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Abstract The plausibility of so-called ‘rational explanations’ in cognitive science is
often contested on the grounds of computational intractability. Some have argued that
intractability is a pseudoproblem, however, because cognizers do not actually perform
the rational calculations posited by rational models; rather, they only behave as if they
do. Whether or not the problem of intractability is dissolved by this gambit critically
depends, inter alia, on the semantics of the ‘as if’ connective. First, this paper examines
the five most sensible explications in the literature, and concludes that none of them
actually circumvents the problem. Hence, rational ‘as if’ explanations must obey the
minimal computational constraint of tractability. Second, this paper describes how
rational explanations could satisfy the tractability constraint. Our approach suggests
a computationally unproblematic interpretation of ‘as if’ that is compatible with the
original conception of rational analysis.
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1 Introduction

1.1 Rational analysis

A central aim of the cognitive sciences is to explain certain human capacities, such
as those for visual recognition, language learning, reasoning, or planning. A widely-
used framework for casting such explanations was formulated by Marr (1982), who
proposed that explanations of such capacities toggle between three different levels.
At the first level—what Marr called the ‘computational-level theory’—one addresses
‘what’-questions: e.g., what is the function that the capacity φ realizes? An answer
to such questions usually comes in the form of a well-defined input-output mapping
f : I → O .1 Having postulated f , one can move to a second level—what Marr
called the ‘algorithmic-level theory’—and address functional ‘how’-questions: e.g.,
how is f is being computed? An answer to such questions usually comes in the form
of an algorithm A, i.e., a finite procedure that outputs f (i) in a finite number of
computational steps for any input i ∈ I . At the third and last level of explanation—
what Marr called the ‘implementational-level theory’—one addresses physical ‘how’-
questions: e.g., how is the algorithm A physically realized (e.g., by physiological
processes in the human brain)?

Marr is widely known for promoting a top-down approach to explaining cognition.
In particular, he believed that one may be in a better position to understand the ‘how’
of cognition, both physically and functionally, by first understanding the ‘what’ of
cognition:

an algorithm is likely to be understood more readily by understanding the nature
of the problem being solved than by examining the mechanism (and the hard-
ware) in which it is embodied. (1982, p. 27)

Marr’s top-down explanatory approach is á propos for many contexts—not only in
forward-engineering design projects of AI, but also for reverse engineering efforts in
the cognitive sciences (Dennett 1994; Wimsatt 2007). It’s also not without its chal-
lenges. For instance, even though fixing one’s computational-level theory can indeed
help constrain the space of possible ‘how’-explanations of cognition, it can prove dif-
ficult to determine the function f that correctly characterizes some cognitive capacity
φ. After all, for any limited set of observed input-output behaviors attributable to φ,
there exist multiple functions f1, . . . , fn that are each consistent with the observed
behaviors; and yet, only one generalizes the observations correctly. In other words,
which function f best characterizes φ may be difficult if not impossible to determine
on the basis of empirical input-output observations alone.2

1 Note that Marr saw ‘what’-questions as intimately tied to ‘why’-questions: e.g., why is f the appropriate
function for φ to realize? An answer to such questions would presuppose a specification of the conditions
for appropriateness. We’ll later return to this point when addressing rational explanation.
2 Such cases of underdetermination of theory by evidence themselves donot determine any stronger antireal-
ist conclusion. An alternative lesson to be drawn is just that cognitive scientists taking top-down explanatory
approaches may benefit from theoretical constraints on computational-level theories (van Rooij 2008).
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To attenuate the computational-level underdetermination problem,Anderson (1990,
1991a, b, c) proposed what became a highly influential framework for constraining
the logical space of candidate computational-level theories. In particular, Anderson
proposed that cognitive scientists can exploit a so-called principle of rationality: ‘The
cognitive system optimizes the adaptation of the behavior of the organism’ (1991c,
p. 3). This principle allows cognitive scientists to assume that cognitive capacities
are characterized by functions that are optimized relative to agents’ needs and their
environments. As a general methodology for developing computational-level theories,
Anderson proposed a six-step procedure, called rational analysis:

1. Goal: Specify precisely the goals of the cognitive system (goals G).
2. Environment: Develop a formal model of the environment to which the system

is adapted (environment E).
3. Computational limitations: Make minimal assumptions about computational

limitations (limitations L).
4. Optimization: Derive the optimal behavior function f given 1–3 above.
5. Data: Examine the empirical evidence to see whether the predictions of the

behavior function are confirmed.
6. Iteration: Repeat, iteratively refine the theory.

The type of functions yielded by step 4 of this procedure are sometimes referred to as
‘rational’ or ‘rational-level’ explanations.3

1.2 The problem of intractability

The program of rational analysis has garnered significant enthusiasm and acceptance
in cognitive science over the last two decades. In part, this is because it fecundly yields
functions that adequately describe and predict human behavior in a wide diversity of
cognitive tasks, spanning psychological domains such as word recognition (Norris
2006), cognitive control (Gray et al. 2006), language learning (Ellis 2006), catego-
rization (Anderson and Matessa 1990), concept learning (Goodman et al. 2008), and
memory retrieval and reasoning (Chater and Oaksford 1999). Unfortunately, there is
a major wrinkle in the program: many of the functions postulated in rational analyses
are, de facto, computationally intractable.

3 A common presumption is that such f s not only characterize the ‘what’ of a capacity φ, i.e., f itself,
but also provide the grounds for understanding why f is what characterizes φ. Of course, to presume that
f is what φ does because f is optimal for the goals G of φ in environment E is not to claim that f itself
explains why f is the function that characterizes φ. Rather, the ‘why’ explanation is a narrative that f is as
it is because of the principle of rationality and the assumptions that φ has goals G and the environment of
adaptation is E . Moreover, to genuinely be a ‘why’ explanation, rational analysts should not only show that
f is optimal for G and E , but also that f is as it is because it is optimal for G and E (Danks 2008). Because
this difference between f as a computational-level description of φ and the rational narrative surrounding
and motivating f is seldomly made explicit, cognitive scientists are sometimes led to the mistaken idea
that f s derived via rational analysis are rational explanations in the sense of explaining the ‘why’ of f . In
our view, the distinction should be made explicit and the ‘why’ explanation should be differentiated from
the computational-level f itself (cf. Danks 2013). After all, even if the rational narrative were falsified, f
could still correctly characterize φ; the correctness of that characterization is independent of the truth-value
of the rational story about how f came to be.
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Formally proving a function f to be NP-hard is sufficient to demonstrate compu-
tational intractability.4 A function’s being NP-hard implies that there cannot exist any
algorithm that can compute f in a realistic time (formally, polynomial-time) for all
inputs i ∈ I .5 In other words, all algorithms computing such an f require time that
grows exponentially in the size of i , which makes for astronomically-long periods of
computation for all but the smallest inputs. Consequently, discovering that f is NP-
hard implies that f is no longer a plausible characterization of a capacity φ computing
its outputs in fractions of seconds, or minutes at most. And since the vast majority of
everyday human psychological capacities do just this, discovering that f is NP-hard
effectively precludes f from being part of their psychological explanation.

Advocates of the program of rational analysis acknowledge that functions derived
through the aforementioned procedure typically are computationally intractable. For
instance, Nick Chater and Mike Oaksford write:

Indeed, formal rational theories in which the optimization calculations are made,
including probability theory, decision theory, and logic are typically computa-
tionally intractable for complex problems. Intractability results imply that no
computer algorithm could perform the relevant calculations given the severe
time and memory limitations of a ‘fast and frugal’ cognitive system. […] Thus
it might appear that there is an immediate contradiction between the limitations
of the cognitive system and the intractability of rational explanations. (Chater
and Oaksford 2000, pp. 109–110)

The computational intractability of f does seem to flatly contradict step 3 in the
Anderson’s procedure—i.e., the requirement of making minimal assumptions about
computational limitations—which Anderson himself has called ‘the true Achilles heel
of the rationalist enterprise’ (1991b, p. 473).

Faced with this problem of intractability, how should rational analysts proceed with
the task of delivering good psychological explanations? One very natural response
would be to opt for computational-level theory revision—more specifically, an iterative
refinement of f so that it satisfies the minimal computational limitation of tractability
(van Rooij 2008; van Rooij et al. 2012). Chater and Oaksford and colleagues, however,
pursue a very different response. They simply amend Anderson’s six-step procedure
so that no response is needed, noting that ‘sometimes ‘minimal’ assumptions will be
no assumptions at all’ (2003, p. 69). Effectively, this makes step 3 discretionary—even
immaterial. Their rationale for this amendment is as follows:

There is no contradiction, however, because the optimal behavior function is an
explanatory tool, not part of an agent’s cognitive equipment. Using an analogy
fromMarr (1982), the theory of aerodynamics is a crucial component of explain-
ing why birds can fly. But clearly birds know nothing about aerodynamics, and

4 NP-hard functions owe their name to being as hard as any function in the class NP, where ‘NP’ abbreviates
‘Nondeterministic Polynomial time’.
5 This claim assumes P �= NP, a widely-endorsed conjecture in theoretical computer science (Garey and
Johnson 1979; Fortnow 2009).
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the computational intractability of aerodynamic calculations does not in anyway
prevent birds from flying. Similarly, people do not need to calculate their opti-
mal behavior functions in order to behave adaptively. They simply have to use
successful algorithms; they do not have to be able to make the calculations that
would show that these algorithms are successful. (Chater and Oaksford 2000,
p. 110; see also Chater et al. 2003, p. 70)

Here and elsewhere, Chater and Oaksford exploit Marr’s aerodynamical analogy in
order to deflate the idea that some revisionary response is needed to the problem of
intractability. At root, their idea seems to be that the rational explanations postulated
are logically independent of the rational calculations postulated in the exercise of a
given capacity. That is, when rational analysts posit an optimal behavior function f
that is later discovered to beNP-hard, we’re not to interpret the rational analyst as being
seriously committed to the claim that cognitive agents actually rationally calculate f .
Rather, such an f is at most just part of the theorist’s ‘explanatory toolkit’.

Understanding how this response works is far from trivial. In the remainder of this
section, we try to fully and charitably represent their rationale by canvasing several
further passages that we think jointly lay bare the core of their position.

1.3 ‘As if’ calculation

Chater and Oaksford and colleagues repeatedly appear to argue that, ultima facie,
computational tractability is not necessarily a minimal computational constraint, and
thus not a regulative normgoverning the construction of rational explanations of human
psychological capacities. Their advancement of this position pivots on the threefold
distinction between rational explanation, description, and calculation. By ‘rational
explanation’ or ‘description’, they mean explanations or descriptions of the input-
output behavior that conform approximately with the results that would be obtained
by some rational calculation,where ‘rational calculation’ ismeant to refer to themental
execution of certain probabilistic, logical, or decision-theoretic operations (see, e.g.,
Chater et al. 2003, pp. 66–67).

Given this distinction, Chater and Oaksford subsequently contend that the rational
calculations posited to explain how agents execute their capacities are not logically
implied by rational explanations that posit them:

[w]e suggest that the view that rational explanation requires that people them-
selves carry out the relevant rational calculations is a fundamental mischarac-
terization of how rational principles are used to explain thought and behavior in
behavioral ecology, economics, and psychology. (Chater et al. 2003, p. 66)

They go on to contend that this suggestion then dissolves the problem of intractability:

if we adopt the view that we have been advocating, that rational explanation
should be understood in terms of ‘rational description’ rather than ‘rational calcu-
lation,’ then these concerns about computational complexity disappear. (Chater
et al. 2003, p. 70)
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To bolster their case, Chater andOaksford and colleagues extend this argument to other
disciplines, from ecology to economics, where rational explanations have a longer and
stronger tradition than in cognitive science:

[Rational description] does not assume (though it does not rule out) that the
thought processes underlying behavior involves any rational calculation. An
analogy may be useful: the wings of a bird may approximate the results of
a rational calculation of optimal aerodynamic design. Moreover, this observa-
tion helps explain why the wing has the structure that it does; but there is, of
course, no presumption that the bird conducts any calculations in designing its
wing. Behavioral ecologists extend this pattern of biological explanation from
anatomy and physiology to behavior […and] expressly disavow a rational cal-
culation interpretation of their theories as being patently at variance with the
cognitive limitations of the animals they study. Contemporary economics also
aims to explain behavior by rational description, rather than rational calculation.
(Chater et al. 2003, p. 67)
Economists do not assume that people make complex game-theoretic or macro-
economic calculations; zoologists do not assume that animals calculate how to
forage optimally; and, in psychology, rational analyses of, for example, mem-
ory, do not assume that the cognitive system calculates the optimal forgetting
function with respect to the costs of retrieval and storage. Such behavior may be
built in by evolution or be acquired via a long process of learning, but it need
not require on-line computation of the optimal solution. (Chater and Oaksford
2000, p. 110)
There is, moreover, a recognition in economics that applying rational theories,
such as probability theory, expected utility theory, and game theory will only
provide an approximation model of people’s behavior. Economists allow that
[…] faced with complexity, individuals resort to rules of thumb, to ‘back of the
envelope’ calculations, to satisficing behavior. […] Economists thus recognize
that behavior only approximates to rationality; but economic theory typically
idealizes away from such limitations. […] For our purposes, the important point
is that most economists interpret their theories as about rational description, but
not rational calculation (at best, people act ‘as if’ theymade rational calculations;
but they do not actually perform such calculations); and they agree furthermore
that actual behavior is only an approximation to rational standards. (Chater et
al. 2003, p. 67)

Together, these passages provide a canvassing of the deflationary response that Chater
andOaksford believe is available to the rational analyst. Rather than supposing that the
target explanandum is explained by the exact computation of the intractable function
modeling it, they instead just construe the target explanandum as if the intractable
function modeling it were computed exactly.

It seems to us that in these passages one finds an admixture of—not necessar-
ily mutually consistent—perspectives on rational analysis, which bottom out in the
notions of ‘as if’ explanation and calculation. These notions are then deployed to
screen off the charge of intractability. But it’s far from obvious that such a response

123



Synthese (2018) 195:491–510 497

could be successful. At the very least, whether it is successful depends, inter alia, on
the semantics of the ‘as if’ connective. First, Chater and Oaksford’s relocation of the
optimal behavior function f derived in rational analysis from the agent’s ‘cognitive
equipment’ to the analyst’s ‘explanatory toolkit’ may implicate some form of non-
computationalism (i.e., a rejection or even denial of computational realism about the
processes by which f is realized). This reading is inconsistent, however, with Chater
and Oaksford’s other commitments; for instance, the claim that people ‘have to use
successful algorithms’ suggests just such a commitment to computationalism after all.
Second, the claim that birds can fly despite knowing nothing of aerodynamics seems to
suggest that the computational processes underlying rational behavior functions f are
believed to be of a special type, viz., algorithmswhich are implicit or subsymbolic, and
so need not look anything like the calculations postulated in probability theory, logic,
or decision theory. While this second reading is consistent with Chater and Oaksford’s
claim that ‘people do not need to calculate their optimal behavior functions’, this latter
claim itself suggests an additional third reading, viz., that themain computationalwork
is performed offline (e.g., by evolution; see Chater et al. 2003, p. 70). A fourth and fifth
interpretation of ‘as if’ rational calculation is suggested by their use of terms such as
‘rules of thumb’, ‘back of the envelope’, ‘satisficing behavior’, and ‘approximation’,
viz., a reading of “as if’ rational calculation’ as meaning heuristics or approximation
algorithms, respectively.

In the next §2 we consider these five possible meanings of ‘as if’, and for each
we analyze how rational explanation fares with respect to intractability. We will show
that none of these possible meanings of ‘as if’ succeeds in dissolving the intractability
problem. In the subsequent §3, we will show how rational explanations can meet the
tractability constraint. Our approach suggests a computationally unproblematic inter-
pretation of ‘as if’ that is compatible with the original conception of rational analysis.

2 Intractability and five meanings of ‘as if’ calculation

2.1 Noncomputationalism

Throughout their works, including the quotes above, Chater, Oaksford, and other
rational analysts make clear that they view cognitive behavior as ultimately the result
of efficient and effective algorithms; and this suggests that they take f to be computed
somehow (even if just approximately, see §2.5). Consequently, Chater and Oaksford
probably do not wish to appeal to noncomputationalism as a way of fencing off the
charge of intractability.

Be that as it may, we can imagine that their bird analogy is quite appealing for
some readers—including some rational analysts—and, to them, it may still suggest
that intractable functions f may be realized tractably by physical means other than
computation.Were this intuition correct, a noncomputationalist interpretation of ratio-
nal explanations could still circumvent the problem of computational intractability. As
it turns out, however, there is no good reason to believe that this intuition could be
correct; for there are zero reasons to think, given current knowledge of physical reality,
that birds’ capacity for flight defies intractability.
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The scientific literature is replete with claims of physical systems presumably defy-
ing the computational limits of classic Turing machines. For instance, it has been
claimed by some researchers that soap bubbles are able to efficiently solve the NP-hard
Steiner Tree Problem, and that proteins are able to solve NP-hard folding problems.
Such claims invariably have been shown to be theoretically and empirically unsub-
stantiated (Aaronson 2005; Ngo et al. 1994). We suspect that claims such as these
may arise from a faulty understanding of NP-hardness, or possibly an all-too-narrow
interpretation of the term ‘computation’.

For a function f to be intractable in the sense of being NP-hard just is for there
to exist no algorithm that can compute that function in a reasonable (polynomial)
time. Here, ‘algorithm’ means any finite procedure under any formalism of computa-
tion, include those based in natural physical systems. Even though NP-hardness was
originally defined in terms of the Turing-machine formalism, it has been proven to
generalize directly to equivalent formalisms, including recurrent neural networks and
cellular automata. Even under the most powerful formalisms to this day, quantum
computation and analog neural networks, which are known to encompass more func-
tions than the Turing formalism, intractable (NP-hard) functions cannot be computed
in realistic (polynomial) time (Aaronson 2008; S̆íma and Orponen 2003; van Rooij
2008). In other words, unless one were to ascribe more powers to cognitive agents
than there are known to be available for Turing or quantum computers with respect to
the input-output functions that they can tractably realize, cognitive agents would be
unable to tractably realize intractable (NP-hard) functions.

As a last resort, rational analysts may wish to ascribe ‘superpowers’ to cognitive
agents. However, the bird analogy notwithstanding, it would be a mystery how such
powers could be physically realized (Aaronson 2005; Bournez and Campagnolo 2008;
Cotogno 2003; Davis 2004; Nayebi 2014; Piccinini 2011; Tsotsos 1990; van Rooij
2008), whereas no such mystery exists for the other formalisms, in principle. Since
it is clear that rational analysts like Oaksford and Chater do not think that cognitive
agents have superpowers anyway (see quotes above and see §2.4 and 2.5), let’s move
on to the other possible meanings of ‘as if’ calculation.

2.2 Implicit or subsymbolic computation

We’ve shown that rational analysts likely don’t intend the meaning of “as if’ calcu-
lation’ to be interpreted noncomputationally, and that such an interpretation isn’t a
feasible dissolution of the problem of intractability. In this subsection, we turn to a
second set of possible meanings. Rational analysts may intend their construct, “as
if’ calculation’, to be understood in terms of computations that are merely implicit
in the cognitive agent in which they occur, or that occur unconsciously, or subsym-
bolically. This interpretation is suggested by Chater and Oaksford’s claims that birds
know nothing about the very aerodynamical theories that seem to be so crucial for
explaining their capacity for flight (2000, p. 110; see also Chater et al. 2003, p. 70),
which Gigerenzer paraphrases as ‘[a]s-if optimization models are silent about the
actual process, although it is sometimes suggested that the measurements and calcula-
tions might happen unconsciously’ (2004, p. 64, emphasis ours). Chater and Oaksford
also make the same point this way:
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[…] people do not need to calculate their optimal behavior functions in order to
behave adaptively. They simply have to use successful algorithms; they do not
have to be able to make the calculations that would show that these algorithms
are successful. (Chater and Oaksford 2000, p. 110)

The point being made in these and other such passages seems to be that, even though
the postulated f in rational analysis is somehow computed by the cognitive agent
(otherwise see §2.1), it’s not assumed to be computed by the agent using algorithms
that build on explicit knowledge, such as that which would be used by a cognitive
scientist for deriving or calculating f . That is, even though scientists need to know
logic and probability theory to explain rational behavior (just as scientists need to
know aerodynamics to be able to explain bird flight), cognitive agents do not need
to know logic or probability theory to behave rationally (just as birds do not need
to know aerodynamics to fly). Hence, the computational process underlying f may
better be construed as implicit and/or subsymbolic algorithms that act ‘as if’ they
perform rational calculations in the mere sense that they are weakly (i.e., input-output)
equivalent to such calculations, without themselves being like those calculations.

This interpretation of “as if’ rational calculation’ is in line with the recent rise
of proposals for so-called ‘rational process models’ (Shi et al. 2010; Sanborn et al.
2010; Griffiths et al. 2012), that aim to provide algorithmic-level explanations of func-
tions f derived in rational analyses. Rational process models postulate computational
processes that are considered cognitively plausible a priori, such as spreading activa-
tion in a neural network or probabilistic sampling; and the computational processes so
postulated are very much unlike the explicit calculations that a logician or probability
theorist would generate when computing f with, say, paper and pencil, or on a desktop
computer, or using a hand-held calculator. Moreover, these computational processes
are in no way aware of their own ‘rationality’; for they would not ‘know’ that f is
what they compute, much less ‘know’ why f is what they compute. The assertion
that such computational processes are good algorithmic-level explanations for a ratio-
nal function f is motivated by reference to theorems showing that, given unlimited
computational resources, these algorithms converge exactly on the input-output func-
tion f for which they aim to give ‘how’-explanations (i.e., weak equivalence) (e.g.
Sanborn et al. 2010). Consequently, rational process models appear to be in line with
an interpretation of the meaning of ‘as if’ rational calculation in terms of implicit,
unconscious, or subsymbolic computations. This appearance then raises the question:
can the type of implicit or subsymbolic algorithms postulated by rational process
models tractably compute an intractable function f ? The answer must be ‘no’. Again,
if a function f is intractable (i.e., NP-hard), then there exists no algorithm that can
tractably (polynomial-time) compute f .

A tempting response is to acknowledge both the inexistence of any such algo-
rithm, alongside the possibility that someone still could in the future discover such
algorithm. Rational analysts sometimes give the impression of this response by men-
tioning intractability in the context of current scientific knowledge:

Current calculi for reasoning, including standard and non-standard logics, prob-
ability theory, decision theory and game theory, are computationally intractable
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[... T]here is presently little conception either of how such probabilistic models
can capture the ‘global’ quality of everyday reasoning, or how these proba-
bilistic calculations can be carried out in real-time to support fluent and rapid
inference, drawing on large amounts of general knowledge, in a brain consisting
of notoriously slow and noisy neural components. (Chater and Oaksford 2001,
p. 211)

The phrase ‘there exists no algorithm’ should not be relativized to the current state of
our scientific knowledge, however. The correct reading is the stronger, modal state-
ment that there cannot exist, in principle, an algorithm that can tractably compute
f , if only for the reason that any claim otherwise would contradict the premise that
establishes the intractability of f .6 While the intractability of f defies all and any
tractable algorithms, regardless of the nature of these algorithms, rational process
modelers in cognitive science often observe that the algorithms they implement to
compute f may run quite fast and perform quite well in practice. We realize that the
assertion that no rational process model can ever explain how an intractable function
f can be tractably computed may therefore seem counterintuitive from their perspec-
tive. Nonetheless, such circumstances can be understood as a mismatch between the
generality of the intractable computational-level function f and the domain-specific
tractability and/or quality of the algorithms so simulated. If the computational-level
function f is intractable, then any algorithm for computing it can run fast and per-
form well only for a proper subset of input domains, viz., those domains for which the
computation is tractable (see also Kwisthout et al. 2011; van Rooij et al. 2012; and §3).

2.3 Offline computation

Interpreting Chater and Oaksford’s concept of ‘as if’ calculation as implicit or sub-
symbolic computation assumes that rational functions f : I → O are computed
online, i.e., that the computational process has to run its course from input to output
every time it is presented with a new input i ∈ I . Given that most cognitive capacities
φ which are the target explananda of rational analysis occur on a scale of milliseconds
or seconds, intractable computations requiring weeks, months, or centuries for their
completion are, de facto, implausible accounts of those capacities. However, were the
computations to be performed offline instead of online, e.g., at a scale of development
or evolution, then perhaps the problem of intractability wouldn’t be an explanatory
obstacle anymore.

This consideration suggests a third possible way of understanding rational analysts
concept of ‘as if’ calculation—i.e., as offline computation. Exegetically, the suggestion
is supported by various statements by rational analysts, such as the claim that ‘[...]
a successful probabilistic rational analysis of a cognitive task does not necessarily
require that the cognitive system be carrying out probabilistic calculations—any more

6 This point cannot be overemphasized. The classification of a function f as intractable does not come
lightly. For even were there to exist a proof that some such tractable algorithm exists, then even if we could
know nothing else about it, we would be led to the classification of f as tractable.
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than the bird is carrying out aerodynamic calculations in growing a wing perfectly
adapted for flight’ (Oaksford and Chater 2009, p. 111). Or again:

Economists do not assume that people make complex game-theoretic or macro-
economic calculations; zoologists do not assume that animals calculate how to
forage optimally; and, in psychology, rational analyses of, for example, mem-
ory, do not assume that the cognitive system calculates the optimal forgetting
function with respect to the costs of retrieval and storage. Such behavior may be
built in by evolution or be acquired via a long process of learning—but it need
not require online computation of the optimal solution. (Chater and Oaksford
2000, p. 110)

Unfortunately, such passages raise more questions than they answer. In particular,
we’re left with no clearer understanding of what it is that rational analysts take to be
computed offline. For instance, is f ‘computed offline’ in the sense that agents needn’t
determine online whether f is the optimal behavior function, given their goals G and
environment E , because development or learning has already determined this for
them? Or, is it that evolution or development has pre-computed the mapping for every
input i ∈ I , such that, when confronted with any i ∈ I , the output f (i) can simply
be retrieved rather than being computed online? The former possibility is consistent
with Chater and Oaksford and colleagues’ (2003, p. 67) claim that their program
helps explain why birds wings have the structure that they do without there being
any presumption that birds conduct any calculations in designing their wings. (Here,
wing-design by evolution is presumably analogous with the design of φ by evolution,
where φ is characterized by f in a rational analysis.) The latter possibility, however,
is consistent with Chater and Oaksford (2000, p. 110; 2008, p. 36) claim that behavior
may be built in by evolution or acquired by a lengthy learning process, but needn’t
require online computation of the optimal solution. (Here, ‘offline computation of
the optimal solution’ may mean that the optimal output f (i) for any given i needn’t
be computed online because it has already been computed offline.) Either way, it’s
apparent that some ambiguity remainswith respect to the particularmeaning of ‘offline
computation’. In what follows, we’ll attempt to disambiguate the meanings of ‘offline
computation’ by exploring some of their implications.

Plausibly, a cognitive agent needn’t continuously determine its optimal behavior
function f , and needn’t compute its own capacity from scratch before being able
to exercise that capacity. Also plausible is the idea that, instead, such capacities are
shaped through evolution and development. Yet, neither consideration circumvents
the problem of intractability. After all, intractability is a property of the input-output
function f itself, not of the processes by which such functions may be derived—be
they evolution, development, or rational analysis. Of course, derivation of an optimal
function f , relative to any arbitrary set of goalsG and E , may itself also be intractable;
possibly, the derivation is even uncomputable (i.e., there may be no (tractable) algo-
rithm for performing step 5 in Anderson’s 6-step procedure for rational analysis). But
that locus of intractability is not to be confused with the complexity of computing
f : I → O itself, for any i ∈ I . The computation of f : I → O , for any i ∈ I ,
is intractable for many rational functions derived in rational analysis, and it is this
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intractability problem that is the topic of this paper. An appeal to offline computation
in the first sense fails to dissolve this problem.

So what about the idea that f is computed offline in the second sense, i.e., that
evolution or development has pre-computed the corresponding f (i) for every input i ,
such that both retrieval suffices and no online computation of f (i) is necessary? This
idea may indeed circumvent the problem of intractability of f . However, such offline
computation is highly implausible for most cognitive capacities, which are believed
to have the property of productivity (i.e., an in principle unbounded competence;
Fodor and Pylyshyn 1988; Chater and Oaksford 1990). For instance, humans can
categorize an in principle unbounded number of sets of objects, can understand an
in principle unbounded set of sentences, reason from in principle unbounded sets of
possible subsets of premises, etc. It’s very unlikely that evolution or development
would have pre-computed offline the outputs for all such unbounded sets of possible
inputs—especially if the inputs were never before encountered during evolution or
development, but completely novel.

Chater and Oaksford (2000, p. 110) have acknowledged that offline computation
would be of limited relevance for cognition: ‘[i]n some contexts, however, some online
computations may be required’, they write, ‘[s]pecifically, if behavior is highly flex-
ible with respect to environmental variation’. They mention visual perception as an
example:

[...] leading theories of perceptual organization assume that the cognitive system
seeks to optimize online either the simplicity or likelihood [...] of the organization
of the stimulus array. These calculations are recognized to be computationally
intractable (2000, pp. 110–111).7

Arguably, all but the most trivial forms of cognitive behaviors will require some
form of online computation. Given that the program of rational analysis is particularly
concerned to explain non-trivial forms of cognitive behavior, the attempt tomake sense
of this crucial construct, ‘as if’ calculation, in terms of offline computation gives no
solace from the problem of intractability.

2.4 Heuristic computation

All interpretations of ‘as if’ calculation considered thus far have taken rational ana-
lysts to mean both that the function f describes exactly what is realized by cognitive
agents, but that agents realize f by other means than rational calculation, e.g., by
noncomputational means (§2.1), by implicit or subsymbolic computation (§2.2), or
by offline computation (§2.3). We’ve shown that none of these constructs, plausibly
interpreted, will shield rational explanations from the problem of intractability. How-
ever, perhaps rational analysts mean that ‘as if’ calculation should be understood as
the inexact realization of f rather than as the exact realization of that function. That is,

7 Note that, here, Chater and Oaksford do use the term ‘calculation’ to refer to the computational process
involved in determining the output of some φ, in this case perceptual organization. Perhaps ‘calculation’ is
intended in a broad sense, meaning ‘computation’ and not being synonymous with ‘rational calculation’.
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‘as if’ calculation could be interpreted as the idea that cognitive agents use so-called
‘heuristics’, where a heuristic H is an algorithm known not to compute f exactly;
instead, it will output something different from f (i) for at least some i ∈ I 8. Accord-
ingly, some relationship—weaker than equality—is believed to obtain between f and
the particular function fH : IH → OH , with IH ⊆ I and OH ⊆ O , computed exactly
by H .9

As Gigerenzer notes, though: ‘[h]euristics are distinct from ‘as if’-optimization
models’ (2004, p. 64); and indeed, the heuristics-interpretation isn’t obviously supe-
rior. On the other hand, rational analysts themselves have explicitly suggested it:

[I]ntractability results are not necessarily taken to rule out the possibility of
practical computation. No algorithm [...] may be tractable, and yet there may be
more or less reliable heuristics which often solve the problem, or at least provide
something close enough to the solution to be useful. These heuristics need not
necessarily be computationally intractable. Computational tractability may be
bought at the price of the reliability of the procedures. (Oaksford and Chater
1998, pp. 83–84)

Interpreting ‘as if’ calculation as heuristic computation is also consistent with rational
analysts’ other claims that cognitive agents may use ‘rules of thumb’, ‘back of the
envelope’ calculations, and display ‘satisficing behavior’ (Chater et al. 2003, p. 67).
Moreover, moving to heuristic explanation puts rational analysts in seemingly good
company: when faced with the intractability of ones computational-level theory f ,
appealing to heuristics as algorithmic-level explanations is one of the most widely-
adopted strategies by cognitive scientists.

Unfortunately, this strategy runs into serious conceptual problems (van Rooij 2008;
van Rooij et al. 2012). Proposing both that a cognitive capacity φ is adequately
described at the computational level by an intractable function f , and thatφ’s processes
are adequately described at the algorithmic level by some heuristic H , introduces a
fundamental inconsistency between computational- and algorithmic-level explana-
tion. To see why, consider all inputs i ∈ I for which f (i) �= fH (i), of which there
must be infinitely many.10 For each such input i , H is an inadequate algorithmic-level
explanation. This is because, by definition, H outputs fH (i) �= f (i), and so doesn’t
explain how φ produces output f (i) given i as input. So, either intractable f at the
computational level adequately describes the capacity φ but heuristic H at the algo-
rithmic level misdescribes how φ produces output f (i) given i as input, or else H
describes how φ produces output f (i) given i as input but the computational-level
model needed to describe φ is instead fH . As the degree of this inconsistency remains
unbounded by heuristic explanation (otherwise see §2.5), maintaining explanatory
consistency between postulating that intractable f is an (approximate) description

8 Otherwise, H would be an exact algorithm, in which case the earlier problems noted in §2.1–2.3 would
reoccur.
9 For instance, it may be believed that f (i) and fH (i) are the same for many inputs i ∈ I = IH , or it may
be conjectured that the difference between f (i) and fH (i) is small for many inputs i ∈ I .
10 Otherwise, f would not be intractable (Schöning 1990; van Rooij et al. 2012).
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of φ and that φ operates by tractable heuristics becomes impossible (van Rooij and
Wright 2006).

The conceptual problems introduced by this inconsistency also manifest when cog-
nitive scientists attempt to empirically (dis)confirm the computational-level theory f
and algorithmic-level theory H . After all, what should they predict as the observable
outcome of presenting subjects directly with some input i ∈ I (as produced by the
capacity φ of interest)? According to the computational-level explanation, they should
predict the output will be f (i); but, according to the algorithmic-level explanation,
the predicted output should be fH (i). And since fH (i) �= f (i), the two predictions
are inconsistent competitors: the computational-level explanation is confirmed by the
data only if the algorithmic-level theory is disconfirmed, and vice versa.

While the inconsistency between levels of explanation that’s introduced by a heuris-
tics interpretation of ‘as if’ is potentially resolvable, doing so would render that
interpretation inapplicable because H would then be an exact algorithm for the new
computational-level theory fH . In other words, any such resolution would require that
cognitive scientists recognize, inter alia, that the commitment to H as an algorithmic-
level explanation implies that computational-level function fH—and not f—is the
function that adequately describes φ. Contra Chater and Oaksford, computational
tractability is bought by an appeal to computational-level theory revision, not an appeal
to ‘as if’ in the sense of inexact (i.e., heuristic) computation of intractable functions
(van Rooij 2008; van Rooij et al. 2012).11

As we shall detail in §3, this revisionary response may yield an interpretation
of ‘as if’ compatible with rational analysis that is both unproblematic and, more
importantly, different from any of the interpretations suggested by rational analysts to
date (including the one considered in the next subsection).

2.5 Approximate computation

A fifth interpretation of ‘as if’ calculation is latent in rational analysts’ claims about
approximation. For example, Chater et al.’s (2003, p. 67) claim that ‘actual behavior
is only an approximation to rational standards’ suggests that rational analysts both
deny that cognitive agents compute the rational function f using an exact algorithm
(which always yields the precise output f (i) for each input i), and assert that agents
instead calculate using approximation algorithms (that, for each input i , may output
something that is inexactly similar to f (i) or comes close to being or computing f (i)).

11 We thank an anonymous reviewer for raising this possibility: even if it is fH rather than f that accurately
characterizes the capacity of interest φ, in practice fH may be unknown; so couldn’t rational analysts
contend that the appeal to ‘as if’ merely serves as a sort of ‘promissory note’? That is, until we determine
what fH is, f can serve as a (instrumentalist) working hypothesis that allows research to productively
continue. This may be the case. We don’t contest that intractable f s can instrumentally lead to important
results on occasion. For instance, postulating intractable f s raises scientifically fruitful questions about
the conditions under which those functions may be tractable, and answering those questions may lead to
(realist) hypotheses about fH . What we do contest is the claim that the intractability of f is rendered
permanently irrelevant by an appeal to ‘as if’. Whatever instrumentalist commitments are invoked, it’s still
the case that, in order for the computational-level theory to be computationally plausible and explanatory,
at some point in time—sooner or later— fH needs to be determined.

123



Synthese (2018) 195:491–510 505

It might be thought that the approximation interpretations of the concept of ‘as if’
reduces to the heuristics interpretation already discussed in §2.4. So much the worse
for rational analysts.We think that a more charitable thought holds them as prima facie
distinct until demonstrated otherwise. Subsequently, to enforce this distinction (in the
context of ‘as if’ calculation), let ‘approximation’ imply that there is some form of
bound on the extent to which the output generated by the approximation algorithm
can deviate from f (i). Without such a bound, the interpretation of ‘as if’ calculation
as approximation does indeed collapse back into that for heuristics, and the problems
already discussed in §2.4 re-occur.

Assuming that talk of approximation is meant to imply bounds on how far the
output can deviate from the rational output f (i), then it’s legitimate to ask whether an
intractable rational function f be tractably approximated within a reasonable bound.

As previous research on computational intractability in cognitive science evinces,
the answer depends both on how one defines the dimension within which the approx-
imation takes place, as well as what one considers a reasonable bound. As van Rooij
and Wareham (2012) and Kwisthout and van Rooij (2013) observe, for the types of
optimisation functions yielded by rational analysis at least three different approxi-
mation dimensions can be defined. For instance, when such f ′ approximates f , the
deviation between f and f ′ may be bounded by the structure of the output (i.e., f ′(i)
must structurally resemble f (i)); by the value that is optimized by the output (i.e., the
value associated with f ′(i) must be close to the value of f (i)), or by the likelihood of
deviation (i.e., f ′(i) must have a high probability of being equal to f (i)).

It is often assumed that computing approximate outputs for optimization functions
is always tractable—even or especially when computing those optimization functions
is intractable (see, e.g., Chater et al. 2006; Sanborn et al. 2010). However, this assump-
tion is provably wrong relative to the previously described forms of approximation; in
particular, it is for the many probabilistic models that are commonly used in rational
analysis (Kwisthout et al. 2011). For example, computing probability distributions
exactly is NP-hard (Cooper 1990) and it’s no less hard to approximate these distribu-
tions (Dagum and Luby 1993). Likewise, inferring explanations that have maximum
posterior probability given the evidence is NP-hard (Shimony 1994) and it’s no less
hard to find an explanation that approximates the maximum posterior probability or
whose inner structure either resembles the optimal solution or is just guaranteed to
have a non-zero probability (Abdelbar andHedetniemi 1998; Kwisthout and van Rooij
2013; Kwisthout 2011).Moreover, the idea that approximation is tractable also fails on
a much broader scale. For example, many NP-hard functions are not tractably value-
approximable unless P=NP (Arora 1998), efficient expectation-approximation of any
NP-hard function is impossible12 (Kwisthout and van Rooij 2013), and the efficient
value- or structure-approximation of an NP-hard function is ruled out if that function

12 This claim assumes NP � BPP, a widely-endorsed conjecture in theoretical computer science (see
Johnson 1990, p. 120 and Zachos 1986, p. 396), where ‘BPP’ abbreviates Bounded-error Probabilistic
Polynomial time.
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is self-paddable (van Rooij and Wareham 2012)—a property apparently holding for
many functions including those associated with cognition.13

To be clear, pointing out that computing approximate outputs for functions is
not always tractable—even or especially when computing optimal functions is
intractable—is not to say that tractable approximation of intractable functions is always
impossible. There may be functions that are tractably approximable relative to one of
the three forms of approximation previously mentioned, but if we have learned any-
thing from computational tractability analysis to date then it is that such functions are
the exception rather than the rule. Consequently, if the approximation interpretation
of ‘as-if’ calculation is to be intended for a particular target function f , the ratio-
nal analyst or other researchers making such claims bear the justificatory burden of
demonstrating that f is both truly intractable and tractably approximable.

3 How explanation can be rational, ‘as if’, and tractable

Readers may be wondering whether the program of rational analysis is fundamentally
flawed, given both that it often yields intractable functions f , and that the construct
centrally used to work around the problem of intractability—‘as if’ calculation—
doesn’t actually work. We don’t think so—quite the contrary. Rational analysis can be
a very useful and productive approach to conjecturing computational-level theories.
To be clear, our criticism isn’t a criticism of rational analysis per se, as proposed by
Anderson (1990), but rather with the way in which the approach has been adopted
by many cognitive scientists without sufficient consideration of step 3 in Anderson’s
procedure.

In §2, we argued that appeals to ‘as if’ rational calculation fail to circumvent the
problem of intractability—certainly for at least some intractable f s generated through
rational analysis, and possibly for all. Yet, this doesn’t mean that the problem of
intractability cannot be circumvented in other ways. One straightforward way of doing
so involves testing f s generated in computational-level theorizing for intractability,
and, where necessary, revising them so as to meet the tractability constraint. In fact,
as has been shown by van Rooij (2008), an intractable function f may often even be
transformed into a tractable function f ′ with a minimal amount of theory revision. For
instance, it often suffices just to determine that the input domain on which φ operates
in normal (ecologically relevant) situations has restricted parameter ranges.

To explain this idea intuitively, let us reconsider the bird analogy ofMarr (1982) and
Chater and Oaksford (2000). Flight may be intractable for birds if the conditions under
which they were expected to fly would be outside the normal ranges in which they can
effectively fly (e.g., in a stormwith exceptional speeds of wind that move in arbitrarily
complexways). Under such exceptional conditions birds would fail to fly successfully;
their mechanism for flight cannot effectively deal with such extreme circumstances.
Nevertheless, under normal conditions—in which air and body parameters remain

13 A function f is self-paddable if and only if a set of instances i1, i2, . . . , im of f can be embedded in
a single instance iE of f such that f (i1), f (i2), . . . , f (im ) can be derived from f (iE ). For more details,
see Definition 6 in van Rooij and Wareham (2012).
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within normal ranges—birds can effectively fly. Their ability to effectively fly under
normal circumstances, despite the intractability of flight under arbitrary circumstances,
is thus not only to be understood in terms of the internalmechanisms that support flight,
but also in terms of the parameters that define ‘normal’ circumstances.

By analogy, a computational-level theory f may be intractable for an unconstrained
input domain, but a cognitive capacity φ may not need to deal with arbitrary inputs
under ‘normal’ conditions. That is, the situation in which φ is effectively exercised
by cognitive agents in their normal lives may be better modeled by a restricted input
domain I ′ ⊂ I ; and the function f restricted to that input domain, i.e., f ′ : I ′ → O ,
can be tractable, even if f itself, given its unrestricted input domain I ⊃ I ′, is not.
This insight can be used to revise intractable functions f into more restricted functions
f ′ that are tractable.
Note that this perspective also yields a notion of ‘as if’ that is unproblematic. That is,

having discovered a pair consisting of intractable function f and tractable restricted-
domain function f ′, the rational analysts may contend that it is ‘as if’ cognitive agents
compute f in the sense that they compute f ′ and in the normal range of inputs the
functions f ′ and f are indistinguishable. Importantly though, this indistinguishability
is mere appearance; for if one were to present the cognitive agents with inputs out-
side the normal range then the behavior of the cognitive agents would no longer be
guaranteed to look anything like f . Indeed, such behavior would necessarily differ
from f on infinitely many inputs outside the normal range (otherwise f would not be
intractable; see also footnote 10).14

These considerations suggest that rational analysis may be fruitfully extended, by
extending the Optimization step in rational analysis with a 4-step subprocedure, called
tractability analysis:

1. Intractability: Check whether f derived in the Step 4 of rational analysis is
intractable. If ‘yes’, proceed with Steps 2–4 of tractability analysis below. If
otherwise, continue with Step 5 of rational analysis.

2. Parameters: Define a restricted-domain function f ′ with plausible bounds on
input parameters that define ‘normal’ conditions.

3. Analysis: Analyze whether f ′ is tractable. If so, continue Step 5 of rational
analysis with f ′.

4. Iteration: If no tractable parameter ranges can be found then revise f by return-
ing to Steps 1–3 of rational analysis.

14 The formal tools for putting this type of revisionary approach into practice have been extensively
described by van Rooij (2008) (see also Blokpoel et al. 2013; van Rooij and Wareham 2008), and builds on
the the mathematical theory of parameterized complexity (Downey and Fellows 1999). Using proof tech-
niques from this mathematical theory, it can be shown that some intractable (NP-hard) functions f : I → O
can be computed in fixed-parameter (fp-) tractable time O(g(K )|i |c), i.e., where g can be any function of
the parameters k1, k2, . . . , km in set K = {k1, k2, . . . , km }, |i | denotes the input size, and c is a constant.
Note that in such event, the intractable f can be computed efficiently (in polynomial-time), even for large
inputs, provided the assumption that f operates only on inputs in which the parameters in K are restricted
to relatively small values (each k << |i |). If rational analysts were to have theoretical and/or empirical
reasons for this assumption, then revising f to f ′—where f ′ is f restricted to inputs with small values
for parameter k1, k2, . . . , km—would yield a tractable function f ′ that will be rational according to the
rational analysis that yielded it as f .
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Note that the functions derived by rational tractability analyses, whether f or f ′,
would be both rational and tractable. Consequently, the computational-level theories
so derived will also satisfy both the rationality principle and the tractability constraint.
Not only does this combined rational-and-tractability ensure that rational explana-
tions meet the minimal constraint of tractability, but the extended procedure also
poses stronger theoretical constraints on what are viable computational-level theories.
Combined rational tractability analyses, then, are very much in the spirit of ratio-
nal analysis as Anderson envisioned it: they’re a principled way of coping with the
underdetermination of computational-level theory by empirical data.

4 Conclusion

Rational analysis has proven to be an effective and productive way of generating
computational-level characterizations of cognitive capacities;more precisely, the func-
tions derived describe and predict cognitive behaviors well under a wide variety of
conditions and do so for a wide variety of cognitive capacities. That such functions
often face the problem of intractability has been typically disregarded as a pseudoprob-
lem, since rational explanations are agnostic about the how of cognition, and merely
aim to use the why of cognition to derive the what of cognition. When the problem
has been regarded, rational analysts have pursued a dissolution using the construct of
‘as if’ calculation.

As we have argued in this paper, the idea that cognitive capacities may be realized
by ‘as if’ calculations provides no shelter from the charge of intractability for rational
explanations. Indeed, there is no possible way in which to conceive the how of cog-
nition, now or in the future, such that intractable functions can plausibly be accurate
descriptions of everyday cognitive capacities operating on the time scale of minutes,
seconds, or milliseconds. In the end, such explanations also must satisfy the minimal
constraint of computational tractability. This, however, should not be seen as a loss for
rational analysis. On the contrary, as we have articulated in §3, rational analyses can be
combined with tractability analyses in ways which ensures that computational-level
explanations are both rational and tractable, thus paving the way for an even better
constrained methodology for conjecturing computational-level theories.
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