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Rational Basis Functions in Iterative Learning Control—
With Experimental Verification on a Motion System

Joost Bolder and Tom Oomen

Abstract— Iterative learning control (ILC) approaches often exhibit

poor extrapolation properties with respect to exogenous signals, such

as setpoint variations. This brief introduces rational basis functions
in ILC. Such rational basis functions have the potential to both increase

performance and enhance the extrapolation properties. The key difficulty

that is associated with these rational basis functions lies in a signifi-

cantly more complex optimization problem when compared with using
preexisting polynomial basis functions. In this brief, a new iterative

optimization algorithm is proposed that enables the use of rational basis

functions in ILC for single-input single-output systems. An experimental
case study confirms the advantages of rational basis functions compared

with preexisting results, as well as the effectiveness of the proposed

iterative algorithm.

Index Terms— Basis functions, iterative learning control (ILC),

optimal control.

I. INTRODUCTION

Learning control is used in many motion systems. Examples

include additive manufacturing machines [1], [2], robotic arms [3],

printing systems [4], pick and place machines, electron microscopes,

and wafer stages [5]–[7]. The often repetitive tasks for these systems

typically vary to some degree to address tolerances in the products

being processed.

Iterative learning control (ILC) [8] can significantly enhance the

performance of systems that perform repeated tasks. After each

repetition, the command signal for the next repetition is updated

by learning from past executions. A key assumption in ILC is

that the task of the system is invariant under the repetitions. As a

consequence, the learned command signal is optimal for the specific

task only. In general, extrapolation of the learned command signal to

other tasks leads to a significant performance deterioration [6].

Several approaches have been proposed to enhance the extrap-

olation properties of ILC to a class of reference signals. In [5],

a segmented approach to ILC is presented and applied to a wafer

stage. This approach is further extended in [2], where the complete

task is divided into subtasks that are learned individually. The use of

such a signal library is restricting in the sense that tasks are required

to consist of standardized building blocks. Instead of using a signal

library, in [9]–[11], the extrapolation properties of ILC are enhanced

through the use of basis functions. These basis functions can be used

to parameterize the ILC command signal in terms of the task.

The preexisting results [4], [6] employ so-called polynomial basis

functions. These polynomial basis functions can be interpreted as
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parameterizing the command signal in terms of the reference using

a finite impulse response (FIR) filter. Importantly, such polynomial

basis functions retain the analytic solution of the ILC as obtained

in [8]. In [6], the polynomial basis functions in [12] are implemented

in the ILC framework of [9] and successfully applied to an industrial

wafer stage system, whereas in [4] an application to a wide-format

printer application is reported. Finally, extensions of the approach

toward input shaping are presented in [13].

Although the use of polynomial basis functions enhances the

extrapolation properties of ILC algorithms, the polynomial nature

of the basis functions severely limits the achievable performance

and extrapolation properties. The basis functions typically constitute

an approximate model inverse of the true system [14], [15]. The

use of polynomial basis functions implies that a perfect inverse can

be obtained only if the system has a unit numerator. Since many

physical systems are modeled using rational models, containing both

poles and zeros, this implies that existing results necessarily lead

to undermodeling in the model inverses. Consequently, both the

achievable performance and extrapolation properties are limited.

This brief aims to introduce a new ILC framework that can achieve

improved performance and extrapolation properties for the class of

single-input single-output rational systems. To this end, this brief

introduces rational basis functions in ILC. The key feature is that

both the numerator and denominator of the rational structure are

parameterized, hence allowing both zeros and poles in obtaining the

model inverse. The technical difficulty associated with these basis

functions is that the analytic solution of standard optimal ILC [8]

and the basis function approach in [9] is lost. In fact, the resulting

optimization problem is nonconvex, in general.

The main and novel contribution of this brief is the introduction

of rational basis functions in ILC, and a new parameter update

solution that resorts to a sequence of optimization problems with

an analytic solution. Interestingly, the results in [6], [9], and [13]

are directly recovered as a special case of the novel results. The

proposed solution has strong connections to common algorithms in

both time domain system identification [16] and frequency domain

system identification [17], [18].

The notation that is used in this brief is introduced in Section II.

In Section III, the problem formulation is formally stated. Then,

in Section IV, the new parameterization is proposed, followed

by an analysis of its consequences for the optimization problem

(Section IV-A). Section IV-B contains a novel iterative solution to

the optimization problem, which constitutes the main contribution of

this brief. Section V establishes connections to preexisting results that

employ basis functions in ILC. In Section VI, an experimental case

study is presented that reveals the advantages of employing rational

basis functions and efficacy of the proposed iterative solution.

II. PRELIMINARIES

A discrete-time transfer function is denoted as H(z), with z a

complex indeterminate. The i th element of a vector θ is expressed

as θ[i]. A matrix B ∈ R
n×n is defined positive (semi)definite iff

1063-6536 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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xT Bx ≥ 0, ∀x �= 0 ∈ R
n and is denoted as B � 0. For a vector x ,

the weighted 2-norm is ||x||W = xT W x .

All signals and systems are discrete time and often implicitly

assumed of length n. Given a system H(z), and input and output

vectors u, y ∈ R
n×1. Let h(t), t ∈ Z be the infinite-time impulse

response vector of H(z). Then, the finite-time response of H to u is

given by the truncated convolution

y[t] =

t
∑

l=1−n

h(l)u[t − l]

with 0 ≤ t < n, and zero initial conditions. This finite-time

convolution is written as
⎡

⎢
⎢
⎢
⎣

y[0]

y[1]

...

y[n − 1]

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

y

=

⎡

⎢
⎢
⎢
⎣

h(0) h(−1) ... h(1−n)

h(1) h(0) ... h(2−n)

...
. . .

...
h(n−1) h(n−2) ... h(0)

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

H

⎡

⎢
⎢
⎢
⎣

u[0]

u[1]

...

u[n − 1]

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

u

with H the convolution matrix corresponding to H(z), and u, y the

input and output vectors. Note that H(z) is not restricted to be

a causal system.

Given a transfer function with parametric coefficients

H(θ, z) =

m
∑

i=1

ξi (z)θ[i]

with parameters θ ∈ R
m×1, and basis functions ξi (z), here i =

1, 2, . . . , m. The finite-time response of H to input u is given by

y = �Huθ (1)

with �Hu = [ξ1u, ξ2u, . . . , ξmu] ∈ R
n×m , here ξi ∈ R

n×n are

the convolution matrices corresponding to ξi (z). Note that (1) is

equivalent to y = H(θ)u, with H(θ) the convolution matrix of

H(θ, z).

As an example, let n = 4, ξ1(z) = 1 and ξ2(z) = z−1, then

H(θ, z) = θ[1] + z−1θ[2], and accordingly

H(θ) =

⎡

⎢
⎢
⎣

θ[1] 0 0 0

θ[2] θ[1] 0 0

0 θ[2] θ[1] 0

0 0 θ[2] θ[1]

⎤

⎥
⎥
⎦
, �Hu =

⎡

⎢
⎢
⎣

u(1) 0

u(2) u(1)

u(3) u(2)

u(4) u(3)

⎤

⎥
⎥
⎦

.

III. PROBLEM FORMULATION

In this section, the problem addressed in this brief is defined in

detail. First, in Section III-A, the general ILC setup is introduced.

Then, in Section III-B, optimization-based ILC is introduced. This is

further tailored toward polynomial basis functions in Section III-C,

followed by a definition of the problem that is addressed in this brief.

A. Problem Setup

The considered ILC setup is shown in Fig. 1. The setup consists

of a feedback controller C , and system P0. Both are assumed linear

time invariant (LTI), causal, and single-input single-output. During

an experiment with index j and length n, the reference r and system

output y j are measured. The feedforward signal is denoted f j . Note

from Fig. 1 that

e j = S0r − P0S0 f j (2)

with S0 := (I + C P0)−1 the sensitivity. In ILC, the feedforward is

generated by learning from measured data of previous experiments,

Fig. 1. ILC setup.

also called trials. The objective is to minimize e j+1, i.e., the predicted

tracking error for the next experiment. From (2), it follows that:

e j+1 = S0r − P0 S0 f j+1. (3)

Since r is constant, S0r is eliminated from (2) and (3), yielding the

error propagation from trial j to trial j + 1

e j+1 = e j − P0S0( f j+1 − f j ). (4)

B. Norm-Optimal ILC

Norm-optimal ILC is an important class of ILC algorithms, where

f j+1 is determined from the solution of an optimization problem,

see [8], [19], [20]. Further extension, namely constrained optimization

is considered in [21] and [22], which can for instance be used to

prevent actuator saturation.

The optimization criterion in norm-optimal ILC is typically defined

as follows.

Definition 1 (Norm-Optimal ILC): The optimization criterion for

norm-optimal ILC algorithms is given by

J ( f j+1) := ||e j+1||We
+ || f j+1||W f

+ || f j+1 − f j ||W� f
(5)

with We ≻ 0, and W f , W� f � 0.

In (5), We ≻ 0, and W f , W� f � 0 are user-defined weighting

matrices to specify performance and robustness objectives, including:

1) robustness with respect to model uncertainty (W f ) and 2) conver-

gence speed and sensitivity to trial varying disturbances (W� f ). The

corresponding feedforward update is given by

f j+1 = arg min
f j+1

J ( f j+1). (6)

The solution to (6) can be computed analytically from measurements

e j and f j , given a model P S, since (5) is a quadratic function

in f j+1. The advantage of using a model in ILC in comparison

to model-based feedback approaches is the significant performance

improvements enabled by noncausal filtering operations in the time-

domain as explained in [23].

In view of (3), the norm-optimal ILC computes a command

signal f j that is optimal in (5) for a specific reference trajectory r .

As a result, changing r implies that the command signal f j is not

optimal in general. To introduce extrapolation capabilities in ILC,

basis functions are introduced in Section II-C.

C. Norm-Optimal ILC With Polynomial Basis Functions

In [9], basis functions have been introduced in ILC that are of the

form

f j = �θ j (7)

where f j is a linear combination of user-selected vectors � =

[ψ1, ψ2, . . . , ψm]. Notice that the basis functions � in (7) are in

so-called lifted notation. The basis functions in (7) encompass stan-

dard norm-optimal ILC with � = I . Only specific choices enhance

the extrapolation properties. The essence of enhancing extrapolation

of the ILC command signal to different tasks lies in choosing f j to be
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a function of r . Therefore, let f j = F(θ j )r . Subsequent substitution

into (2) yields

e j = S0r − P0S0F(θ j )r = (I − P0 F(θ j ))S0r. (8)

Equation (8) reveals that if the feedforward is parameterized in terms

of the reference r , then the error in (8) can be made invariant under

the choice of r , given that F(θ j ) is selected as F(θ j ) = P−1
0 .

In order to retain the analytic solution to (6), the filter F(θ j )

is typically chosen as a polynomial function that is linear in

θ j , e.g., an FIR filter, see [6], [7]. Hence, for this particular

choice, the basis functions are referred to as polynomial basis

functions.

Consequently, F(θ j ) = P−1
0 , can only be achieved if P0 is

restricted to be a rational function with a unit numerator, i.e., no

zeros. In case this condition is violated, the achievable performance

and extrapolation properties of ILC are severely deteriorated. Since

typical physical systems are modeled using rational models that

contain both poles and zeros, a unit numerator imposes a significant

restriction.

D. Paper Contribution: ILC With Rational Basis Functions

for Enhancing Performance and Extrapolation Properties

In view of the limitations imposed by the polynomial basis

functions in Section III-C, this brief aims to investigate more gen-

eral parameterizations that enhance: 1) tracking performance and

2) extrapolation properties of the learned feedforward command

signal. This brief contains the following contributions:
1) general rational basis functions are proposed;

2) the consequences of a more general rational parameterization

on the resulting ILC optimization problem are investigated,

revealing a significantly more complex optimization problem;

3) a solution strategy is proposed to deal with the more difficult

optimization problem that is introduced by the general rational

parameterization;

4) the results are experimentally validated on a benchmark motion

system and compared with preexisting results.
Preliminary research related to 1) and 3) appeared in [24]. This brief

extends these initial findings with more theory and explanations, and

includes an experimental validation.

IV. NEW FRAMEWORK FOR ILC WITH

RATIONAL BASIS FUNCTIONS

In this section, the main contribution of this brief is presented:

the formulation, analysis, and synthesis of an optimal ILC with

rational basis functions, i.e., aspects 1)–3) in Section III-D. As is

argued in Section III-C, the motivation for using such basis functions

stems from (8), which reveals that parameterizing the feedforward

command signal in terms of the reference signal enables extrapola-

tion of the learned feedforward command signal to other reference

trajectories.

Definition 2 (Rational Basis for Optimal ILC): The rational basis

functions are defined as

f j = F(θ j )r (9)

where F ∈ F

F =
{

B(θ j )
−1 A(θ j )

∣
∣θ j ∈ R

ma+mb
}

(10)

and

A(θ j ) =

ma∑

i=1

ξ A
i θ j [i]

B(θ j ) = I +

mb∑

i=1

ξ B
i θ j [i + ma].

Fig. 2. Controller structure with rational basis.

Here, ξ A
i

and ξ B
i

are the convolution matrices corresponding to user-

chosen polynomial transfer functions ξ A
i (z) and ξ B

i (z), respectively.

The matrix B(θ j )
−1 is the convolution matrix corresponding to

B(θ j , z)−1 with B(θ j , z) = 1 +
∑mb

i=1
ξ B

i (z)θ j [i + ma]. The

parameters θ j = [θ A
j
, θ B

j
]T .

The ILC command f j for ILC with rational basis functions in

Definition 2 is implemented in the ILC setup of Fig. 1, see Fig. 2

for the resulting block diagram.

Remark 1: The underlying transfer function F(θ j , z) of F(θ j )

can be computed and analyzed in the frequency domain, e.g.,

by its frequency response function F(θ j , eiω), using: A(θ j , z) =
∑ma

i=1 ξ A

i
(z)θ j [i], B(θ j , z) = 1 +

∑mb

i=1 ξ B

i
(z)θ j [i + ma], and

F(θ j , z) = B(θ j , z)−1
A(θ j , z).

Remark 2: The classical ILC with polynomial basis functions

approach, see Section III-C and [6], [7], is recovered by setting

mb = 0. Indeed, this leads to B(θ j ) = I , and hence F(θ j ) = A(θ j )

with A linear in θ j .

A. Analysis of the Resulting Optimization Problem

Aspect 2) in Section III-D is elaborated on in this section. The diffi-

culty associated with the rational basis function parameterization (10)

involves the complexity of solving the corresponding optimization

problem. In fact, the rational basis (10) in general prevents an analytic

solution to (6). This is revealed by the following theorem.

Theorem 1: Let W f = W� f = 0 and consider the parameteriza-

tion (9) and (10). Then, J ( f j+1), see (5), is nonlinear in θ j+1.

Proof: Substitution of (9) and (10) into (4) yields

e j+1 = e j + P0S0 f j − B(θ j+1)
−1 A(θ j+1)P0S0r.

Substituting e j+1 in (5)

J (θ j+1) = eT
j Wee j + f T

j ST
0 PT

0 We P0S0 f j + r T ST
0 PT

0 B(θ j+1)
−T

×A(θ j+1)We B(θ j+1)
−1 A(θ j+1)P0 S0r

+2eT
j We P0S0 f j − 2eT

j We B(θ j+1)
−1 A(θ j+1)P0S0r

−2 f T
j ST

0 PT
0 We B(θ j+1)

−1 A(θ j+1)P0S0r. (11)

Theorem 1 reveals that B(θ j+1)
−1 in (11) leads to a performance

criterion (5) that is nonlinear in the parameters θ j+1. As a result,

no analytic solution is available in general and the performance

criterion is typically nonconvex in θ j+1. In Section IV-B, an iter-

ative solution is proposed to calculate θ j+1, constituting contribu-

tion 3), see Section III-D.

B. Synthesis of Optimal ILC With Rational Basis Functions

In this section, an ILC algorithm is developed that enables optimal

controller synthesis using rational basis functions. The main idea is

to solve a sequence of least-squares problems and to consider the
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nonlinear terms as a priori unknown weighting functions. The basic

concept is to recast (5) to

J (θ j+1) = ‖B(θ j+1)
−1[B(θ j+1)e j+1]‖We

+‖B(θ j+1)
−1[B(θ j+1) f j+1]‖W f

+‖B(θ j+1)
−1[B(θ j+1) f j+1] − f j ‖W� f

. (12)

In (12), J (θ j+1) is nonlinear in θ j+1 due to the term B(θ j+1)
−1.

However, J (θ j+1) is linear in θ j+1 in the terms B(θ j+1)e j+1 and

B(θ j+1) f j+1. In view of this distinction, an auxiliary index k is

introduced, i.e., θ<k>
j+1

and θ<k−1>
j+1

. These are substituted into (12),

yielding

Jk(θ<k>
j+1 ) =

∥
∥B

(

θ<k−1>
j+1

)−1[

B
(

θ<k>
j+1

)

e<k>
j+1

]∥
∥

We

+
∥
∥B

(

θ<k−1>
j+1

)−1[

B
(

θ<k>
j+1

)

f <k>
j+1

]∥
∥

W f

+
∥
∥B

(

θ<k−1>
j+1

)−1[

B
(

θ<k>
j+1

)

f <k>
j+1

]

− f j

∥
∥

W� f
(13)

where

e<k>
j+1 = e j + P0S0 f j − B

(

θ<k>
j+1

)−1
A
(

θ<k>
j+1

)

P0 S0r.

Notice that (12) is recovered by setting θ j+1 = θ<k>
j+1

= θ<k−1>
j+1

.

In addition, notice that if θ<k−1>
j+1 is known, then Jk(θ<k>

j+1 )

is a quadratic function of θ<k>
j+1 . Consequently, θ<k>

j+1 can be

calculated analytically. The basic principle is to fix the nonlin-

ear B
(

θ<k−1>
j+1

)−1
at iteration k and interpret it as an iteratively

adjusted weighting function. By iterating over θ<k>
j+1

, it is aimed

that the a priori unknown weighting by B
(

θ<k−1>
j+1

)−1
is effectively

compensated after convergence of the iterative procedure. Clearly,

this necessitates a solution to (13) for θ<k>
j+1

, given θ<k−1>
j+1

. The

following theorem provides the analytic solution to θ<k>
j+1

that

minimizes Jk(θ<k>
j+1

).

Theorem 2: Given θ<k−1>
j+1

, f j and e j . Then, Jk(θ<k>
j+1

), see (13),

is minimized by

θ<k>
j+1 = L<k>e j + Q<k> f j (14)

with

L<k>=
[

�T
1 We�1+�T

2 (W f + W� f )�2

]−1
�T

1 We B
(

θ<k−1>
j+1

)−1

Q<k>=
[

�T
1 We�1 + �T

2 (W f + W� f )�2

]−1

×
(

�T
2 W� f + �T

1 We B
(

θ<k−1>
j+1

)−1
P S

)

where

�1 = B
(

θ<k−1>
j+1

)−1[
� A

PSr
, −�B

e j
− �B

PS f j

]

�2 = B
(

θ<k−1>
j+1

)−1[

� A
r , 0

]

.

Proof: Note that (13) is quadratic in θ<k>
j+1

. A necessary condition

for optimality is ∂Jk/∂θ<k>
j+1

= 0. Solving this linear equation for

θ<k>
j+1

yields the parameter update in (14).

Note that Theorem 2 in itself does not lead to the opti-

mal solution of (6) in general, since B
(

θ<k−1>
j+1

)−1
is unknown.

The proposed solution is to iteratively solve for θ<k>
j+1

in (13),

given an θ<k=0>
j+1

, for increasing k. In this approach, B
(

θ<k−1>
j+1

)−1

can be interpreted as an a priori unknown weighting in the

cost function. This weighting is compensated for during each iteration

over k by updating L<k> and Q<k> . These steps are formulated in

the following parameter update algorithm that addresses aspect 3),

see Section III-D.

Algorithm 1: Given f j and e j , set k = 0 and initialize

θ<k−1>
j+1 = θ j . Then, perform the following sequence of steps.

1) Determine L<k>, Q<k> .

2) Determine θ<k+1>
j+1 = Q<k> f j + L<k>e j .

3) Set k → k + 1 and go back to (1) until an appropriate

convergence condition is met: θ<k→∞>
j+1 = θ j+1.

Theorem 2 and Algorithm 1 provide a new solution and algorithm

to minimize J (θ j+1) in (12), constituting the main result of this

brief. The key novelty of these results lies in their use in optimal ILC

algorithms. Indeed, related algorithms, see [16]–[18] are successfully

used in system identification. Despite the fact that the objective

function is nonconvex in general, practical use has revealed good

convergence properties and in fact global convergence has been

established for specific cases, see [25], [26].

Remark 3: In case Theorem 2 involves a nonminimum phase

B(θ<k−1>
j+1

, z) and hence unstable B(θ<k−1>
j+1

, z)−1, the filtering

operations cannot be performed in the usual manner, since time

domain computation leads to unbounded results. Several approaches

to calculate the filtered signals can be pursued, including: 1) approx-

imations, see [15], [27], [28] and 2) exact methods, for instance,

the stable inversion approach in [14]. In the latter, the filter

is seen as a noncausal operator instead of an unstable one,

see also [29, Sec. 1.5].

V. CONNECTIONS TO PREEXISTING APPROACHES

As mentioned throughout the preceding sections, specific basis

choices can be recovered as special cases, including the results in

[6], [7], and [13]. In this section, these specific parameterizations

are compared with respect to the unified framework and solution as

proposed in this brief.

A. FIR Structure

In [6], a polynomial basis F(θ j ) is used that is linear in the

parameters θ j . Given its close resemblance to the well-known FIR

basis, the parameterization is referred to as FIR parameterization.

This FIR parameterization connects to the rational basis functions

in Definition 2 by setting mb = 0 and ma = m. As a result,

B(θ j ) = I . Furthermore, in [6], We = I and W f = W� f = 0.

Finally, let ξ (z) = 1 − z−1, then the basis functions used are

ξ A
1 = ξ, ξ A

2 = ξ2, . . . , ξ A
m = ξm .

B. Extended FIR

In [13], a more general polynomial basis is presented that extends

the FIR parameterization in [6]. By exploiting the commutativity

property for SISO LTI systems, the framework in [13] can be recast

in the form of Fig. 2 by selecting: We = I, W f = W� f = 0;

let ξ(z) = 1 − z−1, then the basis functions used are: ξ A
1 = ξ,

ξ A
2 = ξ2, . . . , ξ A

ma
= ξma , ξ B

1 = ξ, ξ B
2 = ξ2, . . . , ξ B

mb
= ξmb ,

and B(θ j+1)
−1 := I . This approach coincides with Algorithm 1,

but without step 3. Hence, there is no compensation of the a priori

unknown weighting function. As a result, an a priori unknown

weighting B(θ j+1) is introduced in the performance criterion

JERR(θ j+1) = ‖[B(θ j+1)e j+1]‖We
.

VI. EXPERIMENTAL RESULTS

In this section, the proposed algorithm is experimentally demon-

strated, revealing the increased performance and extrapolation proper-

ties in comparison with preexisting results. In particular, the following

approaches are compared:

1) the proposed norm-optimal ILC with rational basis

functions;



726 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 23, NO. 2, MARCH 2015

Fig. 3. Two-mass spring motion system. (a) Optical encoder. (b) Motor.
(c) Mass-spring-mass. (d) Optical encoder.

2) the preexisting norm-optimal ILC with polynomial basis func-

tions (FIR), see [6];

3) standard norm-optimal ILC.

A. Experimental Setup

The experimental two-mass spring motion system is shown

in Fig. 3. The system consists of a current-controlled dc-motor

[Fig. 3(b)] driving a mass (inertia) m1 that is connected to mass

(inertia) m2 (Fig. 3) via a flexible shaft [Fig. 3(c)]. The positions

of m1 and m2 are measured by optical encoders [Fig. 3(a) and (d)].

This system is well-suited to use as a benchmark system in order to

examine prototype control algorithms [30]. In the results presented in

this brief, only the position measurement of m1 is used for control,

and the position measurement of m2 is ignored.

B. ILC Design

Step 1 (System Identification): Open-loop system identification

is performed to identify the system P0. The system is excited

with random phased multisines at a sampling frequency fs of 1

kHz. Both a parametric (P(z)) and a nonparametric model (Pfrf)

is estimated using the measurement data. The corresponding Bode

diagrams are shown in Fig. 4, accompanied with the 3σ (99.7%)

confidence interval of the measured frequency response function

Pfrf.

Step 2 (Basis Functions and Weighting Matrices): The selection

of basis functions ξ A
i

, ξ B
I

determines the model set F(θ), see

Definition 2. Ideally, the structure of A(θ j ) and B(θ j ) should include

the structure of the true inverse-system P−1
0 = B0(θ)−1 A0(θ).

Here, the structure of A(θ j ) and B(θ j ) is selected as follows: let

ξ(z) = 1/Ts (1 − z−1) be a differentiator, then ξ A
1 = ξ, ξ A

2 =

ξ2, . . . , ξ A
ma

= ξma and ξ B
1 = ξ, ξ B

2 = ξ2, . . . , ξ B
mb

= ξmb . This

structure ensures the dc-gain A(θ j , z = 1) = 0, and B(θ j , z = 1) =

1, the latter guarantees that the rational structure F is well defined

for all θ . This basis is expected to work well for all systems with

infinite gain at zero frequency. If desired, it can easily be changed

for systems with a finite dc-gain by adding a parameter such that

A(θ j , z = 1) = θ j [1]. In the FIR case, this basis selection allows θ A
j

to be directly interpreted as the feedforward parameters compensating

for effects related to velocity, acceleration, jerk, and snap, see [12].

The scaling in ξ(z) with the sampling time Ts is to improve the

numerical conditioning, and is related to the δ-operator approach

in [31, Sec. 12.9].

Fig. 4. Frequency response measurement Pfrf (solid black line), 3σ
confidence interval of Pfrf (shaded gray area), and model P(eiω ) (dashed
red line).

Clearly, the optimal solution for the feedforward filter is given by

F(θ) = P−1
0 , since this choice leads to minimal J (θ). Using the

identified model as a guideline, this choice corresponds to ma = 6

and mb = 3. However, to enable a fair comparison, also for the

proposed rational basis, a restricted complexity parameterization is

pursued such that under-modeling is present as follows.

1) Proposed ma = 4, mb = 2.

2) FIR ma = 4, mb = 0.

The rational filter is an extension of the FIR filter, where two zeros are

added by setting mb = 2. The selection of the number of parameters

is similar to the problem of model order selection in system identifi-

cation, see [32]. On the one hand, additional parameters increase the

size of the model-set and therefore reduce bias, on the other hand,

the variance on the parameters typically increases. Both aspects are

a source of error between F(θ) and P−1
0 , and as such, manipulating

this tradeoff is part of the controller design. Notice that standard

norm-optimal ILC can be viewed as using an FIR structure with

ma = n and mb = 0 parameters in the ILC with basis functions

framework. Hence, the basis functions affect the performance only

and do not affect the convergence speed.

The weighting matrices in Definition 1 specify the performance

and robustness objectives. In the results for both the FIR and rational

structure presented in this brief, We = I ·103, W f = W� f = 0. This

leads to an inverse model ILC, where the inverses in Theorem 2 are

well-defined for the particular basis functions. For standard norm-

optimal ILC, a small weighting on the learning speed is introduced:

W� f = I · 0.05.

C. Preliminary Simulation With a Fixed Reference

The proposed rational structure is compared with the FIR structure.

The reference used is r1, shown in Fig. 7. The corresponding ILC

algorithms are invoked. To interpret the converged feedforward,

the parameterized feedforward filters are visualized using a Bode

diagram. The results are shown in Fig. 5, where F(θ∞, eiω)−1

for the FIR and rational structures, and P0(eiω) are compared.

Fig. 5 shows that for frequencies up to 5 Hz the dynamics of

P0 are captured well by both approaches. The antiresonance (i.e.,

complex conjugates zeros) around 16.3 Hz is only captured by the

proposed approach. The FIR structure does not have poles, hence

its inverse does not have zeros and cannot accurately represent the

antiresonance. Summarizing, from visual inspection it is concluded
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Fig. 5. Simulation results: P0(eiω ) and F(θ∞, eiω )−1, P0(eiω) (shaded
gray area), proposed (solid black line), and FIR (dashed-dotted blue line).

Fig. 6. Experimental results: Pfrf and F(θ14, eiω )−1, Pfrf (solid gray line),
proposed (solid black line), and FIR (dashed-dotted blue line).

that for the proposed approach in this brief, F(θ∞, eiω)−1 has the

closest resemblance with the system P0(e
iω). It is therefore expected

that the proposed approach has the best extrapolation capabilities if r

changes, and this will be validated in Section VI-D in an experimental

test case on the benchmark motion setup in Fig. 3.

D. Experimental Results

In this section, an experimental case study is presented where

the extrapolation capabilities of the proposed rational and FIR

feedforward parameterizations are verified and compared with stan-

dard norm-optimal ILC. The model, basis functions, and weighting

matrices obtained in the previous section are used in the experiments.

First, a preliminary experiment with reference r1 establishes cor-

respondence with the simulations followed by a case study on the

extrapolation capabilities of the different approaches.

1) Experiment With a Fixed Reference: Fifteen trials are per-

formed. The Bode diagram of the converged parameterized feedfor-

ward filters is shown in Fig. 6. Here, F(θ14, eiω)−1 for the FIR

and rational structures and Pfrf are compared. A visual comparison

with the simulation, see Fig. 5, reveals similar results, except for the

proposed approach, that shows a slightly better correspondence with

Pfrf, in particular at the antiresonance at 16.3 Hz.

2) Extrapolation of References: Three fourth order polynomial

references are defined, see Fig. 7, where:

Fig. 7. Different references: r1 (solid black line), r2 (dashed red line), and
r3 (dashed-dotted blue line).

Fig. 8. Cost function values J (θ j ) where the proposed approach (×) and
the preexisting FIR approach (©) are insensitive to the reference changes
r1 → r2 (black dashed line) at j = 4 and from r2 → r3 at j = 9
(black dotted line), in contrast to standard norm-optimal (△).

1) r2 is equal to r1 with 0.01 s delay;

2) r3 has 5% extra distance with identical maximal velocity as

r1 and r2.

In total, 15 trials are performed, where the reference is changed from

r1 to r2 to r3 at trials 4 and 9, respectively. The feedforward signal, or

parameter vector θ j , is not reinitialized when changing the reference

in order to demonstrate the extrapolation capabilities.

The results are shown in Figs. 8 and 9. The cost function values,

see Fig. 8, show that all approaches improve performance compared

with feedback only ( f0 = 0). At j = 4 and j = 9, the reference is

changed without reinitializing the feedforward signals. The key result

is that both the FIR and proposed parameterization are insensitive

to the change in the task, in contrast to standard norm-optimal

ILC, where the reference changes results in a large increase in cost

function value. The results in Fig. 8 also confirm that the proposed

rational feedforward parameterization leads to improved tracking

performance in comparison with the FIR structure. In addition,

identical extrapolation capabilities are achieved.

The time domain tracking errors for trials 8 and 9 are shown

in Fig. 9. These correspond with the time domain signals prior to

the reference change r2 → r3 (Fig. 9, left column) and after the

change (Fig. 9, right column), respectively. These results confirm

earlier conclusions, since: 1) the sensitivity of the tracking error when

using standard norm-optimal ILC with respect to a small, i.e., 5%

reference change is demonstrated; 2) the tracking performance of the

FIR and proposed parameterizations are insensitive to the change in
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Fig. 9. Comparison of time domain tracking errors: prior to reference change
(left column, j = 8), and after the reference change (right column, j = 9).
Proposed approach (top row, black line), FIR (middle row, blue line), and
norm-optimal (bottom row, red line).

reference; and 3) the proposed approach outperforms the approach

with the FIR structure.

VII. CONCLUSION

In this brief, a novel framework for ILC with rational basis

functions is presented. Herein, basis functions are adopted to enhance

the extrapolation properties of learned command signals to other

tasks. Indeed, in preexisting approaches, polynomial basis functions

are employed that are only optimal for systems that have a unit

numerator, i.e., no zeros.

The difficulty associated with rational basis functions lies in the

synthesis of optimal ILC, since the analytic solution to optimal ILC

algorithms is lost. In this brief, an iterative algorithm is proposed that

effectively solves the optimization problem. It has close connections

to well-known and powerful iterative solution methods in system

identification.

The advantages of using rational basis functions in ILC are

confirmed in a relevant experimental study: 1) improved performance

with respect to preexisting methods that address extrapolation in

ILC is demonstrated and 2) the performance is insensitive for the

presented changes in the reference. The convergence aspects of the

proposed method are experienced to be good, as is also confirmed in

studies on related algorithms in system identification [18].

Ongoing research is toward: extending the approach to multiple-

input multiple-output systems, investigating other solutions to the

optimization problem, and addressing nonmeasurable performance

variables, see [3], [33].
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