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Abstract

Molecular characterization of oncogenic mutations within
genes in the MAPK and PI3K/AKT/mTOR pathways has led to
the rational development of targeted therapies. Combining
BRAF and MEK inhibitors to target two steps in the MAPK
pathway (vertical inhibition) is now standard of care in
advanced-stage melanoma harboring BRAF V600 mutation.
Encouraging results have been seen in several tumor types with
the same mutation, including BRAF V600–mutant non–small
cell lung cancer. Yet similar results in other tumors, such as
colorectal cancer, have not been observed, highlighting the
unique nature of different tumors. Furthermore, considerable
cross talk occurs between signaling pathways, and cancer cells

usually harbor multiple aberrations and/or develop compen-
satory mechanisms that drive resistance. Therefore, it is logical
to target multiple pathways simultaneously (horizontal inhi-
bition) by combining selective inhibitors or engineering multi-
targeted agents. Yet horizontal inhibition has proven to be a
significant challenge, primarily due to dose-limiting toxicities.
This review focuses on ongoing or completed clinical trials with
combination targeted therapies for solid tumors and highlights
the successes and ongoing challenges. Novel strategies to over-
come these obstacles include new delivery technologies, com-
binations with emerging agents, and treatment schedule opti-
mization. Mol Cancer Ther; 17(1); 3–16. �2018 AACR.

Introduction
The MAPK and PI3K/AKT/mTOR cell signaling pathways play

important roles in regulation of cell growth, proliferation, and
survival. Mutations within these pathways are frequently impli-
cated in the pathogenesis of solid tumors (1, 2). Indeed, theMAPK
pathway is dysregulated in approximately one-third of human
cancers (3), and the PI3K/AKTpathway has also been estimated to
be dysregulated in a similar fraction (4). Characterization of these
genetic alterations has led to rational development of inhibitors
that have greatly improved treatment for some tumors (Table 1).

Targeting different steps in the same pathway (vertical inhibi-
tion) with BRAF plusMEK inhibitors has become standard of care
for patients with advanced-stage melanoma harboring BRAF
V600 mutations (5). However, variable patient responses, drug
resistance, and disease progression continue to be challenges
(6–8). In addition, although some other solid tumors such as

colorectal cancer show the same BRAFmutation, in these cancers
BRAF plus MEK inhibitors have not been observed to provide
similar beneficial effects to those observed in melanoma (9).
Clearly, a "one-size-fits-all" approach for treatment of BRAF-
mutant tumors is not appropriate.

Because of the broad cross talk between the MAPK and PI3K/
AKT pathways driven by parallel feedback mechanisms and
common downstream targets (10), targeting of both pathways
(horizontal inhibition) represents a promising strategy. Yet hor-
izontal inhibition is a significant challenge, primarily due to
development of dose-limiting toxicities (DLT) that prevent deliv-
ery of optimal therapeutic concentrations (11, 12). Therefore, a
need remains for novel combinations.

Here we review ongoing or completed clinical trials with
combination targeted therapies for solid tumors. We highlight
some of the ongoing challenges while leveraging the extensive
experience in melanoma. Insights gained in this tumor type may
apply to other solid tumors.

MAPK and PI3K/AKT pathways
The MAPK and PI3K/AKT pathways share common inputs via

receptor tyrosine kinases (RTK)/growth factor receptors (GFR)
andRAS, and interact in an interconnected signaling network (Fig.
1; refs. 1, 13). The key activation step is the binding of a ligand to
an RTK, resulting in the activation of RAS. RAF kinases act as RAS
effectors and ERK activators in oncogenesis (14). Activated ERK
also acts as a form of negative feedback, inhibiting the MAPK
pathway (3). Oncogenic activation of the MAPK pathway can
occur via multiple mechanisms, most of which include increased
activity of RTKs, RAS, or RAF and result in constitutive activation
ofMEK and ERK (3, 13). Activatingmutations in KRAS andNRAS
occur at diverse rates indifferent cancer types (3). The three known

1START San Antonio, START Center for Cancer Care, San Antonio, Texas.
2Department of Oncology, Shanghai East Hospital, Tongji University School of
Medicine, Shanghai, China. 3START Madrid-CIOCC, Centro Integral Oncol�ogico
Clara Campal, Medical Oncology Division, Hospital Universitario Madrid Norte
Sanchinarro, Madrid, Spain.

Note: Supplementary data for this article are available at Molecular Cancer
Therapeutics Online (http://mct.aacrjournals.org/).

Current address forW. Peng:Wei Peng, START Shanhai, Shanghai East Hospital,
Shanghai, China.

Corresponding Author: AnthonyW. Tolcher, START—South Texas Accelerated
Research Therapeutics, LLC, 4383 Medical Drive, Suite 4021, San Antonio, TX
78229. Phone: 210-593-5255; Fax: 210-615-1121; E-mail: atolcher@start.stoh.com

doi: 10.1158/1535-7163.MCT-17-0349

�2018 American Association for Cancer Research.

Molecular
Cancer
Therapeutics

www.aacrjournals.org 3

D
ow

nloaded from
 http://aacrjournals.org/m

ct/article-pdf/17/1/3/1856930/3.pdf by guest on 26 August 2022

http://crossmark.crossref.org/dialog/?doi=10.1158/1535-7163.MCT-17-0349&domain=pdf&date_stamp=2017-12-20


RAF kinase isoforms, CRAF, BRAF, and ARAF, each have distinct
characteristics in tissue distribution, kinase activity, and regula-
tion (14). The BRAF gene is mutated in up to 7% of all human
malignancies (Table 2) (15).

Three classes of PI3Ks exist, each with a unique structure,
cellular distribution, and set of substrates (2, 4). Class I PI3Ks
are divided into classes 1A (activated by RTKs) and 1B (acti-
vated by G-protein–coupled receptors), with class 1A PI3Ks
frequently implicated in oncogenesis. Mechanisms responsible
for aberrant PI3K signaling include receptor amplification or

mutations of RTKs, activating mutations in or amplification of
the catalytic subunits of PI3Ks, and changes to downstream
effectors or regulators. PI3K converts phosphatidylinositol
bisphosphate (PIP2) to phosphatidylinositol trisphosphate
(PIP3), allowing the activation of AKT and downstream mTOR.
Negative regulation of this pathway by the PTEN occurs by
dephosphorylating PIP2 and PIP3 (2). Activation of the PI3K/
AKT pathway can also occur due to mutations to activated RAS,
highlighting the cross talk with the MAPK pathway (Fig. 1;
refs. 2, 4).

Table 1. Targeted therapy in combination trials in cutaneous advanced melanoma (52, 102, 103)

Drug Molecular target PubChem ID

MAPK Pathway
Dabrafenib (GSK2118436) BRAF V600 44462760
Encorafenib (LGX818) BRAF V600 50922675
Vemurafenib (PLX4032) BRAF V600 42611257
Cobimetinib (GDC-0973, XL-518) MEK 16222096
Binimetinib (MEK162) MEK 10288191
PD-0325901 MEK 9826528
Pimasertib (MSC-1936369B, AS-703026) MEK 44187362
Refametinib (BAY 86-9766) MEK 44182295
Selumetinib (AZD6244) MEK 10127622
Trametinib (GSK1120212) MEK 11707110
WX-554 MEK Not listed
RO5126766 (CH5126766) Dual RAF/MEK 16719221

PI3K Pathway
Buparlisib (BKM120) Pan-PI3K 16654980
Copanlisib (BAY-80-6946) Pan-PI3K 24989044
Pictilisib (GDC-0941) Pan-PI3K 17755052
Sonolisib (PX-866) Pan-PI3K 9849735
Alpelisib (BYL-719) PI3K-a 56649450
SAR260301 PI3K-b 49854424
WX-037 PI3Ka Not listed
Everolimus (RAD001) mTOR 6442177
Temsirolimus (CCI-779) mTOR 6918289
Omipalisib (GSK-2126458) (104) Dual PI3K/mTOR 25167777
Dactolisib (BEZ235) Dual PI3K/mTOR 11977753
PF-04691502 Dual PI3K/mTOR 25033539
Voxtalisib (SAR245409) Dual PI3K/mTOR 49867926
Afuresertib (GSK2110183) AKT 46843057
Ipatasertib (GDC-0068) AKT 74078320
MK-2206 AKT 24964624
Uprosertib (GSK2141795) AKT 51042438

Multi-RTK and RAF
Sorafenib (BAY43-9006) RAF kinases and VEGF receptors 216239
RAF265 BRAF and VEGFR-2 11656518
Regorafenib (BAY 73-4506) VEGFR-2 and -3, RET, KIT, PDGFR, RAF kinases 11167602

RTK/GFRs Pathways
Cabozantinib (XL184) RET, MET, VEGFR-1, -2, and -3, KIT, TRKB, FLT-3, AXL, TIE-2 25102847
Lenvatinib (E7080) VEGF-1, -2, -3, FGFR-1, -2, -3, -4, PDGFR-a, KIT, RET 9823820
Pazopanib (GW786034B) VEGFR-1, -2, -3, PDGFR-a, -b, c-KIT 10113978
Cetuximab EGFR 85668777
Capmatinib (INC280) HGFR (c-MET) 25145656
Golvatinib HGFR (c-MET), VEGFR2 16118392
Onartuzumab (MetMAb) HGFR (c-MET) Not listed
Tivantinib (ARQ-197) HGFR (c-MET) 11494412
Ganitumab (AMG 479) IGF-1R Not listed
Bevacizumab VEGF Not listed
MEHD7945A Dual EGFR/HER3 (ErbB3) Not listed
BGJ398 (NVP-BGJ398) pan-FGFR 53235510

CDK Pathway
Palbociclib (PD-0332991) CDK4/6 5330286
Ribociclib (LEE011) CDK4/6 44631912
Voruciclib (P1446A-05) CDK4/6 67409219

Abbreviations: AKT, v-Akt murine thymoma viral oncogene/protein kinase-b; CDK, cyclin-dependent kinase; c-MET, hepatocyte receptor growth receptor (also
HGFR); HGFR, hepatocyte growth factor receptor (also c-MET); PDGFR, platelet-derived growth factor receptor; TRKB, tropomyosin receptor kinase B.
aPI3K specificity has not been reported.
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Downstream of both pathways, the cyclin-dependent kinases
(CDK) are involved in regulation of cell cycles, DNA replication,
and cell division (16). The cyclin-D-CDK4/6-INK4-Rb pathway is
frequently dysregulated in cancers through amplifications
(CCND1, CDK4, CDK6) and loss of negative regulators (i.e.,
p16INK4A).

Although it is useful to think of these pathways in isolation,
downstream interactions, feedback loops, and cross talk exist,

such that therapeutic targeting of one pathway may result in
activation of others as a compensatory mechanism.

Single-agent inhibition
Targeting MAPK pathway with single-agent BRAF inhibitors. The
BRAF V600E pointmutation is themost common BRAFmutation
across all solid tumors and is responsible for substantial increase
in kinase activity (3, 15). For example, in non–small cell lung

Figure 1.

Overview of the MAPK and PI3K/AKT pathways and targeted therapies. These pathways interact to form an interconnected signaling network via shared common
inputs, including receptor tyrosine kinases (RTK)/growth factor receptors (GFR) and RAS. Binding of a ligand to an RTK is the key RAS activation step. In
oncogenesis, RAF kinases act not only as RAS effectors, but also as ERK activators which serve as a form of negative feedback that inhibits the MAPK pathway.
Increased activity of RTKs, RAS, and RAF are among the mechanisms implicated in the oncogenic activation of the MAPK pathway, resulting in constitutive
activation of MEK and ERK. Regarding the PI3K/AKT pathway, AKT and downstream mTOR are activated by the conversion of phosphatidylinositol bisphosphate
(PIP2) to phosphatidylinositol trisphosphate (PIP3) via PI3K. The PTEN acts as a negative regulator of this pathway by dephosphorylating PIP2 and PIP3.
The PI3K/AKT pathway can also be activated by RASmutants and acts as part of the cross-talkmechanismwith theMAPK pathway. Both pathways can be activated
by oncogenic RAS and likely serve a compensatory signaling function in cases where either pathway is inhibited. Abbreviations: CDK, cyclin-dependent kinase;
GFR, growth factor receptor; inhib, inhibitor; RTK, receptor tyrosine kinase. aWX-037 PI3K specificity not reported.
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cancer (NSCLC), where BRAF mutations account for only 1%
to 5% of mutations, the BRAF V600E mutation makes up
approximately 50% of all BRAF mutations (17, 18). The BRAF
gene was shown to be mutated at a high rate in melanoma
(66%) and a lower rate in colorectal cancer (12%) and ovarian
cancer (14%), providing an opportunity to develop selective
targeted therapies for the mutated BRAF protein (19). Initial
studies in melanoma were conducted with the first-generation
oral multikinase inhibitor sorafenib (20, 21). Sorafenib inhi-
bits the activity of CRAF, BRAF-wild type (WT) and BRAF
mutant, as well as multiple RTKs implicated in tumor angio-
genesis and progression (22). In melanoma, sorafenib had
little or no antitumor activity, as a single agent or combined
with chemotherapy (20, 21). However, positive results were
obtained in metastatic renal cell carcinoma (RCC), hepatocel-
lular carcinoma (HCC), and differentiated thyroid carcinoma;
and as a result, sorafenib was approved for use in these cancers
(22). Possible reasons for the lack of clinical activity of sor-
afenib in melanoma include weak direct inhibitory effect on
mutant BRAF at clinically achievable concentrations and/or
compensatory mechanisms resulting in activation of addition-
al signaling pathways (13, 20). Nevertheless, these results
demonstrate the differences in pathophysiology across differ-
ent tumors (20).

Dabrafenib and vemurafenib are highly selective inhibitors of
the V600-mutant BRAF and have demonstrated rapid tumor
regression in approximately half of patients with unresectable or
advancedBRAFV600-mutantmelanomaaswell as improvements
in progression-free survival (PFS), overall survival (OS), and over-
all response rate (ORR) compared with dacarbazine (23–25).
Yet single-agent BRAF inhibitor activity was limited by high
interpatient variability in response, with approximately 15% of
patients demonstrating intrinsic resistance to treatment (26) and,
in the majority of patients with an initial response, acquired
resistance and disease progression (23, 24). BRAF inhibitors are
also associated with certain unique adverse events (AEs; e.g.,
pyrexia, photosensitivity) and secondary hyperproliferative skin

disorders due to paradoxical activation of wild-type BRAF in
nonmelanoma cells (23, 24).

A basket trial recently evaluated vemurafenib in several BRAF-
mutant cancers (27). Preliminary activity was observed inNSCLC,
Erdheim–Chester disease, and Langerhans cell histiocytosis. In
these cancers, histologic context was considered an important
determinant of response in BRAF V600–mutated cancers. In a
phase II study evaluating dabrafenib in patients with previously
treated BRAF V600–positive advanced NSCLC, an ORR of 33%
was observed, with a median duration of response of 9.6 months
(28). Alternatively, in the 5% to 8% of patients with colorectal
cancer who harbor theBRAFV600Emutation, clinical activity was
not observed with vemurafenib treatment, with an ORR of only
5% (29).

Targeting MAPK pathway with single-agent MEK inhibitors. Clin-
ical trials have also evaluated the single-agent MEK inhibitor
trametinib in patients with advanced-stage BRAF-mutant mela-
noma (30–32). Trametinib resulted in improved clinical out-
comes in patients with BRAF V600–mutant melanoma versus
chemotherapy without paradoxical activation of the MAPK path-
way in BRAF-WT cells (32). Yet while there are no head-to-head
trials, the response rate associatedwithMEK inhibition appears to
be inferior to that of BRAF inhibition (23, 24).

Binimetinib (MEK162), another MEK inhibitor, has been eval-
uated in patients with melanoma harboring NRAS or BRAF V600
mutations. Uniquely, binimetinib has shown some activity in
patients with NRAS-mutated melanoma. In the phase III NEMO
study comparing binimetinib versus dacarbazine, the ORR was
15% in patients treated with binimetinib versus 7% in patients
treated with dacarbazine. Binimetinib significantly prolonged the
median PFS versus dacarbazine [2.8 vs. 1.5 months; HR, 0.62
(95% confidence interval (CI), 0.47-0.80); P < 0.001; ref. 33).
However, no significant difference was observed in OS in a
preliminary analysis [11.0 vs. 10.1 months; HR, 1.00 (95% CI,
0.75–1.33); P ¼ 0.499].

Targeting MAPK pathway at other kinases. Currently, no targeted
therapies are approved for RAS-mutated tumors. Mutated ver-
sions ofRAS are themost commononcogenes, reported at 16% to
30% of all human cancers (34). Activating NRAS mutations are
observed in 15% to 25% of melanoma tumors and are associated
with poor prognosis (35, 36). Different cancers show a tendency
to arise from genetic aberrations in different RAS isoforms;
melanoma tends to arise fromNRAS, while colorectal cancer and
lung cancer tend to arise fromKRAS (34). For patients withNRAS-
mutant melanoma, BRAF inhibition can drive paradoxical acti-
vation of MEK–ERK signaling, suggesting that current MAPK
standard-of-care (SOC) combinations (BRAF inhibitors þ MEK
inhibitors) will provide no benefit (37). Therefore, inhibition of
MEK alone has been amajor focus, and, asmentioned previously,
binimetinib has shown some preliminary activity but is not yet
approved (33). In patients with KRAS-mutant colorectal cancer,
two current SOC agents that specifically target this pathway,
cetuximab and panitumumab, have demonstrated essentially no
clinical activity (38, 39). In addition, as with MEK targeting,
ERK targeting further downstream is also attractive. A phase I
dose-escalation study was conducted with the ERK inhibitor
ulixertinib in 27 patients with advanced solid tumors (40). One
patient had a PR, while 7 patients experienced stable disease (SD)
for �3 months.

Table 2. Relative frequency of BRAFmutations by tumor type and frequency of
mutation (adapted from Flaherty and McArthur [Cancer 2010]) (15)

Tumor type
Patients with
BRAF mutation, %

Melanoma 30–70
Papillary thyroid cancer 40–70
Cisplatin-refractory testicular cancer 25
Cholangiocarcinoma 10–20
Colorectal cancer 5–20
Ovarian cancer 5–10
Prostate cancer 5–10
Glioblastoma, NSCLC, HNSCC,
breast cancer, and pancreatic cancer

1–5

BRAF mutation
Percentage of all
BRAF mutations

V600E 97.3
V600K 1
K601Ea 0.4
G469Aa 0.4
D594Ga 0.3
V600R 0.3
L597Va 0.2
aMost common amino acid change reported at these positions; percentage
provided includes all amino acid changes reported for the position.
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Vertical pathway inhibition
Targeting MAPK pathway with combination BRAF and MEK inhi-
bitors. In a preclinical mouse model, combination of BRAF and
MEK inhibitors demonstrated enhanced inhibition of tumor
xenograft growth as well as reduction in paradoxical activation
of the MAPK pathway in BRAF-WT cells (41). The phase I/II study
BRF113220 (NCT01072175) was the first to evaluate dabrafenib
plus trametinib in patients with BRAF V600–mutant melanoma
(42).Whendabrafenib and trametinibwere combined at their full
monotherapy doses DLTs were considered infrequent. Results
from large phase III studies with BRAF plus MEK inhibitors
[dabrafenib plus trametinib, COMBI-d (NCT01584648) and
COMBI-v (NCT01597908); vemurafenib plus cobimetinib,
coBRIM (NCT01689519)] demonstrated higher ORRs and
improvements in median PFS and OS compared with single-
agent BRAF inhibitors, with a manageable safety profile (7, 43,
44). More specifically, the ORR and median PFS and OS in the
COMBI-d study were 69%, 11.0 months, and 25.1 months,
respectively, in the dabrafenib and trametinib group; versus
53%, 8.8 months, and 18.7 months, respectively, in the dabra-
fenib monotherapy group (43). Similar results were seen in the
coBRIM study, including ORR and median PFS and OS of 70%,
12.3 months, and 22.3 months, respectively, in the cobimetinib
and vemurafenib group; versus 50%, 7.2 months, and 17.4
months, respectively, in the vemurafenib monotherapy group
(44). Hyperproliferative cutaneous events were less frequently
observed with combination therapy versus monotherapy, sug-
gesting a reduction in activation of BRAF-WT cells. However, an
increase in some BRAF inhibitor–associated toxicities was
observed. In particular, an increased incidence of pyrexia (25%
with single-agent dabrafenib vs. 52% with dabrafenib plus tra-
metinib) was observed (43). Likewise, increased incidences of
photosensitivity and elevated values from liver function tests
(LFT) were observed with vemurafenib plus cobimetinib com-
pared with vemurafenib alone (44).

A phase III trial (COLUMBUS; NCT01909453) evaluating
encorafenib plus binimetinib in patients with BRAF V600E/K–
mutatedmelanoma recently reported data (45). The combination
of encorafenib plus binimetinib significantly prolonged themedi-
an PFS versus vemurafenib monotherapy [14.9 vs. 7.3 months;
HR, 0.54 (95% CI, 0.41–0.71); P < 0.001].

Although BRAF V600Emutations occur at a low rate in NSCLC
(1%–5%; refs. 17, 18), the BRAF V600E–mutant patient popu-
lation is significant due to the overall incidence of NSCLC, and
these patients currently have limited therapeutic options (17, 46).
In a cohort of 57 patients with previously treated BRAF V600E–
mutant advanced NSCLC from a phase II trial (NCT01336634),
dabrafenib plus trametinib demonstrated clinically meaningful
antitumor activity, with an ORR of 63% and a median PFS of 9.7
months (47). An additional cohort is ongoing to evaluate dab-
rafenib plus trametinib in patients with previously untreated
BRAF V600E–mutant advanced NSCLC. In a real world setting,
patients with BRAF-mutant metastatic NSCLC had response rates
of 23% and 5% in first- and second-line treatment, respectively.
The majority of patients received SOC chemotherapy (48).

Targeting MAPK pathway with combination MEK and ERK inhibi-
tors. ERK provides another downstream point of inhibition, and
ERK inhibition may also reduce the chance for developing feed-
back resistance (49, 50). The binding of BRAF mutants with
intermediate or low kinase activity to form heterodimers has

been shown to result in CRAF activity, thus providing a mecha-
nism for ERK hyperstimulation by BRAF mutants with reduced
kinase activity (13, 14).

A number of ERK inhibitors are currently in development,
including GDC-0994, SCH772984, and ulixertinib. GDC-0994,
a highly selective ERK1/2 inhibitor, has demonstrated activity in
KRAS-mutant and BRAF-mutant mouse models (51) and is being
evaluated in combination with cobimetinib in a phase I trial in
patients with locally advanced or metastatic solid tumors
(NCT02457793; ref. 52). SCH772984 has shown promising
results in a panel of melanoma cell lines, including cells with
innate or acquired resistance to vemurafenib, those with BRAF/
NRAS doublemutations,NRASmutations, and RAS-WT (53, 54).

Targeting MAPK pathway with dual RAF/MEK inhibitors
RO5126766 is a first-in-class, selective dual BRAF/CRAF and

MEK inhibitor currently in early development for advanced solid
tumors (55). Studies in tumor cell lines suggest that RO5126766
may be a good candidate for targeting RAS-mutated tumor cells
(56). RO5126766 was evaluated in a phase I dose-escalation
study in 52 heavily pretreated patients with advanced solid
tumors, most with melanoma (n ¼ 21), colorectal cancer (n ¼
10), or ovarian cancer (n ¼ 6). Tumor shrinkage was observed in
approximately 40% of patients across all tumor types, with 3 PRs
[all in patients with BRAF- (n ¼ 2) or NRAS- (n ¼ 1) mutant
melanoma; ref. 55)]. Seventeen of 39 analyzed tumors contained
mutations in BRAF, NRAS/HRAS, or PI3KCA; 1 patient showed
loss of PTEN staining, while PTENwas intact in the 3 patients who
achieved a PR, indicating PTEN suppression of PI3K/AKTpathway
activation. Common treatment-related toxicities across all dosing
regimens were cutaneous, gastrointestinal, metabolic, and ocular
reactions. No cases of cutaneous squamous cell carcinoma were
reported.

Targeting MAPK pathway and upstream RTKs/GFRs
Overexpression of the EGFR in BRAF-mutated tumors is a

common alteration associated with MAPK pathway inhibition
and acquired resistance to BRAF inhibitors (57).

A recent study profiled 25,019 solid tumors using next-gener-
ation sequencing (58). Overexpression of EGFR in BRAF-mutated
tumors was highest in colorectal cancer (88%), which is known to
have a poor response to BRAF inhibitors, and lowest inmelanoma
(13%), which is known to have a good response. In BRAF V600–
mutant colon tumor cell lines, blockade of EGFR by cetuximab or
gefitinib was synergistic with BRAF inhibition, and in xenograft
models erlotinib was synergistic with BRAF inhibition (57),
suggesting that the use of combination BRAF plus RTK inhibitor
may be a promising approach.

Various multi-RTK inhibitors (RAF265, sorafenib, regorafenib,
cabozantinib, pazopanib, and lenvatinib), selective small-mole-
cule RTK inhibitors (capmatinib, BGJ398, and MEHD7945A),
and mAbs that bind to the extracellular domain of the RTK
(onartuzumab, ganitumab) are in clinical trials in combination
with BRAF or MEK inhibitors (Table 3). RAF265, sorafenib, and
regorafenib also display activity against WT and mutant BRAF in
addition to RTK inhibition.

Combinations of selective RTK inhibitors with MAPK path-
way–targeted agents are also under way. While limited activity in
colorectal cancer has been observed with targeted BRAF and MEK
combination therapy (9), preclinical data suggest that combined
inhibition of the MAPK pathway with upstream inhibition of

Inhibition of the MAPK Pathway in Solid Tumors
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EGFR may be required to maximally inhibit growth of BRAF-
mutated metastatic colorectal cancer (57). Despite controversy,
EGFR mAbs are thought to have little benefit as monotherapy in
BRAF-mutated metastatic colorectal cancer (59). In addition, as
previouslymentioned, treatmentwith vemurafenibmonotherapy
in patients with colorectal cancer who harbor the BRAF V600E
mutation produced anORR of only 5% (29). A phase I/II study of
dabrafenib and trametinib plus an anti-EGFR mAb, panitumu-
mab, was conducted in patients with BRAF-mutant colorectal
cancer (NCT01750918; ref. 60). The confirmed ORR was 10% in
patients treated with dabrafenib plus panitumumab (1 CR and 1
PR) and 21% in patients who received all 3 drugs (1 CR and 18
PRs), suggesting that targeting of EGFR may be able to overcome
some resistance to MAPK pathway inhibition in metastatic colo-
rectal cancer. The incidence of grade 3 or 4 dermatologic toxicity,
for example, acneiform dermatitis in 10% and 18% of patients
with the triplet and trametinib plus panitumumab combinations,
respectively, necessitated dose reductions and interruptions/
delays. Results from the triplet combination therapy were con-
sidered encouraging by the investigators, despite lower activity
than that observedwith dabrafenib plus trametinib inmelanoma.

Several hepatocyte growth factor–receptor (HGFR or c-MET)
inhibitors are being evaluated in combination with RAF and/or
MEK inhibitors, including tivantinib, capmatinib, and golvatinib
(52, 61). In a phase I study of tivantinib plus sorafenib, prelim-
inary anticancer activity was observed in patients with melanoma
[ORR, 26%; disease control rate (DCR), 63%], RCC (ORR, 15%;
DCR, 90%), and HCC (ORR, 10%; DCR, 65%). In patients with
melanoma, the median PFS was 5.4 months in patients with
NRAS mutation and 3.3 months in patients with NRAS-WT or
unknown NRAS status. The safety profile was considered man-
ageable and predictable (61).

Bevacizumab is an inhibitor of VEGF-A that has demonstrated
efficacy across a number of tumor types (62). A phase II studywith
bevacizumab and sorafenib (NCT00387751) was terminated
after 14 of 21 patients were enrolled with no observed responses
and increased toxicity (63). Another studywith bevacizumab plus
vemurafenib and cobimetinib (NCT01495988) in melanoma
was terminated due to slow accrual and toxicity (52).

Other inhibitors of RTKs that are under investigation in
combination with BRAF and/or MEK inhibitors include
MEHD7945A; a dual EGFR/HER3 inhibitor, BGJ398, a pan-
fibroblast growth factor receptor (FGFR) inhibitor, and the
mAbs onartuzumab and ganitumab, which inhibit HGFR and
insulin-like growth factor 1 receptor (IGF-1R), respectively. All
are currently in phase Ib trials (52).

TargetingMAPK pathway and downstream inhibition of cyclin-
dependent kinase pathway

The CDK4/6 pathway acts downstream of the MAPK pathway
and has been reported to be altered or upregulated in 90% of
melanomas (64). In a study by Shain and colleagues, homozy-
gous loss of CDKN2A, a known tumor suppressor, was observed
only in invasive melanoma samples and not at earlier histologic
stages (65). Preclinical studies indicate that combination MEK
plus CDK4/6 inhibition may lead to enhanced antitumor activity
inNRAS-mutant melanoma (66). CDK4/6 inhibitors palbociclib
(PD-0332991), voruciclib (P1446A-05), and ribociclib (LEE011)
are currently being evaluated in combinationwith BRAF andMEK
inhibitors in phase I/II studies. Ribociclib has received break-
through therapy designation from the FDA for the treatment of

hormone receptor–positive (HRþ), human EGFR 2–negative
(HER2�) advanced breast cancer in combination with the aro-
matase inhibitor letrozole (67).

Palbociclib was evaluated in a phase I dose-finding study in
combination with trametinib in patients with BRAF-WT solid
tumors (68) (NCT02065063). Two patients (1 patient with
melanoma and 1 withNRAS-mutant colorectal cancer) had a PR.
The incidence of grade 3 and 4 AEs was 75% and 21%, respec-
tively, and the study was terminated prior to expansion. Another
study (NCT02022982) is evaluating palbociclib plus the MEK
inhibitor PD-0325901 in patients with KRAS-mutated solid
tumors, particularly NSCLC, and is still ongoing (52).

Preliminary data from a phase I trial with voruciclib and
vemurafenib in advanced BRAF-mutantmelanomawere reported
for 9 enrolled patients; 3 patientswere BRAF inhibitor na€�ve, and6
patients had refractory disease (NCT01841463). The combina-
tion was reported to be well tolerated, and responses (1 CR and 2
PRs) were observed in all BRAF inhibitor–na€�ve patients. The
MTDs were not reached, but the study was stopped for nonmed-
ical reasons (69).

Twophase I/II trials are evaluating ribociclib and encorafenib in
patients with BRAF-mutated melanoma (NCT01777776, com-
pleted) and ribociclib with binimetinib in patients with NRAS-
mutated melanoma (NCT01781572, ongoing; ref. 52). Prelimi-
nary data for ribociclib andbinimetinib demonstrated that 5 of 22
patients treated with the 28-day regimen had a confirmed PR, and
the preliminarymedian PFSwas estimated to be 6.7months (70).

As seen, significant advances have been made with vertical
inhibition of the MAPK pathway. Other combinations for targets
upstream and downstream of BRAF and MEK are actively being
pursued, and additional combinations are expected to bring
further benefit to patients.

Horizontal inhibition of MAPK and PI3K/AKT pathways
MAPK and PI3K pathways can both be activated by oncogenic

RAS and appear to provide compensatory signaling when one or
the other is inhibited (1, 71, 72). Loss of PTEN and PI3K pathway
activation is common in BRAF-mutant melanoma and is impli-
cated as a mechanism of acquired resistance to BRAF and MEK
inhibitors (Fig. 1; refs. 73, 74).

Numerous inhibitors that target various levels of the PI3K
pathway are in development, including PI3K, AKT, and mTOR
inhibitors; the mTOR inhibitors everolimus and temsirolimus
have been shown to be effective in the treatment of certain solid
tumors (52, 75, 76). Because there are numerous feedback loops
in the PI3K pathway, inhibition most likely requires targeting
multiple steps of thepathway.Clinical trials are evaluating vertical
inhibition with combinations that target PI3K and mTOR as well
as dual PI3K/mTOR inhibitors. Preclinical studies in tumor cell
lines have suggested that this cotargeting strategy can result in
synergistic inhibition and induction of apoptosis (13, 77). In
addition, horizontal inhibition of MEK and PI3K effector path-
ways may be required to effectively inhibit NRAS-mutant mela-
noma (78).

Targeting MAPK pathway combined with PI3K inhibitors
Several pan-PI3K inhibitors, buparlisib, pictilisib, copanlisib,

and PX-866, are currently in early-phase clinical trials in combi-
nation with MAPK pathway inhibitors in patients with advanced
solid tumors, including melanoma (52). Buparlisib is being
evaluated in combination with the BRAF inhibitor vemurafenib
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(NCT01512251) and MEK inhibitors trametinib
(NCT01155453) and binimetinib (NCT01363232; ref. 52). A
preliminary report of buparlisib plus vemurafenib demonstrated
limited activity in 8 patients, with 1 patient achieving a PR atweek
8 and subsequently progressing with brainmetastases at week 16.
In addition, concerns were raised regarding the tolerability of the
combination (79).

Preliminary results have also been presented from a phase I
study of pictilisib with cobimetinib (NCT00996892; ref. 80). In
78 enrolled patients, DLTs included grade 3 elevations in lipase
and grade 4 elevations in CPK; however, higher doses of pictilisib
were tolerated when cobimetinib was given intermittently, and
toxicities were reported to be similar to those observed in single-
agent phase I trials. Signs of clinical activity were observed; 3
patients had a PR (1 patient with BRAF-mutated melanoma, 1
with BRAF-mutated pancreatic cancer, and 1 with KRAS-mutated
endometrioid cancer), and 5 patients had an SD � 5 months.

Copanlisib was evaluated in combination with the allosteric
MEK inhibitor refametinib in a dose-escalation phase I trial in 49
patients with advanced solid tumors (NCT01392521; ref. 81).
Interestingly, both the MTD and the recommended phase II dose
for the combination were below the MTD of either compound
alone. Preliminary signals of clinical activity were observed; 1
patient with endometrial cancer had a PR, and 9 patients had an
SD. However, another phase I/II trial with PX-866 and vemur-
afenib was terminated early due to slow accrual (NCT01616199;
ref. 52). Finally, thePI3K inhibitorWX-037wasbeing evaluated in
combination with MEK inhibitor WX-554 (NCT01859351), but
the trial was terminated early due to business reasons, and WX-
037 development was discontinued (52).

Isoform-selective PI3K inhibitors may provide better tolerabil-
ity thandual PI3K/mTOR inhibitors or pan-class I PI3K inhibitors;
perhaps allowing for higher dosing and signal pathway inactiva-
tion (82, 83). Two selective PI3K isoform inhibitors, a-specific
alpelisib (BYL719) and b-specific SAR260301, are being evalu-
ated in combination therapy. Alpelisib plus binimetinib is
being evaluated in patients with advanced solid tumors
(NCT01449058); results for this trial are not yet available (52).
Preliminary results from a phase II study comparing the triplet
combination of alpelisib with BRAF inhibitor encorafenib and
EGFR inhibitor cetuximab versus encorafenib plus cetuximab in
patients with BRAF-mutant advanced colorectal cancer demon-
strated promising clinical activity for both combinations (84).
The median PFS was prolonged, although not significantly, with
the triplet combination versus the doublet [5.4 vs. 4.2 months;
HR, 0.69 (95% CI, 0.43–1.11); P ¼ 0.064]; however, the triplet
was associated with increased toxicity (grade 3/4 AEs triplet vs.
doublet, 79% vs. 58%).

Targeting MAPK pathway combined with mTOR inhibitors
Everolimus plus MEK inhibitor trametinib was evaluated in a

phase Ib trial (NCT00955773) in 67 patients with advanced solid
tumors, including pancreatic cancer, colorectal cancer, and mel-
anoma, among others (85). A recommended phase II dose and
schedule of the combination with an acceptable tolerability and
adequate drug exposure could not be identified; therefore, devel-
opment of the combination was terminated.

Temsirolimus plus the MEK inhibitor pimasertib was investi-
gated in a phase Ib trial in patients with advanced solid tumors
(NCT01378377; ref. 52). Results from the study have not been
published; however, the incidence of mucositis, a common DLT

associated with single-agent mTOR inhibitor therapy, was eval-
uated in a retrospective analysis of 3 phase I clinical trials,
including the pimasertib and temsirolimus combination trial
(86). The overall incidence and severity of mucositis with the
temsirolimus-based combination was significantly greater than
with temsirolimus alone. Everolimus plus vemurafenib is cur-
rently being evaluated in a dose-escalation phase I trial in patients
with BRAF-mutated cancer (NCT01596140; ref. 52). Of 20 evalu-
able patients with BRAF-mutant tumors, 4 patients had PR, and 9
had SD. Six of these patients (2with PR, 4with SD)hadpreviously
progressed with single-agent BRAF inhibitor therapy prior to the
addition of everolimus. At the higher everolimus dose (10 mg
once daily) with vemurafenib, the DLTs rash and fatigue occurred
in 3 patients; no DLTs were reported at the lower everolimus dose
(5 mg once daily; ref. 87).

Targeting MAPK pathway combined with dual PI3K/mTOR
inhibitors

In preclinical melanoma models, combining MEK and dual
PI3K/mTOR inhibitorswas shown tohave synergistic activity, and
combination targeting of these signaling pathwayswas effective in
models ofNRAS-mutant melanoma (78). Dactolisib, omipalisib,
voxtalisib, and PF-04691502, target both PI3K and mTOR and
have entered clinical trials in combination with a MEK inhibitor
(Table 4; ref. 52).

Dactolisib combinedwith binimetinibwas evaluated in a dose-
escalation phase I study in patients with advanced solid tumors,
including those with KRAS, NRAS, or BRAF mutations
(NCT01337765); results have not been reported (52). A phase
I trial of omipalisib plus trametinib in patients with advanced
solid tumors was terminated due to lack of tolerability and
efficacy of the combination (NCT01248858). Voxtalisib plus
pimasertib was evaluated in a phase Ib study in 60 patients with
locally advanced or metastatic solid tumors (NCT01390818;
ref. 88). Preliminary results suggested the combination was tol-
erated, and there were signs of clinical activity in 4 patients with
PR [1 patient with KRAS colorectal cancer and 3 with low-grade
ovarian cancer (1 of whom had KRAS-mutant/PIK3CA-mutant
disease and 2ofwhomhadWT; ref. 88)]. An additional expansion
phase is designed to enroll 4 cohorts: patients with dual KRAS/
PIK3CA–mutated CRC, triple-negative breast cancer (TNBC),
KRAS- or NRAS-mutated NSCLC, and BRAF-mutant melanoma.

Targeting MAPK pathway combined with AKT inhibitor
MEK and AKT inhibitor combinations have shown poor tol-

erability, with toxicities limiting administration. The AKT inhibi-
tors afuresertib and uprosertib have been evaluated in dose-
escalation phase I/II trials in combination with trametinib in
patients with advanced solid tumors, including BRAF-mutant and
WT or KRAS-mutant tumors (NCT01476137, NCT01941927,
NCT01138085, and NCT01964924); an additional study evalu-
ated the combination dabrafenib and trametinib plus uprosertib
(NCT01902173). Poor tolerability and limited efficacy was
observed with trametinib plus afuresertib in patients with
advanced solid tumors (11). In patients with TNBC, trametinib
with uprosertib also showed limited efficacy (89).

The AKT inhibitor MK-2206 plus the MEK inhibitor selumeti-
nib was evaluated in a phase I study in patients with locally
advanced or metastatic solid tumors, a high proportion of whom
were KRAS-mutant positive (NCT01021748) (90), and a phase II
study in patients with BRAF V600–mutant advanced melanoma
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(NCT01519427) that was terminated due to slow accrual (52).
Rash and diarrhea limited the dosing, and deescalation of both
agents was needed to improve tolerability of the combination.
Heterogeneity of response was observed in patients with KRAS-
mutant cancers (90).

The combination ipatasertib plus cobimetinibwas evaluated in
a phase I study in 47 patients with advanced solid tumors
(NCT01562275; ref. 91). Antitumor activitywas seen in 3 patients
with PRs (in KRAS-mutant, PTEN-low ovarian cancer; KRAS-
mutant mesonephric cervical cancer; and KRAS-mutant, PTEN-
null endometrial cancer), and prolonged SD (> 6 months) was
observed in both treatment arms in 4 patients, including >16
months in 1patientwithPTEN-null endometrial cancer.Nineteen
patients with PTEN-low- endometrial cancer and TNBC were
enrolled in part 2 of the study. Disease progression or death was
reported in 16 and 3 patients, respectively (52).

Certainly, the rationale for horizontal targeting of complemen-
tary signaling pathways is solid and holds great promise. Finding
the right combinations, doses, and schedules continues to be a
challenge, and additional studies are needed.Mitigation strategies
designed to reduce the increased toxicities observed with hori-
zontal inhibition of the MAPK and PI3K pathways have so far
been unsuccessful; however, tumor-selective delivery using new
technologies may hold promise (92, 93).

Future directions
Agents targeting the MAPK pathway have led to significant

benefit for patients with various tumor types. Immunotherapy
with checkpoint inhibitors that target CTLA-4 and PD-1 is another
therapeutic approach that has been successfully applied to the
treatment of solid tumors (94). Thus, there is considerable interest
in combining immunotherapywith targeted therapy (95, 96). The

Table 4. Clinical trials of horizontal inhibition of MAPK and PI3K pathways and targeted therapy in advanced solid tumors

Molecular targets,
therapeutic agents Studya Phase Patient population Trial statusa,b

BRAF inhibitor þ PI3K inhibitor
Vemurafenib þ buparlisib NCT01512251 (115) 1/2 BRAF V600E/K–mutated unresectable or MM Unknown
Vemurafenib þ PX-866 NCT01616199 1/2 BRAF-mutated advanced cancer, including

melanoma
Terminated due to slow
accrual

Vemurafenib þ SAR260301 NCT01673737 1 Advanced solid tumors and unresectable or
metastatic BRAF-mutated melanoma

Completed

MEK inhibitor þ PI3K inhibitor
Trametinib þ buparlisib NCT01155453 1b Selected advanced solid tumors Completed
Binimetinib þ buparlisib NCT01363232 1b Selected advanced solid tumors On-going
Cobimetinib þ pictilisib NCT00996892 (80) 1b Locally advanced or metastatic solid tumors Terminated
Refametinib þ copanlisib NCT01392521 (81) 1b Advanced solid tumors Completed
Binimetinib þ alpelisib NCT01449058 1b/2 Selected advanced solid tumors On-going
WX-554 þ WX-037 NCT01859351 1 Advanced solid tumors Terminated

BRAF inhibitor þ mTOR inhibitor
Vemurafenib þ everolimus or
temsirolimus

NCT01596140 (116) 1 BRAF-mutated advanced cancer, including
melanoma

On-going

MEK inhibitor þ mTOR inhibitor
Trametinib þ everolimus NCT00955773 (85) 1b Advanced solid tumors Completed
Pimasertib þ temsirolimus NCT01378377 (86) 1 Advanced solid tumors Completed

MEK inhibitor þ Dual PI3K/mTOR inhibitor
Binimetinibþ dactolisib NCT01337765 1b Selected advanced solid tumors Completed
Trametinib þ omipalisib NCT01248858 1 Advanced solid tumors Terminated
Pimasertib þ voxtalisib NCT01390818 (88) 1b Locally advanced or metastatic solid tumors Completed
PD-0325901 þ PF-04691502 NCT01347866 (117) 1 Advanced solid tumor Terminated due to

internal portfolio
review

MEK inhibitor þ AKT inhibitor
Trametinib þ afuresertib NCT01476137 (11) 1/2 Solid tumormalignancy, includingmelanomaand

multiple myeloma
Completed

Trametinib þ uprosertib NCT01941927 (118) 2 BRAF-WT unresectable stage III or IV melanoma Ongoing, not recruiting
NCT01138085 (119) 1 Solid tumorwithKRAS or BRAFmutation or none

specified dependent on tumor type
Completed

NCT01964924 (89) 2 Advanced TNBC Ongoing
Selumetinib þ MK-2206 NCT01021748 (90) 1 Locally advanced or metastatic solid tumors and

expansion in KRAS-mutated solid tumors
Completed

NCT01519427 2 BRAF V600–mutant unresectable, stage III or IV
melanoma that had progressed after therapy
on selective BRAF inhibitor

Terminated due to slow
enrollment

Cobimetinib þ ipatasertib NCT01562275 (91) 1b Locally advanced or metastatic solid tumors Completed
BRAF þ MEK þ AKT inhibitors
Dabrafenib þ trametinib þ
uprosertib

NCT01902173 1/2 BRAF V600–mutated unresectable or metastatic
solid tumors, including melanoma, stage IIIC
or IV

Temporarily stopped for
assessment

Abbreviation: WT, wild type.
aAll studies listed identified in www.clinicaltrials.gov. Trial status based on www.clinicaltrials.gov status, accessed January 25, 2017.
bOngoing studies includes those recruiting and those not recruiting patients.
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triplet combination of targeted therapy (dabrafenib and trame-
tinib) plus immunotherapy (pembrolizumab) is currently being
evaluated in phase I/II trials in patients with BRAF V600–mutant
advanced melanoma (KEYNOTE-022, NCT02130466; ref. 97).
Preliminary data from15patients indicated amanageable toxicity
profile, with 10 patients (67%) experiencing a grade 3 or 4
treatment-related AE and 4 patients (27%) discontinuing due to
treatment-related AEs. The unconfirmed ORR was 60% (9 PR, 2
SD, and 3 PD).

Incorporation of nanoparticle systems may overcome toxicity
associatedwith horizontal inhibition by targeting drug delivery to
the tumor site at therapeutic levels while sparing the rest of the
body from off-target toxicities (98, 99). Polymeric micelles and
liposome nanoparticles have been found to preferentially accu-
mulate in solid tumors. This phenomenon, termed the enhanced
permeability and retention effect, is thought to be due to the
abnormal tumor microenvironment, and researchers are looking
for ways to further manipulate this effect to increase drug delivery
(99). One study evaluating nanoparticle-mediated delivery of
MEK inhibitor PD98059 in a melanoma mouse model showed
significant tumor inhibition over vehicle (100). Another
approach used encapsulated siRNA in nanoliposomes to target
BRAF V600E and AKT3. Combined with low-frequency ultra-
sound, the nanoliposomal siRNA complex penetrated epidermal
and dermal layers in reconstructed skin and decreased early or
invasive cutaneous melanoma (101).

Despite the clinical success of combination strategies in MAPK
pathway–driven solid tumors, a number of challenges remain
moving forward. Perhaps the most substantial challenge is tol-
erability of combination regimens, particularly in efforts to target
both the MAPK and PI3K/AKT pathways. The development of
DLTs has often precluded delivery of optimal therapeutic con-
centrations (11, 12). In addition, a "one-size-fits-all" approach for
treatment of solid tumors harboring MAPK alterations cannot be
applied, because not all solid tumors containing the same BRAF
mutation show the same response to BRAF plus MEK inhibitors
(9). Further challenges with targeted agents in general include
variable patient responses, drug resistance, and disease progres-
sion (6–8). Together, all of these areas will be a focus of intense
research in the coming years and could provide enhanced patient
benefit in the near future.

Conclusions
Advancements in the treatment of tumors with dysregulated

MAPK pathway are a clear example of successes in translational

research. Significant strides have been made with vertical inhi-
bition using BRAF and MEK inhibitors in BRAF V600–mutant
melanoma, and encouraging results have been seen in several
tumor types, including BRAF V600–mutant NSCLC. Limited
responses have been observed in other solid tumors, highlight-
ing the unique nature of different tumors. Clearly, MAPK is a
druggable pathway, and future efforts should continue to
address the unmet need in tumor types with aberrant MAPK
activation. In contrast, horizontal targeting of complementary
signaling pathways that mediate resistance to MAPK targeting
has been difficult, but development of novel agents and com-
binations is ongoing. The systemic toxicity of cancer therapies is
a continual challenge, and novel strategies such as new delivery
technologies, novel combinations with emerging agents, and
treatment-schedule optimization can help to overcome these
obstacles. Overall, targeting of the MAPK pathway is a clinical
success, and continued research to understand the mechanisms
of resistance, as well as to identify patients with other tumor
types that may derive benefit from these agents, is of consid-
erable interest.
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