rxt). (35)

Then the transmitter-receiver distance r(t) is given by

r(t) =
√
XD(t)2 + YD(t)2 + ZD(t)2, (36)

r(t) can be shown to follow a scaled noncentral Chi distri-
bution, and its expected value and variance at time t can be
given as

µr(t) =
√
4Dtx,rxt E[B],

σ2
r(t) = 4Dtx,rxt Var[B], (37)

where

B =

√
XD(t)2

4Dtx,rxt
+

YD(t)2

4Dtx,rxt
+

ZD(t)2

4Dtx,rxt
(38)

is an auxiliary parameter that follow a noncentral Chi distri-
bution with three degrees of freedom, i.e., k = 3 and its mean
and variance are given by

E[B] =

√
π

2
L
(k/2−1)
(1/2)

(
− λ2n

2

)
=

√
π

2
L
(1/2)
(1/2)

(
− λ2n

2

)
,

(39)

Var[B] = k + λ2n − (E[B])2 = 3 + λ2n − (E[B])2.

Here L(k/2−1)
(1/2) is the Laguerre function, and the noncentrality

parameter λn for B is calculated by the formula

λn =

√√√√k=3∑
i=1

(
µi
σi

)2

=

√
x20,rx

4Dtx,rxt
. (40)

B. Statistics of Peak Time of Received Ligand Concentrations

Upon the transmitter’s release of molecules at time t = tR,
the ligand concentration in the receiver’s vicinity attains its
peak at time τ = τpeak, which is obtained by solving dh(τ)

dτ =
0 as follows

τpeak =
r(tR)

2

6D
. (41)

Consequently, the random variable τpeak depends on the
random transmitter-receiver distance at the transmission time
tR, i.e., r(tR), and can be expressed as

τpeak(tR) =
XD(tR)

2 + YD(tR)
2 + ZD(tR)

2

6D
. (42)
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We know that the sum of squares of three unit-variance Normal
distributions follows a noncentral Chi-squared distribution
[29]. If we define an auxiliary random variable A as

A =
XD(tR)

2 + YD(tR)
2 + ZD(tR)

2

4Dtx,rxtR
, (43)

then A follows a noncentral Chi-squared distribution with
three degrees of freedom, i.e., k = 3, and with noncentrality
parameter λ = x20,rx/4Dtx,rxtR. The mean and variance of
the auxiliary distribution A can then be calculated as follows

E[A] = k + λ = 3 +
x20,rx

4Dtx,rxtR
,

Var[A] = 2k + 4λ = 6 + 4
x20,rx

4Dtx,rxtR
. (44)

Upon substitution of XD(tR)
2 + YD(tR)

2 + ZD(tR)
2 =

4Dtx,rxtRA in (42), we obtain

τpeak(tR) =
4Dtx,rxtR

6D
A, (45)

implying that τpeak(tR) follows a scaled noncentral Chi-
squared distribution. Therefore, the mean and variance of the
peak time distribution are

E[τpeak(tR)] =
12Dtx,rxtR + x20,rx

6D
,

Var[τpeak(tR)] =
24D2

tx,rxt
2
R + 4x20,rxDtx,rxtR

9D2
. (46)

C. Statistics of Received Ligand Concentrations
The concentration of ligands in the vicinity of the receiver at

the sampling time depends on the transmitter-receiver distance
at the time of transmission and the sampling time (i.e., peak
time of received ligand concentration), both of which are
random variables in a mobile MC scenario.

The nonlinear relationship between the distance and the
concentration in the vicinity of the receiver after the transmitter
releases its molecules at t = tR is defined as

c(tR + τ) = Ntx,mh(tR, τ)

= Ntx,m
1

(4πDτ)3/2
exp

(
− r(tR)

2

4Dτ

)
, (47)

where Ntx,m is the number of transmitted molecules for
symbol m. When the receiver takes its samples at the peak
of the concentration, (47) can be simplified by plugging
τ = τpeak in (41). The simplified relationship between the
distance and the received ligand concentration becomes

c(tR + τpeak) = Ntx,m

(
2πr(tR)

2

3

)−3/2
exp(−3/2). (48)

Using the expected value and variance of the transmitter-
receiver distance r(t) given in (37), the mean and variance
of received ligand concentration c(tR+ τpeak) can be approx-
imately calculated using the Delta method as follows [30]

µc = exp(−3/2)
(

3

2π

)3/2
Ntx,m
µ3
r

[
1 +

6σ2
r

µ2
r

]
,

σ2
c = exp(−3)

(
3

2π

)3 9N2
tx,mσ

2
r

µ8
r

[
1 +

8σ2
r

µ2
r

]
. (49)

An analogous analysis can be performed for the case where
the receiver takes the samples at a fixed time τs instead of
the peak time. To this end, we substitute τ = τs into the CIR
equation, resulting in

cf (tR + τs) = Ntx,m
1

(4πDτs)3/2
exp

(
−r(tR)

2

4Dτs

)
. (50)

The Delta method can then be used to approximate the mean
and variance of the received concentration as follows

µcf =
Ntx,m

(4πDτs)3/2
exp

(
−µ2

r

4Dτs

)[
1 +

σ2
rµ

2
r

8D2τ2s
− σ2

r

4Dτs

]
,

(51)

σ2
cf

=
4N2

tx,mσ
2
r

(4Dτs)5π3
exp

(
−2µ2

r

4Dτs

)[
µ2
r +

σ2
r

2
− µ2

rσ
2
r

2Dτs
+

µ4
rσ

2
r

8D2τ2s

]
.

D. Received Signal Statistics

In MC receivers with ligand receptors, molecular signals
in the form of ligand concentration (CSK) or ligand con-
centration ratio (RSK) are sampled through ligand receptors
on the receiver surface. As such, the statistics of ligand-
receptor binding interactions in response to received ligand
concentration and ligand concentration ratio are utilized for
decoding the transmitted messages. In the case of CSK, the
number of bound receptors is sampled at the sampling time for
decoding. On the other hand, for RSK, as discussed in Section
III-A, the ligand concentration ratio is estimated through the
bound time statistics of the receptors at the sampling time,
which is subsequently used for decoding.

As the time-varying CIR in the mobile case with RSK
affects both types of ligands equally, the concentration ratio of
ligands in the receiver’s vicinity remains unchanged, assuming
that ISI is neglected. Thus, the mean and variance of the
concentration ratio estimator, given in (14), become the first
two moments of the received signal statistics for RSK, which
can be assumed to be Gaussian distributed when the number
of independent receptor bound time samples, which is equal
to the number of independent receptors, is sufficiently high.

However, the received concentration becomes a random
variable due to random CIR resulting from mobility, as dis-
cussed in Section VI-C. As such, the mean and variance of the
number of bound receptors sampled at the sampling time, i.e.,
µnB and σ2

nB , can be calculated using the law of total mean
and variance. Assuming that the received ligand concentration
at the sampling time follows a Gaussian distribution with mean
µc and variance σ2

c , the mean and variance of the number of
bound receptors can be obtained as follows

µnB = E[E[nB |c]]

=

∫ ∞
0

c

c+KD
NR

1

σc
√
2π

exp

(
− 1

2

(
c− µc
σc

)2)
dc,

(52)

σ2
nB = E[Var[nB |c]] + Var[E[nB |c]]

=

∫ ∞
0

(
cNR

(c+KD)2
+

[
cNR

c+KD
− µnB

]2)
× exp

(
− 1

2

(
c− µc
σc

)2)
dc. (53)
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In the case of a large number of independent receptors,
the number of bound receptors at the sampling time can be
assumed to follow Gaussian distribution, as the receptors are
independent and identically distributed.

E. Transmit Signal Design

Prior to the design of the detection schemes with optimal
decision rules for Quadrature-RSK (Q-RSK) and Quadrature-
CSK (Q-CSK), we first optimize the set of transmit signals to
obtain a quadrature constellation design that maximizes error
performance. We use the Chernoff upper bound for pairwise
error probability as a design metric in the optimization of
transmit signals, which lends itself to analytical expressions
when the channel transition probabilities can be approximated
as Gaussian.

Chernoff upper bound for pairwise error probability for two
distributions, P(Y |X = x1) and P(Y |X = x2), is given by
[31]

εx1,x2 = P(X = x1)
λP(X = x2)

1−λ (54)

×
∫
[P(Y |X = x1)]

λ[P(Y |X = x2)]
1−λdY,

When the distributions are Gaussian, i.e., P(Y |X = x1) ∼
N (µ1, σ

2
1) and P(Y |X = x2) ∼ N (µ2, σ

2
2), the integration in

(54) can be obtained analytically as follows∫
[P(Y |X = x1)]

λ[P(Y |X = x2)]
1−λdY = e−g(λ) = ε′x1,x2

,

(55)
where g(λ) is called the Chernoff distance [31]:

g(λ) =
λ(1− λ)

2
(µ2 − µ1)

2[λσ2
1 + (1− λ)σ2

2 ]
−1

+
1

2
ln

[
|λσ2

1 + (1− λ)σ2
2 |

|σ2
1 |λ|σ2

2 |1−λ

]
. (56)

The optimal transmit signals that minimizes the pairwise error
probability can then be obtained by searching for the values of
λ and (x1, x2) that maximizes the Chernoff distance in (56)
or minimizes ε′x1,x2

= exp[−g(λ)].
For quadrature modulation with four transmit signals, i.e.,

x1 < x2 < x3 < x4, this optimization is performed by using
the following compound design metric,

ε′x1,x2
+ ε′x2,x3

+ ε′x3,x4
. (57)

Note that the input X and the observation Y correspond to
α and α̂ in Q-RSK, respectively, and to c and nB in Q-CSK,
respectively.

F. Decision Thresholds

Let Hm be the hypothesis that the symbol m ∈ {0, 1, 2, 3}
is transmitted at the beginning of the kth signaling interval,
and Zk be the corresponding received signal. As the received
signals for both RSK and CSK are approximated as Gaussian
distributed (see Section VI-D), the probability of observing
Zk given that the hypothesis Hm is true for the kth signaling
interval can be given as

P (Zk|Hm) =
1√
2πσ2

m

e
(Zk−µm)2

2σ2m , (58)

where µm and σ2
m are the mean and variance of the received

signal corresponding to mth symbol of Q-RSK or Q-CSK. For
a receiver employing maximum likelihood (ML) detection, the
decision rule can be expressed as follows

m̂k = arg max
m

P(Zk|Hm), (59)

where m̂k refers to the decided symbol for the kth signaling
interval. ML approach utilized in the detection mechanism
divides the entire range of received signal into M = 4 decision
regions each of which correspond to a different symbol. The
decision regions for the transmitted symbol m can be defined
as given below

Dm = {Zk : P(Zk|Hm) > P(Zk|Hj)∀j 6= m}. (60)

The signal value where the conditional probability distribu-
tions of two adjacent symbols, m−1 and m, intersect will be
the optimal decision threshold between them, λm, i.e.,

1√
2πσ2

m

e
(λm−µm)2

2σ2m =
1√

2πσ2
m−1

e

(λm−µm−1)2

2σ2
m−1

for m = 1, 2, 3. (61)

Solving (61), we obtain the optimal decision thresholds:

λm =
1

σ2
m − σ2

m−1
(σ2
mµm−1 − σ2

m−1µm + σmσm−1

×
√
(µm − µm−1)2 + 2(σ2

m − σ2
m−1) ln

( σm
σm−1

)
for m = 1, 2, 3. (62)

G. Symbol Error Probability

Symbol error probability (SEP) is the probability of mk 6=
m̂k where mk is the transmitted symbol, and m̂k is the symbol
decoded by the receiver in the kth signaling interval. The
probability of erroneous detection can be computed as follows

P (e|Hm) =

∫
z/∈Dm

P (z|Hm)dz, (63)

and by assuming that all the symbols have equal probability of
being transmitted, SEP can be calculated by taking its mean
over the entire symbol set as follows

Pe =
1

4

3∑
m=0

P (e|Hm)

=
1

8

[
erfc

(
λ1 − µ0

σ0
√
2

)
+ erfc

(
µ3 − λ3
σ3
√
2

)
+

2∑
m=1

(
erfc

(
µm − λm
σm
√
2

)
+ erfc

(
λm+1 − µm
σm
√
2

))]
for m = 0, 1, 2, 3, (64)

where erfc(z) = 2√
π

∫∞
z
e−y

2

dy is the complementary error
function.
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Fig. 5: Symbol error probability of (a) RSK and CSK for both analytical and simulation results as a function of number of
receptors, NR, smaller region is redrawn on (b) for better visualization, (c) and for simulation results as a function of the
diffusion coefficient of Tx and Rx, Dtx,rx.

TABLE I: Default Values of Simulation Parameters

Parameter Value
Number of receptors (NR) 1000

Diffusion coefficient of ligands (D) 100 µ m2/s
Diffusion coefficient of Tx and Rx (Dtx,rx) 0.001 µ m2/s

Initial Tx-Rx distance 25 µ m
Binding rate of ligands (k+) 20 µ m3/s

Unbinding rate of type-1 ligands (k−1 ) 10 s−1

Unbinding rate of type-2 ligands (k−2 ) 5 s−1

Ligand similarity parameter (γ) 2
Signaling interval length (Ts) 60 s

Disassociation constant of type-1 ligands (KD,1) 0.5 µ m−3

Disassociation constant of type-2 ligands (KD,2) 0.25 µ m−3

Maximum transmit power 5×KD,1

H. Numerical Results

Here, we present numerical results on the analysis of the
SEP performance of RSK and CSK in a mobile MC setting
where both the transmitter and receiver are mobile. We provide
the results obtained through analytical derivations and Monte
Carlo simulations for various system settings. To investigate
the impact of each parameter on performance, we conduct
simulations where the transmitter sends 1000 consecutive
messages with a pre-defined signaling interval length Ts, while
both the transmitter and receiver move in the channel following
a random walk model. We assume that both the transmitter and
the receiver know only the initial transmitter-receiver distance
before they start the random walk.

The SEP for a single run of the simulation is obtained
by calculating the average error probability observed during
the transmission of the 1000 messages. Simulations for each
parameter are repeated 105 times, and the average SEP over
105 runs of the simulation is provided in the figures. The
default values of the system parameters used in the analyses
are given in Table I.

1) Effect of Number of Receptors: The number of re-
ceptors determines the number of independent samples taken
for the estimation of the ligand concentration for CSK, and
the ligand concentration ratio for RSK. As explained in
Section VI-C, statistics of the received ligand concentrations
are predominantly determined by the mobility characteristics

of the Tx-Rx pair. Hence, the effect of increasing number of
independent samples is dwarfed by the impact of mobility in
the case of CSK. Consequently, as observed in Figs. 5a and 5b,
SEP for CSK is almost independent of the number of receptors
in mobile MC, unlike the analysis on channel capacity for
static MC. However, since the ligand concentration ratio is
unaffected by the mobility of Tx and Rx, SEP for RSK
decreases with increasing number of receptors, similar to the
analysis on channel capacity in static MC case. Although CSK
provides slightly better results than RSK when NR < 100,
RSK outperforms CSK significantly with a sufficient number
of independent samples. Moreover, it can also be seen that
the analytical results approximate the simulation results very
accurately.

2) Effect of Diffusion Coefficient of Transmitter and
Receiver: We investigate the impact of transmitter and receiver
mobility on RSK and CSK performance by tuning their diffu-
sion coefficient, i.e., Dtx,rx. In this analysis, we keep the dif-
fusion coefficient of the ligands constant at D = 100µm2/s,
whereas Dtx,rx is varied from D × 10−6 = 10−4µm2/s
to D × 10−2 = 1µm2/s. As shown in Fig. 5c, at low
mobility conditions with small Dtx,rx, CSK outperforms RSK.
However, with increasing mobility, the variance of the Tx-
Rx distance at any time increases, leading to higher fluc-
tuations on the ligand concentration in the vicinity of the
receiver, resulting in a drastic increase of SEP for CSK. Since
the proportional changes in the concentrations of individual
ligands are the same, the concentration ratio of the two
ligand types used in RSK is unaffected by the variations of
Dtx,rx. Consequently, mobility characteristics do not affect
the concentration ratio, ensuring that the error performance of
RSK remains unaffected. In contrast, the CSK performance is
highly correlated with mobility, reaffirming the advantage of
RSK in time-varying MC channels.

3) Effect of Similarity between Ligand Types on RSK Per-
formance: The similarity between type-1 and type-2 ligands
used for RSK in terms of their affinity with the receptors
has substantial impact on SEP, as demonstrated in Fig. 6a.
Increasing γ, which reflects a decrease in similarity, improves
the ability of the suboptimal estimator to distinguish between
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Fig. 6: Symbol error probability (a) for RSK as a function of similarity parameter, γ, and (b) for CSK as a function of maximum
transmit power.

the two types of ligands based on the bound time duration
of receptors. Fig. 6a shows that SEP is close to 0.75, where
ligands are very similar to each other, i.e., γ ≈ 1. However,
as γ increases, SEP decreases drastically, and for γ ≈ 4.5,
it attains values on the order of 10−8, which practically
corresponds to a no-error case in a mobile MC scenario.
Therefore, RSK can provide significantly low SEP with the
careful choice of ligand types.

4) Effect of Maximum Transmit Power on CSK Perfor-
mance: For CSK, we analyze the effect of the maximum
transmit power which may need to be set given a transmitter
with limited molecule reservoir. Here, for convenience of the
analysis, the maximum transmit power is given in terms of the
maximum received concentration, which corresponds to the
maximum number of transmitted molecules scaled by the CIR
of the channel at the initial transmitter and receiver position.
Note that a similar analysis has been done in Section V-C by
investigating the effect of maximum received concentration
over the channel capacity. Similar to the capacity analysis,
SEP for CSK decreases with the increasing maximum transmit
power in a mobile MC channel, as is clear in Fig. 6b. This
result is expected for CSK since expanding the input concen-
tration range (input space) increases the distance between the
transmit signals in terms of ligand concentration, improving
the distinguishability of transmitted symbols at the receiver,
thereby lowering SEP.

VII. CONCLUSION

We performed an information-theoretical analysis of the
MC channel with RSK modulation considering two different
ratio estimation schemes, varying in their optimality and
complexity, for a ligand-receptor-based receiver. Additionally,
we analyzed a practical time-varying MC case where both
the receiver and transmitter are mobile. Performance of RSK
has been numerically compared to that of CSK modulation in
terms of the corresponding channel capacity and symbol error
probability. The results demonstrated that RSK modulation
outperforms CSK modulation particularly when the transmitter

and receiver are mobile, or the transmitter is power-limited,
such that the received ligand concentration is time-varying or
upper-bounded. Future work will focus on the analysis of RSK
modulation in scenarios involving multiple transmitters and
receivers in time-varying channel conditions.

APPENDIX A
ON THE INTERSYMBOL INTERFERENCE

For the default simulation parameters provided in Table I,
the expected value and the variance of peak time distribution
becomes 3.7% and 4.37% of the signaling interval, respec-
tively. Since the received concentration decreases rapidly after
τpeak in a signaling interval, and the sum of the mean and
variance of the peak time distribution is less than %10 of
the signaling interval, we can safely assume that previous
transmission will not affect the current transmission. Hence
we neglected ISI in our analyses. Nevertheless, we provide an
analysis for the effect of the sampling interval TS to verify
that ISI can be neglected.

As is seen in Fig. 7 for both RSK and CSK modulations,
differences in the SEP between the cases with and without ISI
are in an acceptable tolerance band for TS > 50s. Therefore,
we conclude that ISI can be neglected for TS > 50s. By setting
TS = 60s, we conducted our analyses in this paper without
considering ISI.
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