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The authors assume that individuals adapt rationally to a utility function given constraints imposed by
their cognitive architecture and the local task environment. This assumption underlies a new approach to
modeling and understanding cognition—cognitively bounded rational analysis—that sharpens the pre-
dictive acuity of general, integrated theories of cognition and action. Such theories provide the necessary
computational means to explain the flexible nature of human behavior but in doing so introduce extreme
degrees of freedom in accounting for data. The new approach narrows the space of predicted behaviors
through analysis of the payoff achieved by alternative strategies, rather than through fitting strategies and
theoretical parameters to data. It extends and complements established approaches, including computa-
tional cognitive architectures, rational analysis, optimal motor control, bounded rationality, and signal
detection theory. The authors illustrate the approach with a reanalysis of an existing account of
psychological refractory period (PRP) dual-task performance and the development and analysis of a new
theory of ordered dual-task responses. These analyses yield several novel results, including a new
understanding of the role of strategic variation in existing accounts of PRP and the first predictive,
quantitative account showing how the details of ordered dual-task phenomena emerge from the rational
control of a cognitive system subject to the combined constraints of internal variance, motor interference,
and a response selection bottleneck.
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The extraordinarily flexible and adaptive nature of human be-
havior presents both unique opportunities and unique challenges
for developing a science of the mind and brain. On the one hand,
treating the mind as an adaptive system opens up possibilities for
deep explanations of behavior that are grounded primarily in the
observable structure and contingencies of the task environment,
along with an assumption of rationality or optimal adaptation. This

insight is the point of departure for a range of approaches to
understanding cognition and perception, including rational analy-
sis and related Bayesian approaches (Anderson, 1990; Berthier,
Rosenstein, & Barto, 2005; Bogacz, Brown, Moehlis, Holmes, &
Cohen, 2006; Chater & Oaksford, 1999; Geisler, 2003; Tenen-
baum, Griffiths, & Kemp, 2006), optimal motor control ap-
proaches (Maloney, Trommershäuser, & Landy, 2007; Meyer,
Abrams, Kornblum, Wright, & Smith, 1988; Trommershäuser,
Maloney, & Landy, 2003a, 2003b; Reichle & Laurent, 2006), as
well as signal detection theory and ideal observer analysis (Green
& Swets, 1966; Swets, Tanner, & Birdsall, 1961; Tanner & Swets,
1954). For example, in the arena of perception, ideal observer
models demonstrate that human performance on some very simple
discrimination tasks is limited only by external photon noise
(Geisler, 2003). In the arena of memory, the decay over time of
items in human long-term declarative memory has been shown to
correspond substantially to the decaying probabilities that the
items will need to be selected given the statistical properties of the
environment (Anderson, 1990).

On the other hand, the extreme flexibility of the human cogni-
tive system means that any given task situation may be approached
via an unbounded variety of strategies, making it very difficult to
discern the invariant principles of cognition and action. It is often
unclear whether empirical observations are due to invariant prop-
erties of the cognitive system or, instead, are due to strategic
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responses to the task. The signal detection theory (SDT) analysis
of Tanner and Swets (1954) represents early recognition of the
most elementary form of the problem: Even in the simplest pos-
sible perceptual experiments (detection), behavior is jointly deter-
mined by strategy (represented by the criterion variable level in
SDT) and the noise inherent in the participants’ perceptual repre-
sentations and the external stimulus (represented by the d� mea-
sure). Indeed, Swets et al. (1961) were clear that the key contri-
bution of SDT was its “separation of the factors that influence the
observer’s attitudes from those that influence his sensitivity”
(p. 336).

A recent prominent example of the problem, taken up in detail
below, is the explanation of slowing in certain dual-task situations:
Is the slowing the result of an immutable property of the architec-
ture, such as a selection bottleneck, or is it due to a strategy
participants adopt (Meyer & Kieras, 1997a, 1997b; Meyer &
Kieras, 1999)? In general, it can be difficult to discern the cogni-
tive architecture—the fixed computational mechanisms that sup-
port cognition and coordinate perception and action (Anderson,
1983; Anderson et al., 2004; Newell & Simon, 1972; Newell,
1990).

Following Howes and Young (1997), we refer to this problem as
the architecture–strategy credit assignment problem. The problem
is that, even with data obtained from rigorously designed experi-
ments, it is often difficult to know whether to assign credit for the
observed data patterns to some aspect of the cognitive architecture
or to the strategies that people select in service of the task (Howes
& Young, 1997; Kieras & Meyer, 2000; Meyer & Kieras, 1997a).
Observed effects may be a consequence of what people are trying
to do, rather than of genuine constraints on what they can do. As
a result, when researchers build computational models of the
observed behavior, they often make (sometimes implicit) assump-
tions about the roles of strategy and architecture that cannot be
supported by the data. Kieras and Meyer (2000) pointed out that
for the most part researchers make informal assumptions about
strategies. Rarely do they report or justify why they believe that
participants are using one set of strategies rather than another.
Instead strategies are chosen intuitively, often with the aim of
maximizing the fit between a model and the data, so that empirical
support for the architecture can be claimed. The model strategy is
thereby used as a free parameter that is set with the aim of
maximizing the credit assigned to the theory of the architecture.

Our goal for the present work is to specify and illustrate a new
approach to developing and testing cognitive theories that explic-
itly deals with the large space of possible strategic responses to
local task environments but exploits the adaptive nature of human
cognition to sharply narrow this space to subsets that are rational
given the local task demands. A distinguishing feature of our
approach, which we call cognitively bounded rational (CBR) anal-
ysis, is that it generates predictions from cognitive theory via
strategies that are rationally selected given an explicit utility func-
tion (Howes, Lewis, & Vera, 2007; Howes, Lewis, Vera, & Rich-
ardson, 2005; Howes, Vera, Lewis, & McCurdy, 2004; Lewis,
Vera, & Howes, 2004; Vera, Tollinger, Eng, Lewis, & Howes,
2005; Vera, Howes, McCurdy, & Lewis, 2004).

The approach has two related but distinct benefits. First, it
allows us to pursue deep explanations of adaptive behavior by
providing an answer to the question of why the behavior has the
shape it does (the behavior is adaptive given the assumed archi-

tectural constraints). Second, the approach increases our ability to
discern the nature of the invariant internal mechanisms that bound
the adaptation—it addresses the credit assignment problem—
because it allows us to generate highly constrained predictions
from a cognitive theory even when the space of possible adapta-
tions is complex.

CBR analysis builds naturally on several lines of theoretical
work in cognitive science. Specifically, it inherits from Simon’s
(1955, 1957, 1991, 1992) bounded rationality a focus on under-
standing the side conditions that bound adaptive behavior, but it
differs in that it seeks to derive the optimal behavior given these
constraints. It inherits from SDT the recognition (a) that all be-
havior is jointly determined by invariant properties of the cognitive
system and by strategic factors, and (b) that psychological science
requires empirical and analytic tools that take both factors into
account. But it differs from SDT and analyses of optimal motor
control (Maloney et al., 2007; Meyer et al., 1988; Trommershäuser
et al., 2003a, 2003b; Reichle & Lamant, 2006) in that it allow for
analyses of a significantly broader class of tasks and provides a
broader conception of strategic variation. It inherits from rational
analysis (Anderson, 1990) a focus on understanding how behavior
is adaptive. But it differs from rational analysis in that it focuses on
strategic adaptation on shorter time scales in local task environ-
ments and explicitly takes into account a formal specification of
cognitive architecture. Finally, the approach inherits from cogni-
tive architecture research (Anderson et al., 2004; Meyer & Kieras,
1999; Newell, 1990) an assumption of extreme strategic flexibility
and a focus on specifying the task-invariant computational mech-
anisms of cognition and action, but it differs in that it moves
beyond the simulation of single, intuitively generated strategies in
favor of methods for deriving adaptive behavior given a potentially
large space of possible strategies and an explicitly defined, task-
specific utility function.

An important benefit of the approach is that it addresses in a
substantive way the concerns about model fitting expressed by
Roberts and Pashler (2000) and the problems concerning strategic
variation expressed by Kieras and Meyer (2000). When research-
ers use CBR analysis, models are calibrated on some aspect of the
data, predictions are derived using the assumption of rational
adaptation, and tests are made against the remaining data. Neither
the model’s architectural parameters nor its strategic parameters
are adjusted to match the target data to be explained.

The principle domain of illustration in this article concerns
understanding the bounds on dual-task performance (and their
individual variation) in psychological refractory period (PRP) ex-
periments, an issue of considerable theoretical importance in the
development of theories of cognitive control and attention, and a
topic of much recent debate (Anderson, Taatgen, & Byrne, 2005;
Byrne & Anderson, 2001; Hazeltine, Teague, & Ivry, 2002; Meyer
& Kieras, 1997a, 1997b; Pashler, 1998). The rationale behind PRP
experiments was simple: The systematic slowing of responses that
emerges as two separate choice-reaction tasks are brought into
close temporal proximity was believed to provide insight into
fundamental, architectural properties of human multitasking—the
ability to focus thought on more than one thing at a time (for
extensive historical overviews, see Meyer & Kieras, 1997a;
Pashler, 1998).

More specifically, the PRP debate has concerned the existence
of a response selection bottleneck. Response selection bottleneck
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theories assert that there is a selection bottleneck that is a fixed part
of the cognitive architecture, and this bottleneck permits cognition
to be focused on only one task at a time. However, although the
selection bottleneck account is appealing because it appears to
provide an elegant explanation of a variety of PRP-related data
patterns (Pashler, 1998), others, notably Meyer and Kieras
(1997a), have pointed out that the same patterns could be due to
strategic adaptation rather than to architectural limitations. The
PRP paradigm therefore exemplifies the architecture–strategy
credit assignment problem.

The plan for the remainder of this article is as follows. We first
provide brief relevant background on related approaches in cog-
nitive science that motivate our work, followed by an overview of
the proposed approach. We then provide a concrete demonstration
that current practice in applying theories of cognitive architecture
does not take sufficient account of strategic variation. This dem-
onstration takes the form of a detailed analysis of ACT-R (Ander-
son, 1993; Anderson & Lebiere, 1998) models of PRP reaction
times (Byrne & Anderson, 2001) that shows that the attribution of
explanatory credit to strategy or architecture is unclear for these
models, and that therefore so is the resulting explanation of critical
phenomena. We then describe our alternative modeling frame-
work, CBR analysis. Next, we introduce a new theory of response
ordering (such as that required in classic PRP tasks) called ordered
response theory (ORT). The theory states that any two responses
that must be ordered will be coordinated in a way that maximizes
subjective expected utility. In standard tasks where both accuracy
and speed are important, utility is increased by smaller temporal
separations but decreased by reversal errors. ORT is consistent
with the strategic-response deferment account of Meyer and Kieras
(1997a, 1997b) but differs in the nature of the predictions and
explanations that it provides: It yields quantitative predictions at
the level of individual participants and accompanying explanations
grounded in the assumption of rational adaptation.

So as to test ORT we introduce a set of auxiliary parametric
assumptions about the processing architecture that are derived
from EPIC (Meyer & Kieras, 1997a, 1997b). We then specify a
space of possible strategies for coordinating the two responses.
The space is defined in terms of strategic parameters that govern
the temporal separation of the responses. We then compare the
prediction of the theory to data from four PRP experiments re-
ported by Schumacher et al. (1999). This is accomplished by
calculating the optimal strategy for each individual (using individ-
ually calibrated processing architectures) and using these optimal
strategies to generate specific quantitative predictions at the indi-
vidual level. The theory yields quantitative accounts of both ag-
gregate and individual PRP curves and, arguably, a deeper expla-
nation of PRP behavior than has been previously obtained.
Furthermore, we show how it is possible to determine whether the
predictions of the theory depend upon certain key architectural
assumptions, such as the presence or absence of a cognitive bot-
tleneck. Finally, in the General Discussion, we develop a set of
general recommendations for cognitive modeling.

Possible Responses to the Credit Assignment Problem

Rational Analysis

The architecture–strategy credit assignment problem (Howes &
Young, 1997) is a special case of the identifiability problem in

cognitive science: A theory of the architecture that is sufficiently
powerful to exhibit the full range of human perceptual and cogni-
tive capabilities is likely to be capable of mimicking the input–
output characteristics of any other such candidate theory (Ander-
son, 1978; Pylyshyn, 1973). Rational analysis is one approach to
the identifiability problem that seeks explanations in terms of
environment (or at least its experience) and the goals of the
cognitive system. Anderson (1990) stated a general principle of
rationality: “The cognitive system operates at all times to optimize
the adaptation of the behavior of the organism” (p. 28). Anderson
(1990) started with the assumption that evolution has to some
extent optimized cognition to its environment. He argued that
within the limits set by what evolution can achieve, a species is at
some stable point in time at a local maximum. Anderson (1990)
proposed that if the principle of rationality were applied to the
development of a theory of cognition, then substantial benefits
would accrue. In particular, the rational approach (a) offers a way
to avoid the identifiability problem, because the theory depends on
the structure of an observable world and not on the unobservable
structure in the head; (b) offers an explanation for why people
behave the way they do rather than just for how they behave
(because they gain benefit from optimization); and (c) offers
guidance on the construction of a theory of the mechanism.

Researchers have used rational analysis to provide explanations
of a number of phenomena that might otherwise be taken to
indicate arbitrary constraints on cognitive mechanisms or limited
rationality. For example, Oaksford and Chater (1994) argued that
human performance on the Wason selection task (Wason, 1966)
could be explained as optimal given a broader consideration of the
probabilistic decision-making tasks encountered by people in their
everyday lives. Anderson and Milson (1989) and Anderson and
Schooler (1991) demonstrated how the decay of memory could be
understood as functional given the rate of reduction in the utility of
information in the world. They argued that if human memory
decayed at the same rate as the utility of information in the world,
then memory was optimally adapted and memory decay was
rational. Similarly, Lovett and Anderson (1996) used rational
analysis to develop a theory of how people select action based on
their history of success.

Researchers have used some of these explanations to motivate
theories of specific architectural mechanisms. In particular, Ander-
son modified ACT� to reflect the insights gained from the rational
analyses of memory and choice (Anderson & Milson, 1989; Lovett
& Anderson, 1996). The resulting theory, ACT-R (R is for ratio-
nal), combined a model of the decay of activation in declarative
memory, derived from the rational analysis of Anderson and
Milson (1989), with a model of production rule conflict resolution
derived from a rational analysis of the selection of action on the
basis of history of success (Lovett & Anderson, 1996). It is in this
sense that rational analysis may achieve the goal of informing
theories of mechanism: by providing abstract computational char-
acterizations of the functions that components of the architecture
should achieve, under certain assumptions about what they are
adapted to.

Rational analysis thereby addresses the architecture–strategy
credit assignment problem by focusing on the study of the task
environment and assuming that (through evolution) it is the shape
of this environment that has determined the architecture. As a
consequence, and as Simon (1992) emphasized, rational analysis
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backgrounds the empirical study of locally adaptive behavior as a
tool for determining the architecture.

SDT and the Sperling and Dosher (1986) Generalizations

Early in the study of perceptual decision making it was observed
that regularities in the detectability of a stimulus could have as
much to do with strategic adaptation as with the fundamental limits
of the human architecture (Tanner & Swets, 1954). SDT, which
was developed as a consequence, is the earliest and perhaps best
developed example of a formal analysis of human behavior that
addresses strategic flexibility. The classic SDT task involves dis-
crimination of a stimulus in which the presence of an auditory or
visual stimulus must be detected against a background of noise.
SDT assumes that people will select a detection threshold that is
optimal given a utility function that trades the benefits of success-
ful detections against the costs of false alarms. In general the noise
that makes a stimulus hard to discriminate may be due to both
external environmental noise and organism-internal noise. When
the noise in a theoretical model is purely external, SDT yields ideal
observer analyses: descriptions of the optimal performance of an
observer unconstrained by internal limitations.

SDT thus shares with rational analysis the general dictum that
appeal to internal processing limitations should be made only after
explanations based on adaptation to the external environment have
been found lacking. SDT and ideal observer analyses have been
extremely influential and are widely used in psychophysics (e.g.,
Geisler, 2003).

Sperling and Dosher (1986) showed that a wide range of simple
cognitive tasks are amenable to an SDT-like optimization analysis.
These tasks go beyond standard SDT discrimination tasks and
include choice reaction, visual search, and speed–accuracy
tradeoff paradigms. The key generalization was to show that the
continuous strategy space need not be restricted to discrimination
thresholds but may also describe attentional resource allocation,
assuming some internal limited processing resource. (A secondary
generalization was to show that such continuous strategy spaces
need not be uni-dimensional, though a multidimensional analysis
was used for only one class of reaction-time task.) In short,
Sperling and Dosher took an important step toward generalizing
both the strategies and the internal constraints amenable to an
optimization analysis. We believe the approach makes progress on
the issue because the assumption that people are rational provides
a means of narrowing the strategy space. This assumption and its
consequence play a key role in CBR analysis as we develop in this
article.

Get Temporally Close to the Architecture

Newell (1990) made explicit, and provided a solid theoretical
basis for, a methodological dictum implicit in much empirical
work in cognitive psychology: In order to see the architectural
mechanisms clearly, one must get temporally close to them. The
reason is that short time scales (at the level of hundreds of
milliseconds to about a second, what Newell, 1990, termed imme-
diate behavior) permit more limited opportunities for strategic
variation—there are surely fewer ways for the human system to
make a response to a stimulus in 500 ms than in 5,000 ms.

The basic argument here is sound, but we believe that Newell
(1990) underestimated the extent to which strategic variation is
possible and present even in cases of immediate behavior—as the
SDT analyses above might suggest. Strong evidence for this comes
in the analyses and models presented by Meyer and Kieras (1997a,
1997b) in their account of PRP dual-tasking data, which demon-
strated the possibility that the apparently clear empirical evidence
for an architectural feature (the response selection bottleneck) was
in fact consistent with a radically different architecture under
alternative assumptions about strategy. The analyses presented
later in this article further make this case.

Use Empirical Methods That Provide More Direct
Access to the Strategy

This is the response urged by Newell and Simon (1972), who
emphasized the use of verbal protocols, eye tracking, and other
methods that would more directly reveal the intermediate states of
cognition and so provide empirical evidence for the strategy used.
These are surely useful techniques as demonstrated in Newell and
Simon’s landmark work on problem solving, but they are of
limited applicability: They cannot be used to uncover strategies at
the level of immediate behavior, the timescale where architectural
mechanisms are most likely to show through. Thus, it is no
surprise that Newell and Simon’s theory of problem solving de-
pended on, as they put it, “a few, and only a few, gross charac-
teristics of the human [information processing system]” (p. 788).
Rather, it was principally a theory of the strategies routinely
adopted by humans to achieve boundedly rational behavior in
problem solving. Newell and Simon were clear, however, that
these strategies were shaped by the architecture, if only at a gross
level. But there were no formal derivations of how different
strategies might emerge from different architectural assumptions.

Develop Theories of Instruction Taking and
Task Acquisition

Newell (1990; Lewis, Newell, & Polk, 1989) also urged on
psychology the development of theories of instruction taking and
task acquisition. The benefits would be substantial: The formula-
tion of specific task strategies would be taken out of the hands of
the modeler and instead would be derived from possibly domain-
general theories of instruction taking and learning. This is a laud-
able goal, and significant progress has been made toward it re-
cently within the framework of the ACT-R theory (Anderson et al.,
2005; Taatgen, 2005). However, the practical problem with this
approach is that it puts an extremely difficult scientific problem for
cognitive psychology (and artificial intelligence)—instruction tak-
ing—on the critical path toward making progress in identifying
architectural mechanisms and strategies. We therefore believe we
must pursue alternative parallel approaches in the meantime.

Adopt More Principled Means of Comparing Data to
Theories With Free Parameters

One way to view strategic variation is that it introduces degrees
of freedom in a model that can be used to fit data (though it is
difficult to characterize quantitatively) (Lewis et al., 1989; Newell,
1990). Model fitting has recently come under much scrutiny
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(Kieras & Meyer, 2000; Pitt, Kim, Navarro, & Myung, 2006;
Roberts & Pashler, 2000), and it is worth considering whether
recent methodological prescriptions for comparing data to para-
metric theories might be used to address the architecture–strategy
credit assignment problem. Framed this way, the question is to
what extent some given match to data provides support for the
structural invariants of a theory with degrees of freedom.

Kieras and Meyer’s (2000) concerns about strategic variation
led them to propose the bracketing heuristic. In a bracketing
analysis, the modeler determines both the fastest possible and the
slowest reasonable strategy, and human performance is compared
to see if it falls within the bracketed range. The degrees of freedom
of the model are thereby exposed, and fitting can be avoided. For
an example of the use of bracketing, see Gray and Boehm-Davis
(2000).

Roberts and Pashler (2000) argued that, in general, the practice
of fitting theories to data, for which strategy sampling is one
technique, provides no empirical support for the theory. They
asserted that a good fit between a model and the data reveals
nothing about (a) how much the theory cannot fit, (b) how firmly
the data rule out what the theory cannot fit, or (c) whether the
theory could have fit any plausible result. Roberts and Pashler
suggested that a better way to test a theory is first to determine the
full range of a theory’s predictions, then to determine how firmly
the data are consistent with this range, and lastly determine
whether plausible alternative outcomes are ruled out by the theory.
These suggestions have helped shaped the analyses presented in
this article.

A key element of the approaches adopted by Roberts and
Pashler (2000) and by Kieras and Meyer (2000) derives from the
recognition that a theory of cognition often predicts a space of
behaviors, rather than a particular behavior, and that theory testing
involves exploring this space. However, the space of possible
strategies is large and, as one shall see, a theory of the architecture
may as a consequence predict rather little. In these circumstances,
an approach to limiting the range of predictions is required.

An Analysis of Byrne and Anderson’s (2001) Models of
PRP Effects

Before describing CBR analysis, we first present an analysis of
some of the best existing cognitive architecture models of PRP
dual tasking, which makes clear both the advantages and the
weaknesses of current methods of modeling. The data and task
discussed in this section will then be carried through the article as
the primary example used to illustrate the new approach.

The Theoretical Significance of PRP Phenomena

The paradigmatic PRP data pattern, shown in Figure 1, arises
when participants are instructed to respond to both tasks as quickly
as possible but are asked to respond to Task 1 first. Task 2
response times are generally unaffected at long stimulus onset
asynchronies (SOAs), the time between the first and second task
stimuli, but then begin to increase monotonically at short SOAs.
The empirical shape of the increasing part of the curve (often
referred to as the PRP effect) and its theoretical interpretation have
been the subject of much debate (see Meyer & Kieras, 1997a;
Pashler, 1998, for a review); we provide only a summary of the

relevant aspects that will allow us to frame the specific contribu-
tions made by the CBR analyses to follow.

An Explanation in Terms of Strategic Processing

The response selection bottleneck explanation of PRP phenom-
ena was questioned by Meyer and Kieras (1997a, 1997b), who
provided detailed critiques of the selection bottleneck assumption
on both theoretical and empirical grounds. The centerpiece of their
criticism was a set of computational models in EPIC that aban-
doned a selection bottleneck in favor of full cognitive parallelism
and accounted for classic PRP effects via strategic processing.
Their strategic response deferment models assert that people stra-
tegically defer Task 2 responses in order to conform to the explicit
instructions, reinforced by the payoff regime, to give priority to Task
1. The issue remains controversial, as other studies indicate the
presence of a selection bottleneck when strategic concerns are inves-
tigated with changes to the instructions (e.g., Levy & Pashler, 2001;
Ruthruff, Pashler, & Klaassen, 2001) or when tasks involve substan-
tial cognitive processing requirements (Byrne & Anderson, 2001).

The EPIC work embodies two central claims concerning selec-
tion bottlenecks:

(a) The first, weaker claim is that the bottleneck assumption
is not required to explain classic PRP effects; it is
possible to obtain excellent quantitative fits using a
parallel model with sufficient strategic variability. This
result is a negative one in that it makes clear the exis-
tence of a form of the identifiability problem: The PRP
data do not uniquely reveal the outlines of a serial
architecture.

Task 2

Task 1 

SOA (ms)

R
T 

(m
s)

Figure 1. The paradigmatic relationship between stimulus onset asyn-
chrony (SOA) and response time (RT) in the psychological refractory
period task paradigm. At short SOA, participants prioritize Task 1, and the
time required to respond to Task 2 is increased.
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(b) The second, stronger claim is that various detailed as-
pects of PRP data are consistent only with a strategic
parallel model and rule out the serial bottleneck theory.
These aspects include the subadditivity of cognitive
complexity effects observed when two versions of Task
2 are used that differ in the difficulty of the response
mapping (e.g., Schumacher et al., 1999). We discuss
these subadditivity effects below.

We shall now briefly consider responses to these claims and the
specific role that cognitive architecture models play in these re-
sponses.

The Architecture–Strategy Credit Assignment Problem in
Explaining PRP Phenomena

The counterargument to the first claim is that the serial bottle-
neck model is to be preferred on the basis of parsimony. More
specifically, so this line of argument goes, because EPIC does
admit to arbitrary strategic flexibility, it could be used to fit almost
any pattern of data, including patterns that are empirically unob-
served, unlike the simple bottleneck model, which makes unam-
biguous predictions of qualitative data patterns that are observed,
at least in the classic PRP paradigms. Thus, according to the logic
of Roberts and Pashler (2000) (which we consider in more detail
below), the serial bottleneck theory receives strong support from
PRP data, while the EPIC theory receives no support, despite the
demonstration that the data are consistent with a parallel architec-
ture.

The major problem with this argument, alluded to in the intro-
duction above, is that systematically abiding by its methodological
implications will always result in the rejection of strategic vari-
ability as an explanation because it significantly introduces addi-
tional theoretical degrees of freedom. Under current modeling
practice, it is usually the case that for any given cognitive phe-
nomenon a strategic explanation will suffer under such parsimony
comparisons to a competing local theory with minimal, structural
assumptions (assuming that the strategies cannot be directly ob-
served). But given the overwhelming a priori reasons to believe
that the human system does in fact have such adaptive flexibility,
adopting the nonstrategic stance for each local cognitive phenom-
enon to be explained significantly increases the risk that phenom-
ena will be misinterpreted as providing information about fixed
cognitive mechanisms when in fact they are revealing of the
strategies that participants adopt (Newell, 1973, 1990; Pylyshyn,
1973).

A secondary problem with the strong form of this argument is
that it claims that EPIC could reproduce any PRP data pattern, but
this has not been demonstrated nor is it obviously true. Addressing
this issue imposes a significant modeling burden, and we believe
a substantive response demands the kind of framework we are
proposing in this article, one that permits more systematic large-
scale simulations of spaces of strategies than have been previously
attempted.

A Selection Bottleneck Architecture With
Strategic Flexibility

The counterargument to the second, stronger claim—that
certain PRP data patterns are inconsistent with a serial bottle-

neck theory—is provided by computational models constructed in
the ACT-R architecture. ACT-R is a production system architec-
ture that permits strategic flexibility as EPIC does but that embod-
ies a selection bottleneck. ACT-R serial bottleneck models have
been provided for dual-task data that have been previously as-
sumed to be problematic for a serial bottleneck theory. Most
notably, these include the Byrne and Anderson (2001) models of
Schumacher et al.’s (1999) PRP data that give accounts of the
subadditive effects of response mapping difficulty and recent serial
bottleneck models (Anderson et al., 2005) of Hazeltine et al.’s
(2002) perfect time-sharing data.

It is important to understand that the original Meyer and Kieras
(1997a) criticisms of selection bottleneck theory were criticisms of
a verbally stated model with no locus for strategic adaptation. The
ACT-R bottleneck account, in contrast, is a computationally ex-
plicit model that generates quantitative predictions and does allow
for strategic variability. Thus, the ACT-R models are subject to the
same criticisms above concerning the degrees of freedom intro-
duced by strategic variation—the serial model as embodied by
ACT-R is comparable to EPIC in this regard. Where does this
leave us, then, with respect to conclusions that we can safely draw
concerning theoretical explanations of the classic PRP effects?

Parallel and Serial Cognitive Architecture Accounts of
PRP: What Can We Conclude?

For present purposes, we summarize the current state of affairs
with respect to the classic PRP effect as follows (we consider the
implications of our approach for related paradigms in the General
Discussion). The EPIC models appear to demonstrate that parallel
models with strategic variation are consistent with a wide range of
existing PRP data, including some potentially problematic for the
classic selection bottleneck accounts. The ACT-R models appear
to demonstrate that serial models with strategic variation are
consistent with a range of PRP data, also including some data
thought to be problematic for the classic selection bottleneck
accounts. There are compelling reasons for adopting strategically
flexible computational models (outlined above), and these models
and accompanying detailed analyses of the data represent signifi-
cant progress in understanding PRP phenomena beyond that pro-
vided by the simple bottleneck theory. But despite this, we also
argue that, in the bargain, a deeper explanation of the data has
potentially been lost. We say “potentially been lost” because the
range of possible predictions of the serial and parallel theories has
not yet been made explicit, and we do not have clear independent
justifications for the specific strategies adopted in these accounts.
We do not therefore know whether, as claimed, the theories predict
observed PRP effects or whether a consequence of the degrees of
freedom associated with strategic flexibility is that the theories
could be fit to almost any effect. As we now demonstrate, applying
the techniques of CBR analysis to these problems can address both
of these concerns and can significantly clarify what has, and has
not, been learned from the data and models.

In the next part of the article, we introduce Schumacher et al.’s
(1999) PRP tasks and then report a detailed analysis of the con-
tributions of architecture and strategy to Byrne and Anderson’s
(2001) models of Schumacher et al.’s (1999) experiments. Our aim
is to demonstrate how difficult it is to argue that architectures that
permit strategic flexibility (such as EPIC and ACT-R) explain data
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based on evidence of a good fit, in the absence of a clear rational
basis for the selected strategy.

In the second main part of the article, we present the ORT and
accompanying CBR analyses of the Schumacher et al. (1999) PRP
tasks. The models select specific strategies based on their adap-
tiveness to the task (as measured objectively by the specific
payoffs used in the Schumacher et al., 1999, experiments), not on
the quality of fit between model predictions and data. Neverthe-
less, the correspondence between the data and the resulting quan-
titative predictions provides compelling evidence that participants
in these experiments adapted optimally or nearly optimally to the
combined constraints of the task environment and their own cog-
nitive architectures—in particular, noise and modality-specific re-
sponse preparation bottlenecks. Through analyses of individual
participant data, we furthermore show that the dual-task effects (as
represented in the PRP curve) vary considerably across partici-
pants but that this variation may be accounted for as a rational
adaptation to individually varying architectural constraints. Fi-
nally, through modeling experiments that test specific bottleneck
assumptions, we demonstrate that the PRP tasks provide strong
evidence for modality-specific response preparation bottlenecks
but much weaker evidence for response selection bottlenecks.

Schumacher et al.’s (1999) PRP Experiments

Schumacher et al. (1999) reported a series of experiments in the
classic PRP paradigm. The third experiment will serve to illustrate
the basic structure. In this experiment participants were required to
respond to a tone (Task 1) and either a hard or an easy visual
classification task (Task 2) with keypresses that depended on
whether the tone was high or low and whether the pattern con-
tained a particular feature. The hard version of Task 2 used an
incompatible mapping from stimulus to response, and the easy
version used a compatible mapping. The tone and the pattern were
presented with a gap of between 50 and 1,000 ms (SOA). Partic-
ipants were asked to prioritize Task 1 (i.e., to respond to the tone
first and avoid response reversals). The Task 1 response times
(RT1s) were, on mean, unaffected by SOA. In contrast, the mean
Task 2 response time (RT2), at a short SOA (50 ms), was greater
than the RT2s at long SOAs but less than the sum of RT1s and
RT2s at long SOAs (�500 ms). Clearly some parallelization is
possible but, in addition, something causes the Task 2 response to
slow.

Following Meyer and Kieras (1997a), Schumacher et al. (1999)
examined the subadditivity of the Task 2 difficulty effect. Recall
that subadditivity is the difference between the difficulty effect at
long SOA and the difficulty effect at short SOA. Meyer and Kieras
(1997a) had used the presence of subadditivity as evidence against
a selection bottleneck. They reasoned that if the delay in RT2 at
short SOAs is entirely due to a response selection bottleneck, then
no subadditivity would be expected (i.e., the difficulty effect at
short SOA should be the same as at long SOA). If, in contrast, the
delay in RT2 at short SOAs is due, at least in part, to a strategic
postponement of the Task 2 response, then subadditivity should be
observed (i.e., the difficulty effect at short SOA should be less than
the difficulty effect at long SOA). Strategic response deferment
creates slack time between Task 2 response selection and Task 2
motor processing into which task difficulty can be absorbed. (The
logic depends on the assumption that the effect of task difficulty is

to increase the time required for response selection processing and
not perceptual–motor processing.)

The four experiments reported by Schumacher et al. (1999) vary
in the nature of the difficulty manipulation and the modalities of
the stimulus–response pairings. The experiments are referred to in
the rest of this article as E1, E2, E3, and E4. E1 Task 1 was a
two-choice visual–manual task, and Task 2 was an auditory–
manual task. Difficulty was manipulated with the number of
stimulus–response mappings. E2 Task 1 was an auditory–manual
task, and Task 2 was a visual–manual task. In E3 (described
above), Task 1 was an auditory–manual task similar to that used in
E2, and Task 2 was a visual–manual task; difficulty was manipu-
lated with stimulus–response compatibility. In E4, Task 1 was
auditory–vocal, and Task 2 was visual–manual; again, difficulty
was manipulated with stimulus–response compatibility.

Importantly, participants in all four of Schumacher et al.’s
(1999) experiments were rewarded monetarily according to a
quantitative payoff scheme, and they received instruction on the
nature of this payoff and feedback on their progress throughout the
experiment. We refer to a payoff scheme as an objective utility
function. Although there were small differences in the schemes, a
successful pair of responses was rewarded with 100 points minus
1 point for every 10 ms taken to respond. Response reversals and
incorrect responses were given minus 100 points. Extra points
were given if short-SOA Task 1 performance was within 75 ms of
long-SOA Task 1 performance (an attempt to prevent response
grouping). Thus, a precise speed–accuracy tradeoff was imposed
upon the participants.

An Analysis of the Role of Strategy in an Existing
Account of PRP Effects

Byrne and Anderson (2001) reported detailed ACT-R models of
Schumacher et al.’s (1999) E1–E4 that generated reaction time
predictions for each combination of SOA, task, and Task 2 diffi-
culty. For all four models, Byrne and Anderson estimated param-
eters based on single-task or long-SOA performance only and
predicted short-SOA, dual-task RTs without further quantitative
parameter estimation. They also reused values estimated for mod-
els of one experiment for models of other experiments (e.g., the
duration of the perceive process in E3 is reused in the model of
E4). Byrne and Anderson (2001) achieved good fits between
models and aggregate RT data, with R2 values ranging from 0.92
to 0.99 and root-mean-squared errors (RMSEs) ranging from 10 to
19 ms.

These ACT-R models combine several desirable features: (a)
They obtained good quantitative fits, as reported above; (b) they
reproduced key patterns of the data that are thought to have
important theoretical implications (these include the basic PRP
curve and the subadditive difficulty effect); and (c) they obtained
these fits by reusing some parameter values across experiments,
and fitting parameters based only on a limited subset of conditions
(the long-SOA conditions) and using these fixed parameter values
to generate predictions for the remaining conditions. In short, the
models apparently embody claims of invariant quantitative rela-
tionships that should hold in the empirical data; the fact that these
quantitative relationships are observed is thus an impressive ac-
complishment of the modeling.
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Using models based on a general cognitive architecture such as
ACT-R to account for dual-task phenomena holds the promise of
providing more principled explanations than would otherwise be
possible, because the independently motivated and fixed structure of
the architecture is not modified in order to accommodate the data
(Newell, 1973, 1990). But in order to fully understand the nature of
the predictions and explanations such models provide, we must
understand how they depend upon both the fixed architectural
constraints and the strategies that are programmed into the archi-
tecture to perform the task. Arriving at such an understanding
requires an analysis that makes explicit the space of plausible
strategies for the architecture and the range of predictions corre-
sponding to this space. Our immediate aim in undertaking this
analysis is to provide a concrete illustration of the potential prob-
lems that arise when architecture is constrained in a principled
fashion, but strategy is not.

Overview of the Analysis

The main idea behind our analysis of the Byrne and Anderson
(2001) models is the following. The specific ACT-R models re-
ported as providing good fits to the PRP data in Schumacher et
al.’s (1991) E1–E4 embody a detailed set of specific strategic
choices about how to coordinate the two tasks. These strategic
choice implicitly define a space of possible strategies; we formal-
ize a subset of this space in a systematic way and generate the
predictions of the architecture across this space. We can then
compare the full predictive range to human data and begin to
understand the relative role of architecture and strategy in account-
ing for the phenomena.

To accomplish this analysis, we reconstructed the ACT-R mod-
els using a tool called CORE (constraint-based optimizing reason-
ing engine; Howes et al., 2004, 2005, 2007; Vera, Howes,
McCurdy, & Lewis, 2004). CORE was used to reconstruct both the
relevant aspects of the ACT-R functional architecture and the
strategy space required to perform the PRP task. It would be
possible in principle to perform such an analysis using ACT-R
itself, but CORE has the virtue of providing explicit support for
compact generative representations of strategy spaces and a more
transparent and explicit specification of the key architectural con-
straints. We now summarize briefly the architectural and strategy
assumptions; further details are provided in the Appendix.

Architectural Assumptions

The key assumptions are (a) a serial cognitive processor that
works in parallel with a set of perceptual–motor processors (cf.
Meyer & Kieras, 1997a), (b) motor processor preparation times
dependent upon the number of features to be set in the motor
system (following Meyer & Kieras, 1997a), and (c) response
retrieval times dependent upon the activation of chunks in mem-
ory. In the ACT-R theory, activation is dependent on usage history,
but in Byrne and Anderson’s (2001) models it is a parameter that
is set so as to fit retrieval time at long SOA.

The consequences of these three assumptions can be illustrated
graphically with a cascade graph1 (see Figure 2). Figure 2 depicts
a model of PRP behavior at an SOA of 50 ms. The figure is a graph
with resources (information processors) on the vertical axis and
time on the horizontal axis. Processes, executed by processors, are

represented with horizontal boxes. The left end of a process
represents its start time, and the right end represents its end time.
Information flows between processes are represented by vertical,
connecting bars. Light-shaded processes represent Task 1, and
dark-shaded processes represent Task 2. The serial cognitive pro-
cessor operates in parallel with the perceptual–motor processors.
The duration of both the motor process and the retrieval time is
contingent on the task.

Strategy Assumptions

The task knowledge for each strategy consisted of knowledge
for how to achieve Task 1 and knowledge for how to achieve Task
2 in the context of Task 1. Rather than explore the individual
instances of strategies used by Byrne and Anderson (2001), we
specified a strategy space constructed from three orthogonal di-
mensions that capture key aspects of the strategic variability im-
plicit in the ACT-R models. The space represents different ways of
coordinating Task 1 and Task 2 performance by making certain
aspects of Task 2 processing contingent upon certain aspects of
Task 1 processing. The space thus generates strategies in the class
of strategic response deferment models (Meyer & Kieras, 1997a).
The dimensions of this strategy space are as follows:

(a) Task 1 completion control signal. This signal can be
thought of as a flag that is posted in working memory when Task
1 is viewed as sufficiently complete for Task 2 to proceed. There
were two levels of Task 1 completion control signal. The ACT-R
motor system represents two control states that are available for
inspection by the cognitive production rule system. The first is
after the prepare process and is called preparefree. The second is
after the “init” process and is called processorfree. We explored
the implications of deferring the Task 2 response until after each of
these events.

(b) Explicit unlock process. If Task 2 has been suspended
while Task 1 completes, then an unlock process subsequently
allows Task 2 to proceed at the appropriate time. There were three
levels of unlocking. We explored strategies that (a) deferred Task
2 with an unlock process, (b) strategies that had no unlock and did
not defer Task 2, and (c) strategies that deferred Task 2 but without
an unlock. If a strategy included an unlock, then it deferred
processing of Task 2 response transmission.

(c) Task 2 attend deferment. An attend process directs the
perceptual system to gather information. There were two levels of
deferment of the Task 2 attend operator (for visual or auditory
input). The attend of Task 2 was either deferred until after the
response transmission of Task 1 or it was not.

This space yields 12 strategies (2 � 3 � 2). We used CORE to
automatically generate models of the same 12 strategies for each of
the 2 conditions of the 4 experiments (96 models in total). Defi-
nitions of each of the strategies are given in the Appendix.

1 Cascade graphs are a variant of the Gantt-style charts introduced in
Gray, John, and Atwood (1993) and used by Gray and Boehm-Davis
(2000) to depict CPM-GOMS models. Cascade graphs differ from CPM-
GOMS charts in that information flow dependencies between processes are
not permitted unless the processes overlap in time (hence forming a
cascade of information flow). This forces the model to be explicit about the
cognitive resources used to buffer or transmit information between tem-
porally distal processes (Howes et al., 2005).
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Analysis Results

Following Byrne and Anderson (2001), we selected parameters
so as to fit to long-SOA performance and we then used the models
to predict short-SOA performance. We used a Monte Carlo algo-
rithm to estimate the RT effects corresponding to each strategy for
each experiment. Each of the models was run for 10,000 trials
(2,000 trials for each level of SOA), sufficient to obtain 95%
confidence intervals of less than 5ms around the predicted means.

In what follows, we report the results of the simulations for
RT1s and RT2s, paying special attention to the subadditive diffi-
culty effects in Task 2. We calculated confidence intervals around
the human data at each level of SOA using the between-
participants variance of the raw data from the experiments reported
in Schumacher et al. (1999).2 The raw data from Schumacher et al.
(1999) were used for all analyses presented in this article.

For RT1s, all predictions corresponded closely to the data for
both easy and hard conditions of all four experiments. This is not
surprising given the success of Schumacher et al. (1999) in moti-
vating most of their experiment participants to produce essentially
flat RT1s.3 We thus focus all remaining analyses on RT2s, where
the interesting PRP and subadditivity effects arise.

Predictions for RT2s

Plots of RT2s against SOA are shown in Figure 3. There are four
pairs of panels, one pair for each experiment. Left panels represent
performance on easy conditions, and right panels represent perfor-
mance on hard conditions. The solid lines represent the RT2 means
of the human data. The dashed lines represent the model predic-
tions. Note that there are 12 dashed lines in each panel, one for
each of the specific identified strategies (see the Appendix).

The fit of the models to 1,000-ms SOA is evident in each model.
All 12 strategies generate similar performance at 1,000-ms SOA,
but predicted RT2 can diverge significantly below 500-ms SOA.
At 50-ms SOA there is substantial divergence in the predictions of
each strategy in both conditions of all four experiments. For

example, in E4 hard, divergence between predicted performances
of each strategy is from below 500 ms to above 700 ms (see
Figure 3, E4 hard).

For some of the strategies, across all four experiments, the data
fall outside the confidence interval. The models appear noticeably
better for some conditions (e.g., E2 easy) and noticeably worse for
others (e.g., E3 hard). Some strategies predict faster performance
than were observed, and some strategies predict slower perfor-
mance.

It is also apparent that some of the strategies would have been
consistent with data in which SOA has no effect. For example, this
is true in E2 hard, E3 hard, E4 easy, and E4 hard.

Predictions of Subadditivity Effects

Given the importance of the subadditivity difficulty effects in
the theoretical interpretation of the PRP effects, we also explored
whether the subadditivity is an invariant prediction of the ACT-R
models across the strategy space. To determine this, we generated
predictions of subadditivity effects by subtracting the difficulty
effects predicted by each pair of the 12 easy and 12 hard strate-
gies—all of the possible ways of combining strategies for easy and
hard tasks. There were a total of 12 � 12 � 144 subadditivity
predictions.

The result of this analysis indicates that ACT-R can predict both
the presence and the absence of subadditivity. The range of pre-
dicted subadditivity effects for E4 was from �9 ms to 84 ms. This
range encompasses the data, but it also encompasses the prediction

2 We are grateful to Eric Schumacher and David Meyer for providing us
with the raw data.

3 No participants were removed, although we know from later analyses
that some failed to achieve flat RT1. Participants were not removed
because failure to achieve flat RT1s is not evident in the means as used by
Byrne and Anderson (2001).
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Figure 2. Assumptions concerning the architectural resources (vision, audition, etc.), processes (attend,
perceive, etc.), and control information required to perform a psychological refractory period trial are represented
here with a cascade graph. Information flows from one process to another are represented with vertical lines.
Motor response to Task 2 is deferred until after the prepare stage of Task 1 using the unlock process.
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Figure 3. Task 2 response time (RT) against stimulus onset asynchrony (SOA) for data and ACT-R models
based on those reported by Byrne and Anderson (2001). The data are reanalyzed from Schumacher et al.’s (1999)
Experiments (E) 1–4.
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that there will be no subadditivity. Similarly broad ranges of
subadditivity were obtained for E1, E2, and E3.

Summary of the Analysis of the ACT-R Models

We conducted a systematic analysis of the range of RT predic-
tions made by the ACT-R architecture for performance on four
PRP experiments reported by Schumacher et al. (1999). The anal-
ysis was conducted with the aim of providing a concrete illustra-
tion of the role that strategy may play in the application of
architectural theory. The analysis determined the predictions of the
architecture given a space of plausible strategies rather than the
predictions of the architecture plus an intuitively selected strategy
that provides a good fit to observed data. The strategy space that
we formalized in the models was a subspace of the space implicitly
explored by Byrne and Anderson (2001) and Meyer and Kieras
(1997a, 1997b).

Over this strategy space, our reconstruction of the ACT-R
models generated dual-task effects that sometimes correspond to
the human data and sometimes do not. The models also predicted
both the presence and the absence of subadditive difficulty effects
for Task 2. With respect to the architecture–strategy credit assign-
ment problem, this analysis therefore strongly suggests that it is the
specific strategies programmed by Byrne and Anderson (2001)
that yield the good fits, not the architecture itself. But the basis for
the use of these particular strategies, rather than others that do not
fit the data, is unclear. We therefore believe that, despite the fact
that Byrne and Anderson used a constrained architecture with
default values for some parameters and calibrated other parameters
such as base-level activation to 1,000-ms SOA RTs, it is not
possible to assert that the ACT-R architecture explains or predicts
the data on the basis of the reported analyses.

But Byrne and Anderson’s (2001) primary objective in con-
structing the models was to demonstrate that a selection bottleneck
theory (such as ACT-R) is consistent with the PRP data, including
the subadditive difficulty effect, and that therefore these data and
the subadditivity effects do not discriminate between bottleneck
and no-bottleneck models (in contrast to the claims of Schumacher
et al., 2001). The primary objective was not therefore to provide
explanations of detailed quantitative data (though this claim was in
fact made in Byrne & Anderson, 2001; see pp. 851, 853, 854, and
868). In light of the preceding analysis, we can ask the following:
Has the aim of consistency proof been realized?

Presumably a consistency proof carries with it weaker con-
straints on how theoretical degrees of freedom (whether quantita-
tive parameter settings or strategy choices) are fixed in order to
match data. The issue at hand is how weak the constraints are:
Should the analyst be given unlimited license in selecting a strat-
egy to match the data for the purpose of a consistency demonstra-
tion? We believe the answer is no and that it is ultimately more
informative in the present case to ask, is ACT-R sufficient to
account for subadditivity effects, assuming that people select ra-
tional strategies? We briefly explain our reasoning here because it
helps to clarify the larger concern about the role of strategy in
architectural modeling.

Consider both possible outcomes of a consistency demonstra-
tion that does not demand the rational selection of strategies.
Suppose that the result were negative—that is, suppose the models
did not successfully match the data or produce the subadditive

effect. It should be clear that no strong conclusions about archi-
tecture could be drawn from a single negative model result; it
leaves open the possibility that a different strategy might have fit
the data without changing the critical architectural feature in
question (the bottleneck). It is impossible to know this without the
systematic evaluation of some reasonable baseline strategy space.

Now consider in more detail the (actual) positive outcome: A
particular strategy did yield reasonable fits to the data and did
produce a subadditive difficulty effect. But this result naturally
raises the question: why this particular strategy and not others?
Was this strategy a rational and plausible one for the task? Were
there other strategies that, if adopted, would provide significantly
greater payoff for the participant but which do not actually match
the data? Alternatively, is the critical prediction (here, subadditiv-
ity) invariant against strategy choice the strongest possible result?

In our view, it is not possible to appropriately assess either
negative or positive outcomes of a consistency demonstration in
the absence of a systematic evaluation of some baseline strategy
space. And the evaluation of the strategies should be not only in
terms of their match to data but also in terms of their rationality,
which may be assessed by adopting a plausible subjective utility
function and computing the payoff for each strategy. This is the
essential idea behind the new approach that we now describe in detail.

A General Approach to Understanding Adaptation to
Task and Architecture

The analysis presented in the previous section provides a con-
crete demonstration of the importance of exploring the space of
possible adaptations—the space of strategies—in order to deter-
mine the relative contribution of cognitive architecture and strat-
egy to prediction. We now describe the general approach, CBR
analysis, that combines this strategic exploration with an evalua-
tion of the utility of the strategies. A useful way of understanding
CBR analysis and related approaches is to distinguish the types of
rationality on which they are based. We identify four types of
rationality: N, A, B, and C, each of which can be treated as a
substantive hypothesis about the nature of human cognition:

1. Type N rationality is normative rationality. It identifies
the optimal behavior given a local external task environ-
ment and assumed local utility, without consideration of
psychological constraints or the broader time scales and
contexts (e.g., lifetime or evolutionary) in which the
utility of behavior may be evaluated.

2. Type A rationality is architectural rationality. People are
Type A rational if the human cognitive architecture is
itself optimally adapted to the evolutionary task environ-
ment. Rational analysis (Anderson, 1990) introduces the
idea that people are Type A rational. A Type A rational
architecture generates adaptive behaviors for the tasks for
which human evolution has equipped it.

3. Type B rationality is bounded rationality. Individuals are
Type B rational if they find behaviors that are sufficient
in local task environments (Simon, 1992, 1955). Type B
rational behaviors are sufficient to achieve objectives
given limits set by the cognitive architecture and by the
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task environment, but they may well not be optimal under
the (possibly implicit) utility function that defines what is
sufficient. Simon (1955) articulated how aspiration levels
may change in response to feedback over trials but did
not offer a view on whether this (learning) process will
lead to a behavior that is optimal given the constraints.

4. Type C rationality is cognitively bounded rationality. A
system is Type C rational if its behavior maximizes
subjective expected utility given the constraints on the
cognitive architecture and the local task environment. If
people are Type C rational with respect to a particular
task, then they are boundedly rational (Type B) in the
sense that performance is subject to limits (Simon, 1992),
but in addition and with feedback over repeated trials,
they maximize subjective utility given these limits. Type
A and Type C rationality are orthogonal hypotheses;
Type C rational behavior may or may not be constrained
by a Type A rational architecture.

A CBR analysis is defined as any method that derives Type C
rational behavior. We now describe our initial candidate method
for performing such analyses.

Overview of Each Step in the Method

Figure 4 provides a high level overview of the method. The
labels (1–5) in the figure describe the basic steps, and the circles
illustrate how each step narrows an implicit space of possible

behaviors until finally a space of behaviors emerges that consti-
tutes the theoretical predictions to be compared to data. Step 1,
specifying the environment and architecture, implicitly specifies a
(large) space of possible behaviors. Step 2, specifying the strategy
space, narrows the implicit space of possible behaviors to a specific
subset of the intersection of those behaviors permitted by the external
task situation and those behaviors architecturally possible. (Comput-
ing this intersection can be profitably viewed as a constraint satisfac-
tion problem; Howes et al., 2004; Vera et al., 2004.) Step 3, inferring
utility, computes the payoff for behaviors in this space with respect to
an explicit utility function. Step 4, selecting the best strategies, iden-
tifies the much narrower subspace of behaviors that maximizes the
utility function. Under a CBR analysis, this subspace of behaviors is
jointly a function of the cognitive architecture and task constraints
expressed as a space of possible strategies. The quantitative utility
function defines what is best: It serves to select those strategies
that—given the architecture—yield optimal behaviors. In Step 5,
compare to data, we can then ask whether these optimal behaviors are
what is actually observed in the given task situation. CBR analysis
commits to the idea that through practice people implicitly work
toward maximizing utility functions, and that for a cognitive theory to
explain behavior the optimal behavior implied by the theory must
show substantial correspondence to the asymptote bounding observed
human performance.

We now describe these steps in further detail. For each step we
identify an abstract set of requirements that the step places on both
the human empirical paradigms and formal computational tech-
niques that support the method.

The specification implicitly 
defines a space of possible
behaviors jointly constrained 
by the architecture and
environment. This step may 
include calibrating parameters 
of individual architectures to 
individual participants' data 
separate from the target data 
to be explained.

The space of plausible
strategies may be defined
based on prior theoretical and
empirical considerations. In
the examples presented here
we use a generative strategy
grammar (IRG) to compactly
specify the space.

Computing expected subjective utilities
of strategies requires specifying a
quantitative utility function. In the
examples presented here we adopt the
simple assumption that the subjective
utility is the external payoff function
used in the experiment. Computing the
expected payoffs for strategies will
typically require Monte Carlo 
simulation.

The comparison of model
predictions to data in this step
does not involve fitting model
parameters; the architectural and
strategic parameters are fixed in
steps one and four. Assessing the
correspondence of model to data
should take into account the
variability of the data and may be
summarized quantitatively by a
number of standard measures.

Figure 4. How the five steps of cognitively bounded rational analysis focus the space of behaviors. Step 1
defines architecture and environment. Steps 2–4 narrow that space by first determining the plausible strategies
and then determining the subset of best strategies. Only Step 5 involves comparison to data.
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1. Specify a Theory of the Architecture and Environment
and Fix All Architectural Parameters That Can Be
Calibrated From the Data

Step 1 demands a computational or formal specification of an
architecture (e.g., ACT-R or EPIC). In the analyses presented in
this article we used a specification language called Information
Requirements Grammar (Howes et al., 2004, 2005, 2007; Vera et
al., 2004). Information Requirements Grammar foregrounds
theory-relevant aspects of the specification (e.g., temporal aspects
of cognition) and, unlike Lisp or C��, backgrounds theory-
irrelevant detail. Step 1 also demands a specification of the envi-
ronment, minimally including the temporal properties of the stim-
uli. Lastly, the step demands that architectural parameters are
calibrated to some dimensions of the data. Below we describe our
methods for calibration and distinguish it from data fitting.

2. Define and Systematically Generate the Space of
Plausible Strategies

Step 2 demands that all plausible strategies are specified. One
possibility would be to use an architecture such as ACT-R or EPIC
to code each strategy. However, in the analyses presented below
we have again used Information Requirements Grammar, which
was specifically designed to support the compact representation of
large strategy spaces through hierarchical abstractions.

3. Determine the Expected Payoff Achieved by Each
Model (Strategy � Architecture) With Respect to an
Explicit Utility Function

A formal method in which the consequences of constraints for
behavior are derived in some closed-form way may be possible in
some cases, but the complex and stochastic nature of theories of
the cognitive architecture will usually demand Monte Carlo sim-
ulation. The value of the payoff achieved by each model needs to
be ascertained to a level of confidence that allows discrimination
of the best strategies from the rest.

4. Select the Subset of Strategies With the Highest Payoff

Steps 3 and 4 together demand that the specification language
supports the expression of a theory of the utility function. The
language should not commit to a particular theory; rather it should
be possible to express commitments to a particular theory. A recent
examples of a hypothesis concerning a utility function is the soft
constraints hypothesis of Gray, Sims, Fu, and Schoelles (2006),
which states that people seek to minimize time (rather than, e.g.,
working memory load) in stretches of behavior lasting in the 0.33-s
to 3-s range.

5. Contrast the Prediction Interval Inferred From the
Highest Payoff Strategies With the Asymptotic Human
Performance

Steps 3, 4, and 5 together demand that there is some principled
basis for ascribing a specific utility function to the humans per-
forming the task—that is, there must be a theory of the subjective
utility function. The most straightforward way of addressing this

issue in many cognitive experimental situations is to adopt the
practice of providing to participants an unambiguous quantifica-
tion of the rewards and costs of various behaviors in the task
(Sperling & Dosher, 1986). This approach is exemplified by Schu-
macher et al. (2001), who used a point scheme that quantified the
relative benefits of going fast or avoiding errors and provided
participants with incremental feedback throughout the task. Schu-
macher et al. (2001) further motivated their participants to maxi-
mize by giving a cash bonus in direct proportion to the earned
points. In such situations, the simplest assumption is that the
subjective utility function is identical to the explicit point scheme
used in the experiment. We present strong evidence below that this
is the case in the four Schumacher experiments.

Step 5 also demands a systematic means of calculating a pre-
diction interval given both within- and between-participants vari-
ance (Roberts & Pashler, 2000).

Finally, and most significantly, it is in Step 5 that the gaps
between observed and boundedly optimal performance are re-
vealed. Thus, implicit in Step 5 is the requirement to address these
gaps with further refinements to theories of the architecture, en-
vironment, strategies, or utility function.

Ordered Response Theory (ORT)

Using the framework proposed in the previous section, we
developed and tested a new theory of the skilled generation of
ordered responses, which we applied to four sets of PRP tasks.
Unlike existing theories, the new theory offers quantitative pre-
dictions and explanations for the effect of SOA on Task 2 duration.
It furthermore provides these predictions and explanations at the
level of individual participant performance and as such is the first
detailed account of individual variability in PRP performance.

The new theory is simply called ORT. The theory is that the
coordination of ordered responses is a strategic response to a utility
function that precisely trades speed for accuracy, given architec-
tural constraints that include variability in individual response
times and possibly other response preparation constraints.

The particular models that we focus on here all include internal
system noise as the key constraint, but we also test models with
varying auxiliary assumptions. When applied to PRP performance,
these theories predict that people separate the Task 2 response by
just enough time to optimize subjective expected utility given the
distributions of RT1 and RT2 and the response preparation limi-
tations. Given a defined utility function, a quantitative prediction
of the deferment duration can be made by optimizing the function
given the constraints.

The ORT is inspired by Meyer and Kieras’s (1997a) strategic
response deferment account and shares the assumption that partic-
ipants achieve response ordering by postponing the Task 2 re-
sponse. However, it differs in two respects. First, in the models
reported by Meyer and Kieras (1997a) the duration that Task 2 was
postponed was fit to the data. Therefore, although Meyer and
Kieras (1997a) emphasized the potential role of this strategic
interval in avoiding reversals, their approach did not provide a
basis for predicting its duration.

Second, in Meyer and Kieras’s (1997a) strategic response de-
ferment theory, it was assumed, as the name suggests, that some
part of Task 2 was deferred until after some part of Task 1 was
completed. The Task 2 response was not initiated until after a
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control signal from Task 1 had been received and the strategic
interval had been observed. In contrast, ORT does not make a
commitment to whether Task 2 is deferred until after some part of
Task 1 or to whether the Task 2 response is merely delayed. If the
response is delayed, then a strategic interval is observed, but
the start of this interval is not contingent on a control signal from
the partial completion of Task 1.

A Test of ORT

In this section of the article, we develop and test the ORT using
a CBR analysis. The method involves the five steps specified
above. The work done for each step is explained in the next five
sections.

A Theory of the Architecture (Step 1)

We are particularly interested in aspects of the architecture that
may support strategies for PRP performance and, more generally,
for accomplishing response ordering. There are various auxiliary
assumptions that need to be considered. Response ordering strat-
egies imply (a) an architecture with a timing capability (the dura-
tion by which to defer or delay) and (b) the availability of control
signals arising from partial completion of a stimulus–response. We
also expect response ordering to be sensitive to whether or not
there is a bottleneck constraint on central cognition, and for the
moment we commit to the EPIC assumption that there is no central
bottleneck. We later explore the implications of this commitment.

Structure of the Architecture

We take EPIC (Meyer & Kieras, 1997a, 1997b) as our point of
departure for specifying the architecture. The key assumptions we
adopt from EPIC concern the processing stages required for ac-
complishing a PRP task, including their relative durations. We
describe below how we used these assumptions to build a con-
strained parametric architecture that is capable of accommodating
individual differences in stage durations while maintaining key
relationships among the durations. We refer to this specific set of
assumptions as EPIC-V because it incorporates assumptions about
the variance of process durations that differ from EPIC assump-
tions. Where EPIC used no variance in perceptual and cognitive
processes and average variance in motor processes, EPIC-V uses
calibrated variance in perceptual, cognitive, and motor-processing
stages, as described in detail below.4

The initial version of EPIC-V that we explore here is defined by
the following assumptions. The assumptions provide the default
quantitative parameters associated with process durations; in the
section below on calibration, we describe precisely how a subset
of these parameters are adjusted in a constrained way for individ-
ual participants.

1. The default auditory identification duration was set to
209 ms, and the default visual identification duration
was set to 258 ms (the means of two sets of five values
used in Meyer and Kieras, 1997b).

2. There was no response selection bottleneck. (Later in
this article we test the sensitivity of the predictions to

this assumption by running the models with a response
selection bottleneck.)

3. There was no postcontrol processing bottleneck if re-
sponses were in different modalities (e.g., in E4 partic-
ipants made a vocal and a manual response). If re-
sponses were in the same modality (E1–E3), then
process interference, or jamming, occurred (Klapp, Nel-
son, & Jagacinski, 1998; Meyer & Kieras, 1997a) if
Task 2 motor response processes started before Task 1
motor processing had completed. In the simulations we
adopt the simple assumption that process interference
results in an error trial. As with the selection bottleneck
assumption, we also test the sensitivity of the predic-
tions to this assumption by running the models without
interference.

4. We assumed that the selection cycle took a default of 50
ms and that for binary choice tasks 1.12 selection cycles
were required (this is the average of the four values used
in Meyer and Kieras, 1997b). For the easy numerosity
task, we assumed 1.00 selection cycle, and for the hard
numerosity task, we assumed 5.00 selection cycles.
These values were the same as those used by Meyer and
Kieras (1997b) to model Hawkins, Rodriquez, and
Reicher (1979), who reported an experiment with eight
mappings in the hard condition (similar to Schumacher
et al., 1999). For the easy stimulus–response compati-
bility task, we used 1.00 selection cycle, and for the
hard stimulus–response compatibility task, we used
2.23 cycles. These were the values used by Meyer and
Kieras (1997b) to model McCann and Johnston’s
(1992) Experiments 1 and 2. Again, these researchers
used similar compatibility tasks to those used by Schu-
macher et al. (1999).

5. The default working memory gating time was set to 25
ms. In EPIC, this corresponds to the mean time that a
result placed in working memory must wait to be pro-
cessed by cognition given the 50-ms production firing
cycle (Meyer & Kieras, 1997a).

6. The motor-processing stage corresponds to Meyer and
Kieras’s (1997a) motor-processing stage. For E1, E2
and E3, in which Task 1 and Task 2 share response
modalities, we set the mean default duration of the
motor preparation process for the first task to 150 ms
and the mean duration of the motor preparation process
for the second task to 100 ms. The value is shorter for
the second task because the motor system is assumed to
be ready (Byrne & Anderson, 2001; Meyer & Kieras,
1997a, p. 17). For E4, in which Task 1 and Task 2 have
different response modalities, we set the mean default
duration of the motor preparation process to 150 ms for
both tasks.

4 Variability plays an important role in the modeling of Anderson,
Taatgen, and Byrne (2005).
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7. The motor initialization process was assumed to have a
default mean duration of 50 ms (the production firing
cycle time in EPIC).

8. Manual transduction was set to a default duration of 20
ms (an average of three values used by Meyer and
Kieras, 1997b), and vocal transduction was set to a
default of 80 ms (average of three values used in Meyer
and Kieras, 1997b).

9. The unlock process switches from deferred to immedi-
ate mode and has a mean duration of 100 ms (see Table
1 in Meyer & Kieras, 1997a).

10. All information flows between processes were mediated
by buffers of unbounded duration.

11. All process durations were sampled from gamma dis-
tributions (Van Zandt & Ratcliff, 1995), the shape and
scale of which were calibrated from the data (more
details are provided in the following calibration section
below).

Calibration of the Architectural Parameters

The idea behind calibration is straightforward: distinguish be-
tween a set of outcome variables whose patterns represent the
phenomena to be explained and a set of calibration variables
whose patterns will be used to determine architectural parameter
settings that will remain fixed for the prediction of the outcome
variables. The theory is thereby subjected to greater test because
the quantitative theoretical degrees of freedom cannot be used to
fit the target pattern of data in the outcome variables. Put another
way, the theory predicts a necessary relationship between the
outcome and calibration variables, and this relationship is put to
the test. In contrast, traditional model fitting adjusts the architec-
tural parameters in order to best match the pattern in the outcome
variables, but as argued earlier this can lead to the interpretation
problems identified by Roberts and Pashler (2000).

Calibration is not a new idea. It was adopted to some extent, for
example, in Byrne and Anderson (2001), it is consistent with the
Roberts and Pashler (2000) recommendations, and it is closely
related to methods in machine learning and allied fields that
distinguish in some way between training and test data sets. What
we are suggesting here is that calibration be made a systematic part
of modeling done in concert with CBR analysis, so that both
architectural and strategic degrees of freedom are simultaneously
constrained in a principled fashion.

The central claim of the ORT is that people adapt to their own
idiosyncratic process means and noise signatures, so we created
individual instantiations of the architecture that were calibrated
separately for each participant. We were interested in predicting
the shape of the PRP curve, so the outcome variables are Task 2
performance at 50-, 150-, 250-, and 500-ms SOA, and we calibrate
to 1,000-ms SOA only. None of the models’ parameters were fit to
performance at 50-, 150-, 250-, or 500-ms SOA.

The calibration was based on data from the last session of
performance (in Schumacher et al., 1999, there were two sessions
for E1 and three sessions for E2 to E4). Each block consisted of 40
trials irrespective of experiment. Some experiments had more

sessions and more blocks than others; there was therefore some
variation in the level of expertise achieved by participants.

Figure 5 shows a sample of the RT distributions of one partic-
ular participant. We calibrated to mean RT and variance at
1,000-ms SOA, using the following method.

RT calibration. For each experiment, we used the calibration
to generate model durations for 9 processes (Task 1 perceive,
select, motorprep, and motorinit; Task 2 perceive, easy select, hard
select, motorprep, and motorinit) given EPIC default durations
(see above) and observed RTs at 1,000 ms. We used a mixed
effects fitting procedure based on maximum-likelihood estimation
to generate estimates of the process durations for each participant.
(Specifically, we used the nlme function in R; Lindstrom & Bates,
1990; Pinheiro, Bates, DebRoy, Sarkar, & the R Core team, 2009).
Mixed effects model fitting was chosen because it provides better
and more constrained estimates of individually varying parameters
(see, e.g., Gelman & Hill, 2007).

The calibration was subject to the following theoretical con-
straints: (a) The ratio of the calibrated Task 1 motor process
duration to the calibrated Task 2 motor process duration was set to
the corresponding default motor process ratio, and (b) the ratio of
the calibrated select durations to the default motor process dura-
tions was held constant. These ratios are critical to the predicted
SOA effect. Ratio (a) is important because the relative duration of
the motor processes is central to determining the duration by which
Task 2 must be deferred in order to ensure that no response
reversal occurs. Ratio (b) is important because the duration of the
select processes is central to determining the effect, or otherwise,
of a selection bottleneck.

Variance-to-mean ratio (VMR). While ACT-R and EPIC in-
clude hypotheses concerning mean process duration, they are less
specific about the variance of these durations. In EPIC, process
variance is uniform and limited to the motor system. In ACT-R,
there is also variance in the duration required for retrieval. Vari-
ance in ACT-R’s production cycle could be set with a parameter,
though the values of this parameter have not been systematically
explored in ACT-R models. For this reason, and unlike for dura-
tion, there was not a set of default variances for us to use as a
starting point for calibration. Instead, we chose to distribute the
observed variance of the RT proportionately across the hypothet-
ical constituent processes; that is, we assumed a constant VMR
(similar to a constant coefficient of variation, a quantity expressed
in terms of standard deviation used by Schweickert, Fisher, &
Proctor, 2003) across all cognitive, perceptual, and motor pro-
cesses. This assumption may need to be relaxed in future model-
ing, but it represents the simplest and most constrained starting
point.

VMR gives a measure of variance per unit process duration. We
assumed that there was a positive linear relationship between
duration and its variance and therefore calculated the VMR for
each participant’s Task 1, Task 2 easy, and Task 2 hard RT. In
addition, we calculated a mean VMR for each participant (across
Task 1 and the two conditions of Task 2) as well as a mean Task
2 VMR (averaged over easy and hard).

For each participant, the variance of each process in the model
was determined by multiplying the appropriate VMR by the scaled
process duration. More specifically, (a) the variances of Task 1
perceive, response selection, and motor prepare processes were
calculated by multiplying the respective mean duration by the
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Figure 5. Density plots of Task 1 response time (RT1) and Task 2 response time (RT2) from Experiment 1 (E1)
Participant 1 easy and hard conditions across all five levels of stimulus onset asynchrony. sd � standard
deviation.
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VMR for Task 1; (b) the variances of Task 2 perceive, response
selection, and motor prepare processes were calculated by multi-
plying the respective mean duration by the VMR for Task 2; (c)
the variances for motorinit processes, which are shared between
Task 1 and Task 2, were calculated by multiplying the mean
duration by the VMR for both tasks; and (d) the variances of
executive processes (defer and unlock) were calculated by multi-
plying the mean duration by the VMR for both tasks.

Skew and kurtosis parameters. Having calculated a mean and
variance for each process we then calculated the skew and kurtosis
of the gamma distribution, from which instances of the duration
would be sampled, following assumptions in Weisstein (2008).

The Space of Plausible Strategies (Step 2)

We assumed that there were two dimensions of strategic vari-
ation. The first was the positioning of the Task 2 perception,
selection, and motor processes relative to the deferred processing
stage. We assumed that either (a) the whole of Task 2 was deferred
(Task 2 perception, selection, and motor processes were deferred),
(b) only response selection and motor processing were deferred, or
(c) only motor processing was deferred. The second dimension of
variation was the duration of the deferred processing stage. The
defer process duration ranged between 2 ms and 825 ms, at 25-ms
intervals. The 25-ms grain size is somewhat arbitrary, but our
subsequent results will show that a finer grain size is unlikely to
produce significantly better predictions.

We assumed that the participant’s subjective utility function was
determined precisely by the experimental payoff regime reported
by Schumacher et al. (1999). On errorless trials, participants re-
ceived points worth [100 � (RT1/10)] � [100 � (RT2/10)]. In this
way, the payoff rewards speed equally for Task 1 and Task 2.
Response reversals or other types of error resulted in the deduction
of 100 points; in this way, the payoff rewards accuracy. The payoff
thus provides participants with a precise quantitative specification
of the relative rewards of speed and accuracy. Participants received
an additional 1,000 points if the mean of RT1 at 50 ms for a block
was within 75 ms of the mean of RT1 at 1,000 ms.

Determining Expected Payoffs (Step 3)

We determined the expected payoff for each of the strategies for
each participant using 5,000 trials of Monte Carlo simulation
(1,000 per level of SOA) for each condition (easy–hard) of each
experiment, separately for each individual participant. There were
8 participants in E1, 10 in E2, 8 in E3, and 6 in E4. The expected
payoff of each strategy was the mean of the expected payoff at
each level of SOA; each SOA appeared equally often in the
experiments, so a weighted mean was not required.

Selecting the Highest Payoff Strategies (Step 4)

We defined the best strategy for a given individual in an exper-
imental condition as the strategy that achieved the highest ex-
pected payoff according to Schumacher et al.’s (1999) payoff
regime.

Comparing the Predictions to the Human Data (Step 5)

In many of the analyses presented below, we focus specifically
on the fourth experiment, E4. The design of E4 provides the best

opportunity to test the variance-bounded assumption because there
were no perceptual–motor conflicts between Task 1 and Task 2. If
some evidence in favor of the theory can be found by examining
the results of E4, then E1, E2, and E3 allow us to further test the
auxiliary architectural assumptions, including the motor jamming
assumption. Each of these three experiments exhibits one or other
modality conflict, and given that our models use the EPIC jam-
ming assumption, the experiments provide an opportunity for
testing this assumption.

In what follows, we first test the theory with all of the archi-
tectural assumptions detailed above and then subsequently attempt
to isolate the effects of the selection bottleneck and jamming
assumptions. We initially focus on how well the theory predicts the
PRP curve (RT vs. SOA), first for individuals, then in aggregate.
The aggregate predictions are generated from the individual pre-
dictions but serve to make clear the source of the shape of the
aggregate PRP curves presented in Schumacher et al. (1999).
Finally, we examine in more detail the nature of the payoff curves
for the individual subjects in E4.

Task 1 RT as a Function of SOA

Recall that according to Schumacher et al.’s (1999) payoff
regime, participants were awarded an extra 1,000 points if their
mean RT1 at 50-ms SOA was within 75ms of RT1 at 1,000-ms
SOA. All participants in E2, E3, and E4 achieved this criterion
correspondence (flat RT1). Two participants in E1 failed to
achieve flat RT1. These two participants were excluded from
further analysis because the models do not make predictions about
circumstances in which this criterion is not met. (As a conse-
quence, the mean RTs for E1 reported below do not correspond to
those reported by Schumacher et al., 1999.)

RT2 as a Function of SOA

Roberts and Pashler (2000) advocated the identification of an a
priori plausible range of possible outcomes against which to com-
pare a model’s prediction interval. In a Bayesian sense, making
explicit such a plausible range helps to reveal the prior probability
of observing some set of outcomes; the tighter the prediction
interval relative to the plausible range, the stronger the theoretical
prediction and the greater the justified increase in belief in the
theory if the data correspond to the prediction. In the remaining
analyses, we define plausible outcomes as those in the space
between, and including, perfect time-sharing and serial processing.
As one will see, this range receives some empirical justification
because some observed individual participant’s data lie at each
boundary. We first present a detailed analysis of the individual
performance in E4 and then give an overview of individual per-
formance on E1–E3.

The models for each participant in the hard condition of E4 are
compared to the RT data in Figure 6. It is important to keep in
mind that the model predictions are derived from the strategy that
generated the highest payoff using a Monte Carlo simulation and
given the calibrated architectures. The predictions are not the result
of effort to maximize R2 or any other measure of model–data
match.

In Figure 6 there are six panels, one for each participant in E4.
Each panel shows a plot representing the participant’s data with
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95% confidence intervals based on the variability within each
condition and a plot representing the prediction of the cognitively
bounded model. In addition, two other models are plotted. These
represent the span of the strategy space from highly parallel to
highly serial processing, and therefore give an indication of the
plausible strategy space.

Figure 6 shows that the data from 17 of 24 sub-1,000-ms SOA
conditions for the 6 participants lie within the prediction interval of
the cognitively bounded model for E4 hard. The worst exception
was Participant 4. The figure also shows that the correspondence
between the data and the model was not inevitable: The range of
plausible outcomes is represented by the space between the par-
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Figure 6. Cognitively bounded rational (CBR) ordered response theory predictions and individual human data
for Task 2 response time (RT) as a function of stimulus onset asynchrony (SOA) and Task 2 difficulty (hard
condition only). The data are reanalyzed from Schumacher et al.’s (1999) Experiment (E) 4. 95% CIs
(confidence intervals) are shown for data only. The 95% confidence intervals for the model were smaller than
for the data and are not shown for clarity.
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allel model and the serial model. The prediction interval for the
theory is much tighter than this plausible range because all strat-
egies other than the represented prediction were eliminated using
the CBR analysis.

Further, there is some evidence from Participants 1, 2, 3, and 5
that the model predictions capture the shape of the PRP curve and
its variations from individual to individual. This variation is con-
siderable; there is no single canonical PRP curve. We will see
below that, although not all RTs match the predictions, they are
nevertheless on the predicted payoff curve and still quite close to
optimal.

The quality of the prediction at 50-ms SOA is not simply a
function of the fit of the model to RT2 at long SOA. For example,
a fast RT2 at 1,000 ms does not mean a fast RT2 at short SOA.
This fact is most clearly illustrated by the flat relationship between
RT2 and SOA in Participant 5. The effect of SOA is negligible for
Participant 5 compared to its effect in Participant 3, who actually
had faster RTs at longer SOAs. In general, the variation in RT2 at
1,000-ms SOA is not sufficient to explain its variation at 50-ms
SOA.

The performance of E4’s Participant 5 is unusual and warrants
further attention. For this participant, we examined the contribu-
tion of variance and RT1 and RT2 duration to the effect of SOA.
We found that the variance was the lowest of any of the partici-
pants in E4. We also found that this participant had the fastest RT1
relative to RT2. Both of these factors will tend to reduce the impact
of Task 1 on Task 2 at short SOA. Low variance and a faster RT1
both reduce the probability of a response reversal and therefore
reduce the need for strategic delay.

Recall that the prediction of performance at 50-ms SOA is the
prediction of the strategy with the highest utility given the archi-
tectural and environmental assumptions. Of the 3 � 33 strategies
(Perceive, Select, or Motor Control Point � Durations of Defer)
that were considered as candidate best strategies, the best strategies
for each of the participants in the easy condition corresponded to
defer durations of 50 ms, 75 ms, 50 ms, 25 ms, 25 ms, and 100 ms,
respectively. Thus, the same strategy was not best for all partici-
pants.

Individual Predictions for E1–E4

So as to gain a more quantitative description of the quality of the
predictions for all 30 of the participants in E1–E4, we calculated
values of R2 and RMSE for each individual.5 The values are
presented in Table 1. Each value is for 10 data points (5 levels of
SOA for each of 2 levels of task difficulty). Table 1 shows the R2

and RMSE values for three different models of the individual
participants in all four experiments. Focus for now on the values
for the no bottleneck–jamming model. Many, though not all, of the
R2 values are high (24 out of the 30 are over 0.80), suggesting that
the models offer reasonable explanations for the shape of the two
SOA curves for each participant (up to a linear transformation).

Two predictions, those for Participant 7 in E2 and Participant 1
in E3, resulted in particularly low values of R2, suggesting that the
model did not provide a good account of performance in these
cases. Examination of the individual RT versus SOA plots for
these participants revealed that both were slower at 50-ms SOA
than the sum of Task 1 and RT2 at 1,000-ms SOA (i.e., it would
have been faster for them simply to sequence their two responses).

Thus, they are outside our predefined plausible range. On mean the
models account for 89%, 84%, 77%, and 85% of each individual’s
variance due to SOA, in each of the four experiments, respectively.

We also calculated the proportion of the between-participants
variance that was explained by the model for each experiment. The
R2 values were 0.02, 0.27, 0.08, and 0.66, respectively, indicating
that the model accounted well for the between-participants vari-
ance in E4 but not at all for the variance in E1, E2, and E3. One
reason that the E4 prediction is good and the others are not may be
that this experiment exhibited the largest between-participants
variance. There was relatively little between-participants variance
to be explained in E1–E3.

Predicting Across-Participants Means for RT2

Although the previous analysis shows how the cognitively
bounded model can predict individual performance, we can also
make an assessment of how well it predicts aggregate perfor-
mance. This kind of aggregate analysis is useful because it is more
directly comparable to existing accounts that do not model indi-
vidual variation and because it may reveal systematic biases in the
departure of the models from the data.

Figure 7 shows mean RT as a function of SOA for Task 2 across
all four experiments. There are eight panels, including an easy and
a hard plot for each experiment. The data are shown with the
between-participants 95% confidence interval, and the model’s
aggregate prediction is the mean of the predictions for each par-
ticipant—that is, the mean of the best strategies for each partici-
pant (where, again, best is defined in terms of payoff, not fit to
data). The data are within the prediction interval for five of the
eight conditions across the four experiments. Importantly, there is
a good correspondence between data and model for E4, which
provides the critical, modality-conflict free test of the variance
assumption in the cognitively bounded account. Although the
confidence band for E4 is relatively wide, the individual analyses
above indicate why: The variance is due to the inclusion of
participants such as 2 and 5, each with strikingly different data
patterns. But this variance is systematic and accounted for by the
theory.

The conditions for which the data are not within the prediction
interval of the theory are the hard conditions of experiments with
a shared response modality (E1, E2, and E3). These cases may
point to the possibility that the EPIC-V architecture is undercon-
strained.

Payoff as a Function of Interresponse Interval

The CBR analysis provides an alternative way of viewing the
data that gives further insight into the PRP phenomena. It is
possible to create individual payoff curves that plot expected
payoff against some variation in strategy, rather than focus exclu-
sively on the optimal prediction. Plotting such payoff curves, along
with the observed data, is important for three reasons: (a) It allows
one to see the correspondence between the optimal prediction and
the actual data in the context of the theoretical payoff space; (b) it

5 We use RMSE rather than root-mean-square deviation because there is
no variation in number of parameters between the reported models (see
Pitt, Myung, & Zhang, 2002, p. 475).
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allows one to see the shape of the payoff curve that, according to
the theory, participants are being asked to adapt to; and (c) it
allows one to see whether the actual data are on the payoff curve,
even when it is not at maximum. This provides some information
about whether the participants are in fact navigating the posited
payoff space, and from which part of the space they are approach-
ing asymptote.

In the present case, we exploit the fact that the models also
predict interresponse interval (IRI), the gap between RT1 and RT2.
The IRI is the directly observable variable that is closest in
duration to the underlying strategic deferment time. In Figure 8 the
payoffs are plotted as a function of IRI at 50-ms SOA for E4 hard
participants. We focused in particular on predictions of perfor-

mance at 50-ms SOA because, given the calibration of RT2 to
1,000-ms SOA, it is at 50 ms that we see the strongest test of the
theory. The model is somewhat more likely to predict the data at
150 ms, 250 ms, and 500-ms SOA (i.e., as the SOA approaches the
value used to calibrate the model).

For each experiment, there are two interesting predictions to
consider. The first prediction is that participant performance would
correspond closely to the model RT at the highest possible payoff.
The second prediction is that, even if participant performance is
not at the highest value predicted, it would still be on the payoff
curve. There are two basic reasons that this prediction could fail to
hold. It might be that the architectural theory is wrong. For
example, the variance at SOA of 1,000 ms may not have the

Table 1
R2 and Root-Mean-Square Error (RMSE) Between Model and Observed Task 2 Response Time for Each Participant in All Four
Experiments Across All Levels of Stimulus Onset Asynchrony (SOA) for Each of Three Models: Bottleneck–Jamming, No Bottleneck–
Jamming, and No Bottleneck–No Jamming

Participant

R2 RMSE

Bottleneck–jamming
No

bottleneck–jamming
No

bottleneck–no jamming Bottleneck–jamming
No

bottleneck–jamming
No

bottleneck–no jamming

Experiment 1

1 0.96 0.94 0.95 24 34 36
2 0.92 0.83 0.74 59 78 99
3 0.89 0.89 0.92 30 30 33
4 0.92 0.83 0.81 96 118 124
5 0.88 0.90 0.91 40 34 29
6 0.96 0.93 0.93 56 78 79
M 0.92 0.89 0.88 51 62 67

Experiment 2

1 0.99 0.88 0.86 11 32 46
2 0.92 0.84 0.80 32 42 50
3 0.95 0.95 0.97 19 18 27
4 0.94 0.88 0.68 16 25 40
5 0.93 0.85 0.71 43 53 65
6 0.90 0.93 0.84 31 24 28
7 0.37 0.40 0.26 86 84 92
8 0.87 0.79 0.65 29 37 44
9 0.97 0.97 0.77 11 14 36

10 0.95 0.95 0.91 15 20 27
M 0.88 0.84 0.75 29 35 46

Experiment 3

1 0.39 0.25 0.17 222 233 241
2 0.85 0.86 0.63 63 65 86
3 0.79 0.65 0.58 68 85 94
4 0.99 0.98 0.94 26 19 67
5 0.89 0.89 0.83 65 68 84
6 0.85 0.83 0.85 47 66 64
7 0.94 0.89 0.82 39 48 62
8 0.88 0.77 0.92 46 59 47
M 0.82 0.77 0.72 72 80 93

Experiment 4

1 0.90 0.87 0.87 22 37 37
2 0.99 0.98 0.98 9 29 29
3 0.88 0.84 0.84 40 48 48
4 0.93 0.89 0.89 32 48 48
5 0.67 0.59 0.59 40 36 36
6 0.94 0.92 0.92 39 47 47
M 0.89 0.85 0.85 30 41 41
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Figure 7. No-bottleneck model predictions and mean human data for Task 2 response time (RT) as a function of
stimulus onset asynchrony (SOA) and Task 2 difficulty (easy vs. hard). The data are reanalyzed from Schumacher et
al.’s (1999) Experiments (E) 1–4. The 95% CIs (confidence intervals) are shown for both data and model (with solid
gray lines and dashed black lines, respectively).

737COGNITIVELY BOUNDED RATIONAL ANALYSIS



0 100 200 300 400 500 600

−5
0

0
50

10
0

IRI(ms)

pa
yo

ff
E4 1 hard

●

●

observed
predicted(parallel)
predicted(CBR)
predicted(sequenced)
other strategy

0 100 200 300 400 500 600

−5
0

0
50

10
0

IRI(ms)

pa
yo

ff

E4 2 hard

●

0 100 200 300 400 500 600

−5
0

0
50

10
0

IRI(ms)

pa
yo

ff

E4 3 hard

●

0 100 200 300 400 500 600

−5
0

0
50

10
0

IRI(ms)

pa
yo

ff

E4 4 hard

0 100 200 300 400 500 600

−5
0

0
50

10
0

IRI(ms)

pa
yo

ff

E4 5 hard

●

0 100 200 300 400 500 600

−5
0

0
50

10
0

IRI(ms)

pa
yo

ff

E4 6 hard

●

●●

●

Figure 8. Cognitively bounded rational (CBR) ordered response theory predictions of payoff against interre-
sponse interval (IRI) for all 6 participants of Schumacher et al.’s (1999) Experiment (E) 4 with hard Task 2 at
50-ms stimulus onset asynchrony (SOA).
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systematic relationship to variance at lower SOAs as assumed by
the model. A second important way that this prediction could fail
to hold is that the specification of the strategy space is wrong. For
example, the specified plausible space might be incomplete in
some way that overlooks a critical subset of possible strategies.

There are six panels in Figure 8, one for each participant. In four
out of the six cases the data lie on the payoff curve. The exceptions
are E4 1 hard and E4 5 hard. This comparison provides some
additional support for the ORT, to the extent that it indicates that
the theoretically derived payoff space is consistent with the ob-
served data.

It is also worth observing that there is some variation in the
positioning of the peak of the payoff curve, consistent with the
varying shape of the PRP curves presented earlier. For some
participants, the best payoff was only just above 50 points, and for
others, it was over 100 points. For some, the best IRI was about
100 ms, while for others, it was over 300 ms. These data suggest
that accurate prediction of IRI required adaptation to individual
RTs and levels of variance. Indeed, the peak of each individual
payoff curve corresponds to the best strategy for the individual, not
the best strategy for the sample.

In order to determine the quality of the IRI prediction across
participants for all four experiments, we plotted mean payoff
against mean IRI. In Figure 9 there are eight panels, one for each
condition (easy–hard) of each experiment. Each mean point is
plotted along with the between-participants 95% confidence inter-
val. Each panel offers predictions, with 95% confidence intervals,
from the cognitively bounded model and the two models that serve
as our bound for a plausible range of behaviors: the parallel model
and the serial model. Finally, payoff curves for the cognitively
bounded model are plotted. The payoff curves represent the mean
payoff across participants given each level of IRI within the
strategy space. There are multiple payoff curves in each panel
because there were multiple dimensions of strategic variation. One
curve may, for example, represent a model in which the selection
process of Task 2 was deferred until after the motor preparation
stage of Task 1 and another may represent a model in which only
Task 2 motor processing was deferred (see the Appendix).

It is important to note that the peak of each payoff curve is not
the prediction of the model, though it may in some cases corre-
spond. The prediction of the model is determined by taking the
mean performance of the best strategies for each participant,
whereas the payoff curve represents the mean performance of each
strategy. Because participants did not always select the same
strategy, the mean of the best (the prediction) is different from the
best of the means.

Figure 9 provides evidence to support the cognitively bounded
theory. First note that the parallel and serial models can be re-
jected. None of the data are in the prediction intervals of these
theories. Focusing again on the E4 plots, which offer a critical test
of the theory owing to the absence of resource conflicts, it can be
seen that the data are within the prediction interval of the ORT
model for both easy and hard tasks. E4 therefore offers strong
support for the cognitively bounded theory of ordered responses.
E1–E3 offer some further, though weaker, support. The most
serious departures from predicted values occur in the hard condi-
tions of E2 and E3, which suggests that the architectural assump-
tions of EPIC-V concerning the duration of response selection
relative to perceptual processing might need to be modified, or a

response selection bottleneck introduced (we take up the latter
possibility below).

Subadditivity

In our earlier analysis of ACT-R, we observed that, under the
strategy space implicitly explored by Byrne and Anderson (2001),
ACT-R can predict both the presence and absence of subadditivity
effects. We now turn to the present models, asking two questions.
First, do the models systematically predict subadditivity effects?
Second, how do the sizes of the predicted effects compare to the
empirical values?

We calculated the mean subadditivity effects across the models
of individual participants. These are presented, with the between-
participants 95% confidence intervals, alongside the observed
subadditivity, in Table 2. The subadditivity predictions for all four
experiments are too large. The model tends to predict that the
difficulty effect at short SOA is smaller than observed. In other
words (as we saw in Figure 7), there is a tendency for the model
to underpredict hard Task 2 performance and therefore overpredict
subadditivity. Overprediction of subadditivity suggests that the
theory lacks constraint and that too much strategic flexibility is
available.

Exploring the Implications of the Architectural Theory:
Varying the Selection Bottleneck and Motor Jamming

Assumptions

One of the key aims of CBR analysis is to provide a way for data
to discriminate between the predictions of strategically flexible
architectures. We now present the results from explorations of
assumptions concerning internal resource limitations: the motor
jamming assumption and the no-selection bottleneck assumption.
More specifically, we compare the results of three models. The
models are (a) a no-selection bottleneck model with motor jam-
ming (the model described above), (b) a model with a selection
bottleneck and motor jamming (similar to ACT-R), and (c) a
model with neither motor jamming nor a bottleneck. Table 1
provides a summary of the correspondence between each of the
three models and the data from the 30 participants in the four
experiments, in terms of mean RMSE and R2.

Is the Assumption of Motor Jamming Critical for
Accounting for the Data?

We tested the role of the motor response preparation bottleneck
(motor jamming) in explaining performance in E1, E2, and E3 by
deriving the predictions of models with and without the jamming
assumption. (The assumption of motor jamming plays no role in
E4 because the cross-modal design of the experiment specifically
avoided modality conflicts.)

A two-tailed paired t test of the mean square errors (MSEs)
showed that the difference between the jamming and the no
jamming model across the 30 participants was significant (t �
�3.910, p � .0005). The architecture without a jamming assump-
tion offered different predictions than the one with jamming. The
results showed that for E1–E3, adaptation to system variance alone
(i.e., eliminating the jamming constraint) offers worse predictions
of SOA on Task 2 performance than the model with jamming (R2
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Figure 9. Cognitively bounded rational (CBR) ordered response theory predictions of payoff against interre-
sponse interval (IRI) for easy and hard Task 2 conditions of all four experiments. The observed data are
reanalyzed from Schumacher et al.’s (1999) Experiments (E) 1–4. The 95% CIs (confidence intervals) are shown
for both data and models.
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values, reported in Table 1, were 0.88, 0.75, 0.72, and 0.85,
respectively; RMSE values were 67, 46, 93, and 41, respectively).
The values of R2 are lower, and the RMSE values are higher. Also,
the data were not in the confidence interval of the model without
jamming for either the easy or hard conditions of E1, E2, or E3.
According to this criterion, the model predicted only two of the
eight conditions across the four experiments.

The assumption that people adapt response timing to internal
system noise is therefore not sufficient, on its own, to explain
performance in E1–E3. Our analysis provides evidence that noise
works in combination with Meyer and Kieras’s (1997a) within-
modality, process jamming assumption to constrain adaptation.
Jamming causes conflicts between the last 200 ms of Task 1 and
the last 150 ms of Task 2.

Is the Assumption of No-Selection Bottleneck Critical for
Accounting for the Data?

In order to assess the role of the no-bottleneck assumptions, we
tested ORT with an architecture that included a response selection
bottleneck. Not only is a bottleneck theory a plausible account of
the data supported (e.g., by Byrne and Anderson’s, 2001, dual
arithmetic experiments), but in addition it is likely to slow hard
condition RTs more than easy condition RTs. It may therefore
address the deficits of the no-bottleneck account evident in the
hard condition panels of E2 and E3 identified above (see Figure 7).

In a bottleneck account, the two select processes competed for
resource. In accordance with the instructional regime, Task 1 was
prioritized, and as a consequence Task 2 selection was delayed.
Task 2 selection could not start until after Task 1 selection had
completed (the cognitive resource here operates as a queue). All
other assumptions in the model were identical to the no-bottleneck
model explored above, and no parameter values were changed.

On mean the selection bottleneck architecture offered higher R2

and lower RMSE values than the no-bottleneck architecture for all
four experiments (see Table 1). The data were in the confidence
interval of the selection bottleneck model for seven out of the eight
conditions, whereas the no-bottleneck architecture did well on five

out of the eight conditions. According to this criterion, the model
failed to predict the hard condition of E3. A two-tailed paired t test
showed that the difference between the MSEs of the bottleneck and
the no-bottleneck models across all 30 participants was significant
(t � �5.1717, p � 1.574e-05). The architecture with a bottleneck
assumption offered better predictions than the one without.

The predictions of the bottleneck model are illustrated in Figure 10,
which shows mean RT as a function of SOA for Task 2 across all
four experiments. There are eight panels, including an easy and a
hard plot for each experiment. The data are shown with the
between-participants 95% confidence interval, and the model’s
aggregate prediction is the mean of the predictions for each par-
ticipant—that is, the mean of the best strategies for each partici-
pant (where, again, best is defined in terms of payoff, not fit to
data). Figure 10 should be contrasted to Figure 7.

Further Exploration of the Bottleneck Jamming Model

It is evident from the model comparisons reported above that the
bottleneck jamming model made more accurate predictions of the
observed human data than the other two architectures under test.
Here we further explore these predictions and focus in particular
on the subadditivity predictions. The subadditivity predictions of
the bottleneck and no-bottleneck models are contrasted to the data
in Figure 11. It is important to keep in mind, again, that the
predictions are derived from the strategy that generated the highest
payoff using a Monte Carlo simulation and given the calibrated
architectures. The predictions are not the result of effort to maxi-
mize R2 or any other measure of model–data match.

Figure 11 shows that the subadditivity predictions of the bot-
tleneck model are closer to the data than those of the no-bottleneck
model but that, despite this increased proximity, only the data for
E4 are within the prediction interval of either model. Despite the
fact that none of the data falls within the prediction interval of the
no-bottleneck model and one data point falls within the prediction
interval of the bottleneck model, the difference between the subad-
ditivity predictions of the two models is small.

Discussion of the PRP Models

We focus in this section on the implications of the above
analysis for (a) theories of the cognitive architecture and (b) ORT.
We then make brief comments on the specifics of the analysis
method. The implications of the use of CBR analysis for cognitive
science in general are addressed in the General Discussion.

Implications for Theories of the Cognitive Architecture

We believe that the current analyses provide the strongest evi-
dence to date for the following conclusions:

1. In the ordered PRP task, performance is an adaptation to
multiple architectural constraints that include at least
noise and motor process interference. No other existing
account is able to give quantitative explanations of indi-
vidual behaviors that range from nearly perfect time
sharing to rather steep PRP curves, and this quantitative
account may be improved by further assuming the con-
straint of a selection bottleneck (see Conclusion 5 be-
low).

Table 2
Subbadditivity Effects (in Milliseconds) for Data and Cognitively
Bounded Rational Model of Response Ordering

Experiment and data M

95% confidence
interval

Min. Max.

1
Observation 32 �12 73
Model 142 104 169

2
Observation 44 22 95
Model 82 31 181

3
Observation 40 �32 88
Model 106 41 221

4
Observation 42 13 71
Model 83 51 127

Note. Data are from Schumacher et al.’s (1999) Experiments 1–4.
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Figure 10. Bottleneck model predictions and mean human data for Task 2 response time (RT) as a function
of stimulus onset asynchrony (SOA) and Task 2 difficulty (easy vs. hard). The data are reanalyzed from
Schumacher et al. (1999)’s Experiments (E) 1–4. The 95% CIs (confidence intervals) are shown for both data
and model (with solid gray lines and dashed black lines, respectively).
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2. One of the primary constraints that shapes performance is
noise. Individual performance can be predicted as adap-
tation to noise (see no bottleneck–no jamming model in
Table 1). Although between-participants variance was
explained only moderately well in one of the four exper-
iments (E4), it was the experiment that provided the most
direct test of adaptation to noise.

3. Another key constraint is motor process interference
(jamming). The analysis provides evidence that jamming
plays some role in constraining PRP performance.

4. There is some support for the control signals made avail-
able by the ACT-R and EPIC architectures for coordi-
nating the Task 2 response. However, a systematic com-
parison of architectures with different subsets of control
signals is yet to be done.

5. Perhaps surprisingly, carefully deployed PRP paradigms,
such as that in Schumacher et al., 1999, are capable of
distinguishing between architectures with and without
response selection bottlenecks—but this discrimination
is far more subtle than the original motivation of the
paradigm would suggest. Under assumptions of Type C
rationality, both kinds of architectures are capable of
producing the classic PRP curve, and the gross shape
of this curve is not determined by the presence or absence

of the bottleneck. (Rather, it is determined by the adap-
tive response to noise.) Nevertheless, the bottleneck mod-
els were systematically and reliably better at accounting
for the data across all four experiments. We emphasize
again that this conclusion is relative to the specific aux-
iliary assumptions that we adopted for the EPIC-V archi-
tecture. A more comprehensive evaluation of the role of
the bottleneck assumption would require an even larger
scale modeling effort that evaluated the effect of the
bottleneck assumption against a space of plausible aux-
iliary assumptions.

Implications for ORT

None of the architectural variants were sufficient to explain the
data without the additional assumption that people adapted strate-
gically. We defined ORT as stating that any two responses that
must be ordered will be coordinated in a way that maximizes
subjective expected utility. In standard tasks where both accuracy
and speed are important, utility is increased by smaller temporal
separations but decreased by reversal errors. Elaborated with the
auxiliary architectural assumptions, ORT provided precise quan-
titative predictions.

ORT was tested against data from PRP experiments reported by
Schumacher et al. (1999), and we found that the data offer strong
support for the theory. We showed that incremented with existing
architectural assumptions, a selection bottleneck, and gamma-
distributed noise, the strategic adaptation inherent to ORT pre-
dicted the quantitative relationship between RT2 and SOA at short
SOA in seven out of eight conditions across four experiments (see
Figure 10). Furthermore, this relationship, captured by the shape of
the PRP curve, varied significantly and systematically between
participants and accounted for some of this individual variation.
We also showed that the IRIs observed in the 6 participants of
Schumacher et al.’s (1999) E4 are partially captured by the theory.
E4, unlike Schumacher et al.’s (1999) other experiments, provides
a critical test of the assumption that people adapt to internal
variance because there are no resource conflicts between Task 1
and Task 2, and it is therefore possible that any slowing of the Task
2 response is entirely strategic. In short, the correspondence be-
tween the predictions and data for Experiment 4 provide strong
support for the claim that the PRP curve, in its details, is the result
of participants adapting nearly perfectly to the payoff regime and
their own system noise.

Our analysis of Schumacher et al.’s (1999) E1–E3 offers further,
but weaker, support for ORT. The hard condition IRI predictions
do not achieve the high level of quantitative prediction of the data
seen with E4. There are two points to note about these results.
First, to the extent that ORT does predict performance in E1–E3,
it does so because of the assumption that people will adapt opti-
mally to the entire set of constraints, including the motor jamming
constraint and the selection bottleneck, not just response variance.
Second, on the basis of the method that we have proposed (see A
General Approach to Understanding Adaptation to Task and Ar-
chitecture section), it is clearly possible for a theory of the human
cognitive architecture to fail to predict the data.

One reason for the differences between the ORT predictions and
Schumacher et al.’s (1999) data for E1–E3 may be that some
participants failed to approach the performance asymptote (i.e.,
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Figure 11. Subadditivity effects for models and observations. Shown are
observed subadditivity (circles), no-bottleneck model subadditivity (trian-
gles), and bottleneck subadditivity (crosses). Observations are from Schu-
macher et al. (1999)’s Experiments (E) 1–4. The 95% CIs (confidence
intervals) are shown for both data and models.
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participants may not have had sufficient opportunity to adapt).
Participants appear to improve between the last two sessions in E2
and E3. In contrast, participants appear to be closer to asymptote
in E4, as Session 3 RTs are no faster than Session 2 RTs. It may
also have been due to incorrect constraints in the architecture. It is
possible, for example, that the relative values of the default dura-
tions are incorrect. It is likely that if, with the bottleneck architec-
ture, we had used shorter defaults for perception and/or longer
defaults for selection, then there would have been a greater effect
of SOA on Task 2 hard RTs.

We believe that these conclusions represent a significant ad-
vance in researchers’ understanding of how humans cope with a
certain class of multitasking situations. These results encompass
quite general conclusions about the impressive adaptiveness of
humans in these situations and the (individually varying) process-
ing constraints that bound that adaptation as well as conclusions
concerning the details of the strategic adaptation and implicated
processing architecture. These conclusions rest on results made
possible by CBR analyses.

Comments on the Use of CBR Analysis

An important property of the analyses above is that quantitative
predictions were not obtained by adjusting free parameters in order
to increase the fit between model and data. We determined the
architectural parameters of the model by theoretically driven cal-
ibration, not by maximizing fit to the outcome variables (RT at
50-ms SOA). We determined the selected strategy and its corre-
sponding quantitative deferment time by optimizing a payoff func-
tion, again, not by maximizing data fit. There were no other
parameters. It is on this basis that we claim that the predictions
made for E4 and illustrated in Figures 6, 7, 8, and 9 represent
predictions of the architecture plus the assumption of cognitively
bounded rationality, and not of the analyst or of the strategy. They
are predictions that suggest that the theory offers a quantitative
explanation of the data.

One analytic device that we used to test and understand the
predictions was the payoff curve (see Figures 8 and 9). The data
gave us point estimates of the payoff achieved by each participant
against their selected IRI. The models predict an inverted
U-shaped relationship between payoff and IRI. Using these curves,
we made three evaluations of the theory: (a) Did the prediction
interval corresponding to the peak of the payoff curve for each
individual participant correspond to the participants performance?
(b) Did the prediction interval corresponding to the between-
participants mean of the peak of the payoff curves correspond to
the mean participant performance? (c) If performance was not
predicted by the peak of the curve, was it at least predicted by the
curve? These three uses of the payoff curve allowed us to establish
where the data supported the theory and where they did not.

In addition, the payoff plots made explicit the shape of the utility
function given the theory of cognition and the strategy space. They
thereby made it possible for us to determine that there was, for
most participants, a defined peak to the curve—which was not
necessarily the case—and that the risks associated with going fast
were much greater, owing to the steepness of the curve, than the
risks of going slow. This suggests that it is riskier to approach the
peak from the faster part of the curve, and therefore that when
participants are not at the peak, they will tend to be on the slower

part. In fact, of the 28 participants across the 4 experiments who
failed to reach optimal performance, 20 were clearly on the shal-
lower side of the payoff curve.

General Discussion

We have argued that the extreme flexibility of human cognition
poses a particular challenge to cognitive science. The fact that
people can and do exhibit strategic flexibility even on very simple
tasks makes it difficult to determine the contribution to behavior of
the invariant mechanisms of cognition. Moreover, we have shown
that the challenge has been made more difficult by the use of
model fitting to test strategically flexible architectural theories of
cognition. We have demonstrated that the intuitive sampling of the
space of possible strategies, evident in attempts to explain data
using model fitting, does not provide a sound basis for claiming
that particular architectural theories explain and predict the data
and, also, that it significantly compromises weaker demonstrations
of consistency (see Summary of the Analysis of the ACT-R
Models section).

In response we have argued that to make progress on a scientific
understanding of the invariant mechanisms of cognition, research-
ers must find ways of inferring which of the range of possible
strategies is rational given the constraints. We have proposed an
approach to this problem that starts from the assumption that
behavior is cognitively bounded rational and uses this assumption
to select strategies. People are limited by cognition and perception.
They are limited by the performance of their motor system, and
they are limited by the characteristics of the task environment.
People adapt within these limits to a utility function. Assuming
that human adaptation is Type C rational allowed us to calculate
the prediction of a mechanistic theory without recourse to intuitive
strategy sampling or to fitting quantitative or strategic parameters
to the target data to be explained. Assuming rationality, given
constraints, allows the control of degrees of freedom that are
otherwise introduced by permitting theories to exhibit strategic
flexibility.

We demonstrated the usefulness of our approach, called CBR
analysis, by calculating the predictions of three theories of the
cognitive architecture thought to underpin PRP performance. The
first had no-selection bottleneck (like EPIC), the second had a
selection bottleneck (similar to that of ACT-R), and the third had
no-selection bottleneck and no motor system jamming. Testing the
theories with CBR analysis left open the possibility that one or
more failed to predict the data. It happened that two (selection
bottleneck and no-selection bottleneck, both with jamming) did not
fail and that the bottleneck model offered significantly lower
root-mean-square deviation than the no-selection bottleneck
model. Moreover, a theory of the architecture that did not have
within-modality motor system jamming failed to adequately ac-
count for the data, providing evidence that there is motor system
interference and that people adapt to this interference in their
attempt to satisfy task demands.

We also provided evidence to support ORT. Irrespective of the
particular architectural assumptions (with or without a bottleneck,
with or without jamming), the models predicted some slowing of
RT2 at short SOAs. To the extent that participants demonstrated a
similar slowing of RT2, there is quantitative evidence that it is due
to a strategic response to subjective utility.
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In what follows, we first consider two related approaches in
more detail (bounded rationality and theories of learning). We then
consider potential critiques and limitations of the approach (cri-
tiques of the assumption that people can achieve optimal perfor-
mance and whether our approach can be applied to understanding
behavior before reaching the asymptote). Before concluding, we
briefly draw out some general implications for cognitive science
(the implications of auxiliary assumptions in understanding exper-
iments, the importance of theories of subjective utility, and appli-
cations of psychological theory to design problems).

Related Approaches

In the introduction we identified some of the major ideas in
cognitive science that led to CBR analysis. We now take up a brief
but more detailed discussion of the relative costs and benefits of
some of these approaches along with other closely related work.

Bounded Rationality

One view of CBR analysis might be that it is simply a formal
approach to bounded rationality (Simon, 1955, 1992). Both ap-
proaches place an emphasis on understanding how constraints on
human information processing bound rational behavior. There are
instructive differences, however. Bounded rationality, as con-
ceived and applied by Simon, is a framework for understanding a
broad range of human behavior, in contexts ranging from the
psychological laboratory to the complex environments of modern
organizations (Simon, 1957, 1979, 1989, 1997). The explanatory
power of the framework is evident in the astonishing range of
contributions that Simon and his colleagues have made across
several disciplines. We do not intend to advance CBR analysis in
this article so broadly, but it is important to understand the differ-
ences in the approaches as applied to understanding relatively
short-time scale behavior as typically observed in a cognitive
psychology experiment.

There are three key differences. First, to the extent that bounded
rationality is rational, it focuses on decision making, either the
sequential decision making that unfolds over seconds in laboratory
problem-solving tasks or the longer time-frame decision making
that unfolds over days or longer in the economic world (Simon,
1997). In contrast, we have demonstrated that CBR analysis is
relevant to understanding perceptual–cognitive–motor coordina-
tions that unfold in the 10s of milliseconds to seconds (which can
also be viewed as a rapid series of control decisions). We have not
investigated whether CBR analysis is useful in understanding
decision-making tasks over longer time periods.

Second, to the extent that bounded rationality focuses on inves-
tigating the processing constraints that bound behavior, it has not
emphasized the role of maximizing a utility function. For example,
Simon’s contributions to understanding short-term memory, long-
term associative memory, and problem representations (e.g., see
the compilations in Simon, 1979, 1989) were made without benefit
of an explicit consideration of the effects of the utility functions
that human participants might have adopted in the experimental
situations. (These contributions also serve as a reminder that we
are not, of course, arguing that progress cannot be made without
utility function analyses.)

Third, to the extent that bounded rationality focuses on inves-
tigating the nature of the variable strategies that humans use to
accomplish their goals, it has done so via more direct observation
and analysis of strategies, rather than formal analysis of the adap-
tive qualities of strategy spaces. Examples include Newell and
Simon’s (1972) classic work on problem solving. Newell and
Simon were clear that the observed strategies were shaped by quite
general invariants of human information processing (e.g., limited
short-term memory), but the theory was not used to generate
predictions of the details of the strategies in advance. Rather, the
major advance of the classic problem-graph analyses was that they
showed how relatively long stretches of complex cognitive behav-
ior could be understood as arising from systematic explorations of
a problem space formulated by the individual.

It is instructive to briefly consider how the Newell and Simon
(1972) approach to problem solving might be related to CBR
analysis. The problem space theory of human problem solving can
be seen as taking the necessary first step toward such an analysis,
because it helps to define the space of possible strategies (i.e., the
space of possible ways of searching the problem space). But CBR
analysis opens up the possibility for more deeply explanatory
theories of the strategies observed in problem-solving behavior.
Such theories would make stronger connections between detailed
assumptions about the constraints imposed by cognitive architec-
ture and the payoffs imposed by the local task environment. They
could be put to stringent empirical test by showing how strategic
variation arises from variation in individual processing constraint
(as we have done in the PRP analyses above) or by variation in
external task payoff manipulated in controlled fashion (as was
done in SDT studies; e.g., Tanner & Swets, 1954; and as we have
done in unpublished work on response ordering). For example,
researchers using such analyses might attempt to formally derive
classes of methods such as iterative deepening (Newell & Simon,
1972) as the optimal response to limited working memory but
furthermore show that the precise nature of such methods depends
on the specific speed–accuracy tradeoff imposed on the problem
solver and the nature of their individual (and individually cali-
brated) processing constraints.

Theories of Learning and Task Acquisition

The mechanisms by which novice performance is transformed
into expertise is a major source of constraint on behavior (e.g.,
Newell & Rosenbloom, 1981; Ohlsson, 1996). One response to our
work might be to wonder why it is worth using optimization: Why
not simply articulate theories of the learning mechanisms (i.e.,
theories of the trajectories from novice to expert behavior)? We of
course advocate the continued development of such theories—our
aim here is to point out some weakness of such an approach
relative to CBR analyses.

There are two problems. First, to the extent that there is in fact
a correspondence between optimally derived behavior and ob-
served asymptotic behavior, then such correspondence renders the
specifics of the learning theory irrelevant to the understanding of
asymptotic behavior—all that matters is that perfect adaptation is
possible. This does not rule out using alternative learning mecha-
nisms as a means of deriving the optimal behavior, but in this view
their selection would be based primarily on considerations of
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practical computational properties, rather than on consideration of
cognitive theory.

A second problem is that while there is no reason to believe that
progress on learning is any slower than on theories of any other
aspect of cognition, there are no sufficiently well-developed the-
ories of learning that are comprehensive and robust enough to be
set as a constant in a framework designed to test theories of other
aspects of the architecture. It is important to understand the sig-
nificant computational, theoretical, and empirical demands that a
learning theory must meet to serve the role of a general basis for
CBR analyses: (a) It must provide the means to transform some
declarative form of the task specification into procedural behav-
ior—essentially provide a theory of instruction taking; (b) it must
be fully computationally realized; and (c) it must have sufficient
independent empirical and theoretical support that departures in
the predictions can be unambiguously attributed to other process-
ing constraints under test, and not to the underlying learning
theory.

The recent impressive advances in instruction taking in ACT-R
provide examples of learning theories that begin to meet some of
these constraints, but these models are not yet general enough and
robust enough to serve as the basis for a broad approach. It is worth
noting, however, that the grounding of the ACT-R approach in
reinforcement learning (Sutton & Barto, 1998) is a promising
direction. Various mechanisms for reinforcement learning are well
specified and computationally well understood, and have the virtue
of providing a theory of the learning of control, precisely what is
needed to yield strategic adaptation. The promise of reinforcement
learning as the basis of CBR analyses can be seen in other recent
work as well (e.g., Reichle & Laurent, 2006).

Potential Critiques and Limitations of the Approach

People Are Suboptimal

One response to the approach proposed in the current article is
that “people are not optimal.” Given the controversy over the use
of optimality criteria in understanding cognition (e.g., Gigerenzer
& Todd, 1999; Simon, 1992), this objection needs to be taken
seriously. Our response has several parts (for further discussion of
the issue, see Howes et al., 2007; Sperling & Dosher, 1986; and
Swets et al., 1961).

1. It is important to identify what kind of rationality is being
denied with the claim that people are not optimal. In
particular, we distinguish normative rationality (Type N
rationality) from cognitively bounded rationality (Type C
rationality)—the assumption that behavior can become
optimal, through learning, given constraints imposed by
the local task environment and by psychological mecha-
nisms. It is certainly the case that it is often difficult for
people to conform to Type N rationality. In contrast, our
focus, in the tradition of SDT (e.g., Sperling & Dosher,
1986), is on optimal adaptations relative to both the
internal and the external constraints.

2. But even when people focus on Type C rationality, there
are many reasons why they may not develop Type C
optimal solutions. An important limiting factor is that
such solutions may not be discoverable given some re-

stricted experience with the task environment (e.g., see
Fu & Gray, 2006). Also, it may be the case that only
some task environments have discoverable maxima be-
cause of the nature of the multidimensional payoff sur-
face. It turned out that the PRP payoff curves in the
Schumacher et al. (2001) experiments contained rela-
tively clear maximum peaks, but this was by no means
necessary (in fact in other unpublished empirical work
conducted in our labs, we are discovering that intuitively
plausible payoff schemes do not always lead to such
well-behaved payoff surfaces).

3. The PRP task is a member of an important class of tasks,
utility learning tasks, that may be particularly well suited
to optimality analysis. These are tasks for which substan-
tial incremental feedback is provided over many hun-
dreds, or thousands, of trials. Participants therefore have
the opportunity to tune their response to the payoff func-
tion. Significant advances have been made by treating
tasks that offer incremental feedback as opportunities for
optimization (e.g., Bogacz et al., 2006; Gray & Boehm-
Davis, 2000; Gray et al., 2006; Reichle & Laurent, 2006;
Sutton & Barto, 1998).

Understanding Behavior Before Reaching the Asymptote

Given the emphasis on explaining behavior at the asymptote, a
natural question to ask is, Does the approach have any value if the
goal is to understand behavior early in practice or behaviors
involving novel stimuli?

Let us begin to answer this question by observing that although
there are a few cases of analyses of the first few trials of perfor-
mance on some task (Goeree & Holt, 2001; Keppel & Underwood,
1962), in general, a focus on very early aspects of performance is
relatively rare in cognitive psychology. The reason is clear: Per-
formance is much more variable at this stage of task acquisition.
Participants are still in the process of understanding what to do;
they are still in the stage of exploring the strategy space and
discovering their utilities. In short, most cognitive experiments
usually involve both a practice stage and a fairly extensive set of
trials during which performance begins to stabilize.

Furthermore, many experiments involve extensive practice on
the task itself, with later performance measured on the same task
but with novel stimuli. We believe this fairly conventional ap-
proach to empirical design lends itself well to the application of
CBR analyses that encompass novel or unpracticed behaviors. The
key is to focus on the idea that to make a prediction from a
cognitive architecture it is imperative to respect the assumption
that people make rational choices in response to a subjective utility
function given the constraints, including the constraints imposed
by the architecture. While it should be expected that people
achieve lower utility earlier in practice than they will subsequently
achieve, it is possible that the early level of performance can be
considered rational given constraints that include the architecture
but which also include the limited individual experience of the task
environment.

For example, an attempt to use CBR analysis to explain SOA
effects on early trials of PRP tasks should focus on an analysis of
boundedly rational choice given each participant’s limited knowl-
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edge of the response distributions (as acquired from previous
trials) and given expectations of the remaining number of task
trials. Here, CBR analysis makes contact with research on the
exploration versus exploitation tradeoff and problems concerning
the temporal discounting of future utility. For a recent review of
some of these issues, see Cohen, McClure, and Yu (2007).

The Scope of CBR Analysis

In this article and in our previous work, we have demonstrated
that CBR analysis is applicable to a narrow range of tasks. These
are tasks that, as we have said, involve a tight coordination
between perceptual, cognitive, and motor processes. The dual-task
paradigm explored in the current article is one example, but others
have included applied tasks extended over longer time periods, for
example, multitasking while driving and cockpit control tasks (Eng
et al., 2006; Brumby, Howes, & Salvucci, 2007; Smith, Lewis,
Howes, Chu, & Green, 2008; Tollinger et al., 2005). Eng et al.
(2006) used the framework to help understand adaptations to the
order of subtasks in a cockpit control task. Brumby et al. (2007)
used the framework to help understand strategies for interleaving
dual tasks during an ongoing dynamic task. Smith et al. (2008)
used the framework to understand how individual differences in
attentional switch costs would yield different optimal strategies for
using a database lookup interface. In these cases the intention was
to understand the implications of an interface design for behavior.
While these tasks take durations from under 500 ms to over 5 s to
complete, they all share the property that the space of possible
adaptation concerns scheduling (i.e., when to perform one subtask
given the temporal properties of the others; Schweickert, 1980). A
potential critique of CBR analysis is therefore that it is limited to
this relatively narrow range of tasks.

Although our demonstrations are narrowly scoped, we believe
that CBR analysis has lessons for studies of some of the broader
range of tasks used to provide evidence for theories of the human
cognitive architecture, including perhaps tasks that involve the use
of working memory in immediate behavior (Gray et al., 2006), task
switching (e.g., Altmann & Gray, 2008), probability learning
(Shanks, Tunney, & McCarthy, 2002), and perhaps problem solv-
ing (Fu & Gray, 2006).

For an example, consider the working memory task studied by
Gray et al. (2006). The task is to reproduce, in a workspace
window, a pattern of eight randomly arranged colored blocks
displayed in a target window. Every time that a participant looks
at the target window, they can choose to encode between one and
eight blocks in memory. They also incur a small time cost. If an
individual chooses to encode one block on each visit, then a time
cost of eight units will be incurred, but that individual will also be
exposed to a very low risk of forgetting which blocks are where.
If in contrast, a person chooses to encode eight blocks on a visit,
and they do it successfully, then they will only incur a single time
cost unit, however there is a much greater risk of forgetting one or
more of the items and therefore needing to make a revisit. Gray et
al. (2006) found that participants encoded a larger number of items
on each visit when the incurred time cost of moving to the target
window was higher due to a delay enforced by the computer
software. Delays of 3,200 ms encouraged people to encode more in
memory on each visit than delays of 0 ms. Gray et al.’s (2006)
findings support the conclusion that people adapt the use of mem-

ory to the time costs of action and therefore to utility (see also
Smith et al., 2008).

The problem for participants in Gray et al.’s (2006) study is to
choose a strategy rationally given the bounds on cognition (mem-
ory) and the bounds on the task environment (the time cost of
accessing the target environment). Therefore, as the problem is to
choose an encoding strategy that maximizes utility given the
constraints imposed by the cognitive architecture, it might be the
case that CBR analysis could be used to make predictions about
participant performance. The key element required in an empirical
study would be data that provide a means of calibrating a theory of
working memory (e.g., ACT-R’s activation-based theory) to indi-
vidual capacity limits. Such a calibration, combined with the
temporal calibration described in the current article and with a
utility function, would make a CBR analysis possible.

Additional Implications for Cognitive Science

Although we view the work reported in this article as placed
firmly within the tradition of computational approaches to under-
standing cognition (Anderson, 2007; Meyer & Kieras, 1997a;
Newell, 1990) and as building on several major theoretical ap-
proaches in cognitive science, we nevertheless believe there are
significant implications of this work for future directions in cog-
nitive science.

To further understand these implications, we briefly explore
here two topics: (a) crucial experiments and auxiliary assumptions
and (b) the subjective utility function.

Crucial Experiments and Auxiliary Assumptions

A crucial experiment, for example, as described by Lloyd (1999,
p. 214), would be one that not only provided positive support for
the theory under test but which also supported the rejection of
alternative accounts. In an ideal world, PRP experiments would
have this property. A selection bottleneck theorist might design an
experiment that supported a selection bottleneck theory and also
provide evidence against a strategic adaptation to PRP tasks.
Similarly, a no-selection bottleneck theorist might hope that subad-
ditivity supported parallel cognition and also supported the rejec-
tion of a selection bottleneck account of PRP effects. The reality,
according to the Duhem-Quine thesis (Harding, 1976), is that no
single empirical observation will be sufficient to reject alternative
accounts.

According to the Duhem-Quine thesis, one reason that it is
difficult to design crucial experiments is that an empirical test of a
hypothesis requires one or more background assumptions (also
called auxiliary assumptions or auxiliary hypotheses). The hypoth-
esis in question does not by itself make predictions; rather the
consequences of the hypothesis typically rest on a combination of
theory and background assumptions. This fact prevents a theory
(e.g., that cognition is subject to a selection bottleneck) from
becoming conclusively falsified through empirical means if the
background assumptions (e.g., strategic adaptation and other ar-
chitectural constraints including motor system interference) are not
proven.

One response to this problem, perhaps the modal response in
psychological research, is to explore many variations of a para-
digm in a search for convergent evidence. If one experiment is not
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sufficient, then do many and in each try to expose the conse-
quences of one more of the auxiliary assumptions. We might, for
example, change the design of a PRP experiment so that partici-
pants are not instructed to order the two responses. An observed
PRP effect under these conditions is less likely, the reasoning goes,
to be the consequence of strategic adaptation to an ordering in-
struction.

In our view, however, varying a paradigm is an essential but
ultimately insufficient response to the problem of auxiliary as-
sumptions. According to the analysis that we have presented
above, it is important to understand the space of possible adapta-
tions within a paradigm in order to understand the implications of
the associated findings and to thereby make informed decisions
about what paradigm variations might be useful. If strategic flex-
ibility is ignored and unfounded assumptions are made about
which strategy people adopt, then otherwise sound reasoning about
the implications of a particular assumption will be undermined.

We summarize our position about crucial experiments as fol-
lows. Although it is tempting to assume that some new paradigm
will addresses the strategic flexibility problem and will provide the
crucial resolution to a particular theoretical debate, we are not
optimistic about the analyst’s ability to clearly see the implications
of adaptation unassisted by the kinds of formal methods exempli-
fied by CBR analysis. This circumspect approach to strategic
variability is consistent with the views expressed by a number of
cognitive psychologists, who, after reviews of a range of influen-
tial paradigms (each in a different subfield), concluded that stra-
tegic considerations must take a prominent role in the analysis of
data (Forster, 1979; Hansberger, Schunn, & Holt, 2006; Lohse &
Johnson, 1996; Meyer & Kieras, 1997a, 1997b; Newell, 1973,
1990; Payne, Howes, & Reader, 2001; Payne, Richardson, Howes,
2000; Schunn & Reder, 2001; Siegler, 1994, 1999; Sperling &
Dosher, 1986).

The Subjective Utility Function

Another important and related methodological implication of
CBR analysis is that modelers must pay more attention to the
utility function or, more precisely, to the subjective utility function
adopted by participants in experiments concerning immediate be-
havior. For the purposes of the analysis presented in the current
article, we have assumed that the subjective utility function is
determined by the experimental instructions, but the reality is
probably more complex (Kieras & Meyer, 2000). Participants
presumably trade off a desire to contribute productively to the
experiment, and the desire for cash bonuses, with other motiva-
tional factors, such as a desire to get out of the lab quickly or to
exert minimal effort. Motivational factors external to the instructed
payoff regime are likely to be significant and may interact with the
perceived value of individual strategies. In addition, little is known
about the relative weight that people give to, say, minimizing time,
versus minimizing memory, versus minimizing optional instruc-
tional policies (such as those used by Schumacher et al., 1999).

Some recent work does advance assertions about what people
are trying to do (e.g., the soft-constraints hypothesis of Gray et al.,
2006). However, contrary to this hypothesis, the work that we have
reported in the current article suggests that at the sub-3-s level,
people who are given a payoff regime may neither be biased by a
desire to minimize memory (or at least resources) nor be biased by

a desire to minimize time. Instead, most select a processing sched-
ule that optimizes according to the externally imposed instruc-
tional criteria (see A Cognitively Bounded Theory of Ordered
Responses section).

More research is needed on this issue. In general, we expect that
it is difficult to calculate the predictions of a theory of the human
cognitive architecture without a complementary theory of the
subjective utility function.

Conclusion

The extreme flexibility of human behavior, even at very short
time scales, represents a serious obstacle to the progress of cog-
nitive science. Theoretically, this flexibility leads to an
architecture–strategy credit assignment problem that makes it dif-
ficult to discern the nature of fixed processing invariants. Empir-
ically, this flexibility presents a serious challenge to devising
experiments that exert sufficient control over strategic variation.
We have argued that one way to make progress in the face of these
challenges is to turn the remarkably adaptive nature of the human
system to our advantage in theoretical analysis by using an as-
sumption of optimal adaptation to a utility function given the
constraints on information processing. This assumption of cogni-
tively bounded rationality provides a principled basis for sharply
narrowing the space of possible strategies and thereby the theo-
retical predictions. The resulting approach emphasizes the range of
possible predictions made from the set of strategies that are opti-
mal given constraints, and thus shifts the primary unit of analysis
away from singleton strategies to spaces of strategies, and the
relationship of those spaces to task payoffs. In doing so, we believe
it provides another route to “getting close” to the architecture
(Newell, 1990)—through understanding how the fixed structure of
cognition, perception, and action leaves a discernible mark on
behavior by way of adaptation, not in spite of it.
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Maloney, L. T., Trommershäuser, J., & Landy, M. S. (2007). Questions
without words: A comparison between decision making under risk
and movement planning under risk. In W. Gray (Ed.), Integrated
models of cognitive systems (pp. 297–313). New York: Oxford Uni-
versity Press.

McCann, R. S., & Johnston, J. C. (1992). Locus of the single-channel
bottleneck in dual-task interference, Journal of Experimental Psychol-
ogy: Human Perception and Performance, 18, 471–484.

Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Smith,
J. E. K. (1988). Optimality in human motor performance: Ideal control
of rapid aimed movements. Psychological Review, 95, 340–370.

Meyer, D. E., & Kieras, D. E. (1997a). A computational theory of exec-
utive cognitive processes and multiple-task performance: Part 1. Basic
mechanisms. Psychological Review, 104, 3–65.

Meyer, D. E., & Kieras, D. E. (1997b). A computational theory of exec-
utive control processes and human multiple-task performance: Part 2.

749COGNITIVELY BOUNDED RATIONAL ANALYSIS



Accounts of psychological refractory-period phenomena. Psychological
Review, 104, 749–791.

Meyer, D. E., & Kieras, D. E. (1999). Précis to a practical unified theory
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Appendix

Details of the Analysis of the ACT-R Psychological Refractory Period Models

Architectural Assumptions

We made use of a single level of activation noise for all models
(the same value used in Byrne and Anderson’s, 2001, models of
Experiment 3 and Experiment 4, though not in E1 and E2).
Following Byrne and Anderson (2001), we assumed that a retrieval
process was required for Task 2 only. Also following Byrne and
Anderson, we assumed that the motor system was always “unpre-
pared” for the Task 1 punch response but prepared for Task 2.
Response preparation therefore took 150 ms for Task 1 but only
100 ms for Task 2. Byrne and Anderson assumed Task 1 took 150
ms in their models of Experiments 1, 3, and 4 but 50 ms less in
their model of Experiment 2. To compensate for the additional 50
ms taken by the motor system in our model of Experiment 2, we
reduced the time required by perception so as to fit the Task 1
response at 1,000 ms. Following Byrne and Anderson, we assumed
that the motor system processes were subject to uniform noise at a
level that was consistent for all four experiments.

All values of easy and hard Task 2 base level activation were
chosen so as to fit Task 2 response time at 1,000-ms SOA,
although we generated slightly different values than those settled
on by Byrne and Anderson (2001). Our analysis indicated that the
100–200 trials used by Byrne and Anderson were not sufficient to
get a tight estimate of the mean performance of the model relative
to the variability in the human data.A1 We used more trials (2,000),
and as a consequence different activation values emerged to obtain
the best fit.

Strategy Assumptions

For example, Strategy 10 is a strategy in which after the Task 1
motor prepare process has issued a completion control signal

(Prep), an unlock process releases Task 2 completion (the Explicit
unlock process column), and then Task 2 attend is processed (Task
2 attend deferment column). See Table A1.

A1 More specifically, in some cases the 95% confidence interval around the
mean model predictions approached the size of the empirical effects of interest.
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Table A1
A Description of the Features of Each of the 12 Strategies Used
to Test the ACT-R Account of Experiments 1–4

Strategy
no.

Completion control
signal

Explicit unlock
process

Task 2 attend
deferment

1 Prep No No
2 Prep No Yes
3 Process No No
4 Process No Yes
5 Prep Defer No
6 Prep Defer Yes
7 Process Defer No
8 Process Defer Yes
9 Prep Unlock No

10 Prep Unlock Yes
11 Process Unlock No
12 Process Unlock Yes
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