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Oxygen is a critical component for many physiological and pathological processes in living

cells.[1,2] Tissue hypoxia has been found to be closely related to the clinical course of a variety

of diseases,[3] such as tumor growth,[4,5] diabetic retinopathy,[6] and rheumatoid arthritis.

[7] Therefore, the measurement and imaging of oxygen levels in live cells and tissue represent

a challenging and significant problem in modern biology, physiology, and medicine. Many

efforts have been focused on the development of optical sensors for oxygen.[8–11] Oxygen

sensing by phosphorescence quenching is noninvasive, sensitive, selective for oxygen, and can

be implemented for real-time measurements as well as high-resolution oxygen mapping in

tissue.[12–15] While conventional phosphorescent dyes for oxygen sensing are typically based

on organometallic complexes and metalloporphyrins,[16,17] efforts to synthesize new

chromophores with improved characteristics,[18,19] or to modify them for applications such

as multiphoton microscopy have also been reported.[20]

There is currently considerable interest in the development of nanoparticle-based optical

oxygen sensors.[12,13,21] Such sensors typically consist of phosphorescent dyes encapsulated

inside a polymer or silica nanoparticle, which serves to isolate the dyes from the cellular

environment.[13] Moreover, nanoparticles typically exhibit higher brightness and better

photostability than molecular dyes, owing to large numbers of chromophores per particle as

well as the protective matrix. We recently demonstrated that π-conjugated polymer

nanoparticles (CPdots) exhibit extraordinarily high fluorescence brightness under both one-

photon and two-photon excitation.[22–24] Dye-doped conjugated polymer nanoparticles were

also found to sensitize bright emission from fluorescent dye dopants by efficient energy transfer

from the polymer to the dye.[25,26] Herein, we describe a novel nanoparticle architecture for

oxygen sensing that consists of π-conjugated polymer molecules doped with an oxygen-

sensitive phosphorescent dye. Upon light excitation, the polymer efficiently transfers energy

to the phosphorescent dye, which results in bright phosphorescence that is highly sensitive to

the concentration of dissolved oxygen. The salient features of the nanoparticle sensors,

including their small size, extraordinary brightness, and ratiometric emission, together with

the demonstration of single-particle sensing and cellular uptake, indicate their excellent

potential for quantitative imaging of local molecular oxygen concentration in living cells and

tissues.
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The conjugated polymers employed as the doping host are the polyfluorene derivatives poly

(9,9-dihexylfluorene) (PDHF) and poly(9,9-dioctylfluorene) (PFO). Platinum(II)

octaethylporphine (PtOEP) served as the oxygen sensitive dye (structures are shown in Figure

1a). Rapid addition of a solution of polyfluorene and PtOEP in THF to water, followed by

mixing, led to the collapse of polymer chains because of the sudden increase in the THF/water

ratio, which results in nanoparticle formation and simultaneous entrapment of the hydrophobic

PtOEP molecules inside the nanoparticles (see the Experimental Section). The AFM results

for PDHF-based particles indicate that the resulting particles are approximately spherical in

shape, with particle heights (diameters) in the range of (25 ± 5) nm (Figure 1b,c). It was found

that the preparation conditions for PFO-based particles, (in particular, the THF/water ratio)

affected the polymer phase (glassy phase versus β phase) in the resulting nanoparticles, and

the polymer phase has a strong effect on the efficiency of energy transfer to the dye dopants.

[27] In agreement with previous results, the glassy PFO phase particles were found to exhibit

more efficient energy transfer to PtOEP than the β-phase PFO particles. The 10 wt% PtOEP-

doped PFO particles also exhibit roughly spherical morphology, with particle sizes in the range

(50 ± 10) nm.

Aqueous dispersions of the PtOEP-doped CPdots are clear and stable, with a faint pink color

that arises from the visible absorption peak of PtOEP at 534 nm (Figure 2a, inset). Our previous

results indicated that the ratio of dye to polymer in the CPdots is similar to that of the precursor

solution, with no appreciable dye leakage.[26] UV/Vis absorption spectra (Figure 2a) are

consistent with the dye/polymer weight ratio (1:10) of the precursor solution, and the absorption

cross-sections (ca. 380 nm) of PtOEP-doped PDHF and PFO nanoparticles in water were

determined to be approximately 1.9 × 10−12 cm2 and 1.2 × 10−11 cm2, respectively. According

to the particle size and the dye/polymer weight ratio, it is estimated that each doped PDHF

particle (ca. 25 nm diameter) consists of about 90 PDHF molecules and about 700 PtOEP

molecules. Both PDHF and PtOEP contribute to the nanoparticle absorption at 380 nm, and

their relative contributions are estimated to be around 80% from PDHF and around 20% from

PtOEP, respectively. Similarly, each doped PFO particle (ca. 50 nm diameter) contains

approximately 270 PFO molecules and approximately 5500 PtOEP molecules. The large

absorption cross-sections of the CPdots (roughly 20 times higher than those of dye-loaded

silica or polymer particles of similar dimensions) provides a clear indication of the potential

brightness advantage of the polyfluorene-based particles.

The Förster radius of the donor–acceptor pair, which characterizes the efficiency of energy

transfer between the PFO donor and the PtOEP acceptor, was calculated to be approximately

1.7 nm, which is rather small because of the nonoptimal spectral overlap (Figure 2b). However,

exciton diffusion in the conjugated polymer host results in efficient energy transfer, even at

modest doping levels. By employing our previously developed random walk model for

estimating energy transfer efficiency in dye-doped conjugated polymer nanoparticles,[26] the

calculated energy transfer efficiency for 10% PtOEP-doped PFO nanoparticles (ca. 50 nm)

was approximately 89%, which is in good agreement with the experimental value (ca. 87%)

obtained from fluorescence spectra (Figure 2c). Time-resolved fluorescence measurements

were performed to provide information about the rate of energy transfer within the

nanoparticles (Figure 2d). A fluorescence lifetime of 110 ps was obtained from the decay curves

of the undoped PFO dot emission at 420 nm, and the lifetime was reduced to 18 ps for the 10%

PtOEP-doped PFO dots, primarily because of energy transfer to the dopant. The energy transfer

rate constant (kET) was deduced by subtracting the decay rate constant of undoped dots

( ) from the total decay rate constant of the doped nanoparticles ( ). The

result (kET = 47 ns−1) is in good agreement with the value obtained from analysis of the

fluorescence spectra and the predictions of the nanoparticle energy transfer model. Irradiation

of aqueous nanoparticle dispersions with a UV lamp (365 nm) illustrates a clear difference in
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the fluorescence color of undoped versus doped PFO nanoparticles (Figure 2c, inset). The

emission spectra shown in Figure 2c were obtained at an excitation wavelength of 350 nm

where the absorption of PtOEP is negligible. When compared to the undoped PFO dots, the

doped dots exhibited significantly reduced PFO fluorescence and strong red emission (650 nm)

from PtOEP, which is consistent with energy-transfer-mediated phosphorescence in the doped

particles. The phosphorescence quantum yield of the PtOEP-doped PFO dots (nitrogen-

saturated solution) was determined to be approximately 9% (a dilute solution of

tetraphenylporphyrin in toluene was used as a standard). This result is somewhat lower than

that of PtOEP doped PFO thin film devices (ca. 20%),[28] and is probably because of the higher

doping concentration in the nanoparticles, which leads to increased self-quenching. The

nanoparticle phosphorescence brightness, which is defined as the product of the optical cross

section and the phosphorescence quantum yield, is more than 1000 times higher than that of

conventional oxygen sensing dyes, and is estimated to be roughly 5–10 times higher than that

of PtOEP-doped silica particles of similar dimensions at similar dye loading. The enhanced

brightness is attributable to the combination of efficient light harvesting by the polymer and

efficient energy transfer to PtOEP.

Oxygen-sensitive phosphorescence is readily observed from aqueous PtOEP-doped CPdot

suspensions with different concentrations of dissolved oxygen (Figure 3). The nitrogen-

saturated CPdot suspension exhibits intense red emission, while the air- and oxygen-saturated

samples present weaker emission because of oxygen quenching. The emission spectra (Figure

3a) exhibit a moderate fluorescence (ca. 420 nm) from the PDHF host and oxygen-dependent

phosphorescence (ca. 650 nm) from PtOEP dopant. Significantly, the residual fluorescence

from the donor (ca. 420 nm) remains almost constant, while the acceptor phosphorescence (ca.

650 nm) is highly sensitive to oxygen. This property facilitates ratiometric sensing, which is

useful for applications such as cellular and tissue imaging of oxygen concentration, since the

ratio of acceptor to donor fluorescence is relatively insensitive to the local nanoparticle

concentration. By defining R as the ratio of the emission intensity of the acceptor units (sensing

dye) to that of the donor units (polymer reference), the sensitivity of the sensor can be expressed

by the overall quenching response to dissolved oxygen [Eq. 1],[12,13]

(1)

where RN2 and RO2 represent the emission intensity ratios of the sensor in fully deoxygenated

and fully oxygenated solutions, respectively. The measured Q value for the doped CPdot

particles is around 95%, which is among the most sensitive phosphorescent oxygen-sensing

nanoparticles reported to date.[12] Phosphorescence lifetime measurements provide an

alternative method for quantitative oxygen sensing.[29] A comparison of the phosphorescence

decays of the 10% PtOEP-doped PDHF dots in nitrogen, air, and oxygen-saturated solutions

is shown in Figure 3b. Each decay curve exhibits single-exponential decay kinetics, which

indicates a homogeneous distribution of the PtOEP molecules inside the nanoparticles. A

phosphorescence lifetime of approximately 37 μs was obtained for the nitrogen-saturated

nanoparticle dispersion, which is consistent with the lifetime results (30–50 μs) of PtOEP in a

variety of organic thin-film devices.[28,30] The phosphorescence lifetime decreases to around

10 μs for the air-saturated nanoparticle solution, and to around 5 μs for the fully oxygenated

solution, which indicates efficient quenching of phosphorescence by molecular oxygen.

Quenching by molecular oxygen is rapidly and completely reversed by subsequent bubbling

of N2 through the nanoparticle suspension.

The large optical cross-section, bright phosphorescence, and high oxygen sensitivity of the

doped CPdots show great potential for mapping oxygen concentration in biological systems.
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The relatively small particle size (ca. 25 nm) is advantageous for cellular uptake and

distribution compared to other particle sensors, which are typically much larger.[12,13] The

small size also provides a large surface-to-volume ratio and a reduced distance over which the

oxygen must diffuse to reach the dyes, which should lead to excellent response time. The

sensitivity, selectivity, and response time also depend on the doping matrix, in this case the

conjugated polymer. Polyfluorenes such as PDHF and PFO are hydrophobic glassy polymers,

which should exhibit good oxygen permeability while serving as a barrier to interfering ionic

species. In a qualitative experiment, a dispersion of nitrogen-saturated CPdots was excited by

using a UV lamp (365 nm). The bright phosphorescence was observed to dim within a few

seconds upon exposure to air, which is a qualitative indication of adequate oxygen permeability

and response time for a wide variety of applications. Fluorescence spectra and fluorescence

quantum yields of CPdots suspended in a series of phosphate buffers with pH values ranging

from 5 to 8 were indistinguishable from those of particles suspended in deionized water, thus

indicating no apparent sensitivity to pH over this range. Additionally, we recently determined

that CPdots exhibit extraordinarily large cross-sections for two-photon excitation (as high as

105 GM),[23] which suggests that the nanoparticles are promising for 3D oxygen mapping in

tissue by using two-photon-based imaging techniques.[20]

As a further test of the brightness and sensing capabilities of the CPdot particles, single-particle

phosphorescence imaging was performed. Single-molecule detection of triplet emission in

transition-metal complexes represents a challenging task because of the typically low

phosphorescence quantum yields and very low radiative rates.[31–33] The PtOEP-doped

CPdots are expected to present substantially brighter phosphorescence than that of single

phosphorescent molecules because of the large number of phosphorescent chromophores per

particle (ca. 700 phosphorescent chromophores in a particle of ca. 25 nm diameter). However,

the excitation intensity must be carefully controlled in the case of the PtOEP-doped

nanoparticles, since phosphorescence from the doped CPdots is readily saturated under high

excitation intensity, while the fluorescence of the donor is less susceptible to saturation effects,

which results in donor polymer emission that greatly exceeds that of the PtOEP, as well as

reduced sensitivity of the PtOEP emission to oxygen (data not shown). Single doped PDHF

dots (particle size ≈ 25 nm) were immobilized on a glass coverslip and imaged using a custom

built wide-field epifluorescence microscope. The 405 nm excitation laser was attenuated to an

intensity of about 25 mWcm−2 in the center of the laser spot in the sample plane, corresponding

to roughly 5 × 104 photons absorbed per nanoparticle per second, which is well below

saturation. Single-particle phosphorescence images of the CPdots under flowing nitrogen and

in air were obtained (Figure 4a). Each peak in the image corresponds to a single doped CPdot,

which exhibits a near-diffraction-limited Airy disk with a full width at half maximum value of

approximately 300 nm. AFM images of the same sample indicated similar particle densities,

which provided further indication that the fluorescence features correspond to individual

nanoparticles. Phosphorescence from a single CPdot particle on the coverslip exhibits

sensitivity to oxygen content in the atmosphere above the coverslip. The phosphorescence

intensity that corresponds to a single particle in an air atmosphere clearly shows that the

phosphorescence is substantially quenched by oxygen. Subsequent imaging on the sample after

resuming the nitrogen flow shows near-complete recovery of the phosphorescence intensity

(Figure 4a left). The intensity changes were observed over several nitrogen–air cycles, with

no apparent photobleaching, owing to the low excitation intensity employed. Some particle-

to-particle variability in oxygen sensitivity was observed, perhaps because of defects or

blinking phenomena that occur in some of the nanoparticles. The single-particle oxygen

sensing results provide clear indication that the nanoparticles are sufficiently bright and

sensitive for a wide range of imaging and sensing applications.

The cellular uptake of CPdots was evaluated by incubating J774A1 cells (a macrophage-like

murine cell line) that had been incubated with these doped CPdots (ca. 10 pM) for 10 hours in
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media (see the Experimental Section). A comparison of the differential interference contrast

(DIC) image and phosphorescence images of the nanoparticle-labeled cells clearly indicates

uptake of the CPdots (Figure 4b). The nanoparticle sensors do not appear to exhibit appreciable

cytotoxicity or phototoxicity for the incubation and imaging conditions employed. A detailed

understanding of the nanoparticle uptake mechanism as well as subcellular localization requires

further investigation. In addition, the sensing of oxygen concentration in specific subcellular

structures will require targeting of the nanoparticles by encapsulation and bioconjugation.

Nevertheless, the high brightness of the nanoparticles at low loading levels and low excitation

levels, together with the facile uptake by cells, is promising for applications such as the

determination of oxygen concentration in tissues and subcellular structures.

In summary, we have reported energy-transfer-mediated phosphorescence from

metalloporphyrin-doped polyfluorene nanoparticles and its application to biological oxygen

sensing. The conjugated polymer nanoparticles possess an extraordinary light-harvesting

ability compared to typical dye-loaded silica or polymer nanoparticles; this leads to

nanoparticle absorption cross-sections exceeding 10−12 cm2 (for particles ca. 25 nm in

diameter). Fluorescence spectroscopy and time-resolved fluorescence measurements indicate

highly efficient energy transfer from the host polymer to the metalloporphyrin acceptors, which

results in bright phosphorescence that is highly sensitive to the concentration of molecular

oxygen. Single-particle phosphorescence imaging results indicated the observed

phosphorescence intensity from single particles was sensitive to the partial pressure of oxygen.

The small size, extraordinary brightness under conventional and two-photon excitation, and

ratiometric emission of the nanoparticle sensor, together with the demonstration of single-

particle sensing and cellular uptake, indicate the potential of the doped CPdots for quantitative

mapping of local molecular oxygen levels in living cells and tissue.

Experimental Section

The conjugated polymers PDHF (average MW 55000, polydispersity 2.7, ADS Dyes, Inc.),

PFO (average MW 147000, polydispersity 3.0, ADS Dyes, Inc.) and PtOEP (Frontier Scientific,

Inc.) were used as provided without further purification.

Preparation of PtOEP-doped polyfluorene nanoparticles: Polymer (10 mg) was dissolved in

HPLC grade THF (10 g) by stirring overnight under an inert atmosphere.

Preparation of PtOEP-doped PDHF nanoparticles: A solution (2 mL) of PDHF (50 ppm) and

PtOEP (5 ppm) in THF was added quickly to deionized water (8 mL) while sonicating the

mixture, followed by an additional 10 seconds of sonication.

Preparation of PtOEP-doped PFO nanoparticles: A solution (200 μL) of PDHF (500 ppm) and

PtOEP (50 ppm) was injected quickly into deionized water (8 mL) under sonication. The THF

was removed by partial evaporation under reduced pressure, followed by filtration through a

0.2 micrometer filter to remove larger aggregates.

AFM measurements: One drop of the nanoparticle dispersion was evaporated on a freshly

cleaved mica substrate. The surface topography was imaged with an Ambios Q250 multimode

AFM in AC mode. UV/Vis absorption spectra were recorded with a Shimadzu UV-2101PC

scanning spectrophotometer using 1 cm quartz cuvettes. Fluorescence spectra were recorded

using a commercial fluorometer (Quantamaster, PTI, Inc.). Nitrogen or oxygen was bubbled

through aqueous nanoparticle suspensions for 5 min prior to taking photographs or measuring

the emission spectra. Fluorescence lifetimes of the polyfluorene donor were measured by using

time-correlated single-photon counting technique (TCSPC).[24] The phosphorescence lifetime

measurements were performed using a home-built photon counting spectrometer, as described

in a previous report.[34]
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Single-particle imaging: A dilute suspension of 10% PtOEP-doped PDHF dots (ca. 25 nm

diameter) was immobilized on a cleaned microscope cover glass. Single-particle

phosphorescence imaging was performed on a customized wide-field inverted epifluorescence

microscope using a 405 nm diode laser as excitation source and a 100X oil-immersion

objective. The laser excitation at the sample plane exhibited a Gaussian profile with full width

at half maximum of around 5 μm. Typical laser intensities employed were approximately 25

mWcm−2 in the center of the laser spot in the sample plane. Phosphorescence from the doped

CPdots was filtered by the combination of two 600 nm longpass filters and then focused onto

a deep-cooled, back-illuminated frame transfer CCD camera (Princeton Instruments,

PhotonMAX: 512B) to yield a pixel resolution of 105 nmpixel−1. An acquisition time of 60

seconds was employed, which yielded approximately 1000 detected photons per nanoparticle.

Nitrogen was flowed into an airtight chamber above the sample that could be readily removed

to permit imaging in ambient air. An overall luminescence detection efficiency of 5% was

determined using nile red loaded polystyrene spheres (Invitrogen).

For cellular imaging, J774 A1 macrophages were plated onto 35 mm glass-bottom culture

dishes at approximately 2 × 105 cells per dish and allowed to incubate at 37°C with CO2 (5%)

overnight. The next day, sterile filtered nanoparticle dispersions (300 μL, ca. 100 pM) were

added to cell media (DMEM +10% heat-inactivated fetal bovine serum, 3 mL) and allowed to

incubate for 10 h. The cells were then washed three times with warm Ringer’s buffer (155

mMNaCl, 5 mm KCl, 2 mm CaCl2, 1 mm MgCl2, 2 mm NaH2PO4, 10 mm Hepes, and 10 mM

glucose, pH 7.2–7.4) before viewing. Fluorescence and DIC images of cells were collected

using an Olympus IX70 inverted epifluorescence microscope equipped with a 300W Xenon

arc lamp (380 nm excitation filter; Chroma), and 40 × objective (UPlanApo, 0.90 NA). The

phosphorescence signal from the CPdot-labeled cells was collected by the same objective lens,

filtered by a 630 nm bandpass filter with 60 nm bandwidth (Chroma), and detected by a CCD

camera (OrcaER; Hamamatsu).
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Figure 1.

a) Schematic illustration of the formation of conjugated polymer dots for oxygen sensing. b)

Representative AFM image of PtOEP-doped PDHF dots dispersed on a mica substrate. c)

Histogram of particle-height data obtained from the AFM image in (b).
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Figure 2.

a) UV/Vis absorption spectra of the undoped and PtOEP-doped PFO dots in water. The inset

shows aqueous dispersions of PFO dots under room light. b) Spectral overlap between

fluorescence emission of polyfluorene nanoparticles and absorption of the PtOEP dye. c)

Emission spectra of the undoped and PtOEP-doped PFO nanoparticles with an excitation

wavelength of 350 nm. The inset shows aqueous dispersion of PFO dots under a UV lamp (365

nm). d) Fluorescence decays of the undoped and PtOEP-doped PFO dots measured by a TCSPC

setup. The green curve shows the instrumental response function (IRF). The scattered symbols

represent experimental data, and the solid lines are fits.
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Figure 3.

a) Oxygen-dependent emission spectra of the 10% PtOEP-doped PDHF dots (excitation

wavelength=350 nm). The inset shows doped PDHF dots in aqueous solutions saturated with

nitrogen, air, and oxygen, respectively, under a UV lamp. b) Phosphorescence decays of the

10% PtOEP-doped PDHF dots with different oxygen concentrations. The scattered symbols

represent experimental data, and the solid lines are fits.
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Figure 4.

a) Single-particle phosphorescence images of the doped CPdots immobilized on a coverslip

under a nitrogen and an air atmosphere, respectively. b) DIC and phosphorescence images that

indicate uptake of the nanoparticle sensor by macrophage cells.
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