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Rational Approximates Defined from

Double Power Series

By J. S. R. Chisbolm

Abstract. Rational approximants are defined from double power series in variables x

and y, and it is shown that these approximants have the following properties : (i) they possess

symmetry between x and y; (ii) they are in general unique; (iii) if x = 0 or y = 0, they

reduce to diagonal Padé approximants; (iv) their definition is invariant under the group of

transformations x = Au/(\ — Bu), y = Av/(\ — Cv) with A ^ 0; (v) an approximant

formed from the reciprocal series is the reciprocal of the corresponding original approx-

imant. Possible variations, extensions and generalisations of these results are discussed.

1. Introduction.   When several terms of a power series

(i-i) m = Í2c-,zy
7 =0

are known, forming Padé approximants from the series is frequently an effective way

of approximating the function f(z) represented by the series expansion. References to

several general works on the subject are given ([1], [2], [3], [4]). The (m, n) approximant

In

(1.2) /„.„(z) -  2>0z"/ EVf
a-0 I        ß-0

is defined by the formal identity

(1.3) EV aaz   + o(z     ).

In general, the (m + n + 1) linear equations obtained by equating powers of 1,

z, • • • , zra+n in (1.3) define uniquely the ratios of {aa\ and {bß\, and hence /m,„(z). The

diagonal approximants {/„.„(z)} have proved to be particularly powerful; their

importance stems from certain invariance properties [5], the most important of which

are the following:

(1) If we substitute

(1.4) z =   Aw/(\ - Bw)        (A ^ 0)

in (1.1) and expand the denominator factors (1 — Bw)"1 by the binomial theorem to

give a new series

oo

(1.5) g(w) = y>(w\
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842 J.  S.  R.   CHISHOLM

then the [m/m] Padé approximant gm,m(w) formed from (1.5) obeys

(1.6) gm.m(w) m fm,m(Aw/(\ - Bw)).

In other words, the formation of diagonal approximants is invariant under the group

of homographie transformations defined by (1.4).

(2) If the reciprocal of series (1.1) is

(1.7) f\z)=  J2dsz\
J=0

then the diagonal approximants to /_1(z) are given by

(1.8) fm\m(z) = [/„.«(z)]-1.

If we try to define analogous approximants from a double power series

(1.9) E
a    ß

caßx y
a,0-0

in variables x and y, it seems natural to assume that the numerators and denominators

contain all terms up to a given order in x and y; for example, a [2/2] approximant of

this type would contain terms \,x,y, x2, xy and y2 in both numerator and denomina-

tor. It is easy to see that no formal equation analogous to (1.3) gives the correct

number of linear equations to determine the ratios of the coefficients in the approxi-

mants. Gammel [6] has suggested using a minimisation procedure to determine the

"best possible" values of the coefficients, but it is not clear that Gammel's approxi-

mants share the attractive properties of Padé approximants.

The 2-variable approximants defined in the next section are generalisations of

diagonal Padé approximants, and will be shown to have the following properties:

(i) The approximants are symmetrical between x and y.

(ii) The number of linear equations is equal to the number of ratios of coefficients

to be determined, so that, in general, a unique approximant is defined.

(iii) If x = 0 or y = 0, the approximants become diagonal Padé approximants in

the other variable.

(iv) The formation of the approximants from (1.9) is invariant under all trans-

formations of the group

(l.io) * = t-^-,      y = TAhr      (A*0).
Bu '        '       1 - Cv

(V)lf

(1.11) E   dySxyys
1 ,8-0

is the reciprocal of the series (1.9), then the reciprocal of an approximant defined from

(1.9) is equal to the corresponding approximant defined from (1.11).

Further, we shall see that these are the only approximants satisfying all these

properties, and that the choice of the formal equality is a natural one, given the

conditions (i)-(v). ln Section 4, we shall discuss possible variants and generalisations

of the new approximants.
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2. Definition of the Diagonal Approximants. The approximants are defined to

have a given maximum power in each variable, rather than to have given total maxi-

mum power. The [m/m] approximant is thus of the form

m /     m

(2.1) fm,«(x,y) =   E   "nix*//  E   b„x'yT.
li.V = 0 ' <7,T=0

Without loss of generality, we can normalise the series (1.9) by taking

(2.2) c00 = l;

in general, this will allow us to choose

(2.3) floo = boo = 1.

In this paper, we shall not consider series (1.9) which are not "normal" in the Padé

sense ([1], [4]). The [1/1] approximant, for example, is of the form

,, .. ,    ,      s       1 + a,px + a0,y + a„xy
(2.4) f,,,(x, y) = -—-—- ,

1 + b,0x + b01y + b„xy

with numerator and denominator both bilinear in x and y. The number of coefficients

to be determined in fm,m is, remembering (2.3),

(2.5) 2[(m + l)2 - 1] = 2m2 + 4m.

The most natural extension of (1.3) is the formal equality

(2.6) |E   UV       E W/] =   E   mV + *V"').
L.O-.T-0 JLa,/3 = 0 J P,v0

The last term in (2.6) indicates that coefficients of all terms of total order less than

(2m + 1) are equated. Since (2.2) and (2.3) ensure that the zero order terms are equal,

the number of equations is

2m+l

(2.7) E r = 2m   + 3m,
r = 2

which is m less than the number of unknowns (2.5). We therefore require m further

equations; it is reasonable to obtain these conditions by equating coefficients in (2.6)

of terms of the type

(2.8) xyy2m+1-\

of total order (2m + 1); there are (2m + 2) coefficients of this form. We first note

that it is inconsistent to equate coefficients of x2m+1 and y2m+1 in (2.6); this is most

easily seen by considering (2.6) with y = 0. It is clear that the equation then reduces to

the usual definition of an [m/m] Padé approximant in the variable x, formed by equat-

ing coefficients up to order x2m. In general, one cannot also match the coefficients of

x2m+1. We can therefore only consider the 2m terms of type (2.8) with y = 1, 2, • • • ,

2m. It seems that the only way of obtaining m linear conditions, symmetrical in x

and y, is to equate the sums of coefficients of the m pairs of terms

/r>   rv\ y    2m+l — y 2m+l-7    T / ,      ^ \(2.9) x y ,    x y (y =  1, 2, • • •  , m).
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The justification of this choice is that it defines approximants satisfying all the criteria

(i)-(v)- In Section 4 we shall discuss other possible choices of linear equations.

If we define

(2.10) ayS = byi = 0 (y >  m or 5 >  m),

then the linear equations arising from (2.6) and from the pairs (2.9) are

y      s

(2.11) E E KrCy-.t-r = ayS        (y, ô = 0, 1, 2, • ■ • , 2m; 1 g y + 5 ^ 2m)
er-0    T-0

and

y      s

(2.12) E    E   (birCy-a.S-r   +   brrrCt-r.-,-,)   =    0
ff-0     T=0

(7 =  1,2, •••  , m;y + S = 2m + 1).

Of the Eqs. (2.11), m(m + 2) define the coefficients {ay,} (y, 5 = 0, 1, • • ■ , m),

excluding a00. The remaining m(m + 1) equations, together with the m equations

(2.12), define the m(m + 2) coefficients {b,T}, remembering that boa = 1.

Equation (2.6) is equivalent to the set of Eqs. (2.11). To indicate the additional

equalities (2.12), we amend (2.6) to give

P     m "1 |~      os m

(2.13) E   b,Tx'y\\   E  caßXayß\  =   E   «„*V + <>[*VW"\ ̂V""')].
Lr/,T-0 JLa.|3-0 J ií,v = 0

the symbol "S" denoting symmetrisation.

To exemplify the definition, we shall write down the equations determining f,,,.

Equating coefficients of x, y, xy, x2 and y2 in (2.13) gives, remembering (2.2) and (2.3),

Oio T C,o  =   öio,

Ooi   "T Coi   =   i?oi»

(2.14) b„ + bioCo, + b0,c,o + c„ = a,,,

CioOio "r c20 =  0,

Coi^oi    I   C02  =  0.

These are the five equations (2.11). There is only one equation in the set (2.12), given

by equating the sum of coefficients of x2y, xy2:

(2.15) (c2, + c,2) + (c„ + c02)b,o + (c„ + c20)6oi + (c0, + c,o)b„ = 0.

We note that the equations defining a,0, a0„ b,0 and ba, are just the equations defining

the two [1/1] Padé approximants given by putting y = 0 or x = 0 in (2.6). We have

already noted that this property (iii) follows in general from (2.6) or (2.13) by putting

x = 0 or y = 0.
We further note that in (2.14) and (2.15), the highest order coefficients c,2 and c2,

occur only in the combination (c,2 + c2l). Generally, pairs of highest order coefficients

(ca,2m+i-a, c2m+i_a,ct) occur only in the combinations

(2.16) (C«.2m + l-tr    "t"  C2m+,-a .a)
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in Eqs. (2.12), and do not occur in Eqs. (2.11). This fact will be important in establish-

ing property (v) of the approximants.

3. Invariance Properties. Of the properties (i)-(v) enumerated at the end of

Section 1, (i) and (ii) are satisfied directly by definition of the approximants, and (iii)

was established in Section 2. We shall now establish the important invariance prop-

erties (iv) and (v).

The first step in establishing (iv) is to note that the substitution of (1.10) into the

function (2.1) gives the rational function

m

E   a„,(Aum - BuT-\Av)"(\ - Cv)""'
s \   _   p,v — 0_^^_

gm.m(u, V)   =   —-

E   b„(Au)'(l - Buf-\Avy(\ - Cv)m-r

(3.1)
m

H,v=0_

~*~ m )

E  b'„uv
ff,T = 0

say. The highest powers of u and v in both the numerator and the denominator in

(3.1) are um and vm; gm,m is thus a function of the same form as /m,m. If it can be shown

that gm_m obeys the equation analogous to (2.11) and (2.12), but in variables u and v,

it follows that gm,m is the [m/m] approximant in these variables. The series from which

this [m/m] approximant is defined is obtained by substituting (1.10) into (1.9), giving

and then expanding the factors (1 — Bu)'" and (1 — Cv)~ß (a, ß = 1, 2, • • •) by the

binomial theorem; this procedure defines as many terms as desired of a formal power

series in u, v. We denote this power series by

(3.3) E <4«V-

It is clear that a particular coefficient caß in (3.2) only contributes to coefficients c'(v in

(3.3) which have £ ^ a and y là ß.

If we define a double series

(3.4) E   »j.r*V —   E   a„,x"y" —      E   b.Tx'y E  caßxayß    ,
lx.v-0 Ii.'-0 l_(T,T-0 JLo.i-0 J

Eqs. (2.11) and (2.12) can be expressed as

(3.5) /•„ = 0       (n + vû 2m)

and

(3.6) r(,,2m+1_^ + r2m+1_(l,(l =0,       p = (1, • • • , m).

Remembering (3.1), we see that multiplying (3.4) by (1 - fi«)m(l - Cv)m gives
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E   aß,(Au)\l - Bu)m-\AvY(l - Cv)m"

+      E   b„(Au)'(l - Bu)m-'(Av)r(\ - Cu)m-T
Lf,,r-0 J

[.t-(r^)"(r^)']

=   E  «¡»«V - |  Ê  b'„uVI    ¿ C>VM
M.Í--0 L<t,t=0 JLct,í = 0 J

/-M„« V ,

r, V=0

say. By considering the coefficient of uV in Eq. (3.7), it is not difficult to show that

M *. -t g (m -;+T)(™ - ;+V"- •<-««-*-,-.

(n £ m, v £ m)

and that r¿„ = 0 (p. > m or v > m, p. + v ^ 2m). Using (3.5), it follows that

(3.9) r'„, = 0        (m -fv g 2w).

Similarly, it follows that

(3.10) r£, = ^2m+Vtl,        (,i+v = 2m+ 1).

Thus, (3.6) implies that

(3.11) r¿,2,»+i_,, + **2»+i-m.(. = 0       (j* = 1, • • • , m).

Comparison of (3.9) and (3.11) with (3.5) and (3.6) establishes the invariance of these

equations under transformations of the form (1.10).

We now establish property (v) of Section 1. The reciprocal (1.11) of the double

series (1.9) satisfies the formal equality

(3.12) E cBf*yl|   ¿  d1txyy'I = 1,
La,0-0 JLï.S-O J

so that the coefficients {dy¡} satisfy the "triangular" set of equations

(3.13) EÉfr-r,.-i¿7i = 0 (ß + v^l).
7-0    J=0

If we formally multiply (3.4) by the series (1.11), we obtain

-\ t  d^y'Jt  r„*yl
m m co

(3.14) =    £   brTx'yT -      ¿2   "r*xV        E   dyixy/
ff,T = 0 ]-n,v = 0 Jl_7,5=0 J

=  2-, K'x y .
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Equations (3.5) therefore imply that

(3.15) r'¿ = 0        (ß + v ú 2m)

and that

r", =  — /•„, (ß + v = 2m + 1).

So (3.6) gives

(3.16) rlt2m+,-li -f- /^m+i-n.u = 0.

Equations (3.14), (3.15) and (3.16) show that the [m/m] approximant to the reciprocal

series (1.11) is [/„.„r1.

We have therefore shown that the two-variable approximants satisfy all the prop-

erties (i)-(v). Property (iii) ensures that the approximants will be as powerful as Padé

approximants in regions near x = 0 and y = 0. We expect, however, that property (iv)

will ensure the usefulness of the approximants over large ranges of values of the

complex variables x and y. The transformations of the group (1.10) do not allow

relative changes of scale of x and y; otherwise it allows all independent transformations

of the corresponding Padé invariance groups. This implies that the use of variables

(x, Dy), with D j£ 1, will define different approximants, since the relative weighting of

terms in (2.12) will change. In practice, therefore, we should try to choose D so that

the coefficients in the double series (1.9) have a variation which is roughly symmetrical

between x and y.

4. Variants and Generalisations. By relaxing one or more of the conditions

(i)-(v)> one can invent a number of variants of the approximants defined in Section 2.

If the information we have about the coefficients [cr,\ is unsymmetrical between x

and y, or if we require approximants giving a better representation in one variable than

the other, we could use approximants which lack symmetry between x and y. Two

ways of "breaking symmetry" are:

(a) Using different maximum powers of x and y in the numerator and denominator

polynomials; they could, for example, be linear in x and quadratic in y.

(b) Making an unsymmetrical choice of coefficients which are equated. To give a

simple example, we could replace (2.15) by

Ci2 + c02b,o + c,,b0, + c,ob¡¡,

using only the coefficients of xy2; we do not then need to know c2i.

Another variant which could be considered is:

(c) Using different order numerator and denominator polynomials, analogous to

nondiagonal Padé approximants.

The fact that the approximants are generalisations of diagonal Padé approximants

suggests a wide variety of ways in which properties of Padé approximants might be

extended. In particular, the following investigations suggest themselves:

(d) A study of the numerical accuracy of the approximants to particular functions

of two variables.

(e) A study of the relation between the singularity structures of particular functions

and their approximants.

(f) A search for algorithms.
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(g) Applications to double sequences and to sequences of series.

(h) Studying the relation to the moment problem in two variables, and looking for

an analogue to series of Stieltjes.

(i) Extension of the theory to include double series whose coefficients {caß} are

square matrices.

(j) Investigating the possibility of defining generalised approximants, analogous,

for example, to Gammel-Baker approximants [7].

(k) Defining analogous approximants to series in three or more variables.

The program of work involved in these suggested investigations is very large; one

must therefore be selective in choosing a line of investigation. For this reason, we

have concentrated in this paper upon rational approximants which possess all the

properties (i)-(v). The most immediate task seems to be a numerical investigation of

their accuracy and their singularity structure.
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