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Abstract

This paper investigates the problem of policy learn-
ing in multiagent environments using the stochastic
game framework, which we briefly overview. We
introduce two properties as desirable for a learning
agent when in the presence of other learning agents,
namely rationality and convergence. We examine
existing reinforcement learning algorithms accord-
ing to these two properties and notice that they fail
to simultaneously meet both criteria. We then con-
tribute a new learning algorithm, WoLF policy hill-
climbing, that is based on a simple principle: “learn
quickly while losing, slowly while winning.” The
algorithm is proven to be rational and we present
empirical results for a number of stochastic games
showing the algorithm converges.

1 Introduction
Themultiagent learning problemconsists of devising a learn-
ing algorithm forour single agent to learn a policy in the
presence ofother learning agents that are outside of our con-
trol. Since the other agents are also adapting, learning in the
presence of multiple learners can be viewed as a problem of
a “moving target,” where the optimal policy may be chang-
ing while we learn. Multiple approaches to multiagent learn-
ing have been pursued with different degrees of success (as
surveyed in[Weiß and Sen, 1996] and [Stone and Veloso,
2000]). Previous learning algorithms either converge to a
policy that is not optimal with respect to the other player’s
policies, or they may not converge at all. In this paper we
contribute an algorithm to overcome these shortcomings.

We examine the multiagent learning problem using the
framework of stochastic games. Stochastic games (SGs)
are a very natural multiagent extension of Markov deci-
sion processes (MDPs), which have been studied extensively
as a model of single agent learning. Reinforcement learn-
ing [Sutton and Barto, 1998] has been successful at find-
ing optimal control policies in the MDP framework, and has
also been examined as the basis for learning in stochastic
games[Claus and Boutilier, 1998; Hu and Wellman, 1998;
Littman, 1994]. Additionally, SGs have a rich background in
game theory, being first introduced in 1953 [Shapley].

In Section 2 we provide a rudimentary review of the neces-
sary game theory concepts: stochastic games, best-responses,
and Nash equilibria. In Section 3 we present two desirable
properties, rationality and convergence, that help to elucidate
the shortcomings of previous algorithms. In Section 4 we
contribute a new algorithm toward achieving these properties
called WoLF (“Win or Learn Fast”) policy hill-climbing, and
prove that this algorithm is rational. Finally, in Section 5 we
present empirical results of the convergence of this algorithm
in a number and variety of domains.

2 Stochastic Games
A stochastic gameis a tuple(n,S,A1...n, T,R1...n), where
n is the number of agents,S is a set of states,Ai is the set
of actions available to agenti with A being the joint action
spaceA1× . . .×An, T is a transition functionS ×A×S →
[0, 1], andRi is a reward function for theith agentS ×A →
R. This is very similar to the MDP framework except we
have multiple agents selecting actions and the next state and
rewards depend on the joint action of the agents. Also notice
that each agent has its own separate reward function. The
goal for each agent is to select actions in order to maximize
its discounted future reward with discount factorγ.

SGs are a very natural extension of MDPs to multiple
agents. They are also an extension of matrix games to mul-
tiple states. Two common matrix games are in Figure 1. In
these games there are two players; one selects a row and the
other selects a column of the matrix. The entry of the matrix
they jointly select determines the payoffs. The games in Fig-
ure 1 are zero-sum games, where the row player receives the
payoff in the matrix, and the column player receives the neg-
ative of that payoff. In the general case (general-sum games)
each player has a separate matrix that determines its payoff.

[
1 −1
−1 1

] [ 0 −1 1
1 0 −1
−1 1 0

]
Matching Pennies Rock-Paper-Scissors

Figure 1: Two example matrix games.

Each state in a stochastic game can be viewed as a matrix
game with the payoffs for each joint action determined by the
matrix entriesRi(s, a). After playing the matrix game and



receiving their payoffs the players are transitioned to another
state (or matrix game) determined by their joint action. We
can see that SGs then contain both MDPs and matrix games
as subsets of the framework.

Mixed Policies.Unlike in single-agent settings, deterministic
policies in multiagent settings can often be exploited by the
other agents. Consider the matching pennies matrix game as
shown in Figure 1. If the column player were to play either
action deterministically, the row player could win a payoff of
one every time. This requires us to consider mixed strategies
or policies. A mixed policy,ρ : S → PD(Ai), is a function
that maps states to mixed strategies, which are probability
distributions over the player’s actions.

Nash Equilibria. Even with the concept of mixed strategies
there are still no optimal strategies that are independent of
the other players’ strategies. We can, though, define a notion
of best-response. A strategy is abest-responseto the other
players’ strategies if it is optimal given their strategies. The
major advancement that has driven much of the development
of matrix games, game theory, and even stochastic games is
the notion of a best-response equilibrium, orNash equilib-
rium [Nash, Jr., 1950].

A Nash equilibrium is a collection of strategies for each of
the players such that each player’s strategy is a best-response
to the other players’ strategies. So, no player can get a higher
payoff by changing strategies given that the other players also
don’t change strategies. What makes the notion of equilib-
rium compelling is that all matrix games have such an equi-
librium, possibly having multiple equilibria. In the zero-sum
examples in Figure 1, both games have an equilibrium con-
sisting of each player playing the mixed strategy where all the
actions have equal probability.

The concept of equilibria also extends to stochastic games.
This is a non-trivial result, proven by Shapley [1953] for zero-
sum stochastic games and by Fink [1964] for general-sum
stochastic games.

3 Motivation
The multiagent learning problem is one of a “moving target.”
The best-response policy changes as the other players, which
are outside of our control, change their policies. Equilibrium
solutions do not solve this problem since the agent does not
know which equilibrium the other players will play, or even
if they will tend to an equilibrium at all.

Devising a learning algorithm for our agent is also chal-
lenging because we don’t know whichlearning algorithms
the other learning agents are using. Assuming a general case
where other players may be changing their policies in a com-
pletely arbitrary manner is neither useful nor practical. On
the other hand, making restrictive assumptions on the other
players’ specific methods of adaptation is not acceptable, as
the other learners are outside of our control and therefore we
don’t know which restrictions to assume.

We address this multiagent learning problem by defining
two properties of a learner that make requirements on its be-
havior in concrete situations. After presenting these proper-
ties we examine previous multiagent reinforcement learning

techniques showing that they fail to simultaneously achieve
these properties.

3.1 Properties
We contribute two desirable properties of multiagent learning
algorithms: rationality and convergence.

Property 1 (Rationality) If the other players’ policies con-
verge to stationary policies then the learning algorithm will
converge to a policy that is a best-response to their policies.

This is a fairly basic property requiring the player to be-
have optimally when the other players play stationary strate-
gies. This requires the player to learn a best-response pol-
icy in this case where one indeed exists. Algorithms that are
not rational often opt to learn some policy independent of the
other players’ policies, such as their part of some equilibrium
solution. This completely fails in games with multiple equi-
libria where the agents cannotindependently selectand play
an equilibrium.

Property 2 (Convergence) The learner will necessarily con-
verge to a stationary policy. This property will usually be
conditioned on the other agents using an algorithm from some
class of learning algorithms.

The second property requires that, against some class of
other players’ learning algorithms (ideally a class encompass-
ing most “useful” algorithms), the learner’s policy will con-
verge. For example, one might refer to convergence with re-
spect to players with stationary policies, or convergence with
respect to rational players.

In this paper, we focus on convergence in the case of self-
play. That is, if all the players use the same learning algorithm
do the players’ policies converge? This is a crucial and dif-
ficult step towards convergence against more general classes
of players. In addition, ignoring the possibility of self-play
makes the naive assumption that other players are inferior
since they cannot be using an identical algorithm.

In combination, these two properties guarantee that the
learner will converge to a stationary strategy that is optimal
given the play of the other players. There is also a connec-
tion between these properties and Nash equilibria. When all
players are rational, if they converge, then they must have
converged to a Nash equilibrium. Since all players converge
to a stationary policy, each player, being rational, must con-
verge to a best response to their policies. Since this is true of
each player, then their policies by definition must be an equi-
librium. In addition, if all players are rational and conver-
gent with respect to the other players’ algorithms, then con-
vergence to a Nash equilibrium is guaranteed.

3.2 Other Reinforcement Learners
There are few RL techniques that directly address learn-
ing in a multiagent system. We examine three RL tech-
niques: single-agent learners, joint-action learners (JALs),
and minimax-Q.

Single-Agent Learners. Although not truly a multiagent
learning algorithm, one of the most common approaches is
to apply a single-agent learning algorithm (e.g. Q-learning,
TD(λ), prioritized sweeping, etc.) to a multi-agent domain.



They, of course, ignore the existence of other agents, assum-
ing their rewards and the transitions are Markovian. They
essentially treat other agents as part of the environment.

This naive approach does satisfy one of the two properties.
If the other agents play, or converge to, stationary strategies
then their Markovian assumption holds and they converge to
an optimal response. So, single agent learning is rational. On
the other hand, it is not generally convergent in self-play. This
is obvious to see for algorithms that learn only deterministic
policies. Since they are rational, if they converge it must be
to a Nash equilibrium. In games where the only equilibria
are mixed equilibria (e.g. Matching Pennies), they could not
converge. There are single-agent learning algorithms capable
of playing stochastic policies[Jaakkolaet al., 1994; Baird
and Moore, 1999]. In general though just the ability to play
stochastic policies is not sufficient for convergence, as will be
shown in Section 4.

Joint Action Learners. JALs [Claus and Boutilier, 1998]
observe the actions of the other agents. They assume the
other players are selecting actions based on a stationary pol-
icy, which they estimate. They then play optimally with re-
spect to this learned estimate. Like single-agent learners they
are rational but not convergent, since they also cannot con-
verge to mixed equilibria in self-play.

Minimax-Q. Minimax-Q [Littman, 1994] and Hu & Well-
man’s extension of it to general-sum SGs [1998] take a dif-
ferent approach. These algorithms observe both the actions
and rewards of the other players and try to learn a Nash equi-
librium explicitly. The algorithms learn and play the equi-
librium independent of the behavior of other players. These
algorithms are convergent, since they always converge to a
stationary policy. However, these algorithms are not ratio-
nal. This is most obvious when considering a game of Rock-
Paper-Scissors against an opponent that almost always plays
“Rock”. Minimax-Q will still converge to the equilibrium so-
lution, which is not optimal given the opponent’s policy.

In this work we are looking for a learning technique that is
rational, and therefore plays a best-response in the obvious
case where one exists. Yet, its policy should still converge.
We want the rational behavior of single-agent learners and
JALs, and the convergent behavior of minimax-Q.

4 A New Algorithm
In this section we contribute an algorithm towards the goal of
a rational and convergent learner. We first introduce an algo-
rithm that is rational and capable of playing mixed policies,
but does not converge in experiments. We then introduce a
modification to this algorithm that results in a rational learner
that does in experiments converge to mixed policies.

4.1 Policy Hill Climbing
A simple extension of Q-learning to play mixed strategies
is policy hill-climbing (PHC) as shown in Table 1. The al-
gorithm, in essence, performs hill-climbing in the space of
mixed policies. Q-values are maintained just as in normal
Q-learning. In addition the algorithm maintains the current

1. Let α andδ be learning rates. Initialize,

Q(s, a)← 0, π(s, a)← 1

|Ai|
.

2. Repeat,

(a) From states select actiona with probabilityπ(s, a)
with some exploration.

(b) Observing rewardr and next states′,

Q(s, a)← (1− α)Q(s, a) + α

(
r + γmax

a′
Q(s′, a′)

)
.

(c) Updateπ(s, a) and constrain it to a legal probability
distribution,

π(s, a)← π(s, a)+

{
δ if a = argmaxa′ Q(s, a′)
−δ
|Ai|−1

otherwise .

Table 1: Policy hill-climbing algorithm (PHC) for playeri.

mixed policy. The policy is improved by increasing the prob-
ability that it selects the highest valued action according to
a learning rateδ ∈ (0, 1]. Notice that whenδ = 1 the al-
gorithm is equivalent to Q-learning, since with each step the
policy moves to the greedy policy executing the highest val-
ued action with probability1 (modulo exploration).

This technique, like Q-learning, is rational and will con-
verge to an optimal policy if the other players are playing
stationary strategies. The proof follows from the proof of Q-
learning, which guarantees theQ values will converge toQ∗

with a suitable exploration policy.1 Similarly,π will converge
to a policy that is greedy according toQ, which is converging
toQ∗, the optimal responseQ-values. Despite the fact that it
is rational and can play mixed policies, it still doesn’t show
any promise of being convergent. We show examples of its
convergence failures in Section 5.

4.2 WoLF Policy Hill-Climbing
We now introduce the main contribution of this paper. The
contribution is two-fold: using avariable learning rate, and
theWoLF principle. We demonstrate these ideas as a modifi-
cation to the naive policy hill-climbing algorithm.

The basic idea is to vary the learning rate used by the al-
gorithm in such a way as to encourage convergence, with-
out sacrificing rationality. We propose the WoLF principle as
an appropriate method. The principle has a simple intuition,
learn quickly while losing and slowly while winning. The
specific method for determining when the agent is winning is
by comparing the current policy’s expected payoff with that
of the average policy over time. This principle aids in con-
vergence by giving more time for the other players to adapt
to changes in the player’s strategy that at first appear benefi-
cial, while allowing the player to adapt more quickly to other
players’ strategy changes when they are harmful.

The required changes for WoLF policy hill-climbing are
shown in Table 2. Practically, the algorithm requires two

1The issue of exploration is not critical to this work. See[Singh
et al., 2000a] for suitable exploration policies for online learning.



1. Let α, δl > δw be learning rates. Initialize,

Q(s, a)← 0, π(s, a)← 1

|Ai|
, C(s)← 0.

2. Repeat,

(a,b) Same as PHC in Table 1
(c) Update estimate of average policy,π̄,

C(s) ← C(s) + 1
∀a′ ∈ Ai π̄(s, a′) ← π̄(s, a′) +

1
C(s)

(π(s, a′)− π̄(s, a′)) .

(d) Updateπ(s, a) and constrain it to a legal probability
distribution,

π(s, a)← π(s, a)+

{
δ if a = argmaxa′ Q(s, a′)
−δ
|Ai|−1

otherwise ,

where,

δ =

{
δw if

∑
a π(s, a)Q(s, a) >

∑
a π̄(s, a)Q(s, a)

δl otherwise .

Table 2: WoLF policy hill-climbing algorithm for playeri.

learning learning rate parameters,δl andδw, with δl > δw.
The learning rate that is used to update the policy depends
on whether the agent is currently winning (δw) or losing (δl).
This is determined by comparing the expected value, using
the current Q-value estimates, of following the current policy
π in the current state with that of following the average policy
π̄. If the expectation of the current policy is smaller (i.e. the
agent is “losing”) then the larger learning rate,δl is used.

WoLF policy hill-climbing remains rational, since only the
speed of learning is altered. In fact, any bounded variation
of the learning rate would retain rationality. Its convergence
properties, though, are quite different. In the next section
we show empirical results that this technique converges to ra-
tional policies for a number and variety of stochastic games.
The WoLF principle also has theoretical justification for a re-
stricted class of games. For two-player, two-action, iterated
matrix games, gradient ascent (which is known not to con-
verge[Singhet al., 2000b]) when using a WoLF varied learn-
ing rate is guaranteed to converge to a Nash equilibrium in
self-play[Bowling and Veloso, 2001].

Something similar to the WoLF principle has also been
studied in some form in other areas, notably when consid-
ering an adversary. In evolutionary game theory theadjusted
replicator dynamics[Weibull, 1995] scales the individuals’
growth rate by the inverse of the overall success of the popula-
tion. This will cause the population’s composition to change
more quickly when the population as a whole is performing
poorly. A form of this also appears as a modification to the
randomized weighted majorityalgorithm[Blum and Burch,
1997]. In this algorithm, when an expert makes a mistake,
a portion of its weight loss is redistributed among the other
experts. If the algorithm is placing large weights on mistaken
experts (i.e. the algorithm is “losing”), then a larger portion of
the weights are redistributed (i.e. the algorithm adapts more
quickly.) Neither research lines recognized their modification

as essentially involving a variable learning rate, nor has such
an approach been applied to learning in stochastic games.

5 Results
In this section we show results of applying policy hill-
climbing and WoLF policy hill-climbing to a number of dif-
ferent games, from the multiagent reinforcement learning lit-
erature. The domains include two matrix games that help to
show how the algorithms work and the effect of the WoLF
principle on convergence. The algorithms were also applied
to two multi-state SGs. One is a general-sum grid world do-
main used by Hu & Wellman [1998]. The other is a zero-sum
soccer game introduced by Littman [1994].

The experiments involve training the players using the
same learning algorithm. Since PHC and WoLF-PHC are ra-
tional, we know that if they converge against themselves, then
they must have converged to a Nash equilibrium. For the ma-
trix game experimentsδl/δw = 2, but for the other results a
more aggressiveδl/δw = 4 was used. In all cases both the
δ andα were decreased proportionately to1/C(s), although
the exact proportion varied between domains.

5.1 Matrix Games
The algorithms were applied to the two matrix games, from
Figure 1. In both games, the Nash equilibrium is a mixed pol-
icy consisting of executing the actions with equal probability.
The large number of trials and small ratio of the learning rates
were used for the purpose of illustrating how the algorithm
learns and converges.

The results of applying both policy hill-climbing and
WoLF policy hill-climbing to the matching pennies game is
shown in Figure 2(a). WoLF-PHC quickly begins to oscil-
late around the equilibrium, with ever decreasing amplitude.
On the other hand, PHC oscillates around the equilibrium but
without any appearance of converging. This is even more
obvious in the game of rock-paper-scissors. The results are
shown in Figure 2(b), and show trajectories of the players’
strategies in policy space through one million steps. Policy
hill-climbing circles the equilibrium policy without any hint
of converging, while WoLF policy hill-climbing very nicely
spirals towards the equilibrium.

5.2 Gridworld
We also examined a gridworld domain introduced by Hu and
Wellman [1998] to demonstrate their extension of Minimax-
Q to general-sum games. The game consists of a small grid
shown in Figure 3(a). The agents start in two corners and
are trying to reach the goal square on the opposite wall. The
players have the four compass actions (i.e. N, S, E, and W),
which are in most cases deterministic. If the two players at-
tempt to move to the same square, both moves fail. To make
the game interesting and force the players to interact, while
in the initial starting position the North action is uncertain,
and is only executed with probability 0.5. The optimal path
for each agent is to move laterally on the first move and then
move North to the goal, but if both players move laterally
then the actions will fail. There are two Nash equilibria for
this game. They involve one player taking the lateral move
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Figure 2: (a) Results for matching pennies: the policy for one of the players as a probability distribution while learning with
PHC and WoLF-PHC. The other player’s policy looks similar. (b) Results for rock-paper-scissors: trajectories of one player’s
policy. The bottom-left shows PHC in self-play, and the upper-right shows WoLF-PHC in self-play.

and the other trying to move North. Hence the game requires
that the players coordinate their behaviors.

WoLF policy hill-climbing successfully converges to one
of these equilibria. Figure 3(a) shows an example trajectory
of the players’ strategies for the initial state while learning
over 100,000 steps. In this example the players converged
to the equilibrium where player one moves East and player
two moves North from the initial state. This is evidence that
WoLF policy hill-climbing can learn an equilibrium even in a
general-sum game with multiple equilibria.

5.3 Soccer
The final domain is a comparatively large zero-sum soccer
game introduced by Littman [1994] to demonstrate Minimax-
Q. An example of an initial state in this game is shown in Fig-
ure 3(b), where player ’B’ has possession of the ball. The goal
is for the players to carry the ball into the goal on the opposite
side of the field. The actions available are the four compass
directions and the option to not move. The players select ac-
tions simultaneously but they are executed in a random order,
which adds non-determinism to their actions. If a player at-
tempts to move to the square occupied by its opponent, the
stationary player gets possession of the ball, and the move
fails. Unlike the grid world domain, the Nash equilibrium for
this game requires a mixed policy. In fact any deterministic
policy (therefore anything learned by an single-agent learner
or JAL) can always be defeated[Littman, 1994].

Our experimental setup resembles that used by Littman
in order to compare with his results for Minimax-Q. Each
player was trained for one million steps. After training,
its policy was fixed and a challenger using Q-learning was
trained against the player. This determines the learned pol-
icy’s worst-case performance, and gives an idea of how close
the player was to the equilibrium policy, which would per-
form no worse than losing half its games to its challenger.
Unlike Minimax-Q, WoLF-PHC and PHC generally oscillate
around the target solution. In order to account for this in the
results, training was continued for another 250,000 steps and

evaluated after every 50,000 steps. Theworst performing pol-
icy was then used for the value of that learning run.

Figure 3(b) shows the percentage of games won by the
different players when playing their challengers. “Minimax-
Q” represents Minimax-Q when learning against itself (the
results were taken from Littman’s original paper.) “WoLF”
represents WoLF policy hill-climbing learning against itself.
“PHC(L)” and “PHC(W)” represents policy hill-climbing
with δ = δl andδ = δw, respectively. “WoLF(2x)” represents
WoLF policy hill-climbing learning with twice the training
(i.e. two million steps). The performance of the policies were
averaged over fifty training runs and the standard deviations
are shown by the lines beside the bars. The relative ordering
by performance is statistically significant.

WoLF-PHC does extremely well, performing equivalently
to Minimax-Q with the same amount of training2 and contin-
ues to improve with more training. The exact effect of the
WoLF principle can be seen by its out-performance of PHC,
using either the larger or smaller learning rate. This shows
that the success of WoLF-PHC is not simply due to changing
learning rates, but rather to changing the learning rate at the
appropriate time to encourage convergence.

6 Conclusion
In this paper we present two properties, rationality and con-
vergence, that are desirable for a multiagent learning algo-
rithm. We present a new algorithm that uses a variable learn-
ing rate based on the WoLF (“Win or Learn Fast”) princi-
ple. We then showed how this algorithm takes large steps
towards achieving these properties on a number and variety
of stochastic games. The algorithm is rational and is shown
empirically to converge in self-play to an equilibrium even in
games with multiple or mixed policy equilibria, which previ-
ous multiagent reinforcement learners have not achieved.

2The results are not directly comparable due to the use of a dif-
ferent decay of the learning rate. Minimax-Q uses an exponential
decay that decreases too quickly for use with WoLF-PHC.
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