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1 Polygonal billiards, rational billiards

1.1 Polygonal billiards

Informally speaking, the theory of mathematical billiards can be partitioned into three
areas: convex billiards with smooth boundaries, billiards in polygons (and polyhe-
dra) and dispersing and semi-dispersing billiards (similarly to differential geometry
in which the cases of positive, zero and negative curvature are significantly different).
These areas differ by the types of results and the methods of study: in the former a
prominent role is played by the KAM theory and the theory of area preserving twist
maps; the latter concerns hyperbolic dynamics and has much in common with the
study of the geodesic flow on negatively curved manifolds. The recent progress in
the study of polygonal billiards is mostly due to applications of the theory of flat
structures on surfaces (a.k.a. quadratic differentials) and the study of the action of
the Lie group SL(2,R) on the space of quadratic differentials which is the main topic
of this paper. We refer to [34], [35] and [56] for a general survey of mathematical
billiards.

We will be considering a plane polygonal billiard Q, that is, a compact polygon
(in general, not necessarily convex or simply connected). To fix ideas, the billiard
flow is a flow in the unit tangent bundle to Q with discontinuities corresponding to
reflections in the boundary ∂Q. These reflections are described by the familiar law of
geometrical optics: the angle of incidence equals the angle of reflection. The billiard
map T is a section of the billiard flow; it acts on unit tangent vectors (x, v) ∈ TQ
whose foot point x is an interior point of a side of Q and the vector v has the inward
direction. The map T has an invariant measure µ. Let t be the length parameter
along the perimeter of Q and let θ be the angle made by v with the respective side.
Then the invariant measure is given by the next formula:

µ = sin θ dθ dt.

One often needs to consider parallel beams of billiard trajectories in polygons.
For example, every even-periodic trajectory includes into a strip consisting of a one-
parameter family of parallel periodic trajectories of the same period and length. An
odd-periodic trajectory also includes into a parallel strip, this time consisting of tra-
jectories whose period and length is twice as great. Note that the billiard reflection
in a side of Q transforms a parallel beam to another family of parallel trajectories,
and that the width of the beam remains the same.

Fig. 1
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Part of the interest in polygonal billiards comes from the fact that they are closely
related to problems of mechanics. We discuss one such simple example below.

1.2 Examples: a pair of ellastic point-masses on a segment

and a triple of point-masses on a circle

Consider two points with masses m1 and m2 on the unit segment [0, 1]. The points
may elastically collide and reflect from the end points of the segment (”walls”). The
configuration space of the system is given by the inequalities 0 ≤ x1 ≤ x2 ≤ 1 where x1
and x2 are the coordinates of the points. Rescale the variables: x̄i =

√
mixi, i = 1, 2.

The configuration space is now a right triangle in the (x̄1x̄2)-plane with the acute

angle tan−1(
√

m1/m2).
Consider a collision of the points. Let v1, v2 be the velocities before, and u1, u2 –

after the collision. The conservation of momentum and energy laws read:

m1u1 +m2u2 = m1v1 +m2v2,

m1u
2
1/2 +m2u

2
2/2 = m1v

2
1/2 +m2v

2
2/2.

In the rescaled coordinates the velocities are rescaled by the same factors, therefore

√
m1ū1 +

√
m2ū2 =

√
m1v̄1 +

√
m2v̄2,

ū21 + ū22 = v̄21 + v̄22.

The latter equation says that the magnitude of the vector (ū1, ū2) does not change
after the collision; the former one says that the scalar product of this vector with the
vector (

√
m1,

√
m2) is preserved as well. The vector (

√
m1,

√
m2) is tangent to the

side of the configuration triangle given by the equation x̄1/
√
m1 = x̄2/

√
m2.

Thus the configuration trajectory reflects in this side according to the billiard
reflection law. Likewise one considers collisions with the walls x = 0 and x = 1:
they correspond to the billiard reflections in the other two sides of the configuration
triangle. One concludes that the dynamical system of two elastic particles on a
segment is isomorphic to the billiard in a right triangle whose shape depends on the
ratio of the masses of the particles.

Similar arguments show that the system of three elastic point-masses on the circle
with a fixed center of mass is isomorphic to the billiard in an acute triangle (we

4



learned this example from E. Gutkin). Let the masses be m1, m2, m3; then the angles
αi of the triangle are given by

tanαi = mi

√

m1 +m2 +m3

m1m2m3
, i = 1, 2, 3.

In the limit m3 → ∞ one obtains the previous example of two point-masses on a
segment.

Many other mechanical models reduce to billiards, in particular, the model of gas
in a closed vessel as a collection of elastic balls in a compact domain. Such models
are of great importance in statistical physics.

1.3 Unfolding billiard trajectories, rational polygons

Instead of reflecting a billiard trajectory in a side of the billiard polygon Q one
may reflect Q in this side and unfold the trajectory to a straight line. This process
is iterated at each reflection: each succesive copy of the billiard polygon is obtained
from the previous one by the reflection in the side, met by the straightened trajectory.
This unfolding method has many applications in the study of polygonal billiards.

Fig. 2

Let A(Q) be the group of motions of the plane generated by the reflections in the
sides of Q. Denote the reflection in the side s by σs. Notice that for every two sides
s and t of Q one has:

σσs(t) = σsσtσs.

It follows that every copy of Q involved in the unfolding is the image of Q under
an element of the group A(Q). The product of an even number of elements of this
group preserves orientation while an odd number reverses it.

To keep track of the directions of billiard trajectories in Q consider the group
G(Q) that consists of the linear parts of the motions from A(Q). This subgroup of
the orthogonal group is generated by the reflections in the lines through the origin
which are parallel to the sides of the polygon Q. The group G(Q) acts on the unit
circle. When a billiard trajectory in Q reflects in a side s its direction is changed by
the action of the element of G(Q) which is the projection of σs to G(Q).

Definition 1.1 A billiard polygon Q is called rational if the group G(Q) is finite and
irrational otherwise.
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If Q is a rational polygon then the group G(Q) is the dihedral group of symmetries
of a regular polygon. A necessary condition for Q to be rational is that all its angles
are rational multiples of π. It is also sufficient if the boundary is connected; that
is, the polygon is simply connected. The set of plane n-gons can be considered as a
subset in R2n (each vertex has two degrees of freedom). We give the space of n-gons
the subspace topology. Rational polygons are dense in the space of polygons.

A given billiard trajectory in a rational billiard table will have only finitely many
different directions; this finite collection of directions plays the role of an integral of
motion. More precisely, let p be the composition of the projection of the unit tangent
bundle Q× S1 on S1 and the projection of S1 to the quotient space S1/G(Q). Then
the function p is constant along every billiard trajectory in a rational polygon.

We illustrate the unfolding procedure in the simplest example of a rational poly-
gon, the square.

1.4 Example: billiard in the unit square

Unfolding a trajectory one obtains a line in the plane which is tiled by the unit
squares, the images of the original square Q under the action of the group A(Q).
Two lines in the plane correspond to the same billiard trajectory in Q if they differ
by a translation through a vector from the lattice 2Z+ 2Z.

Consider the fundamental domain of the group 2Z+2Z which is the square made
of four copies of Q. Identify the opposite sides to obtain a flat torus. A billiard
trajectory becomes a geodesic line on this torus; every geodesic line has a constant
slope λ. The unit tangent bundle of the torus is represented as the union of the tori,
ennumerated by the slopes λ; the geodesic flow on each torus is a constant flow.

The dynamics on an individual invariant torus depends on whether λ is rational
or irrational: in the former case the geodesic flow is periodic, and in the latter it
is ergodic, and in fact, uniquely ergodic. In particular, a billiard trajectory with a
rational slope is periodic, while the one with an irrational slope is dense in the square.

One can also analyse periodic trajectories. The unfolding of such a trajectory is a
segment in the plane whose end-points differ by a vector from 2Z+2Z. Every parallel
trajectory is also periodic with the same period and length.

Assume that an unfolded periodic trajectory goes from the origin to the lattice
point (2p, 2q). If p and q are coprime this is a prime periodic trajectory, and if p and
q have a comon multiplier then the periodic trajectory is multiple. The length of the
trajectory is 2

√
p2 + q2, and to a choice of p and q there correspond two orientations
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of the trajectory. Thus the number of (strips of) parallel trajectories of length less
than L equals the number of pairs of integers, satisfying the inequality p2+q2 < L2/2.

This is the number of lattice points inside the circle of radius L/
√
2, centered at

the origin. In the first approximation, this number equals the area πL2/2, and to take
only prime periodic trajectories into account one divides this estimate by π2/6. Thus
one obtains a quadratic asymptotic estimate on the number of periodic trajectories
of the length not exceeding a fixed number. We will see in a later section that this
result holds for general rational polygons.

Integrable billiards. What works so well in the above example is the fact that
the images of Q under the group A(Q) tile the plane. A similar consideration applies
to rectangles, equilateral triangles and right triangles with an acute angle π/4 or π/6.
These polygons are called integrable, and the billiard flow reduces to a constant flow
on a torus. Note that in all these cases one may define the extension of a billiard
trajectory through a vertex of the billiard polygon.

Although integrable polygons are exceptional, some of the features of the billiard
dynamics in the integrable case extend to general rational polygons. These results
will be discussed in succeeding sections.

Almost integrable billiards. One class of rational billiards for which one can
make such precise statements is the class of almost integrable billiards, intermediate
between integrable and general rational polygons, studied by Gutkin ([24]). A polygon
Q is called almost integrable if the group A(Q) is a discrete subgroup of the group of
motions of the plane. There are exactly four such groups generated by the reflections
in the sides of the four integrable polygons. An almost integrable polygon is one that
can be drawn on the corresponding lattice.

Fig. 3

Given an almost integrable polygon, the billiard flow decomposes into directional
flows Fθ (just as in the case of a square – see next section for a detailed discussion).
Choose a basis e1, e2 of the respective lattice. A direction is called rational if it is
given by a vector a1e1 + a2e2 with a1/a2 ∈ Q. Gutkin proved that, similarly to the
square case, the following conditions are equivalent:

(i) θ is an irrational direction;
(ii) Fθ is minimal;
(iii) Fθ is ergodic;
(iv) Fθ is aperiodic, that is, F

t
θ 6= id for all t 6= 0.
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1.5 Rational billiard determines a flat surface

The following construction of a flat surface from a rational billiard table plays a
central role in the present study (see [17], [36], [37], [53] and [40]; the later paper was
the first to relate billiards in polygons and quadratic differentials).

Let Q be a rational polygon. The group G(Q) is the dihedral group DN generated
by the reflections in the lines through the origin that meet at angles π/N where N
is a positive integer. This group has 2N elements, and the orbit of a generic point
θ 6= kπ/N on the unit circle consists of 2N points. Let the angles of Q be πmi/ni
where mi and ni are coprime integers. Then N is the least common multiple of the
denominators ni.

Consider the unit tangent bundle Q×S1, the phase space of the billiard flow, and
let Mθ be the subset of points whose projection to S1 belongs to the orbit of θ under
DN . Then, Mθ is an invariant surface of the billiard flow in Q. This invariant surface
is a level surface of the above mentioned function p, ”the integral of motion”.

Assume that θ 6= kπ/N and ennumerate the angles in the DN -orbit of θ on the
unit circle counterclockwise: θ = θ1, θ2, ..., θ2N . The surface Mθ is obtained from 2N
copies of Q, namely, Q× θi ⊂ Q×S1, i = 1, ..., 2N by gluing their sides according to
the action of DN .

Consider 2N disjoint and parallel copies of Q in the plane. Call them Q1, ..., Q2N

and orient the even ones clockwise and the odd ones counterclockwise. Choose an
index i = 1, ..., 2N and a side s of Qi; reflect the direction θi in this side. The resulting
direction is θj for some j = 1, ..., 2N . Glue the side s of Qi to the identical side of
Qj . After these gluings are made for all values of i and all choices of the side s of
Qi, the sides of all the polygons Qi are pasted pairwise, and the gluings agrees with
the orientation. The result is an oriented compact surface that depends only on the
polygon Q, but not on the choice of θ, and we denote it by M . The billiard flows on
M in different directions are obtained one from another by rotation.

For example, if Q is a square then N = 2 and the result is a torus made of four
identical squares. If Q is a right triangle with an acute angle equal to π/8 then the
surface Mθ is obtained from a regular octagon, the result of gluing 16 copies of the
triangle, by pairwise gluing its opposite sides; this surface has genus 2.

Fig. 4

The genus of M is given in the next lemma.
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Lemma 1.2 Let the angles of a billiard k-gon be πmi/ni, i = 1, ..., k where mi and
ni are coprime, and N be the least common multiple of ni’s. Then

genus M = 1 +
N

2

(

k − 2−
∑ 1

ni

)

.

Proof. We need to analyse how the gluings are made around a vertex of Q. Consider
the i-th vertex V with the angle πmi/ni. Let Gi be the group of linear transformations
of the plane generated by the reflections in the sides of Q, adjacent to V . Then Gi

consists of 2ni elements.
According to the construction of M the number of copies of the polygons Qj that

are glued together at V equals the cardinality of the orbit of the test angle θ under
the group Gi, that is, equals 2ni. Originally we had 2N copies of of the polygon Q,
and therefore, 2N copies of the vertex V ; after the gluings we have N/ni copies of
this vertex on the surface M .

It follows that the total number of vertices in M is N
∑

1/ni. The total number
of edges is Nk, and the number of faces is 2N . Therefore the Euler characteristic of
M equals

N
∑ 1

ni
−Nk + 2N = 2− 2g

where g is the genus, and the result follows. ✷

The billiard flow on M is obtained from the constant flows in the directions θi in
the polygons Qi. The result is a (unit) vector field on M with singularities at the
vertices. The above proof shows that the i-th vertex of M is the result of gluing 2ni
copies of the angle πmi/ni which sums up to an angle of 2πmi. One may realize such
a singularity geometrically as follows. Take mi copies of a Euclidean upper half plane
Hj and mi copies of a lower half plane Lj ; j = 1, ..., mi. Then glue the positive real
axis of Hj to the positive real axis of Lj and glue the negative real axis of Lj to the
negative real axis of Hj+1 (mi + 1 = 1). The result is a singularity with a total angle
of 2πmi. We will call it a cone angle 2πmi singularity. From this description one
can also see that for any direction θ, there are 2mi separatrices emanating from the
singularity in direction θ.

It is easy to describe the set of polygons for which all the angles are 2π, that is,
mi = 1; then the singularities of M are removable. The sum of interior angles of a
k-gon is π(k − 2). Thus if mi = 1 for all i then

1

n1
+ ... +

1

nk
= k − 2.
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This equation has only four solutions with ni ≥ 2, considered up to permutations:

(1

3
,
1

3
,
1

3

)

,
(1

2
,
1

4
,
1

4

)

,
(1

2
,
1

3
,
1

6

)

,
(1

2
,
1

2
,
1

2
,
1

2

)

.

These solutions correspond to the already mentioned integrable polygons, and in each
case the invariant surface M is a torus with a constant flow.

To summarize the construction, given a rational billiard polygon Q, one constructs
a compact surface M whose genus is given by the above lemma. This surface inherits
a flat metric from Q with a finite number of cone-type singularities, corresponding
to the vertices of Q, with cone angles multiples of 2π. The billiard flow on M is a
constant flow in a fixed direction with singularities at the cone points.

1.6 Minimality of the billiard flow in rational polygons

The next result on the minimality of the billiard flow in a rational polygon is much
easier than the stronger results on ergodicity described later in the paper. We discuss
it because it serves a model for these harder theorems.

Definition 1.3 A flow is called minimal if any of its orbits is dense in the phase
space.

Denote the billiard flow on M in the direction θ by Fθ.

Definition 1.4 A saddle connection in direction θ is an orbit of Fθ that goes from a
singularity to a singularity (possibly, the same one) and has no interior singularities.

A saddle connection is also called a generalized diagonal since it corresponds to a
billiard orbit in direction θ that goes from a vertex to another vertex.

We may decompose a saddle connection β as a sum of its horizontal part hβ and
its vertical part vβ .

Definition 1.5 A metric cylinder in direction θ is the isometric image of a straight
Euclidean cylinder in R3 consisting of closed geodesics in direction θ. A metric cylin-
der is maximal if it cannot be enlarged.

We already noted that a periodic orbit in direction θ for the billiard flow included
into a strip of parallel periodic orbits thus giving rise to a metric cylinder in direction
θ. The following lemmas and theorem are standard (see [55]), and the proofs do not
use the group structure coming from billiards. Thus they will hold verbatim for the
general situation of flat structures (that will be formally defined shortly).
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Lemma 1.6 If M has singularities, then the boundary of a maximal metric cylinder
consists of a finite number of saddle connections in direction θ.

Proof. If a metric cylinder fills the surface, then M is the flat torus which has
no singularities. Thus we can assume the maximal cylinder has a boundary. The
obstruction to enlarging a maximal cylinder are saddle connections on the boundary.
✷

Lemma 1.7 Suppose α+ is a trajectory, infinite in the positive direction. Let β be
an interval perpendicular to α+ with initial point P0 on α+ as one of its endpoints.
Then α+ returns to β after P0.

Proof. Since there are a finite number of singularities, there are a finite number of
trajectories starting at points of β that hit a singularity before crossing β again. By
shortening β to a subinterval β ′ with one endpoint P0 and some other endpoint Q0, we
can assume that no trajectory leaving β ′ hits a singularity before returning to β. Now
flow the interval β ′ in the positive direction. The interval sweeps out rectangles of
increasing area. Since the area of the surface is finite, the interval β ′ must return and
overlap β. If α+ itself does, we are done. Otherwise the trajectory leaving Q0 returns
to β ′ and some trajectory leaving a point Q1 ∈ β ′ returns to P0. We now consider
the interval β ′′ ⊂ β ′ with endpoints P0 and Q1 and apply the previous analysis to it.
Flowing in the forward direction it must return to β and now α+ itself must return
to β. ✷

Theorem 1.8 For all but countably many directions θ the flow Fθ is minimal on the
surface M .

Proof. Since there are only finitely many singularities and countably many homotopy
classes of arcs joining the singularities, it is clear that there are only countably many
saddle connections (the same statement follows from the fact that the group A(Q) is
countable.) We claim that the flow Fθ is minimal if there is no saddle connection in
direction θ.

By Lemma 1.6 there cannot be a metric cylinder for then there would be a saddle
connection. Suppose there was an infinite trajectory lθ in direction θ which is not
dense. Let A 6= M be the set of ω limit points of lθ. Then A is invariant under the
flow Fθ. Since A 6=M one can choose a trajectory γ on ∂A; let P0 be its initial point.

11



We will show that γ is a saddle connection. If not then γ is infinite in at least one of
the two directions. We show that there is an open neighborhood of P0 contained in
A, a contradiction to P0 being a boundary point.

Let β be a perpendicular arc with P0 an endpoint. It is enough to show that there
exists a segment [P0, Q] ⊂ β which is contained in A. For then doing this on both
sides we would have our open neighborhood. Now Lemma 1.7 implies that γ hits
β again at some P1. If the interval [P0, P1] ⊂ A we are done. Suppose not. Then
there exists Q1 ∈ [P0, P1] which is not in A. Since A is closed, there is a largest open
subinterval I1 ⊂ [P0, P1] containing Q1 which is in the complement of A. Let P2 BE
the endpoint of I1 closest to P0. Then P2 ∈ A and the trajectory through P2 must be
a saddle connection. For if it were infinite in either direction, it would intersect I1.
Since A is invariant under the flow, this contradicts that I1 misses A. ✷

Projecting back to the rational billiard polygon Q we see that for all but countably
many directions every billiard trajectory is dense in Q. Approximating a general
billiard by a rational one we obtain the next result on topological transitivity of
polygonal billiards ([36]).

Definition 1.9 A flow is called topologically transitive if it has a dense orbit.

Theorem 1.10 For every k ≥ 3 there exists a dense Gδ subset in the space of simply
connected k-gons that consists of polygons with topologically transitive billiard flows.

Proof. Identify the phase space of the billiard flow in each k-gon with D2 ×S1, and
assume that this identification depends continuously on the polygon. Let Bi be a
countable basis for the topology of D2 × S1. Denote by Xn the set of k-gons Q such
that for each open set U in the phase space, there exists a billiard trajectory starting
in U that visits all the images of the sets B1, ..., Bn in the phase space of the billiard
flow in Q. Each set Xn is open and their intersection is a Gδ set.

Let us show that this intersection is dense. Let Ym be the set of rational k-gons
with the angles πmi/ni, mi and ni coprime, such that the least common multiple of
ni’s is at least m. For every polygon Q ∈ Ym the invariant surface Mθ is 1/m-dense
in the phase space. Therefore for every n there exists m such that for every Q ∈ Ym
the surface Mθ intesects all the images of the sets B1, ..., Bn in the phase space of the
billiard flow in Q. Since Mθ has a dense trajectory for all but countably many θ the
space Ym lies in Xn. Finally, Ym is dense in the space of k-gons for every m, and so
Xn is dense for every n as well. It follows that ∩Xn is dense by Baire’s theorem.
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Let Q be a billiard polygon in ∩Xn. We claim that there is a dense billiard
trajectory in the phase space of Q. Let U be a compact domain in the phase space
D2 × S1. Suppose inductively we have chosen a compact neighborhood Un−1 ⊂ U .
Since Q ∈ ∩Xn, one can find a billiard trajectory starting in Un−1 in Q that visits
B1, ..., Bn. By continuity there is a neighborhood Un ⊂ Un−1 such that each trajectory
in Un visits B1, . . . , Bn within time Tn. Choose a phase point v ∈ ∩Un. Then the
trajectory of the vector v is dense in the phase space of Q. ✷

1.7 Rational billiards and interval exchange maps

In the case of rational billiards the billiard flow on the invariant surface can be
reduced to a one-dimensional transformation; this reduction is a particular case of
the reduction of the billiard flow to the billiard transformation.

Definition 1.11 Let (I1, ..., In) be a partition of the interval [0, 1) into nonintersect-
ing semiclosed intervals, enumerated from left to right, and let σ be a permutation
of n element. The respective interval exchange transformation T : [0, 1) → [0, 1) is
a transformation whose restriction to every Ii is a parallel translation and such that
the intervals T (I1), ..., T (In) follow from left to right in the order σ(1), ..., σ(n).

Clearly, an interval exchange transformation preserves the Lebesgue measure on
the unit interval.

Example. The exchange of two intervals [0, a) and [a, 1) is identified with the
rotation of the circle R/Z through 1− a.

Remark. We will often need to consider an interval exchange transformation
defined on an interval I, different from [0, 1). In such a case it is understood that I
is rescaled to [0, 1) by an affine transformation.

The reduction of the billiard flow in a fixed direction θ to an interval exchange goes
as follows. Recall that the invarinat surface M was constructed by pasting pairs of
equal and parallel sides of 2N copies of the billiard polygon Q. Choose one side from
each such pair and call these segments s1, ..., sm. Arrange these segments along a line
and let I be their union. Give each segment the measure determined by the orthogonal
projection on the direction, perpendicular to θ. Since ”the width of a beam” is an
invariant transversal measure of a constant flow, the billiard transformation induces
a piecewise isometry T of the segment I. If the segments are appropriately oriented
then T is orientation preserving. It remains to rescale I to the unit interval and to
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define T at its points of discontinuity so that it is continuous on the left. The result
is an interval exchange transformation.

The reduction of the billiard flow in a fixed direction to an interval exchange
transformation is by no means unique. For example, assume that the flow Fθ is
topologically transitive. Choose an interval I inM , transverse to the flow, and give it
the measure determined by the orthogonal projection on the direction, perpendicular
to θ. Then the first return map to I along the trajectoires of Fθ is orientation and
mesure preserving, that is, an interval exchange transformation. Note that since Fθ
is topologically transitive, the first return map is defined no matter how small I is.
The points of discontinuity of the first return map correspond to the orbits of the
flow through the singular points of the flow Fθ.

1.8 Flat metrics and quadratic differentials

As we have seen a rational billiard defines a closed surface formed by gluing Euclidean
polygons isometrically along their edges. The vertices of the polygon correspond to
points with cone angle singularities of the metric. In this section we generalize this
notion to what we will call flat structures with parallel line fields, or just flat structures
for short, so that the set of rational billiards of a given genus is a subset of the space
of flat structures. The main reason for this generalization is that the group SL(2,R)
acts on the space of flat structures while not preserving the space of rational billiards.
The study of this action allows to make conclusions about flat structures in general,
which then give us results about rational billiards in particular.

Let M be a compact C∞ surface and Σ a finite set of points in M . On M \Σ we
require coordinate charts v = (x, y) such that the transition functions on the overlaps
are of the form

v → v + c or v → −v + c.

That is, the transition functions are translations and reflections in the origin followed
by translations. Since these preserve the Euclidean metric this allows one to define a
locally Euclidean metric onM . In addition these transition functions preserve families
of parallel lines in the plane so that for each direction θ, there is a well-defined foliation
Fθ of the surface consisting of lines in direction θ.

Note that if the transition functions are all translations, then the line field defines
a vector field and in each direction θ we have a flow Fθ. Now the same topological
theorem Theorem 1.8 that holds for rational billiards hold in the more general case
of a flat structure.
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In a neighborhood of a point in Σ there are polar coordinates (r, θ) such that the
metric can be written as

ds2 = dr2 + (crdθ)2

where c is a half integer. We say that the metric has cone type singularity with cone
angle 2πc. The curvature κ at a singular point is defined by the formula

κ = 2π − 2πc.

We may concretely describe the metric in a neighborhood of a singular point by gluing
together half planes as described above. Notice that our previous discussion shows
that a rational polygon determines such a flat structure with transition functions all
of the first type (parallel translations) and c an integer.

Another way to define the same structure would be to begin by requiring that
M have Gaussian curvature zero, or equivalently, it is locally isometric to R2 with
the Euclidean metric, away from a finite set of points Σ and cone type singularities
near points of Σ, where c is an arbitrary real. This in itself is not enough, for it
does not rule out the possibility of rotations in the transition functions, which would
not allow for parallel line fields. One way to guarantee the correct structure in this
language is to consider parallel translation with respect to the connection determined
by the metric. The global obstruction to parallel translation being well defined is
the holonomy group which is a subgroup of O(2). If the holonomy group is either
trivial or {I,−I} then parallel translation is well-defined and M possesses a parallel
line field. The existence of such a line field implies that the cone angles are multiples
of π. Pick one such line field and call it the vertical line field. In the neighborhood
of each point of M \ Σ we can construct a chart which is an orientation preserving
isometry and takes the vertical line field to the vertical line field in R2. The change
of coordinate functions between these charts then have the desired form.

Quadratic differentials. The same structure can also be defined in terms of
complex analysis. Recall that a Riemann surface or a complex analytic structure
on a surface M consists of an atlas of charts (Uα, zα) where {Uα} is a covering of
M by open sets, zα : Uα → C is a homeomorphism and if Uα ∩ Uβ 6= ∅, then
zα ◦ z−1

β : zβ(Uα ∩Uβ) → C is complex analytic. The maps zα are called uniformizing
parameters.

A meromorphic quadratic differential φ assigns to each uniformizing parameter zα
a meromorphic function φzα(zα) with the property that

φzβ(zβ)(
dzβ
dzα

)2 = φzα(zα)
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in Uα ∩ Uβ . Then the quadratic differential φ(z)dz2 is invariantly defined on M .
Although the value of φ is not well-defined, the set of zeroes and poles of φ and

their orders are. It is a classic result in Riemann surface theory that φ has a finite
number of zeroes with orders ki and poles of order li satisfying

∑

ki −
∑

li = 4g − 4.

In this paper we will assume that if there are poles then they are simple. This
implies that the norm or area of φ defined by

||φ|| =
∫

M
|φ(z)||dz|2

is finite. Notice that the area element |φ(z)||dz2| is well-defined independently of
choice of coordinates. We may equally well consider φ to be a holomorphic quadratic
differential on the surface punctured at the poles.

A quadratic differential determines a metric with the length element |φ(z)|1/2|dz|.
If the quadratic differential has a simple pole then the metric is not complete on the
punctured surface.

The vertical trajectories of φ are the arcs along which

φ(z)dz2 < 0

and the horizontal trajectories the arcs along which

φ(z)dz2 > 0.

Equivalence of definitions. We now indicate why a flat structure (with a
parallel line field) and quadratic differential define the same object. First suppose
φ is a quadratic differential on M and p ∈ M is a point which is neither a pole
nor zero. We may choose a uniformizing parameter ζ in a neighborhood of p with
p corresponding to ζ = 0. We may then choose a branch of φ1/2(ζ) near ζ = 0 and
define a new uniformizing parameter w by

w = w(ζ) =
∫ ζ

0
φ1/2(τ)dτ.

Then, in the w coordinates, the quadratic differential is given by φw(w) ≡ 1. Such
coordinates are called natural. If w and w′ define natural coordinates in overlapping
neighborhoods, then

w′ = ±w + c
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and so one has a flat structure. The Riemannian metric is the flat metric |dw|.
At a zero of φ of order k (at a simple pole take k = −1) the quadratic differential

can be written as
(

k + 2

2

)2

ζkdζ2

for a choice of coordinate ζ . Then

w(ζ) = ζ
(k+2)

2 ,

where the uniformizing parameter w is defined as above. The full angle 0 ≤ arg ζ ≤ 2π
is subdivided into k + 2 equal sectors

2π

k + 2
j ≤ arg ζ ≤ 2π

k + 2
(j + 1), j = 0, ..., k + 1.

Every sector is mapped by w(ζ) onto the upper or lower halfplane. Thus a zero of
φ of order k corresponds to a singular point of a flat structure with the cone angle
π(k+ 2). The pre-images of the horizontal lines are the horizontal trajectories of the
quadratic differential φ, and the trajectory structure has the form of a k+2 pronged

singularity.

Fig. 5

Conversely, a flat structure with a parallel line field defines a quadratic differential.
Let v = (x, y) and v′ = (x′, y′) be coordinates in overlapping charts so that

v′ = ±v + c.

Setting z = x+ iy and z′ = x′ + iy′, the transition functions are complex analytic, so
define a Riemann surface structure on M \Σ, where Σ is the set of singularities. We
may then define a quadratic differential φ on this Riemann surface by assigning the
constant function 1 to the parameter z. The πc cone angle singularity corresponds
to a zero of order c− 2.

There is an additional description of these structures via the theory of measured
foliations, developed by Thurston (see [57], [7], [16]). This description will not play
any role here and we will not dwell on it.

We will go back and forth between the terminology of quadratic differentials and
flat structures with parallel line fields.
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Example. We finish the section with an example taken from [68]: the Riemann
surface corresponding to the billiard in a regular n-gon with n odd is conformally
equivalent to the Fermat curve xn + yn = 1, and the respective quadratic differential
is dx2/y4; see [3] for a similar description of Riemannian surfaces corresponding to
rational triangles.

2 Teichmuller space, strata of quadratic differen-

tials and SL(2,R) action

2.1 Teichmuller space and mapping class group

A general reference for Teichmuller spaces, and compactifications is the paper of Bers
[6]. Let M be a surface of genus g with n punctures. We assume 3g − 3 + n ≥ 0.

Definition 2.1 Teichmuller space Tg,n is the space of equivalence classes of complex
structures X on M where X1 ∼ X2 if there is a biholomorphic map from X1 to X2

which is isotopic to the identity on M .

One may define the Teichmuller distance function dT (·, ·) on Tg by

dT (X1, X2) = 1/2 inf logK(f),

where the infimum is taken over all quasiconformal maps f isotopic to the identity
on M and K(f) is the maximal dilation of f as measured by the complex structures
X1, X2.

Definition 2.2 The mapping class groupMod(g) is the group Diff+(M)/Diff0(M),
the group of orientation preserving diffeomorphisms modulo those isotopic to the iden-
tity.

The mapping class group acts on Tg,n by pull-back; given a complex structure
X defined by coordinate charts (Uα, zα) and f ∈ Mod(g), we find a new complex
structure f ·X defined by the atlas of coordinate charts (f(Uα), zα◦f−1) The quotient
space Rg,n = Tg,n/Mod(g) is the moduli space of Riemann surfaces.
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2.2 Compactifications

The moduli space Rg,n is well-known not to be compact. It is possible to deform
a Riemann surface by pinching along one or more disjoint simple closed curves, by
letting the hyperbolic length of the curves go to 0. The resulting surface then has
nodes or punctures and may not be connected. For example if a closed surface of genus
g is pinched along a single closed curve γ and γ does not disconnect M , the resulting
surface has genus g − 1 with 2 punctures, while if γ is dividing, the resulting surface
has two components each of which has one puncture and the sum of their genera is g.
We can compactify Rg,n by adjoining the moduli spaces of surfaces obtained in this
fashion.

Denote the compactification by R̄g,n. The topology has the following property. Let
X0 be any surface in the compactification and Xn → X0. Remove any neighborhood
U of the punctures of X0. Then for large enough n, there is a conformal embedding
of X0 \ U → Xn.

The compactification by these moduli spaces is well-behaved with respect to
quadratic differentials. For suppose φn are unit norm quadratic differentials on Xn

which converge to X0 ∈ R̄g,n. Then there is a subsequence of φn which converges uni-
formly on compact sets of X0 via the conformal embedding to an integrable quadratic
differential φ0. However it may be the case that φ0 ≡ 0 on one or more components
of X0. This issue will be discussed further in the section on periodic orbits.

2.3 Strata of quadratic differentials

Fix a surface M of genus g. Let σ = (k1, . . . , kj, ǫ) be an j + 1 tuple where ki
are integers which are either positive or −1 satisfying

∑

ki = 4g − 4 and ǫ = ±.
Consider the set of quadratic differentials with zeroes of order ki, and simple poles
if ki = −1, the sign + if the quadratic differential is the square of a holomorphic
1 form, and − otherwise. These spaces can be empty (see [50] for necessary and
sufficient conditions) and need not be connected – [61] and [42]. We say that two
such quadratic differentials are equivalent if there is a homeomorphism of M isotopic
to the identity taking singular points to singular points of the same order and which
at other points has the same local form as the change-of-coordinate functions. The
resulting space is denoted by Q(σ) and one can prove that this is a manifold. In the
case that all ki = 1 (and ǫ = −1) Q(σ) is called the principle stratum. For fixed g,
the union of the Q(σ) where all ki > 0, is the space of all quadratic differentials Qg

over Tg. It is a well-known part of Teichmuller theory that Tg is a complex manifold

19



and Qg is the cotangent bundle, although we will not make use of this structure in
this paper. The strata Q(σ) are not closed subsets of Qg, unless there is a single zero
(n = 1). This is because a sequence in Q(σ) may collapse a pair of lower order zeroes
into a higher order one.

The groupMod(g) acts on each Q(σ). The quotient is denoted by QD(σ) and will
play a crucial role in this paper. Since Mod(g) does not act freely, the space QD(σ)
has the structure of an orbifold.

2.4 SL(2,R) action on quadratic differentials

The group SL(2,R) acts on quadratic differentials by linear transformations of lo-
cal coordinates, preserving each stratum. If {uα} is an atlas of natural coordinates
defining a quadratic differential φ, and A ∈ SL(2,R) then {Auα} defines a new fam-
ily of natural coordinates for a quadratic differential Aφ. We require that A takes
singularites of φ to singularities of Aφ of the same order.

The following one parameter subgroups of SL(2,R) are of special interest:

gt =
(

et/2 0
0 e−t/2

)

, rθ =
(

cos θ sin θ
− sin θ cos θ

)

, hs =
(

1 s
0 1

)

,

referred to as the geodesic or Teichmuller, circular and horocyclic flows, respectively.
The effect of the flow φ → gtφ is to stretch along the horizontal trajectories of φ

by a factor of et and contract along the vertical trajectories by et. The flow contracts
the transverse measure of the horizontal foliation and expands the transverse measure
of the vertical foliation. Associated to gt is the map ft of the underlying Riemann
surfaces X → Xt, called the Teichmuller map. The famous theorem of Teichmuller
asserts that given any homeomorphism f : X → Y of Riemann surfaces of finite
type, there is a unique Teichmuller map in the homotopy class which minimizes the
maximal dilation.

The action of rθ on a quadratic differential φ is the same as multiplying φ by
e2iθ. This multiplication defines an action of the circle R/πR on the set of quadratic
differentials. Note that the action of rθ leaves the flat metric invariant, but changes
the vertical line field.

The action on saddle connections is as follows. Let

A =

[

a b
c d

]
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be a matrix in PSL(2,R). Let β be a saddle connection, and let h1 and v1 be
its horizontal and vertical components with respect to φ. Then the horizontal and
vertical components h2 and v2 with respect to Aφ are given by matrix multiplication;
namely

[

a b
c d

]

·
[

h1
v1

]

=

[

h2
v2

]

.

The orbit of a quadratic differential under PSL(2,R) is called a Teichmuller disc
and has been considered by numerous authors – see [43], for example. In a later
section we will examine certain examples of Teichmuller discs that arise in the so-
called Veech billiards and their generalizations.

The action of SL(2,R) commutes with the action of Mod(g) and thus descends
to an action on QD(σ). It is this action we will study in some detail.

Invariant measure on the strata. It is possible to define an SL(2,R) invariant
measure µ0 on each QD(σ) which is absolutely continuous with respect to the orbifold
structure. We show how to do this for the principle stratum QD(σ). The measure
is defined locally. A saddle connection of φ0 persists under small perturbation of φ0.
There are a finite number of such saddle connections β1, . . . , βn whose horizontal and
vertical components (hβ1 , vβ1, . . . , hβn, vβn) serve as local coordinates for Q(σ) in a
neighborhood of φ0. Specifically, pass to a double cover π : M̃ → M , ramified over
the zeroes of φ0. There is an involution τ of M̃ which interchanges the sheets. We
choose the βi such that their lifts to M̃ form a basis for the first homology of M̃ , odd
with respect to the involution τ . The measure µ0 is then Lebesgue measure on R2n

pulled-back to Q(σ) via these local coordinates. One sees that µ0 does not depend on
choice of basis βi, so actually defines a measure. It is easily seen to descend to QD(σ)
and to be SL(2,R) invariant. The measure was shown to be finite and ergodic on the
principle stratum in [44] and then on each component of general stratum in [60], [61].
The following problem is quite interesting: to classify all ergodic SL(2,R) invariant
measures on QD(σ).

3 Ergodicity

3.1 Veech nonuniquely ergodic example

Definition 3.1 A foliation F is uniquely ergodic if it is minimal and the transverse
measure is unique up to scalar multiplication.
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Unique ergodicity is equivalent to the following condition. Let G be any foliation
with transverse measure, transverse to F . For any point x0, the transverse foliation
G defines an arc length l(t) on the leaf of F through x0 in either direction. The pair
(F,G) defines a measure µ onM . For every continuous function f(x) onM and every
point x0 we have

lim
T→∞

1

T

∫ T

0
f(l(t))dt =

∫

M
f(x)dµ(x).

The classical example of a uniquely ergodic foliation is the irrational flow on the
flat torus – see [34] for a detailed discussion.

Veech example. In [59] Veech constructed examples of minimal and not uniquely
ergodic dynamical systems that are skew products over irrational rotations of the
circle. Take two copies of the unit circle and mark off a segment J of length 2πα in
the counterclockwise direction on each with one endpoint at 0. Now take θ irrational
and consider the following dynamical system. Start with a point p, say in the first
circle. Rotate counterclockwise by 2πθ until the first time the orbit lands in J ; then
switch to the corresponding point in the second circle, rotate by 2πθ until the first
time the point lands in J ; switch back to the first circle and so forth. Veech showed
that if θ is an irrational with unbounded partial quotients, then there are α such that
this system is minimal and not uniquely ergodic (see also [34], section 14.5e).

Geometric criterion for nonergodicity. We now give a geometric description
of Veech’s examples and show that for any irrational α there is an uncountable set
of θ such that the system is minimal and not uniquely ergodic. This work represents
unpublished work of John Smillie and the first author. In order to do that we first
give a geometric criterion of how to find nonergodic foliations. This criterion was
given in [49]. To set the notation let E0, E1, . . . be a sequence of subsets in M so
that En ∩ En+1 = ∅ and each En is bounded by a set of saddle connections all in
the same direction θn. Assume the directions θn converge to θ∞. Let Fθ∞ be the
foliation in direction θ∞. Rotate the coordinate system so that θ∞ is the vertical
direction. Define a system of partitions Pn = [An, Bn] of M as follows. If n is even,
then An = En and Bn = Ec

n (complement of En), and if n is odd, then An = Ec
n and

Bn = En. Let hn be the sum of the horizontal components of the saddle connections
separating An and Bn. Let µ be the measure defined by the flat structure.

Theorem 3.2 Suppose that

• (i) limn→∞ hn = 0

• (ii) for some c, c′, 0 < c ≤ µ(An) ≤ c′ < 1
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• (iii)
∑∞
n=1 µ(An∆An+1) <∞

Then the vertical foliation Fθ∞ is nonergodic.

Proof. Let

A∞ = lim inf An = {x : ∃N such that for n ≥ N, x ∈ An}.

B∞ = lim inf Bn = {x : ∃N such that for n ≥ N, x ∈ Bn}.
We first show that A∞ and B∞ satisfy

• (1) µ(M \ (A∞ ∪ B∞)) = 0.

• (2) A∞ ∩ B∞ = ∅

• (3) µ(A∞∆An) → 0 as n→ ∞.

• (4) 0 < µ(A∞) < 1.

By (iii) and the Borel-Cantelli Lemma the set of x′ which are in infinitely many
An∆An+1 has µ measure 0. ¿¿From this we have (1). Statement (2) is immediate.
To see (3) note that

A∞∆An ⊂ ∪∞
i=nAi∆Ai+1

so that

µ(A∞∆An) ≤
∞
∑

i=n

µ(Ai∆Ai+1).

Hypothesis (iii) implies that the right hand side goes to 0 as n goes to infinity,
proving (3). Statement (4) follows from (3) and (ii).

Returning to the proof of Theorem 3.2 , we can assume that the vertical foliation
Fθ∞ is orientable: if not, we may replace M by an orientable double cover and replace
A∞ and B∞ by their lifts. Now let ft be the flow along vertical leaves.

We claim that for any t the set A∞ is µ a.e. invariant; that is,

µ(ft(A∞)∆A∞) = 0.

Suppose on the contrary, that for some t0, we have µ(ft0(A∞)∆A∞) = δ > 0. By (3)
and (i) we may choose n large enough so that

µ(A∞∆An) < δ/8 and et0hn < δ/8.
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Since ft0 is µ preserving, the first inequality above and the assumption give

µ(ft0(An)∆An) ≥ δ − 2δ/8 = 3δ/4.

Thus at time t0, 3δ/8 of the measure of An flows to its complement. However at
most et0hn < δ/8 of measure can cross the boundary of An, a contradiction, proving
the claim. We would like to conclude that A∞ is flow invariant, although by the claim
it is only a.e. invariant for each time. The theorem is a consequence of the following
general lemma.

Lemma 3.3 Let ft be a flow on a space X preserving a probability measure µ. Sup-
pose there is a set A such that for every t, µ(ft(A)∆A) = 0. Then there is a set A′

invariant under ft with µ(A∆A
′) = 0.

Proof. Let λ be Lebesgue measure on R. Let

A′ = {x : ft(x) ∈ A for λ a.e.t}.

It is clear that A′ is ft invariant. We will show that µ(A∆A′) = 0. Let

C0 = {(x, t) : x ∈ A} and C1 = {(x, t) : ft(x) ∈ A}.

For every t we have

µ({x : (x, t) ∈ C0∆C1}) = µ(ft(A)∆A) = 0.

This implies that (µ× λ)(C0∆C1) = 0. By Fubini there is a set X ′ of full µ measure
so that for all x ∈ X ′,

λ({t : (x, t) ∈ C0∆C1}) = 0.

If x ∈ X ′ ∩ A then (x, t) ∈ C0 so that λ({t : (x, t) /∈ C1}) = 0. Therefore the set
{t : ft(x) ∈ A} has full λ measure so x ∈ A′. If x ∈ X ′\A then the set {t : (x, t) /∈ C1}
has full λ measure so that x /∈ A′. Thus A∆A′ is contained in the complement of X ′

so µ(A∆A′) = 0. This finishes the proof of the Lemma and therefore the Theorem.
✷

Back to Veech example. Now we wish to return to the Veech examples which
will be described in terms of quadratic differentials. We start with a square torus T ;
that is, the unit square with lower left vertex at (0, 0) with opposite sides identified.
Equivalently, it is R2 modulo the integer lattice. Fix a point (x0, y0) ∈ R2. For
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integers m,n let w be a segment in R2 joining (0, 0) to (x0 +m, y0 + n), projected to
T . Take two copies of T , each slit along w, and identify the positive side of w on one
copy to the negative side in another. It is easy to see that this results in a quadratic
differential φ on a surface M of genus 2. Since the total angle around each of the
points (0, 0) and (x0 + m, y0 + n) is 4π, they correspond to zeroes of order 2 of φ.
The surface of genus 2 is partitioned into 2 sheets M+

w and M−
w separated from each

other by the union of the two slits.

Theorem 3.4 Suppose x0, y0 are not rationally related; that is, for any pair of ra-
tionals, r1, r2, the equation r1x0 + r2y0 = 0 implies r1 = r2 = 0. Then there exists
uncountably many directions θ such that the flow on M in direction θ is minimal and
not ergodic.

In the special case that x0 = 0 and y0 = α, so that the slit is along the vertical
axis, the resulting surface M has two metric cylinders in the vertical direction, one
for each sheet. Choose the core curve of each metric cylinder. The first return map
to this pair of curves for the flow in direction θ is precisely the dynamical system
studied by Veech.

This same dynamical system can be described in terms of rational billiards by
taking a rectangle of length 2 and width 1, with an interior slit of length α from the
midpoint of a horizontal side.

Fig. 6

Proof. Suppose w′ is another segment on T with the same endpoints as w. Suppose w
and w′ intersect an odd number of times in their interior so they divide each other into
an even number of pieces. This is equivalent to saying that w and w′ are homologous
mod 2 on T . The sheet interchange measured by c = (M+

w ∩M−
w′) ∪ (M−

w ∩M+
w′) is

a union of an even number of parallelograms with sides on w and w′ (here w and w′

are thought of as vectors). Thus the area of c is at most |w × w′|.

Fig. 7

Now fix a sequence of positive numbers ρj with
∑

ρj < ∞. We will build an
infinite directed tree with each vertex leading to 2 further vertices. At level j there
will be 2j−1 vertices. Each vertex will correspond to a pair of integers (p, q) which
will determind a slit with endpoints (0, 0) and (x0 + p, y0 + q).
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For any pair (p, q) form the quotient (p+x0)/(q+y0), the slope of the corresponding
slit. Let δj be the minimum distance between any two slopes as (p, q) varies over the
vertices at level j. Now inductively, suppose we have determined the tree up to level
j. For each vertex (p, q) at level j we will choose two vertices (p′, q′) and (p′′, q,′′ ) at
level j + 1, and call these the two children of (p, q). To find such children begin by
choosing an even integer d such that

ρj
(q + y0)(q + y0 + d)

< δj/4.

Then consider the inequality

d|(p+ x0)n− (q + y0)m| < ρj

Since x0 and y0 are not rationally related, neither are p0 + n and q+ y0, and so there
are infinitely many coprime solutions (m,n). Choose any two of them and set

p′ = p+ dm and q′ = q + dn,

calling the two resulting two pairs the children. A direct calculation shows that

δ′j = |p+ x0
q + y0

− p′ + x0
q′ + y0

| < δj/4.

That is to say, the distance between the slope of a slit and either child is bounded
by δj/4. Then the distance between the slopes of the two children of (p, q) is at most
δj/2, which implies that

δj+1 < δj/2.

Let w be the segment corresponding to the parent and w′ the segment of a child.
Since d is even, w′ is homologous to w mod 2. In fact w′ − w represents d times
the primitive class of (m,n). As we have seen the area of the sheet interchange c is
bounded by |w′ × w|, and an easy calculation shows that this is bounded by

|(p+ x0)n− (q + y0)m]| < ρj .

Thus, in the situation of Theorem 3.2, we have constructed a sequence of par-
titions satisfying (iii). Now for any geodesic in the tree, the sequence of ratios
(p+ x0)/(q + y0) is a Cauchy sequence hence converging to some θ∞. From this,
condition (i) of Theorem 3.2 follows. Condition (ii) holds since the partition divides
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the surface into two pieces of equal areas. Thus by Theorem 3.2 the limiting foliation
Fθ∞ is not ergodic.

We now show that, in fact, there are uncountably many limiting directions. Since
there are only countably many directions that are not minimal, we then can conclude
that there are uncountably many limiting directions which are minimal. Since each
pair (p, q) has two children there are clearly uncountably many sequences. We there-
fore need to show that any two limits are distinct. Suppose rj = (pj + x0)/(qj + y0) →
θ and a distinct sequence r′j = (p′j + x0)/(q

′
j + y0) → θ′. Suppose the sequences differ

for the first time at stage j, so that the slopes rj and r
′
j satisfy

|rj − r′j | ≥ δj . (4.5)

Then by (4.3) and (4.4) we have

|θ − pj + x0
qj + y0

| ≤
∑

k≥j

δ′k <
∑

k≥j

δk
4
<
δj
2
,

and similarly |θ′ − r′j | < δj/2. Combined with (4.5), we have θ 6= θ′. ✷

The above theorem gives uncountably many minimal nonergodic directions. By
requiring α to satisfy a Diophantine condition, it is even possible to show that there
is a set of such examples of positive Hausdorff dimension (see Further ergodicity

results below). The main result of the next section however says that the set of
nonergodic directions must have Lebesgue measure 0.

3.2 Ergodicity in almost every direction

Theorem 3.5 ([40]) For any quadratic differential φ (rational billiard) the set of
θ ∈ [0, 2π] such that rθφ has minimal but non-uniquely ergodic vertical foliation has
Lebesgue measure 0.

The proof of this theorem uses the SL(2,R) action on quadratic differentials and
some combinatorial constructions related to quadratic differentials. Let QDǫ be the
set of quadratic differentials all of whose saddle connections have length at least ǫ.
Recall that Rg is the moduli space of Riemann surfaces of genus g.

Proposition 3.6 QDǫ is compact in QD.
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Proof. QDǫ is clearly closed in QD since if φn → φ and φ has a geodesic segment of
length less than ǫ so does φn for n large. It is therefore enough to show that QDǫ lies
over a compact set inRg. If not, there is a sequence φn ∈ QDǫ of quadratic differentials
lying on Riemann surfaces Xn going to infinity in Rg. Passing to subsequences we may
assume that Xn converges to a Riemann surface X∞ with nodes or punctures acquired
by pinching along a set of disjoint simple closed curves α1, . . . , αp. By passing to a
further subsequence we can assume that φn converges uniformly on compact sets to
an integrable quadratic differential φ∞ on X∞.

Thus φ∞ has at most simple poles at the nodes. There is therefore a curve αj
homotopic to a puncture with φ∞ length at most ǫ/2. For large n the uniform
convergence implies that αj has φn length at most ǫ/2, a contradiction. ✷

Definition 3.7 A quadratic differential φ is called divergent if the Riemann surfaces
on which gtφ lie, eventually leave every compact set of Rg as t→ ∞.

Theorem 3.8 Suppose the vertical foliation Fφ of φ is minimal but not uniquely
ergodic. Then φ is divergent.

Proof. Suppose the theorem is not true so that for some sequence tn → ∞ the
Riemann surfaces Xn = Xtn converge in Rg to some X0. By passing to a further
subsequence we may assume that φn = gtn(φ) converges to some φ0 on X0. Let ftn
be the corresponding Teichmuller map. Denote by Σ and Σ0 the sets of zeroes of φ
and φ0, rspectively.

The normalized transverse measures on the topological foliation Fφ form a finite
dimensional convex set for which the extreme points νi are mutually singular ergodic
measures – see [67]. Let ν0 be the transverse measure of Fφ. We have ν0 =

∑m
i=1 ciνi,

for constants ci. Pick a segment I of a horizontal trajectory of φ so that νi(I) 6= νj(I)
for i 6= j. Let µ the transverse measure to the horizontal foliation defined by φ. This
means that the area element |φ(z)dz2| = ν0 × µ. Let Ei ⊂ X be the disjoint sets of
generic points of the measure νi × µ for the interval I. We have (νi × µ)(Ei) = 1.
Each Ei is a union of leaves of Fφ.

For each i let Ai ⊂ X0 denote the set of accumulation points of ftn(x) ∈ Xn for
x ∈ Ei. Now let U ⊂ X0 be any open set. We claim that there is a j such that

U ∩ Aj 6= ∅.

To prove the claim, choose an open W so that W̄ ⊂ U . Since Xn → X0, for each n,
W may be considered as a subset of Xn with area bounded below by δ > 0. Consider
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Wn = f−1
tn (W ) ⊂ X . Since ftn preserves area, (ν0 × µ)(Wn) > δ. Then for each n,

there is a j = j(n) such that

(νj × µ)(Ej ∩Wn) = (νj × µ)(Wn) ≥
δ

mcj
.

Choose a j so that this inequality holds for infinitely many n. This implies that there
exists some x ∈ Ej ∩ Wn for infinitely many n. Since ftn(x) ∈ W , ftn(x) has an
accumulation point in W̄ , proving the claim.

Partition X0 into a finite number of rectangles in the natural coordinates of φ0

whose sides are horizontal and vertical segments. Adjacent rectangles meet along a
common horizontal or vertical segment of a side. Each point of Σ0 is required to
be a vertex of a rectangle. For each pair of adjacent rectangles R1, R2 choose open
sets Ui ⊂ Ri with the property that if yi ∈ Ui there is a vertical segment li with
one endpoint yi such that l1, l2 are two sides of a coordinate rectangle contained in
R1 ∪R2. For any two points y1, y2 in the same coordinate rectangle there are vertical
segments li with endpoints yi which are the vertical sides of a coordinate rectangle.
Now by the claim, by passing to further subsequences of tn, for each open set Ui we
may choose yi ∈ Ui and xi ∈ ∪mj=1Ej such that yi = lim ftn(xi).

Fig. 8

Now suppose U1, U2 are such open sets contained in either adjacent or the same
rectangle with corresponding yi and xi. We claim that x1 and x2 must belong to the
same Ej. Assume otherwise. By renumbering assume xi ∈ Ei, i = 1, 2. Let li be the
vertical segments with endpoints yi and which are vertical segments of a coordinate
rectangle. They have the same length. Each li is the limit of vertical segments li,n
of equal length of gtnφ with one endpoint ftn(xi). Each li,n is the image under ftn of
a vertical segment Li,n ⊂ Ei passing through xi; Li,n have equal length which go to
∞ with n. Therefore the number of intersections of Li,n with I goes to ∞ and since
Li,n ⊂ Ei,

lim
n→∞

card(li,n ∩ ftn(I))
card(l2,n ∩ ftn(I))

= lim
n→∞

card(L1,n ∩ I)
card(L2,n ∩ I)

=
ν1(I)

ν2(I)
6= 1.

But since li,n has limit li and every horizontal segment of φ0 that intersects l1
intersects l2 and vice versa,

card(l1,n ∩ ftn(I))
card(l2,n ∩ ftn(I))
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can be made arbitrarily close to 1 by taking n large enough. This is a contradiction,
proving the claim.

Any two rectangles R1, Rn can be connected by a chain of rectangles R1, . . . , Rn

where Ri and Ri+1 are adjacent along a side. This fact and the last claim imply that
there is a single index j such that xi ∈ Ej for all xi.

Choose some index i 6= j and x ∈ Ei \Σ. Let y ∈ X0 be an accumulation point of
ftn(x). By passing to further subsequences of tn we can assume that there is a single
rectangle R such that ftn(x) ∈ R and limn→∞ ftn(x) = y. Let Uk ⊂ R be one of the
open sets found previously. We may find vertical segments l ⊂ R with one endpoint
y and l′ ⊂ R with endpoint yk = lim ftn(xk) such that l, l′ are two vertical sides of
a coordinate rectangle contained in R. We may find vertical segments ln and ln′ of
gtnφ of equal length, ln → l and l′n → l′, ln has endpoint ftn(x) and l

′
n has endpoint

ftn(xk). As before
card(ln ∩ ftn(I))
card(l′n ∩ ftn(I))

can be made arbitrarily close to 1 by taking n large enough, and yet since x and xk
are points of Ei and Ej respectively, the ratio has limit

νi(I)

νj(I)
6= 1,

and we have our contradiction. ✷

The proof of Theorem 3.5 follows from the above theorem and the next

Theorem 3.9 The set of θ ∈ [0, 2π] such that rθφ is divergent, has Lebesgue measure
zero.

3.3 A combinatorial construction

In order to prove this theorem we will need to discuss certain a combinatorial con-
struction. We fix a stratum QD(σ).

Definition 3.10 Two saddle connections are disjoint if their only common points
are vertices.

Denote by p0 = p0(σ) the maximum number of disjoint saddle connections. A set of
disjoint saddle connections Γ is called a system. By |Γ| we mean the maximum length
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of any member of Γ. By a complex K we mean a subset of M consisting of disjoint
saddle connections and triangles, such that a triangle is in K if and only if its sides
are in K. An ǫ complex is a complex all of whose saddle connections have length at
most ǫ. We denote the (topological) boundary of K by ∂K. Then ∂K is a system of
saddle connections.

Note that if K is a complex, then K \∂K (viewed as a subset ofM) is a (possibly
empty) domain. We say that the complexity of a complex is j if it has j saddle
connections, including those on the boundary. The main construction is as follows.

Proposition 3.11 If K is a complex of complexity i and σ is a saddle connection
crossing ∂K or disjoint from K, then there is a complex K ′ of complexity j > i with
K ⊂ K ′ and |∂K ′| ≤ 3|∂K|+ |σ|.

Proof. If σ is disjoint from K, we may just add σ to K. Thus we may assume
that σ crosses ∂K at a point Q on a segment ω with endpoints A,B. In following σ
from Q into the exterior of K to its other endpoint P , suppose σ hits P before again
crossing ∂K. We may form a polygon with no interior singularities whose sides are
ω, a possibly broken geodesic joining A to P and a possibly broken geodesic joining
B to P . The edges and diagonals of this polygon have lengths bounded by |σ|+ |ω|.
Since ω is a boundary edge of K not all of the edges and diagonals of the polygon
can be in K. We may therefore add an edge that is not in K.

Fig. 9

Thus assume that before next hitting P , σ again crosses ∂K at Q1, an interior
point of a segment ω1. Let the endpoints of ω1 be denoted C,D. Let σ̂ be the
subsegment of σ joining Q to Q1. Now move σ̂ parallel to itself with one endpoint
moving along ω toward A , the other along ω1 toward D. This can be done until for
a first time a segment σ1 parallel to σ̂ either contains a singularity P0 in its interior
or is an endpoint of ω or an endpoint of ω1, say A. We have |σ1| ≤ |σ| + |ω| + |ω1|.
In the first case we build a polygon as before, with σ1 replacing σ. In the second case
also replace σ with σ1 and also replace ω with ω1 and P with A. Then we may use
σ1, A, and ω1 to form the desired polygon. ✷

Definition 3.12 Let ǫ < C. A saddle connection γ is (ǫ, C) isolated if it has length
less than ǫ and every saddle connection that crosses γ in its interior has length greater
than C.
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Since any two (ǫ, C) isolated curves are disjoint, the number of such curves is
bounded above by p0.

Definition 3.13 For a quadratic differential φ let nǫ(φ) be the maximum number of
simplices in a connected ǫ complex.

Definition 3.14 For a stratum QD(σ) let N(ǫ, C) be the set of quadratic differentials
in the stratum which possess (ǫ, C) isolated saddle connections.

Proposition 3.15 Let µ denote Lebesgue measure on the circle. Suppose there is a
set S of angles θ of positive measure so that rθφ is divergent for θ ∈ S. Then there
are

• (1) a sequence of times Ti → ∞

• (2) a sequence of sets Si ⊂ S and a number δ > 0 such that µ(Si) ≥ δ

• (3) a sequence ǫi → 0

• (4) a positive constant C such that gTirθφ ∈ N(ǫi, C) for θ ∈ Si.

The idea behind this Proposition is that since the Riemann surface of gtrθφ even-
tually leaves every compact set, there will be times Ti after which there will always be
a segment of length less than ǫi in the corresponding metrics. For a fixed C, however,
the sets N(ǫi, C) do not form a neighborhood basis of infinity so it may not be the
case that for sufficiently large Ti that there will be always (ǫi, C) isolated segments.
Nevertheless by passing to slightly smaller sets than Si we will be able to make the
statement for isolated segments.

Proof. Choose a sequence ǫi → 0. Since for each ǫi the set QDǫi is compact, for each
divergent ray rθ(q) there are times Ti such that gtrθ(q) ∈ QD \ QDǫi for all t ≥ Ti.
Then Ti can be chosen so that this relationship holds for all θ ∈ S ′ where S ′ ⊂ S and
µ(S ′) > µ(S)/2.

Consider now triples of sequences (ǫi, Ti, Si) such that ǫi → 0, Ti → ∞, µ(Si)
bounded away from 0 and gTirθφ ∈ QD \ QDǫi for θ ∈ Si. The set of triples is
nonempty for we can take Si = S ′ for all i. Choose a sequence of triples that maxi-
mizes

min
i

min
θ∈Si

nǫ(gTirθφ).
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For the corresponding sequence, for each i and θ ∈ Si let Ci,θ be the length of the
shortest saddle connection that crosses a boundary segment of the ǫi complex of
gTirθφ. For each i, let mi be a number so that

µ({θ ∈ Si : Ci,θ ≥ mi}) = µ(Si)/2.

We claim that the numbers mi are bounded below. Suppose not. Choose a subse-
quence converging to 0 and for that subsequence let

S ′
i = {θ ∈ Si : Ci,θ < mi},

so µ(S ′
i) = µ(Si)/2 is bounded below, and let

ǫ′i = 3ǫi +mi → 0.

Fix θ ∈ S ′
i. Since there is an ǫi complex and a saddle connection of length at most

mi crossing it, by Proposition 3.11 we can find an ǫ′i complex on gTirθφ with more
simplices, contradicting the maximality of our sequence of triples. Thus the set of
mi is bounded below, by some C > 0. If we replace Si with the set of θ such that
Ci,θ ≥ mi ≥ C, every saddle connection crossing the ǫi complex has length at least
C, proving the proposition. ✷

Let α be a geodesic segment. For some θα , the segment α is vertical with respect
to rθαφ. Rotate the coordinate system so that θα = 0. Denote by l(t, θ) the length of
α with respect to the structure gtrθφ, so that |α|φ = l(0, 0). In these coordinates

l(t, θ) = l(0, 0)(et sin2 θ + e−t cos2 θ)1/2.

Fix t ≥ 0 and choose ǫ > 0. Define two intervals Iα ⊂ Jα ⊂ (−π/2, π/2) with respect
to the rotated coordinates:

Iα = {θ : | sin θ| ≤ ǫ/(vet/2)},

Jα = {θ : | sin θ| ≤ C/(2vet/2)}.

Lemma 3.16 For θ /∈ Iα one has: l(t, θ) ≥ ǫ. There are constants ǫ1, T,K indepen-
dent of α such that for ǫ < ǫ1 and t > T we have µ(Iα)/µ(Jα) < Kǫ. In addition if
l(t, θ) < ǫ for some θ, then l(t, θ) < C for all θ ∈ Jα.
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Proof. The first statement is immediate from the definition. If l(t, θ) < ǫ for some
θ then, since l(t, θ) attains its minimum at θ = 0,

ve−t/2| cos θ| ≤ ve−t/2 ≤ l(t, θ) < ǫ.

For θ ∈ Jα, we then have

l(t, θ) ≤ (C2/4 + ǫ2e−t)1/2 ≤ C/2 + ǫ.

If we choose ǫ1 = C/2 and ǫ < ǫ1 then l(t, θ) < C. This proves the last statement.
Let I ′α and J ′

α be the images of Iα and Jα under the sine function. If C/(2vet/2) <
1/2 then J ′

α is contained in the interval (−1/2, 1/2) and µ(I ′α)/µ(J
′
α) = 2ǫ/C. Since

the arcsine function restricted to the interval (−1/2, 1/2) is Lipschitz and has a Lip-
schitz inverse, it changes the lengths of intervals by a bounded amount. Thus we can
choose a constant K depending on C such that µ(Iα)/µ(Jα) < Kǫ as claimed.

To ensure that C/(2vet/2) < 1/2 choose T such that C/(2meT/2) < 1/2 where m
is the length of the shortest saddle connection on φ. Since v ≥ m and t > T , the
inequality holds and the proof of the lemma is finished. ✷

The last technical statement we need is as follows.

Proposition 3.17 There are constants T, ǫ1, K
′ such that for t > T and ǫ < ǫ1 one

has:
µ({θ : gtrθφ ∈ N(ǫ, C)}) < K ′ǫ.

Proof. Fix T and ǫ < ǫ1 as in the preceding lemma. Consider all saddle connections
α which are (ǫ, C) isolated with respect to gtrθφ for some θ. For each such α let Îα
be the smallest interval of θ′s for which α is (ǫ, C) isolated. Then Îα ⊂ Iα ⊂ Jα.

Construct a new open interval Ĵα as follows: the left-hand endpoint of Ĵα will be
halfway between the lefthand endpoints of Îα and Jα, and the righthand endpoint of
Ĵα will be halfway between the righthand endpoints of Îα and Jα. The point of this
construction is the fact that if Ĵα and Ĵβ intersect, then either Jα intersects Îβ or Jβ
intersects Îα. Assume the first. We can find θ ∈ Jα ∩ Îβ such that β is (ǫ, C) isolated
with respect to gtrθq. Now, with respect to the metric of gtrθφ, the saddle connection
α has length less than C, and β cannot cross any geodesic segment of length less
than C. Thus α and β are disjoint. The maximum number of disjoint segments is p0.
Therefore no θ can lie in more than p0 segments Ĵα. The sum of the lengths of the
Ĵα is at most 2πp0. The sum of the lengths of the Jα is at most 4πp0. The sum of
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the lengths of the intervals Iα is at most 4Kπǫp0, and the intervals Iα cover the set
of θ for which gtrθφ ∈ N(ǫ, C). Thus we can take K ′ = 4Kπp0. ✷

Proof of Theorem 3.9. Assume the theorem is false. Then choose constants ǫi → 0,
times Ti → ∞, a constant C, and sets Si so that Proposition 3.15 holds. In particular,
µ(Si) ≥ δ > 0. Let K ′, T be as in Proposition 3.17; then, for ǫi small enough and
Ti > T large enough, we have: µ(Si) < K ′ǫi. However, for ǫi small enough, one has:
K ′ǫi < δ, a contradiction. ✷

3.4 Further ergodicity results

In this section we mention, without proofs, some further results on ergodicity of
vertical foliations of quadratic differentials.

The measure 0 result in Theorem 3.5 was improved in [48] to give a statement
about Hausdorff dimension.

Theorem 3.18 For any quadratic differential φ the set of θ ∈ [0, 2π] such that rθφ
has minimal but non-uniquely ergodic vertical foliation has Hausdorff dimension at
most 1/2.

Recently Y.Cheung ([11]) has shown that the bound 1/2 is sharp by revisiting the
Veech examples described at the beginning of this chapter. Assume that the number
α in the Veech example is not Liouville, that is, there exists s ≥ 2 and c > 0 such that
|α − p/q| > c/qs for all p, q. Under this assumption Cheung proved that the set of
directions θ for which the system is minimal but not uniquely ergodic has Hausdorff
dimension 1/2. This is to be contrasted with an unpublished result of Boshernitzan
who showed the same set has Hausdorff dimension 0 for a residual set of α.

On the other hand positive Hausdorff dimension turns out to be typical as was
shown in [49]. Recall the stratum QD(σ) and SL(2,R) ergodic invariant measure µ0

on each component ofQD(σ). Assume that σ 6= (∅; +), (1,−1;−), (−1,−1,−1,−1;−),
that is, the quadratic differentials do not define a flat torus, once punctured torus, or
four times punctured sphere.

Theorem 3.19 For each component C of QD(σ) there is a δ = δ(C) > 0 such
that for µ0 almost all φ ∈ C, the set of θ ∈ [0, 2π] such that rθφ has minimal but
non-uniquely ergodic vertical foliation has Hausdorff dimension δ.
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3.5 Ergodicity of general polygonal billiards

Now we apply Theorem 3.5 to polygonal billiards. As before, the collection of plane
polygonal regions with n vertices and a given combinatorial type is identified with a
subset of R2n and is given a subspace topology. Recall that G(Q) denotes the group
generated by reflections in the sides of a polygon Q.

The next result is in the spirit of Theorem 1.10 but is stronger.

Theorem 3.20 ([40]) Let X be a closed subset of the space of billiard tables with the
property that for any number N the set of rational tables Q ∈ X with card(G(Q)) ≥ N
is dense. Then ergodic tables in X form a dense Gδ subset.

Proof. We can assume that X ⊂ R2n is compact. Each Q ∈ X is a polygonal region
in the plane. We can assume that the area of Q is 1. Let PX be the bundle whose
base space is X and the fiber PQ over Q ∈ X is the phase space of the corresponding
billiard table Q. Note that PX ⊂ X ×R2 ×S1. Let µQ the product of area measure
on Q with unit Lebesgue measure on S1, and let φt be the billiard flow on PX .

Choose a sequence of continuous functions f1, f2 . . . on PX which, when restricted
to each PQ, are dense in L2(PQ). We make the further assumption that if v is
an outward and v′ is the corresponding inward vector on the boundary of Q, then
fi(v) = fi(v

′). Let E(i, n, T ) be the set of Q ∈ X for which

∫

z∈PQ

(
1

T

∫ T

0
fi(φt(z))dt−

∫

PQ

fidµ)
2dµ < 1/n.

Let
E(i, n) = ∪∞

T=1E(i, n, T ),

and let
E = ∩∞

i=1 ∩∞
n=1 E(i, n).

The set of Q ∈ X for which φt restricted to PQ is ergodic is precisely E – see [51].
We will prove that

• (1) The sets E(i, n, T ) are open, and

• (2) For a given i and n, there is an N such that E(i, n) contains all rational
tables Q for which card(G(Q)) > N .
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Assuming these statements, the theorem is proved as follows. The first stetement
implies that the sets E(i, n) are open. The second one implies that the E(i, n) are
dense. Then E is a Gδ, and it follows from the Baire category theorem that E is
dense in X .

Statement (1) is a consequence of the next result.

Lemma 3.21 Let T > 0 be fixed, and let f be a continuous function on PX respecting
the boundary identifications. Then

∫

z∈PQ

(
1

T

∫ T

0
f(φt(z))dt−

∫

PQ

fdµQ)
2dµQ

depends continuously on Q.

Proof. For Q ∈ X let a(Q) =
∫

Py
fdµQ. Clearly, a(Q) depends continuously on Q.

Replace the function f by the function f̃ defined as follows: for z ∈ PQ let
f̃(z) = f(z) − a(Q). Then the proof of the lemma reduces to the proof of the
continuity of the following function:

c(Q) =
∫

z∈PQ

[
1

T

∫ T

0
f̃(φt(z))dt]

2dµQ.

The difficulty is that, due to discontinuities of the billiard flow at the corners, the
billiard orbits of close velocity vectors may diverge. Roughly speaking, this difficulty
is overcome by deleting the set of velocity vectors whose trajectories hit a corner; this
set has zero measure, and the time T trajectory depends continuously on the velocity
vector in its complement.

More specifically, for z ∈ PQ ⊂ PX introduce an auxiliary function l(z) as the
infimum of the distance from the time T trajectory of vector z to the set of vertices
of the polygon Q. Clearly l(z) depends continuously on z, and the zero level set of
l(z), that is, the set of velocity vectors whose time T trajectory hits a vertex, has
zero measure.

Let ǫ > 0 be fixed, and let M = sup f̃ . For a neighborhood N1 of Q in the space
of polygons denote by Q1 the intersection of all polygons from N1 (note that Q1 is
not a polygon). We can choose N1 so small that the area of Q1 is at least 1− ǫ/6M2.

Let Cδ ⊂ PQ be the set of velocity vectors z for which l(z) ≥ δ. Choose δ small
enough so that the measure of Cδ is at least 1− ǫ/6M2. Let Dδ ⊂ Cδ consist of pairs
(x, v) ∈ R2 × S1 with x ∈ Q1. Note that the measure of Dδ is at least 1 − ǫ/3M2.
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Since Q1×S1 is contained in PR for all R ∈ N1, we can identify N1×Dδ with a subset
of PX in a natural way. Let l̄(R) be the infimum of l(z) for z ∈ (PR ∩ (N1 ×Dδ)).
Now l̄ is continuous and l̄(Q) = δ. We can find a neighborhood N2 ⊂ N1 so that for
all R ∈ N2, l̄(R) > 0. Let d(R) denote

d(R) =
∫

z∈(PR∩(N1×Dδ))
[
1

T

∫ T

0
f̃(φt(z))dt]

2dµR.

Then
|d(R)− c(R)| ≤M2µ(PR \ (PR ∩ (N1 ×Dδ))) ≤ ǫ/3

for each R ∈ N2. For R ∈ N2 the function f(φt(z)) depends continuously on t ∈ [0, T ]
and z ∈ Dδ. Thus we can find a neighborhood N3 of Q in which d varies by less than
ǫ/3. Then, for R ∈ N3,

|c(Q)− c(R)| ≤ |c(Q)− d(Q)|+ |d(Q)− d(R)|+ |d(R)− c(R)| ≤ ǫ.

This completes the proof of continuity of c and the proof of the Lemma. ✷

To finish the proof of the Theorem one needs to establish statement (2); this
statement follows from the next lemma.

Lemma 3.22 Fix n > 0 and let f be a continuous function on PX. Choose δ > 0
so that if |θ1 − θ2| < δ then |f(θ1) − f(θ2)| < 1/2n. Let N ≥ 2/δ, and let Q be a
rational polygon with |G(Q)| ≥ N . Then for sufficiently large T one has:

[
∫

z∈PQ

[
1

T

∫ T

0
f(φt(z))dt−

∫

Px

fdµQ]
2dµQ]

1/2 < 1/n.

Proof. Since Q is fixed we will drop the subscripts from P,G and µ. For θ ∈ S1 let
u(θ) = 1/|G| ∫z∈Mθ

f(z)dA where dA is the area measure on Mθ; here, as before, Mθ

is the invariant surface of the billird flow in direction θ. For z ∈Mθ let u
′(z) = u(θ).

For z ∈ P let vT (z) = 1/T
∫ T
0 f(φt(z))dt. The quantity which appears in the lemma

is the norm in the space L2(P ) of the function vT − ∫

fdµ. We claim that

lim
T→∞

||vT − u′|| = 0.

To prove the claim, notice that the surfaces Mθ are parametrized by θ ∈ S1/G. We
evaluate the norm by integrating first with respect to Mθ and then with respect to θ:

||vT − u′|| = [|G|
∫

θ∈S1/G

1

|G|
∫

z∈Mθ

(vT (z)− u′(z))2dAdθ]1/2.
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Let

wT (θ) = [
1

|G|
∫

z∈Mθ

(vT (z)− u′(z))2dA]1/2.

Then
||vT − u′|| = [|G|

∫

θ∈S1/G
wT (θ)

2dθ]1/2.

For a given θ the ergodicity of φ restricted to Mθ implies that limT→∞wT (θ) = 0.
Theorem 3.5 implies ergodicity for almost all θ. Since the functions wT are bounded
and converge pointwise almost everywhere to 0, they converge to 0 in norm. This
completes the proof of the claim.

The second claim is that

||u′ −
∫

fdµ|| ≤ 1/2n.

Now ||u′ − ∫

fdµ|| is equal to the norm of u − ∫

fdµ in L2(S1). Let θ1 and θ2 be
points in the circle at which u assumes its minimum and maximum values m and
M , respectively. Note that u is constant on the orbits of G. The distance between
neighboring points in a G orbit is less than 2/|G| < 2/N < δ. By replacing θ2 by
g(θ2), where g ∈ G, we may assume that |θ1 − θ2| < δ. It follows from the continuity
assumption on f that since |θ1 − θ2| < δ, then |u(θ1) − u(θ2)| < 1/2n. Since u is
defined by averaging f ,

∫

P f =
∫

S1 u. Thus m ≤ ∫

f ≤ M ; hence |u(θ)− ∫

f | ≤ 1/2n
and ||u− ∫

f || ≤ 1/2n. This completes the proof of the claim.
We now complete the proof of the lemma. Choose T sufficiently large so that

||vT − u′|| ≤ 1/2n. Then

||vT −
∫

f || ≤ ||vT − u′||+ ||u′ −
∫

f || ≤ 1/2n+ 1/2n = 1/n,

and we are done. ✷

3.6 Constructive approach to polygons with ergodic billiard

flow

Ya. Vorobets gave a constructive description of a topologically massive set of polygons
with ergodic billiard flow – see [65]. We describe his result without proof.

Definition 3.23 Let φ(N) be a positive function of a positive integer N whose limit
is zero as N → ∞. Let Q be a plane k-gon with angles α1, ..., αk between the adjacent
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sides. We say that Q admits approximation by rational polygons at the rate φ(N) if
for every n > 0 there is N > n and positive integers n1, ..., nk, each coprime with N ,
such that |αi − πni/N | < φ(N) for all i.

The next theorem gives an explicit estimate of how well a polygon should be
approximated by rational ones to guarantee ergodicity of the billiard flow.

Theorem 3.24 Let Q be a polygon that admits approximation by rational polygons
at the rate

φ(N) =
(

22
22

N
)−1

.

Then the billiard flow in Q is ergodic.

The paper [65] also contain constructive versions of other results on polygonal
billiards and flat surfaces. In particular it gives a different proof of the quadratic
upper bound growth rate for the number saddle connections, a result we will discuss
in more detail in the next section.

4 Periodic orbits

4.1 Periodic directions are dense

Suppose β is a closed geodesic of a quadratic differential φ that does not pass through a
zero. As we have observed, β can be moved parallel to itself and sweeps out a cylinder
of homotopic geodesics; we called such a cylinder a metric cylinder. The boundary
of the metric cylinder is a union of parallel saddle connections. In the special case of
the flat torus, there are closed geodesics in a dense set of directions, and, of course,
for each such direction the closed geodesics fill the surface. For surfaces of higher
genus, the boundary of the metric cylinder contains saddle connections. We have
already seen that for a rational billiard, there are periodic trajectories that leave a
side orthogonally. The main objective of this section is to prove the following theorem,

Theorem 4.1 ([45]) For any quadratic differential φ0 there is a dense set of direc-
tions θ ∈ S1 such that φ0 has a metric cylinder in the direction θ.

Corollary 4.2 For any rational billiard table there is a dense set of directions with
a periodic orbit in that direction.
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Theorem 4.1 was strengthened in the following result of Boshernitzan, Galperin,
Kruger and Troubetzkoy – see [10].

Theorem 4.3 For any quadratic differential φ0 there is a dense set of vectors in the
tangent space to the surface such that the orbit determined by that vector is closed.

The theorem is proved in [10] for rational billiards. The proof holds verbatim for
the general case of a quadratic differential.

Recall that in the compactification of Rg we allow pinching Riemann surfaces
along p ≤ 3g − 3 simple closed curves to produce Riemann surface X0 with nodes or
punctures. Also recall that if φn is a sequence of unit norm quadratic differentials
on Xn, we can pass to a subsequence and assume that φn converges uniformly on
compact sets of X0 to a finite norm quadratic differential φ∞ on X0. We single out
the a set of limiting quadratic differentials.

Definition 4.4 A limiting quadratic differential φ∞ on X0 is called exceptional if

(a) some component of X0 is a torus and φ∞ defines the flat metric on the torus or

(b) some component of X0 is a punctured sphere and φ∞ has no zeroes or

(c) φ∞ ≡ 0 on every component of X0.

We note that in case (b), since φ∞ has no zeroes, there must be exactly four punctures
at which φ∞ has a simple pole, and at any other puncture, φ∞ is regular. The impor-
tance of this definition is illustrated by the following proposition. We are indebted
to Yair Minsky for suggesting the proof. A different proof appeared in [45] based on
work of [44].

Proposition 4.5 There exists M > 0 with the property that if Xn → X0 in R̄g and
φn are quadratic differentials on Xn which converge uniformly on compact sets of X0

to an exceptional φ∞, then for large enough n, φn has a metric cylinder of length at
most M .

Proof. In cases (a) and (b) there is a dense set of directions such that φ∞ has a metric
cylinder in that direction. Choose one such metric cylinder and a neighborhood of the
punctures such that the cylinder contains a closed curve missing that neighborhood.
The uniform convergence of φn to φ∞ on the complement of this neighborhood implies
that for large n, φn has a closed regular geodesic with some uniformly bounded length.
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Thus we can assume we are in case (c). For any ǫ > 0 and for each loop C
surrounding a puncture of X0 we have |C|φn < ǫ for large n. The loops C divide
Xn into p annuli Bi homotopic to the pinching curves and φn → φ∞ uniformly on
X0 \ (∪Bi). Since φ∞ ≡ 0, the φn area of X0 \ (∪Bi) goes to 0 and so the φn area of
∪Bi goes to 1. For large n, for at least one annulus B, the φn area of B is at least
1/(3g − 3). This annulus has two boundary components C.

Fix such a large n. If there is no metric cylinder in the homotopy class of C then
we may let α be the unique φn geodesic homotopic to the loop C. Then α passes
through singularities, at some of which the angle is in excess of π. We will arrive
at a contradiction. First assume that α is embedded. For each r let N(r) be the r
neighborhood of α; the set N(r) is convex. For small values of r, N(r) is an annulus
containing α in its interior (here is where we use that α is embedded). For all r it is
a domain with nonpositive Euler characteristic. Let αr = ∂N(r). For all except an
isolated set of r, the curve αr is smooth.

The Gauss-Bonnet formula says that

∫

N(r)
K +

∫

αr

κds = 2πχ(N(r)) ≤ 0,

whereK is the Gaussian curvature and κ is the geodesic curvature. NowK = 0 except
at the interior points x of N(r), where the curvature is negative and concentrated so
that the contribution to the first term is −mπ, for m a positive integer. The number
m may jump a bounded number of times as more zeroes are included in N(r) and so
is maximized by some M . Thus

∫

αr

κds ≤ mπ ≤Mπ.

with equality in the first inequality as long as N(r) remains an annulus. Let A(r) =
||N(r)||, the area of N(r), and let L(r) denote the length of αr. Then

A′(r) = L(r) and L′(r) =
∫

αr

κds ≤ mπ ≤Mπ,

again with equality in the first inequality as long as N(r) remains an annulus. In
particular this gives L(r) ≥ πr, as long as N(r) remains an annulus. Now the fact
that A′′(r) ≤Mπ together with A(0) = 0 and A′(0) ≤ ǫ, gives

A(r) ≤Mπr2 + ǫr.
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Choose ǫ small enough so that

A(ǫ) ≤ 1

3g − 3
.

We show that B ⊂ N(ǫ) and that this leads to the desired contradiction. Let r0 = ǫ/π.
The first step is to notice that each component C of the boundary of B must intersect
N(r0). If N(r0) is an annulus this follows from the fact that L(r0) ≥ r0π = ǫ and
N(r0) is convex, so any curve, namely C, of length smaller than ǫ cannot be homotopic
to and exterior to N(r0). If χ(N(r0)) < 0, then C must intersect N(r0) since C is
homotopic to α. Since C has length at most ǫ the fact that C intersects N(r0)
implies that C must be contained in N(ǫ(1/π + 1/2)) ⊂ N(ǫ). Then both boundary
components C of B are contained in N(ǫ), so we must have B ⊂ N(ǫ). But now

||B|| ≤ A(ǫ) ≤ 1

(3g − 3)
,

which is a contradiction.
In case α is not embedded, so that α is not in the interior of N(r), we lift α to

the annular cover so that it is embedded. We have the same lower bound growth
estimates for the length of curves in a neighborhood of the lifted α as well as the
upper bound for the area of the neighborhood. This neighborhood projects to N(r).
The rest of the proof then goes through. ✷

The following Lemma says that the Teichmuller flow extends continuously to the
compactification.

Lemma 4.6 If φ0 is not identically 0 on every component of X0, then for any t,
gt(φn) → gt(φ0).

Proof. The proof is immediate by viewing the flow in the natural coordinates of
quadratic differentials. ✷

For a given genus g, a stratum QD(σ) is not a closed subset of Qg, unless σ
consists of a single zero. This is because a sequence in QD(σ) may collapse a pair of
lower order zeroes into a higher order zero. In addition, the degeneration of Riemann
surfaces allows limits of quadratic differentials on which the topology of the surface
has changed. Because a degenerated surface need not be connected, in the following
definition we allow disconnected surfaces and corresponding strata.
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Definition 4.7 A stratum QD(σ′) is a degeneration of a stratum QD(σ) if QD(σ′) 6=
QD(σ) and there exists a sequence φn ∈ QD(σ) on Riemann surfaces Xn ∈ R̄g

such that Xn → X0 in R̄g and φn converges uniformly on compact sets to some
φ∞ ∈ QD(σ′) where φ∞ is not identically zero.

For any quadratic differential φ which is not identically zero, denote by l(φ) the
length of the shortest saddle connection of φ. Notice that l(·) is not continuous
under degeneration within a fixed genus. This is because zeroes are collapsed. Thus
if φn ∈ QD(σ) is a sequence converging to φ∞ ∈ QD(σ′) then l(φn) → 0 while
l(φ∞) > 0.

Now suppose a nonzero quadratic differential φ0 on a connected surface is given.
For any closed interval I ⊂ [0, 2π] let

EI(φ0) = {φ : ∃θn → θ ∈ I, ∃tn → ∞, ∃ψn : rψngtnrθnφ0 → φ}.

That is to say, EI is the set of all ω limit points φ in the SL(2,R) orbit of φ0 where
the limiting initial rotation angle lies in I. Here the limiting φ may belong to any
stratum. Note that θn need not lie in I. Now Theorem 4.1 will follow from the next
proposition.

Proposition 4.8 For any φ0, EI(φ0) contains an exceptional φ.

Proof. Since I is closed, EI = EI(φ0) is compact. Assume EI does not contain any
exceptional φ; we will arrive at a contradiction. Let

ET
I = {φ ∈ EI : ∀φ′ ∈ EI , QD(σ′(φ′)) is not a degeneration of QD(σ(φ))}.

That is, ET
I is the set of φ ∈ EI which belong to a stratum that cannot be further

degenerated within EI . Let
l = inf

φ∈ET
I

l(φ).

If l = 0 choose a sequence φn ∈ ET
I with lim l(φn) → 0. By passing to a subsequence

we may assume that φn → φ∞ ∈ EI . Since l = 0 then either the Riemann surface of
φn has degenerated or some set of zeroes of φn have been collapsed to a higher order
zero of φ∞. In either case φ∞ belongs to a stratum which is a degeneration of the
stratum containing φn, a contradiction to the definition of ET

I .
Suppose on the other hand that l > 0. Choose tn → ∞, θn → θ1 ∈ I such that

gtnrθnφ0 → φ1 ∈ ET
I .
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Then l(φ1) ≥ l. Let γ be a saddle connection of φ1 such that l(φ1) = |γ|φ1. Let θγ be
such that γ is vertical with respect to rθγφ1. As s→ ∞ the length of γ with respect to
the metric of gsrθγφ1 goes to 0. Thus we can choose s such that the length of γ with
respect to the metric of gsrθγφ1 is less than l/2. We will have a contradiction if we
can show that gsrθγφ1 ∈ ET

I . Since the stratum containing φ1 cannot be degenerated
within EI we only need to show that gsrθγφ1 ∈ EI . Now by Lemma 4.6

gsrθγφ1 = lim
n→∞

gsrθγgtnrθnφ0.

We claim that there exist sequences θ′n → 0, t′n → ∞, and ψn → θ such that

gsrθγgtn = rψngt′nrθ′n.

Canonically identify G with the unit tangent vectors to the upper half-plane with
Id identified with the vertical vector at i =

√
−1. Then SL(2,R) acts by Mobius

transformations. Furthermore ∞ is an attracting fixed point of the geodesic flow gt.
Therefore for each n, there is a unique rotation r−ψn such that r−ψngsrθgtn takes the
vertical vector at i to a vector based on the imaginary axis and then for some small
θn′ and large t′n, r−θ′ng−t′n takes this vector to the vertical vector at i, proving the
claim. Finally,

gsrθγφ1 = lim
n→∞

rψngt′nrθn+θ′nφ0,

that is, gsrθγφ1 ∈ EI , and we are done. ✷

Proof of Theorem 4.1. Choose a closed subinterval I ′ of I contained in the interior
of I. Then Proposition 4.8 says that there must be some exceptional φ ∈ EI′. By
Proposition 4.5, for a sequence tn → ∞ and θn → θ0 ∈ I ′, gtnrθnφ0 has a metric
cylinder in the homotopy class of some βn and the length is uniformly bounded above
by some M . Since tn → ∞ and gtn expands horizontal lengths, the horizontal length
of βn in the metric of rθnφ0 goes to 0.

Thus for some θ′n → 0, the quadratic differential rθ′nrθnφ0 has a metric cylinder in
the class of βn and since θn + θ′n ∈ I, for large n, we are done. ✷

Proof of Theorem 4.3. Let T1(S) = {(p, θ)} denote the unit tangent space to S;
here p ∈ S and θ ∈ S1. Let ǫ > 0. We begin by fixing a minimal uniquely ergodic
direction θ ∈ S1. Unique ergodicity implies that we can choose N large enough so
that for all x ∈ S the leaf through x is ǫ/2-dense in S.

There are only a finite number of saddle connections of length less than or equal
to 2N and so their tangent vectors lie in a finite set of directions. This means that
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we can choose δ sufficiently small so that if θ′ satisfies |θ − θ′| < δ, then any saddle
connection in direction θ′ has length at least 2N . We may also choose δ < ǫ/2N .
¿¿From Theorem 4.1 we know that there is a point (x0, θ0) on a closed leaf Lθ0 in a
metric cylinder such that |θ0 − θ| < δ. Now let Lθ be the leaf through x0 in direction
θ extended to length N in each direction, or to a zero. Now we claim that in at least
one of the two possible directions, moving distance N , the endpoint of Lθ and the
endpoint of Lθ0 are within ǫ/2 of each other. To prove the claim, for each direction,
form the simply connected domain bounded by the segments and a geodesic joining
their endpoints. If both simply connected domains contained a zero in their interior,
there would be a saddle connection γ of length at most 2N in direction θ′ satisfying
|θ′−θ| < δ, contradicting the choice of δ. Thus in one direction the simply connected
domain is actually a metric triangle with no interior zeroes. The choice of δ < ǫ/2N
says now that the endpoints are within ǫ/2 of each other, proving the claim.

Since the segment of Lθ is ǫ/2 dense in S, the leaf Lθ0 is ǫ dense. This can be
done for every uniquely ergodic direction θ. The set of vectors determining uniquely
ergodic directions is dense in the whole phase space T1S. Since ǫ is arbitrary this
completes the proof. ✷

4.2 Counting saddle connections and maximal cylinders

In this section we discuss some results on the asymptotics of the number of saddle
connections and periodic orbits. No proofs will be given. As noted in the section
on billiards in the unit square, the number of (parallel families of) periodic orbits of
length at most L grows asymtotically as πL2/2ζ(2). For a general rational billiard or
flat structure, asymptotics are not known. However we do have quadratic upper and
lower bounds. To be specific, given a flat structure φ and L > 0, let N1(L) be the
number of saddle connections of length at most L and N2(L) the number of maximal
metric cylinders of length at most L. The following theorem was proved in [46] and
[47].

Theorem 4.9 There exists positive constants c1, c2 such that

c2L
2 ≤ N2(L) ≤ N1(L) ≤ c1L

2.

Different proofs of the upper estimate are given in [65] and [15]. It is possible to
prove precise asymptotics for generic flat structures.

46



Theorem 4.10 ([15]) There exists constants c = c(σ) and s = s(σ) such that on
each component of QD(σ), for µ0 a.e. φ ∈ QD(σ) one has: N1(L) ∼ cL2 and
N2(L) ∼ sL2.

In the next section we discuss some circumstances under which these precise
asymptotics are known to hold.

5 Veech groups

5.1 Definition and examples of Veech groups

In this section we discuss the groups of affine transformations associated to flat struc-
tures. These groups give rise to subgroups in PSL(2,R). If these groups are lattices
in PSL(2,R), then the flat structure has particularly nice properties.

Let φ be a quadratic differential on the Riemann surface X . Let Σ be a subset of
X which contains the zeroes of φ (but may be larger). Let X ′ = X \ Σ. Following
Veech we give the next definition.

Definition 5.1 The affine group Aff+(φ) is the group of orientation preserving self
homeomorphisms of X that map X ′ to itself and are affine with respect to the natural
coordinates of φ.

This means that for each point p ∈ X ′ we choose coordinates z near p so that
φ = dz2 and coordinates w near f(p) so that φ = dw2, and in these coordinates, the
map f is an affine homeomorphism. We call the derivative (i.e., linear part) of that
homeomorphism the derivative of f . It is well-defined independently of p, z and w
up to a factor of ±I. Let a(f) = ±A be the derivative. Then by an observation of
Veech [62] we have

|f ∗φ| = det(A)|φ|
and ∫

|φ| =
∫

|f ∗(φ)|,

which implies that the determinant is 1 and so A is an element of G = PSL(2,R).

Definition 5.2 The Veech group Γ(φ) is the image of Aff+(φ) under the derivative
map.
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The case of most interest is when Γ is a lattice in G. Recall that a lattice Γ in G
is a discrete subgroup such that G/Γ has finite volume; a lattice is nonuniform if the
quotient is not compact (see, e.g., [5]).

We present several examples.

Thurston example. The following example is essentially due to Thurston [57].
Recall that a (right) Dehn twist about a simple closed curve α on a surface is a
homeomorphism of the surface which fixes α and twists any curve β crossing α once
to the right about α.

Take the unit square with lower left vertex at the origin and identify opposite
vertical sides. Mark off 4 points on both the top and bottom of the resulting cylinder
C, dividing the top and bottom into equally spaced intervals and so that the points
on top lie directly above the points on the bottom. Arrange the intervals on top into
two pairs and glue each pair isometrically as indicated in the figure. Do the same for
the bottom.

Fig. 10

The Euclidean metric on the rectangle extends to a quadratic differential φ = dz2

on the glued surface X , which has genus 2. The 4 marked points on the top identify
to a single zero of order 2; similarly for the bottom. Let Σ consist of these two points.
We define an affine map f1 : X → X which in the coordinates (x, y) is given by

(x, y) → (x+ y mod(1), y).

The map is easily seen to be well-defined on the identification space, fixes Σ and the
top and bottom of C, and acts as a right Dehn twist on the core curve of C. Its
derivative is

A1 =
(

1 1
0 1

)

.

To find a second affine map f2 notice that the gluings force all trajectories in
the vertical direction to be closed as well. Indeed, an upward vertical trajectory hits
the top horizontal side of the square at some point S and continues downwards from
the point T of the same horizontal side which is identified with S. The surface X
decomposes into vertical metric cylinders C1, C2 of circumference 2 and height 1/4
each composed of 2 vertical strips glued together; C1 is formed from the rectangles
0 ≤ x ≤ 1/4 and 1/2 ≤ x ≤ 3/4 glued along tops and bottoms and similarly for C2.
(Note that here circumference is the vertical dimension of the cylinders while height is
the horizontal one). This allows us to introduce coordinates (0 ≤ x′ ≤ 1/4, 0 ≤ y′ ≤ 2)
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in C1 by x
′ = x, y′ = y for 0 ≤ x ≤ 1/4 and x′ = 3/4−x, y′ = 2−y for 1/2 ≤ x ≤ 3/4

and similarly for C2. The map f2 is a right Dehn twist in each Ci. It is defined by

(x′, y′) → (x′, y′ + 8x′mod(2)).

It again fixes Σ and its derivative is

A2 =
(

1 0
8 1

)

.

The matrices A1, A2 generate a finite index subgroup of PSL(2, Z).

Recall the following definition.

Definition 5.3 Two subgroups Γ1,Γ2 of G are commensurable if there is some g ∈ G
such that gΓ1g

−1 ∩ Γ2 has finite index in both gΓ1g
−1 and Γ2.

Gutkin and Judge [27] showed that the Veech group is commensurable with
SL(2, Z) if and only if the surface can be tiled by a single Euclidean parallelogram. .

Veech examples. The next set of examples are due to Veech – see [62], [63].
Part of the motivation was to construct an example of a non-arithmetic group, that
is, a group, not commensurable to PSL(2, Z). These examples are the flat structures
φn associated with billiards in right triangles with angles π/n, n ≥ 5. Veech proved
the following theorem. The set Σ consists of the zeroes of φn.

Recall that the (p, q, r) triangle group is the index 2 subgroup of the group gener-
ated by reflections in the sides of a triangle with angles π/p, π/q, π/r in the hyperbolic
plane; the triangle group is a subgroup of G, the group of isometries of the hyperbolic
plane. If an angle is 0, then the vertex of the triangle is at infinity (see, e.g., [5]).

Theorem 5.4 For n odd, Γ(φn) is a (2, n,∞) triangle group. For even n = 2m,
Γ(φn) is the (m,∞,∞) triangle group. In either case the Riemann surface X is the
nonsingular surface associated to y2 + xn = 1.

One can check that the invariant surfaces for this triangle and the isosceles triangle
with equal angles of π/n are translation isomorphic so that they determine the same
Veech group.

We will not give a proof of the theorem but illustrate the main idea by an example.
It is convenient to discuss Γ(φ8) as this invariant surface was already descirbed in
figure 4. The invariant surface is the regular octagon P with opposite sides identified.
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The surface X has genus 2 and the quadratic differential φ8 has a single zero of order
4 corresponding to the identification of all of vertices of P . The counterclockwise
rotation f1 of order 8 about the center of P is obviously affine with respect to φ8 and
is holomorphic with respect to X . It fixes the zero. Its derivative is

A1 =
(

√
2/2 −

√
2/2√

2/2
√
2/2

)

.

To find a second affine map, rotate the octagon so that two of the opposite sides
are vertical. Then we claim that every horizontal trajectory is closed and that the
surface decomposes into two metric cylinders. The first cylinder C1 consists of hor-
izontal segments joining the opposite vertical sides. Its boundary consists of the
two horizontal segments joining opposite vertices. Next notice that because of the
identifications made, each horizontal segment leaving one of the nonvertical sides is
also closed; it first hits the other nonvertical side before closing. The family of these
closed trajectories determine the second metric cylinder C2. The boundary includes
the first boundary together with an extra closed saddle connection which is the top
and bottom horizontal segments of the octagon. If we normalize so that the sides of
P are of length 1, then C1 has circumference cot π/8 = 1 +

√
2 and height 1, while

C2 has circumference 1 + cotπ/8 = 2 +
√
2 and height

√
2/2. Notice that the ratio

of height to circumference for the first cylinder is twice that for the second one. The
ratio of height to circumference is called the modulus of a metric cylinder.

Fig. 11

Then there exists an affine map which preserves each cylinder fixing the boundary
pointwise and whose derivative is

A2 =
(

1 2 cotπ/8
0 1

)

.

The map is the square of a right Dehn twist on C1 and a right Dehn twist on C2.
Now A1, A2 generate a (8,∞,∞) triangle group which is not commensurable with
PSL(2, Z) ([5]).

The following theorem combines results from [14],[66] and [68], and complements
Theorem 5.4.

Theorem 5.5 The Veech groups of the flat surfaces associated with the three series
of triangles with angles

(π/2n, π/n, (2n− 3)π/2n), ((2k − 1)π/4k, (2k − 1)π/4k, π/2k)
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and
(kπ/2k + 1, kπ/2k + 1, π/2k + 1), n ≥ 4, k ≥ 2,

are, respectively,

(3, n,∞), (2k,∞,∞) and (2k + 1,∞,∞)

triangle groups. In all cases the set Σ is the set of zeroes.

5.2 Veech dichotomy

We now discuss some properties of Γ(φ). These results are all due to Veech – [62],
[63].

Lemma 5.6 Let f ∈ Aff+(φ) such that A = a(f) 6= ±Id, and let ζ ∈ R2 \ {0} such
that Aζ = ±ζ. Then every leaf in directon corresponding to ζ is either a saddle con-
nection or closed so that the surface decomposes into cylinders C1, . . . , Cp in direction
ζ. Moreover there exists a positive integer k such that for each i the map fk preserves
Ci, fixing the boundary, and is a power of a Dehn twist in Ci.

Proof. Clearly f fixes the foliation in direction ζ . For some k, that can be assumed
even, fk maps each separatrix to itself. Since Aζ = ±ζ , fk must be the identity
on each separatrix. Each separatirix is either a saddle connection or dense in an
open set. In the latter case, since fk is real analytic, fk would be the identity in the
open set, and so Ak = ±Id. However A is an unipotent, therefore Ak 6= ±Id. Thus
every separatrix is a saddle connection which means that the surface decomposes into
cylinders such that fk is the identity on the boundary of each cylinder. As it is linear
on each cylinder, it must be a power of a Dehn twist. ✷

Veech also shows that the moduli of the cylinders are rationally related.

Lemma 5.7 If a(f) 6= ±Id then f is not isotopic to the identity.

Proof. Since f is affine in the coordinates determined by φ, it is a Teichmuller map
determined by φ. Teichmuller maps are extremal quasiconformal maps within their
homotopy class. This means that f cannot be homotopic to the identity, since the
identity is conformal. ✷
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Corollary 5.8 Aff+(φ) is a subgroup of the mapping class group of the Riemann
surface.

Lemma 5.9 Γ(φ) is a discrete subgroup of G.

Proof. Suppose fn ∈ Aff+(φ) is such that a(fn) → ±Id. By passing to a subse-
quence and using the Arzela-Ascoli theorem we can assume that fn converges uni-
formly to a diffeomorphism f . For large m, fm◦f−1

m+1 is isotopic to the identity, which
by Lemma 5.7 gives a(fm+1) = a(fm) and so a(fm) = ±Id for large m. ✷

We now consider consequences of the assumption that Γ(φ) is a lattice. Begin
again by canonically identifying G with the unit tangent vectors to the upper half-
plane with Id identified with the vertical vector at i =

√
−1. Then SL(2,R) acts

on itself by Mobius transformations. Recall that SL(2,R) also acts on quadratic
differentials. If we associate the identity in G to φ, then we canonically identify the
SL(2,R) orbit of φ with SL(2,R).

Theorem 5.10 (Veech dichotomy). Suppose Γ(φ) is a lattice. For any direction
either the foliation in that direction is minimal or its every leaf is closed or a saddle
connection. In the latter case the surface decomposes into cylinders of closed leaves
and there is f ∈ Aff+(φ) with a(f) 6= I which preserves these cylindrers and acts as
Dehn twists on them. Furthermore Γ is a nonuniform lattice.

Proof. If the foliation is not minimal there is a saddle connection in that direction.
By rotating, we can assume the direction is vertical. Then gtφ has a saddle connection
which approaches 0 in length. This means that the ω limit set under the flow gt of Id
in G/Γ is empty. Since Γ is a lattice this can only happen if the point at infinity is a
fixed point for some parabolic element of Γ. In particular, the lattice is not uniform.
Such a parabolic element fixes the vertical vector ζ = [0, 1]. It remains to apply
Lemma 5.6. ✷

A different proof of the above theorem can be found in [66].
Theorem 5.10 says that, just as in the case of the flat torus, there is a dichotomy:

either the flow is minimal or every orbit is closed. Since the triangle groups are
lattices, the Veech dichotomy applies, in view of Theorem 5.4, to billiards in the
isosceles triangles with equal angle π/n; it applies to regular polygons as well.

In fact, the analogy with the flat torus extends to ergodicity as well.
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Theorem 5.11 Suppose Γ(φ) is a lattice. If the foliation in a direction is minimal,
then it is uniquely ergodic.

Proof. Again we can assume the direction is vertical. If the foliation is not uniquely
ergodic then by Theorem 3.8 gtφ eventually leaves every compact set of moduli space.
In particular, it cannot have an ω limit point in G/Γ. Again this implies that Γ has
a parabolic element fixing infinity. By Lemma 5.6 the leaves in the vertical direction
are all closed, which contradicts the minimality. ✷

5.3 Asymptotics

Let φ be a quadratic differential. Recall that we defined N2(φ, T ) as the number
of homotopy classes of closed geodesics of length less than T or equivalently, the
number of maximal cylinders whose circumference has length at most T . Recall in
Theorem 4.9 there are upper and lower quadratic bounds for the number of maximal
cylinders. Veech (op. cit.) has shown the following theorem.

Theorem 5.12 Suppose Γ(φ) is a lattice. Then there exists a constant c = c(φ) such
that N1(T ) ∼ cT 2.

The proof is using Eisenstein series. The constant c can be computed explicitly
in the case of isosceles triangles Tn with angles (π/n, π/n, (n− 2)π/n). In that case

c =
n(n2 − 1)

48π(n− 2)|Tn|
,

where |Tn| is the area of the triangle.
Gutkin and Judge [27] have given another proof of the same theorem using the

mixing of the horocyclic flow. The constant c is given in their work in purely topo-
logical terms.

5.4 Covers

Constructing a flat surface M from a rational billiard polygon P it may happen that
some of the cone angles are equal to 2π or, equivalently, the points are not zeroes of
the quadratic differential. For example, if P is a square then M is a flat torus with
no singular points. From the billiard view point this means that one can continuously
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define the extention of the billiard trajectory through the vertex of P ; this is possible
if and only if the angle is of the form π/n. Adding such a point to Σ, the set of points
that are required to be preserved by the affine diffeomorphisms may change the Veech
group. It is particularly important to keep track of removable singular points in the
study of covers of flat structures.

Definition 5.13 Let (Xi, φi), i = 1, 2 be flat structures and Σi ⊂ Xi, i = 1, 2 sets
that contain the zeroes of Xi. Then (X1, φ1,Σ1) covers (X2, φ2,Σ2) if there exists
a continuous map f : X1 → X2, called a cover, that sends Σ1 to Σ2 and which is
given, in local coordinates on the complement of these sets, by parallel translation.
The multiplicity of a cover is the number of preimages of a non-singular point in X2

(independent of the point).

In particular, a cover is a branched holomorphic cover of X2 by X1 branched over
Σ2.

Definition 5.14 Two covers f1 : X1 → Y and f2 : X2 → Y are called isomorphic if
there exists an isomorphism of the flat structures g : X1 → X2 such that f1 = f2g.
Similarly one defines an isomorphism of covers f1 : Y → X1 and f2 : Y → X2.

The following finitness property holds (see [66] for a proof).

Proposition 5.15 A given flat structure admits a finite number of isomorphic classes
of covers with a given multiplicity. Likewise, the number of isomorphic classes of
covers realizable by a given flat structure is finite.

The next construction provides examples of covers of flat structures associated
with billiards in polygons. Let P1 and P2 be rational polygons, and assume that P2

tiles P1 by reflections. This means that P1 is partitioned into a number of isometric
copies of P2, each two either disjoint, or having a common vertex or a common side,
and if two of these polygons have a side in common then they are symmetric with
respect to this side.

For example, a right triangle with angle π/n tiles by reflections a regular n-gon
– see figure 4 for n = 8. Another example is given by the above mentioned Gutkin’s
almost integrable billiard polygons: if such a polygon is drawn on a, say, integer
square lattice in the plane, then it is tiled by the unit square.

Let (Xi, φi) be the flat structures associated with the polygon Pi, i = 1, 2, and
assume that P2 tiles P1. Let Σ1 be the set of zeroes of φ1 (cone points with angles
greater than 2π).
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Lemma 5.16 There is a set Σ2 containing the zeroes of φ2 such that (X1, φ1,Σ1)
covers (X2, φ2,Σ2).

Proof. Denote by G1 and G2 the groups generated by the linear parts of the re-
flections in the sides of the polygons P1 and P2. Then G1 ⊂ G2. Each copy of P2,
involved in the tiling of P1, is identified with P2 by an isometry; this isometry is a
composition of reflections in the sides of P2. These identifications, combined, define
a projection p from P1 to P2. Given a point x ∈ P1, let α(x) ∈ G2 be the linear part
of the isometry that takes P2 to the tile (a copy of P2) that contains x.

Consider the map g : P1 × G1 → P2 × G2 that sends (x, β) to (p(x), βα(x)).
Notice that the surfaces Xi are quotient spaces of Pi × Gi, i = 1, 2, and the map g
determines a map f : X1 → X2. This is the desired cover. The multiplicity equals
n/m where n is the number of tiles in the tiling and m = [G2 : G1].

Some singular points of the first structure may project to removable singular points
of the second one. This happens only if P2 has a vertex angle π/n. One then adds
these points to Σ2. ✷

Note that one does not need to add removable singular points if none of the angles
of P2 is of the form π/k.

As an example to Lemma 5.16 consider again a regular octagon P1 tiled by right
triangles P2 with angle π/8. The flat surfaceM2 for the triangle is the regular octagon
whose opposite sides are identified, while the flat surface M1 for the regular octagon
is a union of 8 octagons with some gluings of the sides. Thus M1 covers M2 with
multiplicity 8.

The next result relates the Veech groups of flat structures one of which covers the
other; it was obtained independently by Gutkin and Judge [26], [27] and by Vorobets
[66]. Recall that two subgroups of G are commensurate if they share a common
subgroup that has a finite index in each.

Theorem 5.17 If (X1, φ1,Σ1) covers (X2, φ2,Σ2) then Γ(φ1) and Γ(φ2) are commen-
surate. In particular, one of the groups Γ(φ1) and Γ(φ2) is a lattice if and only if the
other is.

Proof. Consider the set of triples S = {(X, φ, f)} where (X, φ) is a flat structure
and f : X1 → X is a cover. Let S̄ be the set of equivalence classes of such triples
considered up to isomorphism of covers.

Let g ∈ Aff+(φ1) and let A = a(g) be its derivative. Then fg is a cover of the flat
structure (X,A−1(φ)) by (X1, φ1). This defines a right action of Aff+(φ1) on S, and
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this action descends to an action on S̄. Consider the subgroup Aff+
0 (φ1) ⊂ Aff+(φ1)

that consists of the affine transformations acting trivially on S̄. By Proposition 5.15
S̄ is finite, therefore this subgroup has finite index. Let Γ0 ⊂ Γ(φ1) consist of the
derivatives of the elements of Aff+

0 (φ1); then Γ0 has finite index too.
Let g ∈ Aff+

0 (φ1) and A = a(g). Then, for every (X, φ, f) ∈ S the flat structures
(X, φ) and (X,A−1φ) are isomorphich. Therefore A ∈ Γ(φ). Since (X1, φ1) covers
(X2, φ2), it follows that Γ0 ⊂ Γ(φ2). Thus Γ0 ⊂ Γ(φ1) ∩ Γ(φ2) and has finite index
in Γ(φ1). To show that Γ0 has finite index in Γ(φ2) as well one applies a similar
argument to the set of covers of (X2, φ2). ✷

Corollary 5.18 ([31]). If a rational polygon P2 has no angles of the form π/n and
P2 tiles P1 by reflections then the respective Veech groups are commensurable.

Hubert and Schmidt [31] have shown that the Veech group associated to the
isosceles triangle with angles 2π/n, (n − 2)π/2n, (n − 2)π/2n is not a lattice even
though the right triangle with angle π/n tiles it with one reflection. This is due to
the appearance of removable singular points that we discussed above.

6 Interval exchange transformations

6.1 Topological structure of orbits

In this section we discuss the topological structure of orbits of an interval exchange
transformation – see Definition 1.11; we refer to [34] for a detailed exposition; see
also [38] and [12]. Without loss of generality, we may assume that end-points of all
the interval involved are discontinuity points of the interval exchange transformation
T involved; otherwise adjacent segments could be joined into one and T would be an
exchange of a smaller number of intervals.

The following definitions provide analogs of saddle connection and metric cylinder
in the present setting.

Definition 6.1 An orbit segment (x, Tx, . . . , T k−1x) is called a connecting segment
of the interval exchange transformation T if the points x and T k−1x are end-points
of some intervals Ii and Ij but none of the intermediate points Tx, . . . , T k−2x is an
end-point of either of the intervals I1, . . . , In.

Definition 6.2 An interval I = [a, b) ⊂ [0, 1) is called rigid if every positive iterate
of T is continuous on I.
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If x is a periodic point of an interval exchange transformation T then there exists
the maximal rigid interval containing x and consisting of periodic points with the
same period. The end-point of this interval belongs to connecting segment.

Definition 6.3 An interval exchange transformation is called generic if it has no
rigid intervals.

One has the following criterium for genericity. Denote by λ the Lebesgue measure
on [0, 1).

Lemma 6.4 The following properties are equivalent:

(i) T is generic;

(ii) T does not have periodic orbits;

(iii) limk→∞ supi0,i1,...,ik λ(Ii0 ∩ TIi1 ∩ . . . ∩ T kIik) = 0.

Proof. We already mentioned that if T has a periodic point then it has a rigid
interval. Thus (i) implies (ii). If T has a rigid interval then (iii) clearly does not
hold. Thus (iii) implies (i).

It remains to deduce (iii) from (ii). Let E be the union of the orbits of the
left end-points of the intervals I1, . . . , In. Then (iii) is equivalent to E being dense.
Assume that (iii) does not hold. Then the set [0, 1) − Ē is a non-empty open set.
Each component of this set is an open interval, and T echanges these components.
Since there are only finitely many components of a given length, each component is
periodic, and (ii) does not hold. ✷

Definition 6.5 A point x is called generic if it is a continuity point for all (positive
and negative) iterates of T .

One can prove (see [34]) that a generic point is either periodic or the closure of its
orbit is a finite union of intervals. The latter union is called a transitive component
of the interval exchange transformation. We refer to [34] for the following structural
result.

Theorem 6.6 Let T be an exchange of n intervals. Then the interval [0, 1) splits
into a finite union of connecting segments and at most 2n− 2 disjoint open invariant
sets, each of which is either a transitive or a periodic component, and each of these
components is a finite union of open intervals.
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6.2 Number of invariant measures. Lack of mixing

The first result of this section concerns the number of invariant measures for an
interval exchange transformation. Assume that T is a generic exchange of n intervals.
The idea of the proof of the next result belongs to V. Oseledets. We follow an elegant
expositon in [34]; see also [12] and [54].

Theorem 6.7 There exist at most n mutually singular T -invariant Borel probability
measures.

Proof. Denote by ξ the partition of [0, 1) into the intervals I1, . . . , In. Due to
condition (iii) in Lemma 6.4, ξ is a one-sided generator for T . Therefore an invariant
measure µ is determined by its values on the elements of the partitions

ξk = ξ ∨ Tξ ∨ . . . ∨ T k−1ξ, k = 1, 2, . . .

Claim: µ is determined by its values on I1, . . . , In.
To prove this claim, consider two finite partitions η and ν of the interval [0, 1) into

subintervals, and let µ be a nonatomic Borel probability measure on [0, 1). Then the
values of µ on the elements of the partition η ∨ ν are uniquely determined. Indeed,
let [a, b) be an element of η ∨ ν. Then a is the end-point of an interval from either η
or ν. Therefore µ([0, a)) is determined. The same applies to µ([0, b)), thus µ([a, b))
is determined as well.

Now the italized claim above is proved inductively: setting η = ξk, ν = T kξ, one
has: η ∨ ν = ξk+1, and the claim follows.

Assign a point of an (n− 1)-dimensional simplex

∆ = {(x1, . . . , xn) :
∑

xj = 1}

to a T -invariant measure µ as follows: xj = µ(Ij). We obtain a map F from the space
of invariant probability measures to ∆. This map is affine, continuous in the week *
topology and, as has been shown, injective. It remains to notice that if µ1, . . . , µk are
mutually singular measures then F (µ1), . . . , F (µk) are linearly independent. Indeed,
assume that a relation holds:

a1F (µ1) + . . .+ akF (µk) = F (a1µ1 + . . .+ akµk) = 0. (6.1)

For every i = 1, . . . , k there is a set Ui ⊂ [0, 1) such that µi(U) > 0 but µj(U) = 0 for
all j 6= i. Thus (a1µ1 + . . .+ akµk)(Ui) = aiµi(Ui), and (6.1) implies that ai = 0. ✷

Next we discuss mixing properties of interval exchange transformations.
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Definition 6.8 A measure-preserving trasformation T : (I, µ) → (I, µ) is called
mixing if for every measurable sets A and B one has:

lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B).

The following result is due to A. Katok [32], see also [12].

Theorem 6.9 No interval exchange transformation is mixing with respect to any
invariant Borel probability measure µ.

The proof makes use of the next lemma which also has other applications in the
study of interval exchange transformations. Let T be an exchange of n intervals.
Consider an interval J = [a, b) ⊂ [0, 1), and denote by TJ : J → J the first return
map.

Lemma 6.10 The map TJ is an exchange of at most n + 2 intervals.

Proof. By the Poincaré recurrence theorem, almost every point of J returns to J .
Denote by Σ the union of the discontinuity set of T and the end-points of J ; this set
contains at most n+ 1 points. Consider the set

Ω = {x ∈ J : TJ(x) = T k(x) and T l(x) /∈ Σ for l = 0, . . . , k − 1; k = 1, 2, . . .}.

Then Ω is an open dense subset of J .
Consider a maximal interval Jα ⊂ Ω and let y be its left end-point. The restriction

of TJ on Jα is T k, for some k. Then an iterate T l(y), l = 0, . . . , k, belongs to the set
Σ; otherwise Jα can be extended beyond y. Each of the points of Σ can appear in
this way as an iterate of at most one left end-point of a maximal interval Jα. Thus
Ω is the complement to at most n+1 points, and TJ is an exchange of at most n+2
intervals. ✷

Proof of Theorem 6.9. It is enough to consider an ergodic measure µ. Such a
measure is either periodic or non-atomic. In the former case T is not mixing. Assume
that µ is the Lebesgue measure; we will show that the general case reduces to this
one. Let T be an exchange of n intervals.

Fix J ⊂ [0, 1). According to Lemma 6.10, TJ is an exchange of intervals J1, . . . , Js
where J = J1 ∪ . . . ∪ Js:

TJ |Ji = T ki, i = 1, . . . , s; s ≤ n + 2. (6.2)

59



Set: Jni = T n(Ji). Then
[0, 1) = ∪si=1 ∪ki−1

n=0 J
n
i .

Denote this partition of the interval [0, 1) by ξJ . Choosing J sufficiently small, one
makes ξJ arbitrarily fine.

Now one repeats the argument for the maps TJi, i = 1, . . . , s. One has:

Ji = ∪sij=1Jij, si ≤ n + 2, and TJi|Jij = T kij .

Set: Jnij = T n(Jij).Then

[0, 1) = ∪si=1 ∪sij=1 ∪ki−1
n=0 J

n
ij.

Notice that T kij(Jnij) ⊂ Jni , and therefore Jnij ⊂ T−kij(Jni ). Thus

Jni = ∪sij=1J
n
ij ⊂ ∪sij=1T

−kij(Jni ).

Let A be a set, measurable with respect to the partition ξJ . Then

A ⊂ ∪si=1 ∪sij=1 T
−kij (A).

Since T is measure-preserving and s, si ≤ n+ 2, one has, for some kij,

µ(A ∩ T kij (A)) = µ(T−kij(A) ∩A) ≥ 1

(n + 2)2
µ(A). (6.3)

Fix a positive integer N and a set A such that

µ(A) <
1

5(n+ 2)2
. (6.4)

One can choose a subinterval J ⊂ [0, 1) so small that

• (i) there exists a set B, measurable with respect to the partition ξJ , and such
that µ(A∆B) < µ(A)2;

• (ii) the numbers ki in (6.2) are all greater than N .

To satisfy (ii), one chooses a point x such that the points T i(x), i = 0, . . . , N − 1,
are points of continuity of T . Then these points are all distinct (otherwise T would
have a periodic orbit and a periodic component of positive measure), and J can be
taken as a sufficiently small neighborhood of x.
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It follows from (i) that µ(B) ≥ µ(A) − µ(A)2. Applying (6.3) to the set B and
taking (i) and (6.4) into account, one obtains, for some kij ≥ ki > N ,

µ(A ∩ T kij(A)) ≥ µ(B ∩ T kij (B))− 2µ(A∆B) ≥ 1

(n+ 2)2
µ(B)− 2µ(A)2 ≥

1

(n+ 2)2
µ(A)− 1

(n + 2)2
µ(A)2 − 2µ(A)2 ≥ µ(A)2

(

5− 1

(n+ 2)2
− 2

)

≥ 2µ(A)2.

Therefore T is not mixing.
To complete the proof it remains to justify the reduction of an invariant non-atomic

probability measure µ to the Lebesgue measure λ. Define a map φ : [0, 1] → [0, 1]
by the formula: φ(x) = µ([0, x]). Then φ is monotone, continuous, surjective and
φ∗µ = λ. Although φ is not necessarily injective, it is an isomorphism between the
measure spaces ([0, 1], µ) and ([0, 1], λ).

Define a map S : [0, 1] → [0, 1] by the formula: S(x) = φ(T (y)) where y ∈ φ−1(x);
in other words, S = φ ◦ T ◦ φ−1. To see that S is well defined, note that φ−1(x)
is either a point or an interval. In the latter case, φTφ−1(x) is either a point or an
interval. Actually, the latter holds, as follows from the next equalities:

λ(φTφ−1(x)) = µ(Tφ−1(x)) = µ(φ−1(x)) = λ({x}) = 0.

Thus S is well defined. Since S preserves the Lebesgue measure and orientation, and
is continuous and one-to-one except for at most n points, S is an exchange of at most
n intervals. ✷

Using the reduction of the billiard flow on an invariant surface to an interval
exchange transformation described in Section 1.7, one obtains the next corollary –
see [32] for details.

Corollary 6.11 For every rational polygon the billiard flow on an invariant surface
is not mixing.

6.3 Ergodicity of interval exchange transformations

6.4 Asymptotic flag of an interval exchange transformation

In this section we describe, without proofs, recent results obtained by A. Zorich
[69], [70], [71], [72], [41] (these results can be also stated in the setting of measured
foliations on surfaces).
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Consider a generic interval exchange transformation T , pick a generic subinterval
J ⊂ [0, 1) and a generic point x ∈ [0, 1). Generically, T is ergodic, therefore one has
the following equality:

#{i : 0 ≤ i ≤ N − 1, T i(x) ∈ J} = |J |N + o(N).

Zorich observed in computer experiments that the error term above, generically, grows
as a power of N : error term ∼ O(Nα). The exponent α < 1 depends only on the per-
mutation associated with the interval exchange transformation T . This observation
lead to the theory discussed in this section.

An exchange of n intervals (I1, . . . , In) is determined by the pair (̄i, σ) where the
vector ī = (i1, . . . , in) consists of the lengths ij = |Ij| and σ ∈ Sn is the permutation
corresponding to T . In this section we assume that σ is irreducible, that is, for no
k < n one has σ{1, . . . , k} = {1, . . . , k}. Since i1+. . .+in = 1, the space of irreducible
interval exchange transformations is the product of (n−1)-dimensional simplex ∆n−1

and the set of irreducible permutations S0
n.

Renormalization procedure for interval exchange transformations. Ac-
cording to Lemma 6.10, the first return map TJ to a subinterval J ⊂ [0, 1) is again an
interval exchange transformation. Assume that one can choose J so that the following
two properties hold:

(i) TJ is an irreducible exchange of n intervals (J1, . . . , Jn).
Given a point x ∈ Jq denote by Bpq(x) the number of points in the trajectory

segment x, T (x), . . . , T k−1(x) that belong to Ip; here TJ (x) = T k(x) ∈ J is the first
return point. The second assumption is:

(ii) For all pairs 1 ≤ p, q ≤ n the number Bpq(x) does not depend on x.
A procedure that chooses J and assigns TJ to T determines a transformation of

∆n−1×S0
n. An example of such a procedure, satisfying (i) and (ii), is provided by the

Rauzy induction [52]. A modification of Rauzy induction was constructed in [70]; the
corresponding transformation of ∆n−1 ×S0

n is called the generalized Gauss map. The
set S0

n decomposes into invariant subsets under the map G; these subsets are called
Rauzy classes. Following arguments by Veech in [64], it is proved in [70] that for every
Rauzy class R the generalized Gauss map is ergodic with respect to an absolutely
continuous invariant probability measure µ on ∆n−1 × R.

The generalized Gauss map plays a role, similar to that of the Teichmuller geodesic
flow for quadratic differentials.

Lyapunov exponents and the asymptotic flag. The matrix-valued function
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B determines a measurable cocycle on ∆n−1 ×R:
∫

log+ ||B−1||dµ <∞.

The cocycle B−1 has the following spectrum of Lyapunov exponents:

θ1 > θ2 ≥ θ3 ≥ . . . ≥ θg ≥ 0 = . . . = 0 ≥ −θg ≥ . . . ≥ −θ2 > −θ1,

where g depends on the Rauzy class R and the multiplicity of zero is n− 2g.
Given (̄i, σ) ∈ ∆n−1 × R, set

B(k)(̄i, σ) = B(̄i, σ)B(G(̄i, σ)) . . .B(Gk−1(̄i, σ)).

The cocycle B−1 determines a flag of subspaces in Rn, depending on a point in
∆n−1 ×R,

H1(̄i, σ) ⊂ H2(̄i, σ) ⊂ . . . ⊂ Hg (̄i, σ) ⊂ H (̄i, σ) ⊂ Rn.

The flag is defined for µ almost every (̄i, σ) by the following conditions:

lim
k→∞

log ||B(k)(̄i, σ)−1v||
k

= −θj for all v ∈ Hj , v /∈ Hj−1,

lim
k→∞

log ||B(k)(̄i, σ)−1v||
k

> 0 for all v /∈ H.

Main result. Given an exchange T of n intervals, consider the following vector-
valued function counting returns to the intervals (I1, . . . , In):

S(x,N) = (S1(x,N), . . . , Sn(x,N)), Si(x,N) =
N−1
∑

k=0

χi(T
k(x))

where x ∈ [0, 1) and χi is the indicator function of the interval Ii.
The main result by Zorich is the following theorem.

Theorem 6.12 For a fixed Rauzy class R and µ almost every interval exchange
transformation (̄i, σ) ∈ ∆n−1 × R, the counting vector-function S(x,N) enjoys the
following properties.

For every x ∈ [0, 1) one has:

lim
N→∞

S(x,N)

N
= ī,
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and the one-dimensional subspace H1 is spanned by the vector ī.
For every covector f ∈ Ann (Hj), f /∈ Ann (Hj+1), j = 1, . . . , g − 1, and every

x ∈ [0, 1) one has:

lim sup
N→∞

log |(f, S(x,N))|
logN

=
θi+1

θi
.

For every covector f ∈ Ann (H), ||f || = 1, and every x ∈ [0, 1) one has:

|(f, S(x,N))| ≤ Const,

and the constant does not depend on either f, x or N .

7 Miscellaneous results

7.1 Stable periodic trajectories

The material in this subsection is taken from the paper [21].

Definition 7.1 A periodic billiard trajectory in a polygon Q is called stable if an
arbitrary small perturbation of the polygon Q leads to a perturbation of this trajectory
but not to its destruction.

For example, a 2-periodic trajectory in a square, perpendicular to a side, is not
stable: a deformation of the square to a quadrilateral without parallel sides destroys
this trajectory. The Fagnano 3-periodic trajectory in an acute triangle, connecting the
foot points of the altitudes, is stable, and the same holds for the 6-periodic trajectory
which is the double of the Fagnano one – see figure 1 again.

What follows is a criterium for the stability of periodic trajectories. Label the con-
secutive sides of the polygon Q by 1, 2, ..., k. Without loss of generality, assume that
the periodic trajectory has an even number of links 2n (otherwise, double it). Then
the trajectory is encoded by the sequence i1, ..., i2n of the labels of the consecutively
visited sides of Q.

Lemma 7.2 The trajectory is stable if and only if the labels in the sequence i1, ..., i2n
can be partitioned into pairs of identical labels such that the label in each pair appears
once at an odd position and once at an even one.
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Proof. Denote by αi the angle, made by i-th side of Q with a fixed direction. Unfold
the periodic trajectory to a straight line l. Then the (2n)-th copy of Q along this
line, denoted by Q2n, is parallel to Q and, moreover, the parallel translation t that
takes Q to Q2n preserves l. The composition of two reflections is a rotation through
the angle, twice that between the axes of reflection. It follows that Q2n is obtained
from Q by a rotation through the angle

2(αi1 − αi2 + αi3 − ...+ αi2n−1 + αi2n),

and this angle is a multiple of 2π.
Thus for the trajectory to be stable it is necessary that the variation of this angle

satisfies the equation

δαi1 − δαi2 + δαi3 − ... + δαi2n−1 + δαi2n = 0

for every perturbation of the polygon. An arbitrary variation of Q gives rise to an
arbitrary variation of the directions of its sides. Hence the above relation holds only
if its terms cancel pairwise, as claimed.

Conversely, assume that the condition of the lemma on the coding of a periodic
trajectory is satisfied. Using the same notation as before, one has: t(l) = l. Let Q′

be a polygon, sufficiently close to Q, whose sides are labeled the same way as in Q.
Reflect Q′ consecutively in its sides according to the sequence i1, ..., i2n. Then Q

′
2n is

parallel to Q′. Let t′ be the respective parallel translation; this translation is close
to t. Choose a point x ∈ l ∩ Q ∩Q′ and let l′ be the line through x, invariant under
t′. If Q′ is sufficiently close to Q then l′ is the unfolding of a billiard trajectory in Q′

labeled i1, ..., i2n, and since t′(l′) = l′ this trajectory is (2n)-periodic. ✷

The lemma implies the next property of irrational billiards.

Corollary 7.3 If the angles of a billiard k-gon are maximally independent over the
rationals, that is, the dimension of the linear space over Q, generated by the angles,
equals k − 1, then every periodic billiard trajectory in this polygon is stable.

Proof. Consider a periodic billiard trajectory, labeled i1, ..., i2n. Then

αi1 − αi2 + αi3 − ... + αi2n−1 + αi2n = πm, m ∈ Z.

Rewrite this as

(αi1 − α1)− (αi2 − α1) + (αi3 − α1)− ... + (αi2n−1 − α1) + (αi2n − α1) = πm.
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If the labels do not satisfy the condition of the above lemma, that is, do not can-
cel pairwise, one obtains a non-trivial relation over Q on the angles α2 − α1, α3 −
α1, ..., αk − α1. It remains to notice that the linear space over Q, generated by these
angles, coincides with that, generated by the angles of the billiard polygon. ✷

7.2 Encoding billiard trajectories. Polygonal billiards have

zero entropy

The encoding of billiard trajectories by the consecutively visited sides of the billiard
polygon provides a link between billiard and symbolic dynamics. Let us consider this
encoding in more detail. We follow the paper [20].

Assume that the billiard k-gon Q is simply connected (most of the results hold
without this assumption), and its sides are labeled 1, ..., k. The phase space of the
billiard transformation T consists of the inward unit vectors whose foot points are on
the boundary ∂Q and whose forward orbits never hit a vertex of Q. Given a phase
point x, denote by w(x) the infinite sequence of labels 1, ..., k that encodes the forward
T -orbit of x. Given an infinite word w, denote by X(w) the set of phase points x with
w(x) = w. Call a subset S ⊂ X(w) a strip if all vectors in S are parallel and their
foot points constitute an interval on a side of Q. An open strip is defined analogously.
The billiard transformation takes a strip to a strip, preserving its width.

Start with two simple observations. First, if w(x) = w(y) then the vectors x
and y are parallel. If not, the unfolded trajectories of x and y linearly diverge, so a
vertex of a copy of Q will fall into the angle between them. First time this happens
the reflections of the two trajectories occur at different sides of the polygon, thus
w(x) 6= w(y).

Fig. 12

Secondly, if x and y are parallel vectors in X(w) then every parallel vector, whose
foot point lies between those of x and y also belongs to X(w). This is true because
Q is simply connected. It follows that X(w) is the maximal strip corresponding to
the word w. The trajectories of its boundary points come arbitrarily close to vertices
of Q.

The next theorem from [20] shows that the encoding is one-to-one on the set of
non-periodic billiard trajectories.
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Theorem 7.4 If w is a (2n)-periodic word then each vector from X(w) has a 2n-
periodic trajectory and X(w) is an open strip. If w is aperiodic then the set X(w)
consists of at most one point.

Proof. Start with the first claim. Consider x ∈ X(w) and unfold its trajectory to
the line l. One claims that the (2n)-th copy of Q along this trajectory denoted, as
before, by Q2n, is parallel to Q. If not, x and T 2n(x) have their foot points on the
same side of Q but they are not parallel. According to the remark, preceding the
theorem, w(x) 6= w(T 2n(x)) which contradicts the periodicity of w.

Let t be the parallel translation that takes Q to Q2n. One wants to show that
t(l) = l. Suppose not. Then, for a sufficiently great integer k, the polygon tk(Q) does
not intersect l. This is a contradiction because

this polygon is Q2nk. Finally, the strip X(w) is open because a periodic trajectory
stays a bounded distance from the vertices of the polygon.

Now consider the second claim. Assume, to the contrary, that the set X(w) is a
maximal strip of non-zero width; call this strip S. Let x ∈ S be the vector whose
base point lies exactly in the middle of S.

The proof is especially simple if Q is a rational polygon, and we start with this case.
Since Q is rational, the trajectory of x has a finite set of directions. It follows that
this trajectory will visit some side of Q infinitely often with some fixed direction. Call
these points xi = T ni(x) and let Si = T ni(S). All these strips have the same width,
therefore they must intersect. Suppose Si and Sj intersect. Then the maximal width
strips S̄i and S̄j , containing Si and Sj, respectively, are also parallel and intersect.
These maximal strips cannot coincide, otherwise w would be periodic. Therefore a
part of the boundary of S̄i lies inside S̄j (or vice versa). Since the trajectories of the
boundary points of the maximal strip S̄i come arbitrarily close to vertices of Q, there
are vertices inside S̄i, a contradiction.

Consider a general polygon Q. One cannot claim anymore that the trajectory of
x visits some side of Q infinitely often with some fixed direction. This claim will be
replaced by a weaker recurrence result.

Let Y be the forward limit set of x under the mapping T . Since the width of
S is positive, the trajectories of the points from Y stay bounded distance from the
vertices of Q. Therefore the restriction of T to Y is continuous. Note that Y is closed
and bounded, hence compact.

One uses the strengthened version of the Poincaré recurrence theorem, due to H.
Furstenberg [18]. This theorem implies that there exists a uniformly recurrent point
y ∈ Y . This means the following: for every neighborhood U of y there is a constant

67



C such that the return times ni > 0, defined by T ni(y) ∈ U , satisfy the inequalities
ni+1 − ni < C.

Fix a sufficiently small ǫ > 0 and consider the unfolded maximal strip S ′ of y
together with its ǫ neighborhood S ′

ǫ. Since S ′ is maximal, some vertices of copies of
Q, unfolded along this strip, will fall into S ′

ǫ. Claim: they fall with uniformly bounded
gaps into each of the two components of S ′

ǫ − S ′.
This claim follows from the uniform recurrency of y. More specifically, let z be the

leftmost point of S ′. Then there ism > 0 such that the foot point of Tm(z) lies within
ǫ/2 of a vertex v of Q; let m be the first such number. Let U be a neighborhood
of y such that for every u ∈ U the m-th iterate Tm(u) is ǫ/2 close to Tm(y); such a
neighborhood exists since T is continuous at y. Let ni be the return times of y to U .
Then Tm+ni(y) is ǫ/2 close to Tm(y), and therefore Tm+ni(z) is ǫ/2 close to Tm(z).
It follows that the foot points of Tm+ni(z) lie within ǫ from the vertex v. The claim
is proved.

To finish the proof of the theorem recall that y is a forward limit of x: there is a
sequence ni → ∞ such that xi = T ni(x) → y. The argument, given above in the case
of a rational polygon Q, shows that no two vectors xi and xj are parallel. Consider
the intersection of the unfolded maximal strip for xi with S

′
ǫ−S ′. Let αi be the angle

between these strips of width ǫ and, say, δ. Then αi → 0 as i→ ∞. The intersection
is a parallelogram which, by elementary geometry, contains a rectangle of width ǫ and
length li = (δ − ǫ cosαi)/ sinαi. Since the gaps between the vertices in S ′

ǫ − S ′ are
uniformly bounded and li → ∞ as i→ ∞, a vertex will eventually appear inside the
unfolded maximal strip for xi. This is a contradiction. ✷

As a consequence, the closure of every non-periodic billiard orbit contains a vertex
of the billiard polygon.

An important corollary of the theorem concerns the entropy of polygonal billiards.

Corollary 7.5 The metric entropy of the billiard mapping with respect to any invari-
ant measure is zero.

Proof. Morally, the argument goes as follows: the ”past” is uniquely determined by
the ”future”, therefore the entropy vanishes.

More specifically, consider the set Σ of words in 1, ..., k that encode the billiard
trajectories for time from −∞ to ∞, and let S be the shift transformation of Σ. Then
the encoding map conjugates the billiard transformation and S. By the theorem, the
shift S has a one-sided generator, the partition into k parts according to the value
of the zero symbol in a word. This means that for this partition η the σ-algebra of
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measurable sets is generated by ∨∞
i=0S

−i(η). It is a standard result in ergodic theory
that the metric entropy of a transformation with a one-sided generator vanishes (see,
e.g., [12]). ✷

The variational principle implies that the topological entropy vanishes as well.
The zero entropy result was proved in [8] and [54] for the canonical billiard mea-

sure, and in [33] for topological entropy (see also [20] and [25]). The latter work
concerns a broader class of transformations, the so-called, polygon exchanges.

The zero entropy result implies that a number of quantities, associated with a
polygonal billiard, grow slower than exponentially: the number of different words of
length n in Σ, the number of strips of n-periodic trajectories or periodic trajectories
of length not greater than L, etc. Conjecturally, all these numbers have a polynomial
growth.

7.3 Complexity of billiard trajectories in rational polygons

Consider an aperiodic billiard trajectory in a rational polygon in a direction θ. Ac-
cording to Theorem 1.4 its code w is an aperiodic sequence. Generically this sequence
enjoys a weaker periodicity property, called quasiperiodicity, described in the next re-
sult.

Proposition 7.6 For all but countably many directions θ each finite segment of w
appears in w infinitely many times.

Proof. Let i1, ..., in be a segment of w, and let x be a phase point on the trajectory
under consideration whose first n successive reflections occur in the sides labeled
i1, ..., in. There is a neighborhood U of x such that for every phase point y ∈ U the
first n reflections occur in the same sides of the polygon. By Theorem 1.8, for all
but countably many directions θ, the trajectory is dense on the invariant surface. It
follows that x returns to U infinitely many times, and each time the segment i1, ..., in
reappears in w. ✷

A convenient way to measure the complexity of aperiodic trajectories and their
codes is provided by the next definition.

Definition 7.7 The complexity function p(n) of an infinite sequence w is the number
of distinct n-element segments of w.
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We start with the complexity of billiard trajectories in a square; the results are due
to Hedlund and Morse [29]. We slightly modify the encoding using only two symbols,
say, 0 and 1, to indicate that a trajectory reflects in a horizontal or a vertical side,
respectively.

Theorem 7.8 For every aperiodic trajectory one has: p(n) = n+ 1.

The sequences with complexity p(n) = n+ 1 are called Sturmian.

Proof. Start with the following observation. Every aperiodic trajectory is dense in
the respective invariant torus. Therefore p(n) can be computed as the number of
different initial segments of length n in the codes w(x) where x ranges over the phase
vectors having a fixed direction.

Unfold the billiard trajectory to a line l. Partition the square grid in the plane into
”ladders”, going in the south-east – north-west direction, as shown in figure 11. The
n-th symbol in the code of the trajectory is 0 or 1, according as l meets a horizontal
or a vertical segment of n-th ladder.

Fig. 13

Let (e1, e2) be the orthonormal frame. Consider the linear projection of the plane
onto the diagonal x + y = 0 whose kernel is parallel to the line l. Factorize the
diagonal by the translation through e1 − e2 and identify the quotient space with the
unit circle S1. The vertices of the first ladder are the lattice points (a, b) with a+b = 1
or a + b = 2. Since l has an irrational slope the projections of the vertices of the
first ladder partition the circle into two irrational arcs. Let T be the rotation of S1

through the length of an arc, that is, through the projection of e1.
The number of different initial n-segments corresponding to the lines, parallel to

l, equals the number of segments into which the projections of the vertices of the first
n ladders partition S1. Each ladder is obtained from the first one by the translation
through e1. It follows that p(n) equals the cardinality of the orbit T i(0), i = 0, ..., n.
Since T is an irrational rotation of the unit circle all points of this orbit are distinct,
and p(n) = n+ 1. ✷

There are generalizations of the above theorem to multi-dimensional cubes – see
[2] and [4].

Next we consider the complexity of billiard trajectories in convex rational poly-
gons. The following result is due to P. Hubert ([30]).
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Let Q be a convex rational k-gon with the angles πmi/ni, i = 1, ..., k (mi and ni
are coprime), and let N be the least common multiple of ni’s. Let θ be a direction such
that there are no generalized diagonals in this direction. Consider a billiard trajectory
in direction θ which avoids the vertices. Let w be its coding in the alphabet {1, ..., k},
and denote by p(n) the complexity of w.

Theorem 7.9 For all sufficiently great n one has: p(n) = n(k − 2)N + 2N .

In particular, if Q is a square, one obtains: p(n) = 4(n + 1). This does not con-
tradict the previous theorem because the encoding there was different and, actually,
4 times less precise: the pair of parallel sides were labeled identically.

Proof. Consider the invariant surface M of the billiard flow. Recall that M is the
result of pairwise identifying the sides of 2N copies of Q. Thus M has the structure
of a complex; denote by v, e and f the number of vertices, edges and faces. Note that
e = Nk and f = 2N . The edges can be labeled by pairs (i, j), i = 1, ..., k, j = 1, ..., N
so that the (i, j)-th edge corresponds to the i-th side of Q. Let E ⊂M be the union
of the edges.

The billiard trajectory under consideration can be encoded in an obvious way
in the alphabet {(i, j)}; denote its code by W . The projection (i, j) → i sends W
to w (we will always denote by W words in the alphabet {(i, j)} and by w their
projections). In other words, the new encoding takes into account not only the side
of Q in which a reflection occurs but also the angle of reflection that can take finitely
many values.

Let P (n) be the complexity of W .
Claim: P (n) = n(k − 2)N + 2N for all n ≥ 1.
Arguing as in the proof of the preceding theorem, P (n) equals the number of

distinct initial segments of length n in the codes W (x) where x ranges over points of
E.

Next, given a wordWn of length n, consider the set X(Wn) consisting of the points
x ∈ E such that the initial segment of W (x) is Wn. Then, arguing as in the previous
section, X(Wn) is an interval on an edge from E.

Denote by T the first return map of the directional flow Fθ to E (that is, the billiard
map). Consider the set of initial segments of length (n + 1) in W (x), x ∈ X(Wn).
The wordWn will have different successors if and only if T n(X(Wn)) contains a vertex
V of M . We say that Wn splits at V .

To find P (n + 1) − P (n) one needs to learn how many words of length n split
at each vertex. Let V be a vertex with cone angle 2πc. Then there are c incoming
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saddle connections. Trace each one back n steps, and let W 1, ...,W c be the respective
n-length words. Then T n(X(W α)) contains V for each α = 1, ..., c.

The wordsW α are all different since their (n−1)-st letters are distinct. The latter
hold because in the polygon Q there is only one trajectory that starts at a given side
in a given direction and goes straight to a given vertex.

Thus all the n-length words that split at V are W 1, ...,W c. It follows that

P (n+ 1)− P (n) =
∑

c(V ),

sum over all vertices. To evaluate this sum note that the Euler characteristic of M
equals the sum of indices of singular points of the flow Fθ; the index at vertex V
equals 1− c(V ). Hence

χ(M) =
∑

(1− c(V )) = v −
∑

c(V ).

On the other hand, χ(M) = v − e + f , and it follows that
∑

c(V ) = (k − 2)N .
Therefore P (n+ 1)− P (n) = (k − 2)N , and since P (1) = kN , the claim follows.

To finish the proof of the theorem it remains to show that P (n) = p(n) for all
sufficiently great n. Suppose not; then there exist arbitrary long words W 6= W ′ that
are the initial segments of the codes of phase points x ∈ E such that w = w′.

The billiard trajectories, corresponding to W and W ′, start at the same side of Q
but make different angles with it: otherwise, since w = w′, they would reflect at the
same sides of Q and meet them at the same angles which would imply that W = W ′.
Note that the angle between the two trajectories is bounded below by a constant α
depending on Q and θ.

Unfold the trajectories to straight lines. Since these lines linearly diverge, there
is a constant m, depending on Q and α, such that after at most m reflections of Q
along either of the unfolded trajectories a vertex of a copy of Q will fall into the angle
between the lines. Therefore if the length of W and W ′ is greater than m the codes
w and w′ are distinct, a contradiction. ✷

If Q is a general k-gon let N be the least common denominator of its π-rational
angles and s be the number of its distinct π-irrational angles. Then one has the next
upper bound for the complexity pθ(n) of the billiard trajectories in Q in a fixed initial
direction θ – see [28].

Theorem 7.10 For all n one has:

pθ(n) ≤ kNn(1 +
n

2
)s.

72



Using techniques, similar to the ones in the proof of Theorem 7.9, S. Troubetzkoy
obtained in [58] a complexity lower bound for arbitrary polygonal billiards. Unlike
the previous results, his theorem concerns billiard trajectories in all directions, so
that p(n) now means the number of distinct words of length n in the coding in the
alphabet {1, ..., k} of all billiard orbits in a k-gon.

Theorem 7.11 For every polygon there exists a constant c such that p(n) ≥ cn2 for
all n ≥ 0.

A similar estimate is proved in [58] for d-dimensional polyhedra with the exponent
2 replaced by d.

7.4 Periodic trajectories in some irrational billiards

The following elementary argument shows that every rational polygon has a periodic
billiard trajectory of a special kind; it was found independently by A. Stepin ([21])
and by M. Boshernitzan ([9]).

Shoot the billiard ball in the direction, perpendicular to a side of the polygon
Q. By Poincaré’s recurrence theorem, for almost every initial position, the ball will
return to the original side at an angle, arbitrarily close to π/2. Since the set of
possible directions of the ball is discrete in a rational polygon, this angle will be equal
to π/2. After the ball bounces off of the side it will backtrack the same trajectory, so
the trajectory is periodic.

Surprisingly, a variation of this argument applies to some irrational polygons. This
was observed by B. Cipra, R. Hanson and A. Kolan ([13]), and then generalized by
E. Gutkin and S. Troubetzkoy ([28]). The next result is due to the former authors.

Theorem 7.12 Given a right triangle with π-irrational acute angles, almost every
(in the sense of measure) billiard trajectory, that starts at a side of the right angle
in the direction, perpendicular to this side, returns to the same side in the same
direction.

Proof. The idea is to apply the construction which gave the invariant surfaces of
the billiard flow in rational polygons. A significant difference with the rational case
is that the invariant surface will not be compact.

Start with reflecting the triangle in the sides of the right angle to obtain a rhombus
R. The study of the billiard inside the triangle reduces to that inside the rhombus.
Let α be the acute angle of R.
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Fig. 14

Consider the beam of horizontal trajectories, starting at the upper half of the
vertical diagonal of the rhombus, and construct the invariant surface of the phase
space, corresponding to this beam. This surface consists of rhombi, obtained from R
by the action of the group A(R), whose sides are pasted pairwise in an appropriate
manner. Since α is π-irrational, this surface is not compact. The invariant surface
is partially foliated by the parallel trajectories from the horizontal beam, and this
foliation has an invariant transversal measure, ”the width of a beam”.

Each rhombus involved is obtained from the original one by a rotation through
the angle nα where n ∈ Z. Such a rhombus will be referred to as the n-th rhombus
and denoted by Rn; in particular, R = R0. A trajectory from the beam under
consideration may leave the n-th rhombus through a side which has one of the two
possible directions. Call such a side positive if the trajectory enters an (n + 1)-st
rhombus and negative if it enters an (n− 1)-st one.

One wants to show that almost every trajectory returns to R0 (where they hit the
vertical diagonal in the perpendicular direction). We will prove that for every ǫ > 0
the relative measure of the set of trajectories that do not return to R0 is less than ǫ.

Let ǫ be given. Since α is π-irrational, there exists n > 0 such that the vertical
projection of the positive side of Rn is less than ǫ. This implies that the relative
measure of the set of trajectories that make it to (n+ 1)-st rhombi is less than ǫ.

The rest of trajectories are bound to stay in R0, R1, ..., Rn; call this set of tra-
jectories S. The union of the rhombi from 0 through n is compact, therefore the
Poincaré recurrence theorem applies to S. It follows that almost every trajectory in
S is recurrent, that is, returns to R0. ✷

In fact, the above proof gives more: for every direction in a rhombus almost every
billiard trajectory in this direction returns arbitrarily close to itself and in the same
direction. A relevant definition is proposed in [28].

Definition 7.13 Given a billiard polygon Q, a direction is called recurrent if almost
every billiard trajectory in this direction returns arbitrarily close to itself and in the
same direction. A polygon Q is called strongly recurrent if every direction is recurrent.

In particular, every rational polygon is strongly recurrent. An argument, similar
to the preceding proof, gives the next result from [28], applicable, in particular, to all
parallelograms.
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Theorem 7.14 Let Q be a polygon whose sides have one of the two fixed directions.
Then Q is strongly recurrent. In particular, the billiard orbits, perpendicular to each
side of Q, are periodic with probability one.

7.5 A non-periodic trajectory that is not dense in the con-

figuration space

An example of such a trajectory was constructed by G. Galperin in [19].

Fig. 15

Consider a centrally symmetric hexagon (so that its opposite sides are parallel
and congruent) such that the bisector of the angle BAC = α is perpendicular to the
side AF and the the bisector of the angle ABF = β is perpendicular to the side BC.

Since the bisector of α is perpendicular to BC, the reflection of AB in BC is the
line BF . Thus the reflection of any vertical segment leading to BC is parallel to BF .
Similarly, the reflection of vertical segments in CD are parallel to AC. After another
reflection the segment becomes vertical again. Choose a line, perpendicular to the
side AB; let X, Y, Z be the projections on this line of the points A,E, F , respectively.
The set of vertical lines is identified with a horizontal segment XY , and the second
iteration of the billiard transformation induces the exchange of the intervals XZ and
ZY . An exchange of two intervals is equivalent to a circle rotation. For generic angles
α and β each orbit of this circle rotation is dense. Therefore each vertical billiard
trajectory is dense in the hexagon.

Extend the non-vertical sides of the hexagon to obtain a parallelogram. Then the
two triangles, added to the hexagon, are never visited by any vertical trajectory, that
starts inside the original hexagon.

Similar but more tedious considerations prove the following result by Galperin.

Theorem 7.15 There exists an acute angle α0 such that for almost every (in the
sense of measure) α ∈ (0, α0) a right triangle with the acute angle α contains a
non-periodic and not everywhere dense billiard trajectory.
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