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Abstract In this paper, we decide to compare rational and exponential Legendre functions

Tau approach to solve the governing equations for the flow of a third grade fluid in a porous half

space. Firstly, we estimate an upper bound for function approximation based on mentioned

functions in semi-infinite domain, and discuss that the analytical functions have a superlinear

convergence for these basis. Also the operational matrices of derivative and product of these

functions are presented to reduce the solution of this problem to the solution of a system

of nonlinear algebraic equations. The comparison of the results of rational and exponential

Legendre Tau methods with numerical solution shows the efficiency and accuracy of these

methods. We also make a comparison between these two methods themselves and show that

using exponential functions, leads to more accurate results and faster convergence in this

problem.

Keywords Rational Legendre · Exponential Legendre · Function approximation ·

Tau method · Third grade fluid · Porous half space
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Introduction

In recent years, there has been some interest on flows of non-Newtonian fluids where inertial

effects are significant. Many materials such as polymer solutions or melts, drilling muds,
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clastomers, certain oils and greases and many other emulsions are classified as non-Newtonian

fluids. The fluids of second and third grade have been studied successfully in various types of

flow situations which form a subclass of the fluids of the differential type. The third grade fluid

models even for steady flow exhibits such characteristics. Due to the widespread applications

such as oil recovery, paper and textile coating, composite manufacturing processes, mixture

theory, filtration processes, geothermal engineering and insulation systems, flow through

porous media received substantial attention [1,2].

The present study deals with the problem of non-Newtonian fluid of third grade in a porous

half space [3]. For unidirectional flow, Hayat et al. [3] have generalized the relation

(∇ p)x = −
μϕ

k

(
1 +

α1

μ

∂

∂t

)
u,

for a second grade fluid to the following modified Darcy’s Law for a third grade fluid

(∇ p)x = −
ϕ

k

[
μu + α1

∂u

∂t
+ 2β3

(
∂u

∂y

)2

u

]
,

where u denotes the fluid velocity, μ is the dynamic viscosity and p is the pressure. k and ϕ

represent the permeability and porosity of the porous half space which occupies the region

y > 0, respectively α1 and β3 are material constants. Defining non-dimensional fluid velocity

f and the coordinate z

z =
V0

ν
y, f (z) =

u

V0
,

V0 = u(0), ν =
μ

ρ
,

where ν and V0 represent the kinematic viscosity and the boundary value problem, modeling

the steady state flow of a third grade fluid in a porous half space, becomes as below such as

prime denotes differentiation with respect to z [3]:

f ′′(z) + b1 f ′(z)
2

f ′′(z) − b2 f (z) f ′(z)
2
− c f (z) = 0,

f (0) = 1, lim
z→∞

f (z) = 0, (1)

where b1, b2 and c are defined as:

b1 =
6β3V0

4

μν2
, b2 =

2β3ϕV0
2

kμ
, c =

ϕν2

kV0
2
.

Above parameters are depended, whereof

b2 =
b1c

3
. (2)

Therefore, we can rewrite Eq. (1) as

f ′′(z) + b1 f ′(z)
2

f ′′(z) −
b1c

3
f (z) f ′(z)

2
− c f (z) = 0. (3)

The homotopy analysis method for solution of Eq. (1) is found in [3]. Later Ahmad [4] gave

the asymptotic form of the solution and utilize this information to develop a series solution.

Recently, authors in [5] solved this problem by radial basis functions.

One of the powerful method for solving the ordinary differential equations (ODEs) is

spectral method in both terms of accuracy and simplicity. Spectral methods, in the context of
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numerical schemes for differential equations, generically belong to the family of weighted

residual methods (WRMs) [6]. WRMs represent a particular group of approximation tech-

niques, in which the residuals (or errors) are minimized in a certain way and thereby leading

to specific methods including Galerkin, Petrov–Galerkin, collocation and Tau formulations

[7–13].

The basis of spectral method is always polynomials (orthogonal polynomials). These types

of basis for approximation of enough smooth functions in finite domain leads to the expo-

nential convergence. Many science and engineering problems arise in unbounded domains.

For example the steady flow of a third grade fluid in a porous half space (Eq. (3)). The

orthogonal polynomials such as Legendre, Chebyshev, Hermite and Laguerre polynomials

can not satisfied the steady property of this type of fluid f (∞) = constant . Therefore, a

number of spectral methods for treating unbounded domains have been proposed by different

researchers.

Guo [14,15] proposed a method that proceeds by mapping the original problem in an

unbounded domain to a problem in a bounded domain, and then using suitable Jacobi poly-

nomials to approximate the resulting problems.

There is another effective direct approach for solving such problems is based on ratio-

nal approximations. Christov [16] and Boyd [17,18] developed some spectral methods on

unbounded intervals by using mutually orthogonal systems of rational functions. Boyd [17]

defined a new spectral basis, named rational Chebyshev functions on the semi-infinite inter-

val, by mapping to the Chebyshev polynomials. Guo et al. [19] introduced a new set of

rational Legendre functions which are mutually orthogonal in L2(0,+∞). They applied a

spectral scheme using the rational Legendre functions for solving the Korteweg-de Vries

equation on the half-line. Boyd et al. [20] applied pseudospectral methods on a semi-infinite

interval and compared rational Chebyshev, Laguerre and mapped Fourier sine methods.

Authors of [21–23], applied spectral method to solve nonlinear ordinary differential equa-

tions on semi-infinite intervals. Their approach was based on rational Tau and collocation

methods. In Tau method, they obtained the operational matrices of derivative and product of

rational Chebyshev and Legendre functions and then applied these matrices together to reduce

the solution of these problems to the solution of a system of algebraic equations. The Tau

approach is an approximation technique introduced by Lonczos [24] in 1938 to solve differ-

ential equations. Tau method is based on expanding the required approximate solution as the

elements of a complete set of orthogonal functions. This method may be viewed as a special

case of the so-called Petrov–Galerkin method. But, unlike the Galerkin approximation, the

expansion functions are not required to satisfy the boundary constraint individually [25–30].

In the current paper, our main aim is to apply the Tau method with two basis functions

on the semi-infinite interval for solving the steady flow of a third grade fluid in a porous half

space and compare the results of them together. Also any discussion on the error analysis

of approximation of the function defined in [0,∞) by rational and exponential Legendre

functions have been investigated. In the next section, we obtain an upper bound for estimating

the error of function approximation by these basis functions. And then we show that the error

of these approximation is superlinear convergence.

The remainder of this paper is organized as follows: “Properties of Rational And Expo-

nential Legendre Functions” Section reviews the desirable properties of two functions that

obtain by mapping the Legendre polynomials, namely rational Legendre and exponential

Legendre functions. In “Application of the Methods” Section, we apply Tau method with

two mentioned functions as basis functions separately to solve the problem. we compare our

results together and with numerical solutions in “Results and Discussion” Section. Finally,

“Conclusions” Section makes concluding remarks.
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Properties of Rational and Exponential Legendre Functions

This section is devoted to the introduction of rational and exponential Legendre functions,

that both of them are defined on the semi-infinite interval. Then, the operational matrices of

derivative and their product are given.

Rational Legendre Functions

The Legendre polynomials are orthogonal in the interval [−1, 1] with respect to the weight

function ρ(y) = 1. They can be determined by the following recurrence formula [31]:

P0(y) = 1, P1(y) = y,

Pn+1(y) =

(
2n + 1

n + 1

)
y Pn(y) −

(
n

n + 1

)
Pn−1(y), n ≥ 1. (4)

The following Legendre polynomials property can be helped our discussion in the “Function

Approximation” Section;

1∫

−1

ym Pn(y) dy =

⎧
⎪⎨
⎪⎩

0, m < n,

2n+1n!2

(2n+1)!
, n = m.

(5)

The rational Legendre functions, is denoted by Rn(x) = Pn

(
x−L
x+L

)
, where L is a constant

parameter and sets the length scale of the mapping. Boyd [32] has offered some guidelines

for optimizing the map parameter L .

Rn(x) satisfies in the following recurrence relation:

R0(x) = 1, R1(x) =
x − L

x + L
,

Rn+1(x) =

(
2n + 1

n + 1

) (
x − L

x + L

)
Rn(x) −

(
n

n + 1

)
Rn−1(x), n ≥ 1. (6)

By using above recursive formula the first four rational Legendre functions are obtained

as below: ⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R0(x) = 1,

R1(x) = x−L
x+L

,

R2(x) = 3
2

(
x−L
x+L

)2
− 1

2
,

R3(x) = 5
2

(
x−L
x+L

)3
− 3

2

(
x−L
x+L

)
.

(7)

In Fig. 1 the behavior of these four functions for L = 1 are plotted.

Rational Legendre functions (RL) are orthogonal with respect to the weight function

wr (x) = 2L
(x+L)2 in the interval [0,+∞), with the orthogonality property:

+∞∫

0

Rn(x)Rm(x)wr (x)dx =
2

2n + 1
δnm, (8)

where δnm is the Kronecker function.
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Fig. 1 Graph of four rational Legendre functions for L = 1

Exponential Legendre Functions

Exclusive of rational functions we can use exponential transformation to have new functions

which are also defined on the semi-infinite interval. The exponential Legendre (EL) functions

can be defined by En(x) = Pn (1 − 2exp(−x/L)), where parameter L is a constant parameter

and, like rational functions, it sets the length scale of the mapping.

En(x) satisfies in the following recurrence relation:

E0(x) = 1, E1(x) = 1 − 2exp(−x/L),

En+1(x) =

(
2n + 1

n + 1

)
(1 − 2exp(−x/L)) En(x) −

(
n

n + 1

)
En−1(x), n ≥ 1. (9)

By using above recursive formula the first four exponential Legendre functions are

obtained as below:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E0(x) = 1,

E1(x) = 1 − 2exp(−x/L),

E2(x) = 3
2
[1 − 2exp(−x/L)]2 − 1

2
,

E3(x) = 5
2
[1 − 2exp(−x/L)]3 − 3

2
[1 − 2exp(−x/L)].

(10)

In Fig. 2 the behavior of these four functions for L = 1 are plotted.
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Fig. 2 Graph of four exponential Legendre functions for L = 1

Exponential Legendre functions are orthogonal with respect to the weight function

we(x) = 2
L

exp(−x/L) in the interval [0,+∞), with the orthogonality property, the same as

Eq. (8):

+∞∫

0

En(x)Em(x)we(x)dx =
2

2n + 1
δnm . (11)

Function Approximation

Let w(x) is wr (x) or we(x) denotes a non-negative, integrable, real-valued function over the

interval 	 = [0,∞). We define

L2
w(	) =

{
v : 	 −→ R

∣∣∣∣ v is measurable and ‖v‖w < ∞

}
,

where

‖v‖2
w =

+∞∫

0

v2(x) w(x) dx,

is the norm induced by the inner product of the space L2
w(	),

〈u, v〉w =

+∞∫

0

u(x) v(x) w(x) dx . (12)
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Thus

{
φ j (x)

}

j≥0

, are considered

{
R j (x)

}

j≥0

or

{
E j (x)

}

j≥0

, denotes a system which is

mutually orthogonal under (12), i.e.,

〈φn(x), φm(x)〉w =
2

2n + 1
δnm .

The classical Weierstrass theorem implies that such a system is complete in the space L2
w(	).

Thus, for any function f (x) ∈ L2
w(	) the following expansion holds

f (x) =

+∞∑

j=0

a jφ j (x), (13)

where

a j =
2 j + 1

2

+∞∫

0

φ j (x) f (x)w(x)dx . (14)

If f (x) in Eq. (13) is truncated up to the N th terms, then it can be written as

f (x) ≃ fN (x) =

N−1∑

j=0

a jφ j (x) = AT φ(x), (15)

with

A = [a0, a1, . . . , aN−1]
T ,

φ(x) = R(x) =

[
R0(x), R1(x), . . . , RN−1(x)

]T

(16)

or

φ(x) = E(x) =

[
E0(x), E1(x), . . . , EN−1(x)

]T

. (17)

Now, we can estimate an upper bound for function approximation in a special case. In first,

the error may be defined in the following form

en = ‖ f (x) − fn(x)‖2
w. (18)

The completeness of the system

{
φi (x)

}

i≥0

is equivalent to the following property

fn(x) −→ f (x), en −→ 0 as n −→ ∞.

Lemma 1 The error which is defined in (18) can be rewritten as

en =

∞∑

i=n

2i + 1

2
〈 f (x), φi (x)〉2

w. (19)

Proof The completeness of the system

{
φi (x)

}

i≥0

helped us to consider the error as

en = ‖

∞∑

i=n

aiφi (x)‖2
w.
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Using the definition of ‖.‖w, one has

en =

∞∑

i=n

∞∑

j=n

ai a j 〈φi (x), φ j (x)〉w =

∞∑

i=n

∞∑

j=n

ai a j

2

2i + 1
δi j =

∞∑

i=n

2a2
i

2i + 1
.

And using Eq. (14) the Lemma can be proved. ⊓⊔

This Lemma shows that the convergence rate is involved with function f (x). Now, by

knowing that the function f (x) ∈ L2
w(	) have some good properties, we could present an

upper bound for estimating the error of function approximation by this basis function.

Theorem 1 Let fn(x) is function approximation of f (x) ∈ L2
w(	) obtained by (15) and

F(y) = f (�(y)) is analytic on [−1, 1], then an error bound for this approximation can be

presented as follows:

en ≤

∞∑

i=n

4i+1 M2
i i !2

2(2i)!(2i + 1)!

where

�(y) = L
1 + y

1 − y
or − L ln

(
1 − y

2

)
,

and Mi = Max |F (i)(y)|, y ∈ (−1, 1).

Proof We have the following properties for each case of �(y),

Case 1: �(y) = L
1+y
1−y

, Rn(�(y)) = Pn(y),

wr (�(y)) =
(1−y)2

2L
, dx = 2L

(1−y)2 dy,

Case 2: �(y) = L ln
(

2
1−y

)
, En(�(y)) = Pn(y),

we(�(y)) =
1−y

L
, dx = L

1−y
dy.

By substituting each case in 〈 f (x), φi (x)〉w , one has

〈 f (x), φi (x)〉w =

1∫

−1

F(y) Pi (y) dy.

Also knowing that F(y) is analytic, we have

〈 f (x), φi (x)〉w =

i−1∑

j=0

F
( j)(0)

j !

1∫

−1

y j Pi (y) dy +
F

(i)(ξi )

i !

1∫

−1

yi Pi (y) dy, ξi ∈ (−1, 1).

Using the Legendre polynomials property mentioned in Eq. (5), the above equation can be

rewritten in the following form

〈 f (x), φi (x)〉w =
F

(i)(ξi )

i !

2i+1(i !)2

(2i + 1)!
≤

2i+1i !Mi

(2i + 1)!
.

The theorem can be proved by substituting above inequality in Eq. (19). ⊓⊔
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It may be understood from the previous theorem that any function defined in L2
w(	),

which their mapping under transformation L
1+y
1−y

or L ln
(

2
1−y

)
are analytic, has a series

solution in the form (15) corresponds to a exponential rate of convergence. But with more

discussions, we could get the better result. The next theorem would show that the error defined

in Eq. (18) have superlinear convergence. Firstly, we define the order of convergence is called

superlinear. Among the several definitions, we choose the following one

Definition 1 xn −→ x̄ with superlinear convergence if there is a positive sequence λn −→ 0

and an integer number N such that

|xn+1 − x̄ | ≤ λn |xn − x̄ |, n ≥ N . (20)

Theorem 2 In Theorem 1, let M ≥ Mi , then the error is superlinear convergence to zero.

Proof Using Theorem 1. we have

en ≤ M2
∞∑

i=n

4i+1 i !2

2(2i)!(2i + 1)!
= M2

∞∑

i=n

4i+1i ! i !

2(2i)!!(2i − 1)!!(2i + 1)!!(2i)!!
,

where (2i−1)!! = (2i−1)×(2i−3)×· · ·×3×1 and (2i)!! = 2i×(2i−2)×· · ·×4×2 = 2i i !.

Then one has

en ≤ 2M2
∞∑

i=n

1

(2i − 1)!!(2i + 1)!!
≤ 2M2

∞∑

i=n

1

(2i)!
.

We define xn =
∑∞

i=n 1/(2i)!, and then, there is a positive sequence

λn = 1 −
1

(2n!)
∑∞

i=n
1

(2i)!

−→ 0

that |xn+1| ≤ λn |xn |. Therefore, xn and subsequently en are superlinear convergence to zero.

⊓⊔

According to Theorem 2, any function defined in L2
w([0,∞)), which their mapping under

transformation L
1+y
1−y

or L ln
(

2
1−y

)
are analytic, has a series solution in the form (15) with

the superlinear convergence.

Operational Matrix of Derivative

Derivative Matrix for Rational Legendre Functions

The derivative of the vector R(x) defined in Eq. (16) can be expressed as

R′(x) =
d R

dx
≃ Dr R(x), (21)

where Dr is the N × N operational matrix for the derivative. Differentiating Eq. (6), we

have:

R′
0(x) = 0,

R′
1(x) =

1

L

[
2

3
R0(x) − R1(x) +

1

3
R2(x)

]
,

R′
n+1(x) =

2n + 1

n + 1
(Rn(x) · R1(x))′ −

n

n + 1
R′

n−1(x), n ≥ 1. (22)
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The matrix Dr can be calculated by using Eq. (22). Authors of [21] obtained that this matrix

is a lower?-Hessenberg matrix and can be expressed as Dr = 1
L
(D1 + D2); where D1 is a

tridiagonal matrix with below form:

D1 = diag

(
7i2 − i − 2

2(2i + 1)
, − i,

i(i + 1)

2(2i + 1)

)
, i = 0, . . . , N − 1,

and the di j elements of matrix D2 are obtained from

di j =

{
0, j ≥ i − 1

(−1)i+ j+1(2 j + 1), j < i − 1.
(23)

For N = 6, we have

Dr =
1

L

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
2
3

−1 1
3

0 0 0

−1 12
5

−2 3
5

0 0

1 −3 29
7

−3 6
7

0

−1 3 −5 53
9

−4 10
9

1 −3 5 −7 84
11

−5

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Derivative Matrix for Exponential Legendre Functions

The derivative of the vector E(x) defined in Eq. (17) can be expressed as

E ′(x) =
d E

dx
= De E(x), (24)

where De is the N × N operational matrix for the derivative. Differentiating the Eq. (9), we

get:

E ′
0(x) = 0,

E ′
1(x) =

1

L
[E0(x) − E1(x)] ,

E ′
n+1(x) =

2n + 1

n + 1
(En(x) · E1(x))′ −

n

n + 1
E ′

n−1(x), n ≥ 1. (25)

By using Eq. (25), the matrix De can be generated. The matrix De is a lower-triangular matrix

and can be expressed as De = 1
L
(D̂1 + D̂2); where D̂1 is a diagonal matrix which is obtained

from

D̂1 = diag (−i), i = 0, . . . , N − 1,

and D̂2 is exactly equal to D2, Eq. (23).

for N = 6, we have

De =
1

L

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

1 −1 0 0 0 0

−1 3 −2 0 0 0

1 −3 5 −3 0 0

−1 3 −5 7 −4 0

1 −3 5 −7 9 −5

⎞
⎟⎟⎟⎟⎟⎟⎠

.

As it can be seen, the form of above matrix is simpler than that of the derivation matrix

for R(x). In addition, De is a lower-triangular matrix but Dr is a lower-Hessenberg matrix,
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so more zero elements exists in De. Consequently, it can be computed faster. In the other

hand, the truncated derivative matrix of De exactly satisfies Eq. (24), but Dr doesn’t have

this property. Therefore, the accuracy of the exponential Legendre functions is better to

approximate the function derivatives in [0,∞).

The Product Operational Matrix

Product Matrix for Rational Legendre Functions

The following property of the product of two rational Legendre function vectors will also be

applied:

R(x)RT (x)A ≃ ÃR(x), (26)

where Ã is an N × N product operational matrix for the vector A. Using Eq. (26) and by the

orthogonal property Eq. (8), the elements Ãi j , (i = 0, . . . , N − 1, j = 0, . . . , N − 1) of the

matrix Ã can be calculated from

Ãi j =

(
j +

1

2

) N−1∑

k=0

ak gi jk, (27)

where gi jk is given by

gi jk =

+∞∫

0

Ri (x)R j (x)Rk(x)wr (x)dx .

Also, the product of two rational Legendre functions, Ri (x) and R j (x), can be approximated

as below [33]:

Ri (x)R j (x) =

j∑

l=0

d j−ldldi−l

di+ j−l

(
2i + 2 j − 4l + 1

2i + 2 j − 2l + 1

)
Ri+ j−2l(x), (28)

where dl is obtained by the below formula

dl =
(2l)!

2l(l!)2
, j < i.

Multiplying Eq. (28) by Rk(x)wr (x) integrating from 0 to +∞ and using the orthogonal

property, we have

gi jk =

{
2d j−l dl di−l

(2i+2 j−2l+1)di+ j−l
, k = i + j − 2l; l = 0, 1, . . . , j,

0, k �= i + j − 2l; l = 0, 1, . . . , j.
(29)

Product Matrix for Exponential Legendre Functions

For the product of the two exponential Legendre function vectors we also have:

E(x)ET (x)A ≃ ÃE(x), (30)

in which the elements Ãi j of the matrix Ã are obtained similar to Eq. (27), such as gi jk is

computed the same as Eq. (29).
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Application of the Methods

In this part, we apply the Tau method with rational Legendre and exponential Legendre

functions as basis functions for solving the steady flow of a third grade fluid in a porous half

space, Eq. (3), with initial conditions of Eq. (1).

We consider φ(z) = R(z) in below formulas to apply rational Legendre Tau method (RLT)

and assume φ(z) = E(z) for using exponential Legendre Tau method (ELT) and approximate

the problem.

We express f (z) and f ( j)(z) as below

f (z) ≃ fN (z) =

N−1∑

i=0

aiφi (z) = AT φ(z), (31)

f ( j)(z) ≃ f
( j)

N (z) =

N−1∑

i=0

aiφi
( j)(z) ≃ AT D jφ(z) j = 1, 2, 3, (32)

where D j is the j th power of the matrix Dr or De given in Eqs. (21) or (24).

By using Eqs. (31) and (32), we have

f ′
N (z)

2
f ′′
N (z) ≃ AT Dφ(z)φT (z)DT AφT (z)(D2)T A

= AT Dφ(z)φT (z)UφT (z)V = AT DŨ Ṽ φ(z), (33)

fN (z) f ′
N (z)

2
≃ AT φ(z)φT (z)DT AφT (z)DT A

= AT φ(z)φT (z)UφT (z)U = AT ŨŨφ(z), (34)

where U = DT A, V = (D2)T A and the matrices Ũ and Ṽ can be calculated similarly to

Eqs. (26) or (30).

The functions M(z) for Eq. (3), can be constructed by using Eqs. (31–34). So we have:

M(z) =

[
AT D2 + b1 AT DŨ Ṽ −

b1c

3
AT ŨŨ − cAT

]
φ(z).

Similar to the typical Tau method [26,34] we generate (N−2) algebraic equations by applying

〈M(z), φk(z)〉 =

+∞∫

0

M(z)φk(z)w(z)dz = 0, k = 0, 1, . . . , N − 3, (35)

where w(z) is wr (z) or we(z).

Using Eq. (31) for the boundary conditions in Eq. (1) and we have:

fN (0) = AT φ(0) = 1, lim
z→+∞

fN (z) = lim
z→+∞

AT φ(z) = 0. (36)

Equations (35) and (3) generate a set of N nonlinear algebraic equations. Consequently, the

unknown coefficients ai ’s of the vector A in Eq. (31) can be calculated.

Results and Discussion

In this section, the numerical results of the model equation presented in Eq. (3), obtained

by using RLT and ELT methods. In this problem, the first derivative at zero ( f ′(0)) is an

important point for the numerical solution. In Table 1, the resulting values of f ′(0) that
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Table 1 Comparison f ′(0) of

problem obtained by RLT, ELT,

with shooting method solution by

various parameters b1 and c

b1 c Shooting method RLT ELT

0.3 0.5 −0.691280 −0.691493 −0.691279

0.6 −0.678301 −0.678511 −0.678302

0.9 −0.667327 −0.667528 −0.667327

1.2 −0.657838 −0.658029 −0.657837

0.6 0.3 −0.533303 −0.533545 −0.533302

0.6 −0.738008 −0.738116 −0.738007

0.9 −0.887467 −0.887350 −0.887467

1.2 −1.008653 −1.008516 −1.008653

Fig. 3 Variation of the velocity distribution for the various values of b1 and c = 0.5 obtained by rational

Legendre Tau method

obtained by using the RLT and ELT methods with N = 10 and L = 4 are presented

for some various values of b1 and c. In this Table we made comparison between present

methods and numerical solutions which are obtained by shooting method. The Table shows a

good agreement between two present methods and numerical solutions. But, as can be seen,

ELT method gives us results with higher degree of accuracy than RLT method. By rational

functions, we could reach to the same results of accuracy as ELT method if N be considered

more than 17. So using exponential Legendre functions, provide an effective but simple way

to improve the convergence of the solution by Tau method. Also, this Table shows that for

constant value of c, an increase in b1 leads to a rise in b2 (by using Eq. (2)), f ′(0) and the

velocity. This result is obviously appeared in Figs. 3 and 4. In the other hand, with constant

value of b1 and the increase in c, f ′(0) and the velocity decrease. Subsequently, Figs. 5 and

6 represent the velocity distribution for the various values of the parameter c. Therefore,

increasing or decreasing the value of b2 has no effect on velocity.

Tables 2 and 3 show the comparison of results for f (z) obtained by two proposed methods

and the numerical solution where b1 = 0.6 and c = 0.5 and 0.9, respectively. The relative
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Fig. 4 Variation of the velocity distribution for the various values of b1 and c = 0.5 obtained by exponential

Legendre Tau method

Fig. 5 Variation of the velocity distribution for the various values of c and b1 = 0.6 obtained by rational

Legendre Tau method

errors in these Tables show that by using exponential Legendre functions, we get higher

accurate solution than using rational functions for approximate this problem.

Logarithmic graphs of absolute coefficients |ai | of RLT and ELT functions in the approx-

imate solutions for b1 = 0.6 and c = 0.5 and 0.9, are shown in Figs. 7 and 8, respectively.

These graphs illustrate that the methods have an appropriate convergence rate by small N .

To show the accuracy of this method and give a comparison between rational and expo-

nential Legendre Tau methods, we define the residual functions by using Eq. (3) as

Res(z) = f ′′
N (z) + b1 f ′

N (z)
2

f ′′
N (z) − b2 fN (z) f ′

N (z)
2
− c fN (z).
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Fig. 6 Variation of the velocity distribution for the various values of c and b1 = 0.6 obtained by exponential

Legendre Tau method

Table 2 Comparison of f (z) for problem, between RLT, ELT and Runge–Kutta solution when b1 = 0.6 and

c = 0.5 with N = 10

z Runge–Kutta RLT Relative error ELT Relative error

0.0 1.00000 1.00000 0.00000 1.00000 0.00000

0.2 0.87261 0.87261 0.00000 0.87261 0.00000

0.4 0.76063 0.76063 0.00000 0.76063 0.00000

0.6 0.66243 0.66243 0.00000 0.66243 0.00000

0.8 0.57650 0.57650 0.00000 0.57650 0.00000

1.0 0.50144 0.50143 0.00001 0.50144 0.00000

1.2 0.43595 0.43595 0.00000 0.43595 0.00000

1.6 0.32920 0.32920 0.00000 0.32920 0.00000

2.0 0.24839 0.24837 0.00002 0.24838 0.00001

2.5 0.17455 0.17455 0.00000 0.17455 0.00000

3.0 0.12262 0.12264 0.00002 0.12261 0.00001

3.5 0.08612 0.08617 0.00005 0.08611 0.00001

4.0 0.06048 0.06054 0.00006 0.06047 0.00001

4.5 0.04248 0.04252 0.00004 0.04247 0.00001

5.0 0.02984 0.02984 0.00000 0.02982 0.00002

Now by defining the Eduction norm of Res(z) and knowing that Res(z) ∈ RLM or ELM ,

where the maximum value of M = 3N + 1 and

RL
M = span

{
R0(z), R1(z), . . . , RM (z)

}
,

EL
M = span

{
E0(z), E1(z), . . . , EM (z)

}
.
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Table 3 Comparison of f (z) for problem, between RLT, ELT and Runge–Kutta solution when b1 = 0.6 and

c = 0.9 with N = 10

z Runge–Kutta RLT Relative error ELT Relative error

0.0 1.00000 1.00000 0.00000 1.00000 0.00000

0.2 0.83610 0.83609 0.00001 0.83610 0.00000

0.4 0.69720 0.69721 0.00001 0.69720 0.00000

0.6 0.58014 0.58016 0.00002 0.58014 0.00000

0.8 0.48195 0.48196 0.00001 0.48195 0.00000

1.0 0.39987 0.39987 0.00000 0.39987 0.00000

1.2 0.33148 0.33145 0.00003 0.33148 0.00000

1.6 0.22738 0.22733 0.00005 0.22738 0.00000

2.0 0.15577 0.15575 0.00002 0.15577 0.00000

2.5 0.09700 0.09706 0.00006 0.09700 0.00000

3.0 0.06038 0.06050 0.00012 0.06038 0.00000

3.5 0.03758 0.03770 0.00012 0.03757 0.00001

4.0 0.02338 0.02345 0.00007 0.02338 0.00000

4.5 0.01455 0.01454 0.00001 0.01455 0.00000

5.0 0.00905 0.00896 0.00009 0.00906 0.00001

Fig. 7 Logarithmic graph of absolute coefficients |ai | of the rational Legendre functions when b1 = 0.6

We can determine ‖Res‖2
w by the well-known Gauss quadrature formulation in the forms of

‖Res‖2
w =

∞∫

0

Res2(z) w(z)dz =

M∑

i=0

wi Res2(zi ),
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Fig. 8 Logarithmic graph of absolute coefficients |ai | of the exponential Legendre functions when b1 = 0.6

Fig. 9 Graph of ‖Res‖2 by RLT and ELT methods when b1 = 0.6 and c = 0.5

zi = L
si + 1

1 − si

, wi =
2L

zi (zi + L)2
(
R′

M+1(zi )
)2

, Rational Legendre,

zi = −L ln

(
1 − si

2

)
, wi =

2

L2(e
zi
L − 1)

(
E′

M+1(zi)
)2

, Exponential Legendre

123



696 Int. J. Appl. Comput. Math (2016) 2:679–698

Fig. 10 Graph of ‖Res‖2 by RLT and ELT methods when b1 = 0.6 and c = 0.9

Fig. 11 Graph of ‖Res‖2 of ELT methods by N = 10 and various L when b1 = 0.6 and c = 0.5

and si are zero of M + 1-order of Legendre polynomial.

Figures 9 and 10 show the logarithmic graphs of the ‖Res‖2
w at b1 = 0.6 and c = 0.5 and

0.9 for rational and exponential Legendre Tau methods. These graphs illustrate the accuracy

of the methods. Furthermore, they show that the accuracy of the ELT method is better than
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Fig. 12 Graph of ‖Res‖2 of ELT methods by N = 10 and various L when b1 = 0.6 and c = 0.9

ELT method in this problem. Also in Figs. 11 and 12 the logarithmic graphs of the ‖Res‖2
w

of ELT methods by N = 10 and various values of L are shown. These figures illustrate the

interval that we can choose for L parameter to get applicable result. That is why we select

L = 4 for solving this problem.

Conclusions

In present study, the steady flow of the third grade fluid in a porous half space, is considered.

Based on modified Darcys law, the flow over a suddenly moved flat plate is discussed numer-

ically by using the operational matrices of derivative and product of rational and exponential

Legendre functions together with the Tau method. The influence of various values of para-

meters b1, b2 and c on the velocity profile has been seen. It’s clear that for constant value of

b2, there is a direct relation between b1 and the velocity.
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