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Abstract - The paper describes a general methodology for the 
fitting of measured or calculated frequency domain responses with 
rational function approximations. This is achieved by replacing a set 
of Starting poles with an improved set of poles via a scaling 
procedure. A previous paper [5] has described the application of the 
method to smooth functions using real starting poles. This paper 
extends the method to functions with a high number of resonance 
peaks by allowing complex starting poles. Fundamental properties of 
the method are discussed and details of its practical imptementation 
are described. The method is demonstrated to be very suitable for 
fitting network equivalents and transformer responses. The 
computer code is in the public domain, available from the first 
author. 

1 INTRODUCTION 

One of the problems encountered in power system transients 
modeling is the accurate inclusion of frequency dependent effects 
in a time domain simulation. Such effects arise from eddy currents 
in conducting materials and sometimes from relaxation phenomena 
in dielectrics. These effects materialize as a frequency domain 
variation in the resistance, inductance and capacitance matrices 
used in the formulation of the model. In practice, the frequency 
dependent responses are obtained via calculations or measurements 
as discrete functions of frequency. 

A linear model of a power system component can in general be 
included in a time domain simulation via convolutions between 
terminal quantities (e.g. node voltages) and impulse responses 
characterizing the dynamics of the model. A full numerical 
convolution is always possible, but this becomes computationally 
inefficient because of the many time steps in a simulation. A much 
more efficient implementation is achieved if the frequency domain 
responses are replaced with low order rational function 
approximations, as the convolutions can then be given a recursive 
formulation [l]. The ability of finding a good rational function 
approximation is therefore important in power system modeling. 

In principle, an approximation of a given order can be found by 
fitting a ratio of two polynomials to the data [2]: 

a, + a,s + a2s2 +...+ aNsN 

6, + 6,s + 6,s2+.. .+6,sN 
f (s) = 

Equation (1) is nonlinear in terms of the unknown coefficients but 
can be rewritten as a linear problem of the type A x = b  by 
multiplying both sides with the denominator. However, the 
resulting problem is badly scaled and conditioned as the columns in 
A are multiplied with different powers of s. This limits the method 
to approximations of very low order, particularly if the fitting is 
over a wide frequency range. 
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The difficulty in formulating a general fitting methodology has 
resulted in many methods which are tailored for particular 
problems. For instance, Bode type fitting restricted to real poles 
and zeros has been successfully applied to transmission line 
modeling based on modal characteristics [3]. Transformer models 
and network equivalents need complex poles to represent 
resonance peaks. Such responses have been approximated by fitting 
partial fractions to the data in an optimization procedure, with 
precalculated poles [4]. 

An attempt at formulating a general fitting methodology was 
introduced in [5 ] .  This method-vector fitting-was based on 
doing the approximation in two stages, both with known poles. The 
first stage was carried out with real poles distributed over the 
frequency range bf interest. In addition, an unknown frequency 
dependent scaling parameter was introduced which permitted the 
scaled function to be accurately fitted with the prescribed poles. 
From the fitted function a new set of poles were obtained and then 
used in the second stage in the fitting of the unscaled function. This 
procedure was very successful in fitting the smooth functions 
occurring in transmission line modeling [5-61. However, later 
investigations by the authors have shown that the method fails 
when there are many resonance peaks in the response to be fitted. 

This paper shows that the above mentioned limitations can 
easily be overcome by using complex starting poles. This result is 
demonstrated by numerical examples involving artificially created 
frequency responses, a measured transformer response, and a 
network equivalent. The paper also provides details on the practical 
implementation of vector fitting. 

2 VECTOR FITTING BY POLE RELOCATION 

Consider the rational function approximation 
N 

f(s)= x L + d + s h  (2) 
’-an 

The residues c, and poles a, are either real quantities or come in 
complex conjugate pairs, while d and h are real. The problem at 
hand is to estimate all coefficients in (2) so that a least squares 
approximation of f ( s )  is obtained over a given frequency interval. 
We note that (2) is a nonlinear problem in terms of the unknowns, 
because the unknowns a, appear in the denominator. 

Vector fitting solves the problem (2) sequentially as a linear 
problem in two stages, both times with known poles. 

Stage #l : Dole identification 
Specify a set of starting poles Z, in (2), and multiply f ( s )  with an 
unknown function ~ ( s ) .  In addition we introduce a rational 
approximation for ~ ( s )  . This gives the augmented problem : 

Note that in (3) the rational approximation for ~ ( s )  has the 
same poles as the approximation for ~ ( s )  f (s) . Also, note that the 
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in (2) by a vector. This will result in all elements of the fitted 
vector sharing the same poles. The advantage of using the same 
poles for all elements in a vector is that the time domain 
convolutions for the vector become about twice as fast (see the 
closure to [51). 

3 STARTING POLES 

3.1 Sianificance of staftina Doles 

Successful application of vector fitting requires that the linear 
problem (6) can be solved with sufficient accuracy. In our 
experience, difficulties may arise due to poor starting poles in the 
following ways : 

1) The linear problem (6) becomes ill-conditioned if the starting 
poles are real. This may result in an inaccurate solution. 

2) A large difference between the starting poles and the correct 
poles may result in large variations in a(s) and o(s) f ( s ) .  
Because a least squares approach is used when solving (6), a 
poor fitting may result where these functions are small. 

The first problem is overcome by usage of complex starting poles. 
The second problem is overcome by sensible location of the 
starting poles, and by using the new poles as starting poles in an 
iterative procedure. 

3.2 Recommended DfOCedUre for selectlon of startinu Doles 

Functions with distinct resonance peaks 
The starting poles should be complex conjugate with imaginary 
parts p linearly distributed over the frequency range of interest. 
Each pair is chosen as follows : 

a , = - a + j p ,  a n + , = - a - j p  (9) 

ambiguity in the solution for a@) has been removed by forcing 
a(s) to approach unity at very high frequencies. 

Multiplying the second row in (3) with f ( s )  yields the 
following relation : 

or 

(of)&> = ol , ( s ) f ( s )  6, 
Equation (4) is linear in its unknowns cn,d,h,Zn. Writing (4) for 
several frequency poiqs gives the overdetermined linear problem 

A x = b  (6) 

where the unknowns are in the solution vector x. Equation (6) is 
solved as a least squares problem. Details about the formulation of 
the linear equations is shown in Appendix A. 

A rational function approximation for f ( s )  can now be readily 
obtained from (4). This becomes evideht if each sum of partial 
fractions in (4) is written as a fraction : 

n=l n=l 
From (7) we get 

N&l 

n=l 

Equation (8) shows that the poles of f ( s )  become equal to the 
zeros of a&)! (Note that the starting poles cancel in the division 
process because we use the same starting poles for (afb, and for 
afi,(s) ). Thus, by calculating the zeros of of&) we get a good set 
of poles for fitting the original function f ( s )  . The calculation of 
zeros from the representation by partial fractions (4) is 
straightforward, as shown in Appendix B. 

On occasion, some of the new poles may be unstable. This 
problem is overcome by inverting the sign of their real parts. 

Stage #2 : residue identification 
In principle we could now calculate the residues for f ( s )  directly 
from (8). However, a more accurate result is in general obtained by 
solving the original problem in (2) with the zeros of a(s) as new 
poles a,, for f ( s ) .  This again gives an overdetermined linear 
problem of form Ax = b where the solution vector x contains the 
unknowns c n ,  d and h. It is solved as (A.2) of Appendix A 
(without the negative term). 

General remarks 
Note that the numerator and denominator of a,, have been 
specified in (7) to be of the same order. This has the implication 
that if the starting poles are correct, then the new poles (zeros of 
a,,) become equal to the starting poles (ofi,(s)=l). In practical 
applications, this has the consequence that the rational 
approximation will converge if the new poles are used as starting 
poles in an iterative procedure. 

In (2) an unknown constant term and an unknown proportional 
term are included. It is straightforward to modify the method to 
handle cases were these quantities are known. 

Vector fitting is equally well suited for fitting vectors as it is 
for scalars (hence its name). It is done by replacing the scalar f ( s )  

where 
a=p/100 

This simple procedure produces starting poles with sufficiently 
small real parts, thus avoiding the ill-conditioning problem as is 
explained in section 6. 

Smooth functions 
Use real poles, linearly or logarithmically spaced as function of 
frequency, (The ill-conditioning problem associated with real poles 
will not lead to an inaccurate fitting when f ( s )  is smooth.) 

4 FlmNG NON-SMOOTH FUNCTIONS 

4.1 Freauencv resnons8 

In what follows we consider an artificially created frequency 
response of order 18, defined by (2). The assumed poles, residues, 
constant term and proportional term are given below. 

Table 1 Coefficients of frequency response defined by (2) 
Poles [Hz] Residues [Hz] 
-4500 -3000 
-41000 -83000 
-100 f j5000 -5 f j 7 0 0 0  
-120 f jl5000 -20 f j18000 
-3000 f j35000 6000 rt j45000 
-200 f j45000 40 f j60000 
-1500 f j45000 90 f jlO000 
-500 f j70000 50000 f j80000 
-1000 * j73000 1000 f j45000 
-2000 f j 9 0 0 0 0  -5000 f 92000 
d=O . 2 ,  h=2E-5 



1054 

This response contains 2 real poles and 16 complex poles. Note 
that two complex pairs have poles with identical imaginary parts 
(45000 Hz) but different real parts. The magnitude of the resulting 
function is shown in figure 1. 

U 
0 20 40 60 80 100 

Frequency [kHz] 
Fig. 1 18th order frequency response f ( s )  

4.2 Fittlna with comDlex Doles 

10 pairs of complex starting poles were linearly distributed over the 
frequency range, as explained in section 3.2. The starting poles are 
listed below : 

Table 2 Starting poles 
-1.00E-02 f jl.OOE+OO -5.553+02 f j5.55E+04 
-l.llE+02 f j1.11E+04 -6.663+02 f j6.66E+04 
-2.22E+02 f j2.22E+04 -7.773+02 f j7.77E+04 
-3.333+02 f j3.33E+04 -8.883+02 f j8.88E+04 
-4.443+02 f j4.44E+04 -1.00E+03 f jl.OOE+OS 

Using the starting poles in table 2, the first stage in vector 
fitting was carried out. This produced rational approximations 
of&) and (of)&). The magnitude of the responses is shown in 
figure 2. Also is shown the magnitude of the difference between 
o&)f(s) and ( O ~ ) ~ , , ( S >  which corresponds to the error in (4). The 
difference is seen to be smaller than 1E-10. 

In the second stage in vector fitting, the zeros of csf,,(s) were 
calculated and used as new poles for the fitting of the original 
function f(s) . Figure 3 shows that the resulting approximation for 
f(s) is extremely accurate! The root-mean-square (RMS) error 
was found to be 3.8E-12. Table 3 lists the errors of the values 
obtained for the individual coefficients in table 1. They are all very 
small. 

Table 3 Error in estimate of coefficients in table 1. 
Poles 
1E-07 
-3E-08 
1E-11 f j3E-11 
4E-11 -I j4E-11 
1E-11 f jlE-10 
-4E-11 f j3E-11 
4E-10 f j2E-10 
-4E-11 f jlE-10 
2E-11 f j5E-11 
7E-12 f jlE-10 

Residues 
1E-07 
1E-07 

-2E-09 f j5E-10 
2E-10 f j5E-09 
-lE-08 f jlE-09 
SE-09 f j3E-09 
-lE-08 f jlE-08 
-lE-08 f jlE-08 
-5E-09 f jlE-08 
-9E-09 f jlE-09 

d: -2E-12 h: -5E-18 

In this case we fitted an 18th order function with a 20th order 
approximation. The two "surplus" poles came out with very small 

Poles Residues 
-1.03E-02 3.78E-14 
-1.50E+04 -4.233-07 

The magnitude of the two corresponding partial fractions have both 
a maximum value less than 1E-11. They do in practice not 
contribute to the response and may therefore be removed. 

lo5 r 1 

1 
20 40 60 80 100 

Frequency [kHz] 
Fig. 2 Rational approximations af,,(s) and (af)fi,(s) 

I I 

i - accurate 

C 

deviation 

C 

deviation 

0 20 40 60 80 100 
Frequency [kHz] 

Fig. 3 Fitted function f ( s )  (20th order approximation) 

A very attractive feature of the fitting methodology is that it 
will not fail if one attempts to use a very high order approximation. 
For instance, if one increased the number of linearly spaced 
complex starting poles in table 2 from 20 to 40, the RMS-error 
became 1.6E-12. 

4.3 Flttlna wlth real startina Doles 

As was pointed out in section 3.2, frequency responses with 
resonance peaks should be fitted using complex starting poles. 
However, we now attempt at fitting f ( s )  with 20 real poles, 
linearly spaced over the given frequency interval. 

The error of (4) became large, indicating that of&) is 
inaccurate. This resulted in the new poles to be incorrect and so the 
fitting of f ( s )  became poor, with an RMS-error of 7.1. However, 
several of the new poles were complex. After a few iterations with 
the new poles as starting poles, a very accurate approximation was 
achieved! Table 4 shows how the error in the fitting of f(s) 
decreased during the iterations. 

Table 4 Reduction in error by iteration 
Iteration RMS-error 

1 7.1 
2 1.OE-11 

residues : 3 4.2E-13 
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For starting poles we used 10 linearly spaced complex pairs. 
6 shows the resulting fitting for f ( s )  after 4 iterations. It is 

seen that a fair approximation has been achieved. 

- accurate I 

200 

4.4 Reduced order fittlnq 

In practical applications one often wants to find a low order 
approximation to a high order function. 7 peaks can readily be 
observed in figure 1 ,  so at least 14 poles should be used. Figure 4 
shows the resulting approximation after 3 iterations when using 7 
pairs bf complex starting poles. The deviation is seen to have its 
maximum around 45kHz, where f ( s )  has two complex pairs (see 
table 1). 

1 0' 
accurate - 

Q) : 10' 
CI .- 
E cn 

f loo 

10'' 

?I 

1 ,  

0 20 40 60 ao 100 
Frequency [kHz] 

Fig. 4 14th order approximation of f ( s )  after 3 iterations 

@ I  

In some applications f ( s )  will contain poles outside the frequency 
interval considered in the fitting process. To investigate the effect 
of this we attempt at fitting the response f ( s )  in the range 1Hz- 
6OkHz, so that several poles lie at higher frequencies than the 
frequency interval considered in the fitting. 

Starting poles were obtained by linearly distributing 8 complex 
pairs between 1Hz and 60kHz. Figure 5 shows the resulting fitting 
for f ( s )  in the range 1Hz-100kHz, after 3 iterations. The RMS- 
error for this interval was 3.3E-6, which is still very small. 

I I 

0 20 40 60 80 100 
Frequency [kHz] 

Fig. 5 Fitting f ( s )  between 1Hz and 6OkHz (16th order approx.) 

number of poles to 20. 

4.6 Effect of noise 

We have found that the ability of shifting the starting poles is 
reduced if a significant amount of noise is added to the response. 
Thus, convergence is slow and several iterations may be needed. In 
the following we add to f ( s )  noise which varies randomly 
between -10 and +IO. 

The error further decreased to 3.2E-13 when increasing the 

h . . . . . fitted 
deviation 

n 

150 
? 
n 
Y 

U 0 20 40 60 80 100 
Frequency [kHz] 

Fig. 6 Adding random noise to f ( s )  (20th order approximation) 

The resulting RMS-error between the fitting function and f ( s )  
(including noise) was 5.0. For comparison, the RMS-value of the 
noise alone was 5.3. Table 5 lists how the deviation decreased 
during the iterations. 

Table 5 Reduction in error by iteration 
Iteration RMS-error 

1 18.2 
2 9.5 
3 5 . 3  
4 5.0 

4.7 Sianiflcance of startina Dole location 

In general, the starting poles should be distributed so that the 
considered frequency range is covered. If, for instance, the starting 
poles are confined to a small part of the frequency interval, the 
poles will have to be shifted over a large distance during the fitting 
process. 

Figure 7 shows the resulting approximations af,,(s) and 
(o&,,(s) when using complex starting poles, linearly distributed 
between 1Hz and 20kHz. The functions are seen to have a very 
large variation, and (4) is not well satisfied at high frequencies. 

1 oo I 1 
0 20 40 60 80 1 oo 

Frequency [kHz] 
Fig. 7 Approximation of ofjr(s) and (afifii,(s) using starting 20 

complex starting poles in frequency interval 1Hz - 2OkHz 

The resulting fitting for f ( s )  was poor at high frequencies. 
However, one more iteration with the new poles as starting poles 
reduced the RMS-error from 9.2 to 3.48E-10. (The variation in 
of&) and (ofifj,(s) was greatly reduced by each iteration as more 
poles were shifted towards higher frequencies.) 
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On the other hand, the iteration was much less successhi if 
noise was added to f ( s ) .  When adding the same noise as in 
figure6, no poles were produced for the fitting of the highest 
frequency resonance peak, even after 50 iterations. 

4.8 OPtimalitv of method 

In general, the method of vector fitting will not lead to an optimal 
fitting, as the resulting approximation may depend on the selection 
of starting poles. To explain this, we attempt at fitting f ( s )  in 
figure 1 with only one complex pair. This resulted in one of the 
resonance peaks being fitted. As to which of the peaks was fitted 
depended on the location of the two starting poles. 

However, in the case of smooth functions, we have found 
experimentally that the fitting will (by iteration) converge to a 
result which is independent of the starting pole locations. 

5 FlrnNG SMOOTH FUNCTIONS 

In some applications the frequency responses are very smooth 
functions, without resonance peaks. Examples of this are the modal 
responses for characteristic admittance and propagation 
encountered in transmission line modeling. 

In the following we consider an artificially created 18th order 
function, defined by (2) with parameters as shown below : 

Table 6 Coefficients of frequency response 
Pole Residue Pole Residue 
- 2000 1000 -34000 -12000 
- 4000 -1000 -44000 20000 
- 9000 7000 -48000 41000 
-15000 12000 -56000 8000 
-18000 5000 -64000 15600 
-21000 -12000 -72000 -10000 
-23000 -2000 -79000 -12000 
-29500 1500 -88000 50000 
-33000 31000 -93000 -2000 

d=O, h=O 

Figure 8 shows the resulting fitting for f ( s )  , when using 20 
real starting poles, linearly distributed between 1Hz and 1OOkHz. 
The root-mean-square error was 5.9E-11, which is very small. 

4, 1 

0' I 
0 20 40 60 80 100 

Frequency [kHz] 

Fig. 8 Fitted function f(s) 

However, the parameters in table 6 were not accurately 
reproduced. Table 7 lists the calculated poles. It is seen that the 
poles differ from those in table 6. The reason why an accurate 
fitting was achieved despite an inaccurate solution is related to the 
solution not being well-defined, as will be explained in section 6. 

Table 7 New poles produced by stage #1 in vector fitting. 
-2000  -36843 -58405 -91297 
-4000 -38736 -63158 -94737 
-9001 -47369 -68421 -99146 
-15128 -49859 -73684 -24393 f jl0589 
-30341 -52632 -84211 

Smooth functions can often be fitted quite accurately with a 
very low order approximation. Table 8 shows the accuracy, 
dependent on how many real starting poles have been used (single 
iteration). 

Table 8 Root-mean-square error in approximation of f ( s )  
Order Error 

2 5.1E-2 
4 7.1E-4 
6 3.1E-5 
8 6.23-6 
20 5.9E-11 

It should be noted that complex poles may also be used as 
starting poles for smooth functions. The function f(s) was fitted 
using 10 pairs of complex starting poles linearly distributed 
between 1Hz and 100kHz. This gave an approximation having an 
RMS-error of l.lE-7, which is somewhat less accurate than the 
result obtained with real starting poles (5.9E-11). Also, several of 
the new poles (5 pairs) were complex. 

6 ANALYSIS BY SINGULAR VALUE DECOMPOSITION 

In the first stage of vector fitting we have to solve the linear 

A x = b  (1 1) 

where each row k in A is built from the starting poles a as follows: 

problem 

The accuracy to which (11) can be solved is best analyzed using 
singular value decomposition. This allows A to be factorized : 

A = USVT (13) 

S is a diagonal matrix containing the singular values of A,  and U is 
a matrix with orthogonal columns. Thus, the columns of U may be 
considered as basis functions in the representation of A. There are 
as many singular values as there are columns in A. 

Figure 9 shows the singular values for some of the previous 
examples : 

1) Fitting a response with resonance peaks using 20 complex 
poles (section 4.2). 

2) Fitting a response with resonance peaks using 20 real poles 
(section 4.3). 

3) Fitting a smooth response using 20 complex poles (section 5). 
4) Fitting a smooth response using 20 real poles (section 5). 

From numerical mathematics it is known that the contribution 
to A associated with a small singular value is inaccurately handled 
in the solution process of ( l l ) ,  if its ratio to the largest singular 
value approaches the machine precision, e.g. below 1E-12. 

The pattern of the singular values in figure 9 implies that 
accurate results would be obtained for problem 1). This is exactly 
what we found in section 4.2 : all poles were estimated with very 
high accuracy. 

In problem 2) several of the singular values are very small. This 
implies inaccurate solution of (1 1). This is detrimental because the 
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a resistive network connected to the high voltage terminals. Three 
complex pairs of starting poles were linearly distributed over the 
frequency range in figure 11. The resulting fitting is seen to be 
quite good (5 iterations were used). 

new poles (which are calculated from the solution) must be 
accurately identified for a function with resonance peaks. This is in 
accordance with the results obtained in section 4.3. 

In both problems 3) and 4) there are many small singular 
values which implies inaccurate solution to (12). It was found in 
section 5 that the poles were inaccurately estimated in both cases. 
However, a very accurate fitting was still obtained because smooth 
functions can be approximated quite accurately using slightly 
incorrect poles. 

... . .  ! b ; *  

b b  
.. 
.. ... 

0 10 20 30 40 
Count 

Fig. 9 Singular values of A 

7 APPLICATIONS 

In the following we demonstrate vector fitting for a few 
applications involving frequency responses with resonance peaks. 

&k 

We first consider the positive sequence admittance for a highly 
complex distribution network. In this case, all lines were modeled 
as distributed parameter lines evaluated at 50Hz. Thus, the 
frequency dependent effects are not fully represented. 

Figure 10 shows the resulting fitting after 20 iterations, when 
using 60 pairs of complex starting poles, linearly spaced over the 
given frequency interval. It is seen that a very good approximation 
has been achieved. The RMS-error was 3.8E-3. The error was 
further reduced to 6.OE-4 when increasing the order to 240. 

7.2 Transformer resnonse 

Figure 11 shows the fitted zero sequence admittance of a 
1 lkV/230V transformer, seen from the low voltage terminals with 

ioo r -  3 
~ 1 - measured ...... fitted 

I 
0 1 2 3 4 

Frequency [MHz] 
Fig. 11 Zero sequence transformer admittance (6th order approx.) 

However, the phase angle was not fitted very accurately at low 
frequencies. Therefore, the number of complex starting poles was 
increased from 6 to 30, and 15 iterations were carried out. Figure 
12 shows that a significant improvement has been achieved for the 
phase angle at low frequencies. (The RMS-error for the entire 
frequency interval decreased from 1 .OE-3 to 5.4E-5.) 

measured 
a 6th order approx. % I  30th order approx. \ 
:60} 

-- 
0 0.2 0.4 0.6 0.8 I 

Frequency [MHz] 
Fig. 12 Fitted phase angle at low frequencies 

IO’ 

1 oo 
- accurate 

- 
n 
Y 

9 IO” 
r 
C 
0) 

1 o-2 

I o - ~  0 50 100 150 250 250 300 350 400 450 500 
Frequency [kHz] 

Fig. 10 Positive sequence admittance (120th order approximation) 
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; 
d=l 1 mm 

deviation 

p = 10000 Qrn 
Fig. 13 Transmission line system 

The open circuit line admittance Y(w)= I(w)IV(w) was 
calculated for the overhead line in figure 13, taking frequency 
dependent effects in conductors and earth into account. 

Figures 14 and 15 show the fitted positive- and zero sequence 
admittances, using 36 and 44 complex starting poles, respectively. 
(Two iterations were carried out). The resulting fitting is seen to be 
very accurate. The deviation was further reduced when increasing 
the order. 

IO*! 

- accurate 

c .- 
C 
Fn r" lo8.- 

deviation 

0 20 40 60 80 100 
Frequency [ktiz] 

Fig. 14 Positive sequence admittance (36th order approximation) 

J 

Methodology 
Although the method of vector fitting is very easy to implement in 
a computer program, it may at first glance be difficult to see how 
and why it works so well. To see this we go back to equation (S). 
which is repeated below for convenience : 

(0 f>fi, - 03, f = 0 (14) 

f is a given rational function with unknown poles a, ,  while 
(of)fl, and ofl,-are unknown rational functions with given poles 
&. The poles a,, are specified (starting poles). In order to satisfy 
(14), of,, must have zeros which equal the poles of f , and poles 
which equal the zeros of f . Thus, in the product of,$ the original 
poles a, of f become replaced by the starting poles Z". 
Consequently, both and oriJ get the same poles Em, and 
an accurate solution of (14) exists! After solving (14), the original 

a, of f are calculated as the zeros of ofit.  
f course, accurate solution of (14) requires that the number of 

sfarting poles E,, equals or exceeds the number of poles a, .  If a 
too low order is used, the replacement of poles in f will be 
incomplete, and the solution of (14) will be only an approximation. 

Accuracy 
In principle, a perfectIy accurate approximation should be 

obtained for the response of a rational function when a sufficiently 
high order is used in the fitting process. The results in section 4 for 
an artificially created response showed that extremely accurate 
results were achieved, provided that the starting poles were 
sensibly selected. 

Starting poles should in general be complex with weak 
attenuation, and should cover the frequency range of interest. It 
was shown that even if starting poles were poorly selected, a very 
accurate result was still achieved by reusing the new poles as 
starting poles in an iterative procedure. However, the speed of 
convergence was reduced if the order of the approximation was 
reduced, or noise was added to the response. 

If the considered response f ( s )  is rational, then vector fitting 
will (with a sufficiently high order) give a rational approximation 
whose frequency response almost perfectly matches the original 
one. If in addition the poles of the considered frequency response 
are complex with fairly weak attenuation, then vector fitting is 
capable of recovering the unknown poles and residues with a very 
high accuracy (section 4.2). This in not possible if f ( s )  has dense 
real poles (section 5) as the solution is ill-defined. Nevertheless, the 
poles and residues produced by vector fitting will still give a very 
accurate approximation for the given frequency response. 

It was further shown that the accuracy will not be reduced if 
one tries to use an excessive number of poles. 

In section 7 it was shown that vector fitting gave a good 
approximation for a measured transformer response. Increasing the 
order of the fitting gave a substantial increase in the accuracy for 
the phase angle. This accuracy property may be very useful because 
the passive circuit behavior of an admittance representation could 
be lost in some frequency interval if the admittance is not well 
fitted. Vector fitting was also shown to give very good results for 
the admittance of a highly complex distribution network, and for 
the open circuit admittance of an overhead line. 

Efficiency 
Consider the fitting of a scalar f(s) using N ,  frequency points 
and N poles. This leads to the following operations : 
1) Calculation of new poles : Solving linear system Ax = b , 

where A has dimension 2 N ,  x ( 2 N  + 2 )  . 
2 )  Calculation of zeros : Calculate eigenvalues of matrix of 

dimension N x N .  
3 )  Calculation of residues : Solving linear system Ax = b , where 

A has dimension 2 N ,  x ( N  + 2 ) .  

For the example in section 4 we had N ,  = 100 , N = 20. Using 
Matlab running on Windows NT on a Pentium PC, the above 
problems were solved in 0.04,O.Ol and 0.01 seconds, respectively. 
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12 APPENDICES 

A - Pole Identification 
To simplify notation we will in the following use a instead of E 
for starting poles. Equation (4) can be rewritten as 

9 CONCLUSIONS 

The paper has extended the method of vector fitting to 
applications involving frequency domain responses with resonance 
peaks. This has been achieved by introduction of complex starting 
poles. Important features of the improved vector fitting are : 

The method is very accurate. In the case of an artificially 
created response with known poles and residues, these 
parameters were estimated with extreme accuracy. The method 
was demonstrated to give very accurate results for a measured 
transformer response and a network equivalent with a litrge 
number of resonance peaks. 

Sensible selection of starting poles will in many cases obviate 
the need for iteration. Starting poles should be complex with 
weak attenuation, distributed over the considered frequency 
interval. A recommended procedure for the selection of starting 
poles is given in section 3.2. 

The method is very robust. It will not fail if attempting to use a 
fitting of very high order, or poorly selected starting poles. 

The method is very easy to implement in a computer program. 
It essentially consists of building matrices from simple 
fractions. The resulting matrix problems are solved using 
standard software packages. 

The method is very efficient. Application involves the solving 
of two overdetermined linear matrix equations A x = b  of 
moderate size. 

The method permits matrix elements to be fitted simultaneously 
with identical poles. This permits increased efficiency of the 
time domain convolutions [5 ] .  
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For a given frequency point st we get 

where 

X =  [Cl e.. CN d h E1 ... E N I T ,  bk =f(s,) (A.4) 
Note that Ak and x are row and column vectors, respectively. 

In the case of complex poles, a modification is introduced to 
ensure that the residues come in perfect conjugate pairs. Assume 
that the partial fractions i and i+l constitute a complex pair, i.e., 

U, =a'+ j a ' . , ~ , + ~  =a'- ja",ci =c'+ jc',ci+l =c'- jc"(A.5) 

and AkI+, are modified as 

j j , (A.6) 

This has the effect that the corresponding residues in the solution 
vector x become equal to c' and C' , respectively. 

Writing (A.2) for several frequency points gives an 
overdetermined linear matrix equation : 

A x = b  (A.7) 

In the fitting process we use only positive frequencies. In order to 
preserve the conjugacy property we have to formulate (A.7) in 
terms of real quantities : 

The two corresponding elements 
follows : 

1 1 Ak,i =-+-, Ak,i+l =--- 
sk -ai sk -ai St  -ai Sk -ai 

[;]x=[J 

B - Calculation of zeros 
After solving (A.@, the zeros are calculated as the eigenvalues of 
the matrix 

H = A - b Z T  (B.1) 
where A is a diagonal matrix containing the starting poles and b is 
a column vector of ones. Z T  is a row-vector containing the 
residues for CJ . In the case of a complex pair of poles, the 
corresponding submatrices in (B.l) are modified (via a similarity 
transformation) as follows : 

L 

This modification has the effect that H becomes a real matrix and 
so its complex eigenvalues come out as perfect complex conjugate 
pairs. 
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Discussion 

N. R. Watson (Department of Electrical & Electronic 
Engineering, University of Canterbury, Private Bag 4800, 
Christchurch, New Zealand): The Authors have made a very 
valuable contribution to rational approximation of frequency 
responses. Stability of the rational approximation is an 
important issue. Our experience has been that unstable rational 
approximation results when a higher order than necessary is 
used. Would the authors comment on their method of ensuring 
stability by inverting the sign of the real paft of unstable poles, 
and the effect this has on the accuracy of the fit. How does 
this compare to simply removing the unstable poles? 

Maria Sabrina Sarto (Univ. of Rome "La Sapienza", Rome, 
Italy). The authors should be commended for their interesting 
paper, which gives an important contribution to the long- 
lasting issue concerning the rational approximation of 
transcendent functions. The vector fitting method proposed by 
the authors is particularly useful not only in the modeling of 
power system transients, but in general in the timedomain 
analysis of electromagnetic problems. It can be also 
considered as a general approach to compute numerically the 
inverse Fourier transform of functions describing 
electromagnetic systems in the frequency domain. In fact, 
these functions are often characterized by very broad 
frequency spectra; they can be either smooth functions or can 
have many resonance peaks, so that the calculation of their 
discrete inverse Fourier transform can be expensive and 
inefficient. 

For these reasons, some extra-information concerning the 
practical use of the vector fitting procedure and a few 
theoretical aspects is requested. 

A key point in the iterative procedure seems to be the choice 
of the starting poles. In particular, it is said that "the 
computed approximation may depend on the selection of the 
starting poles". In other words, this means that the iterative 
procedure described in the paper can stop in local minima. 
Have the author investigated about this point? Have they 
experienced the efficiency of a different approach to solve this 
problem? 

An other point concerns the approximation of smooth 
functions having very broad frequency spectra. It is observed, 
as it is said in the paper, that such functions, without 
resonance peaks can be fitted rather accurately with low order 
approximations, by using real poles preferably. However, if 
the approximation is required in a wide frequency range and 
the order of the rational fitting function is increased, high- 
frequency complex poles appear. Comments of the authors 
above this point would be greatly appreciated. 

The last point that is addressed to the authors is the 
following. It seems that often the order of the rational fitting 
is merely related to the desired accuracy of the 
approximation: the higher is the order of the rational 

approximation, the higher is the accuracy. It would be useful 
if the authors can give any guideline concerning the 
maximum number of poles to consider in the fitting and the 
best choice of the number of the exact function samples to use 
in the iterative procedure. 

Finally, the authors are asked to provide more specific 
information about the formulation of the method for vectors. 
Manuscript received April 9, 1998. 

Bjern Gustavsen and Adam Semlyen: We wish to thank Drs. 
Watson and Sarto for their valuable comments and useful 
contributions. We offer the following clarifications. 
1- 

In Vector Fitting, unstable poles may occur incidentally during the 
first iteration(s) because the new set of poles is generally very 
different from the previous one. The unstable poles vanish as the 
method converges. Thus, if unstable poles were to be deleted in each 
iteration, the order of the fitting could become lower than intended. 
This problem can be overcome in at least two different ways : 
1) In each iteration, flip unstable poles into the left half plane (used 

in this paper) 
2) Accept unstable poles in the iterations. Then make a final iteration 

in which any unstable poles are deleted. 

The two procedures work equally well, and our implementation of 
Vector Fitting allows both. In the normal situation (where the final 
result does not contain unstable poles) the two approaches will arrive 
at practically the same result. 

Unstable poles in the final result may indeed occur when using a 
very high order fitting. Regarding the accuracy, we find there is little 
difference between the two approaches. We have previously used the 
pole deleting technique in [ 5 ] .  

In reply to Dr. Sarto : 

Choice of starting d e s  
It is correct that the computed approximation may depend on the 
selected starting poles. However, this is of concern only for functions 
with resonance peaks when we use a too low order. For instance, if 
there are n dominant resonance peaks in the considered frequency 
interval, then at least 2n poles should be used for the approximation. 
If we use a lower order, it will not be possible to fit all of the peaks. 
In such situations we have found that the choice of starting poles may 
have an influence on which of the resonance peaks will be fitted. In 
practice this will not be a problem as one will require a reasonably 
good approximation and thus a sufficiently high order. 

The main reason why we talk about the selection of starting poles 
is that a good choice reduces the number of iterations that are needed 
for the method to converge. At some time we tried to scan the 
frequency response, followed by an assignment of starting poles to 
each resonance peak. In addition, a few extra poles were distributed 
over the considered frequency range. This procedure gave a very fast 
convergence. However, we found that by simply distributing the poles 
as described in this paper, we achieved an acceptable speed of 
convergence. We chose the latter method for its simplicity. 

Smooth functions with broad frauencv SDectrum 
Even though real poles are eminently suited for the fitting of smooth 
functions, they are sometimes complemented with complex poles 
having strong attenuation. We often encounter such poles when fitting 
modal propagation functions for transmission lines. The complex 
poles then occur at high frequencies near the "toe portion" of the 
response. It appears that the complex poles are more suited than real 
poles in producing the strong attenuation required at high frequencies. 
Auulication to vectors 
The paper shows the formulation of Vector Fitting for scalar 
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Order RMSI Order RMSZ 

functions. However, Vector Fitting can also be applied directly to 
vector functions, with the assumption that all elements in the vector 
have identical poles. The vector formulation is shown below for the 
case that the vector consists of two elements. (The generalization to 
vectors with more elements is straightforward.) 

RMSZ/RMSI 

- f =[;I 
Using the same starting poles for both vector elements, and a 

common scaling function a , equation (A.l) now becomes : 

where superscripts 1 and 2 for the residues refer to element 1 and 2, 
respectively. (The d and h terms in (A.l) have been neglected for 
simplicity.) 

For a given frequency point Sk we get : 

where 

Selection of aDDroximation order and frauencv samDles 
The samples should be chosen so densely that the frequency response 
is fully resolved. In addition, one should always use at least as many 
frequency samples as there are poles, in order to get an 
overdetermined problem. Otherwise, spurious poles may arise which 
leads to highly inaccurate behaviour between frequency samples. 

Sometimes one may want to achieve high accuracy at certain 
frequency points or frequency intervals. This can easily be achieved 
by weighting the rows of the least squares problem (At and bk in (1 8) 
and (19)). For instance, in figure 17 one may consider to increase the 
accuracy at low frequencies at the expense of the accuracy at high 
frequencies. Figure 18 shows the same result as in figure 17,when the 
rows have been muliplied with the inverse of the magnitu e of 
the off-diagonal elements. 
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Fig. 16 500 kV DC line in parallel with two 300 kV lines. 
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Fig. 17 First column of H fitted using 10 poles. ( = IOOnm ) 
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