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Rational Chebyshev Approximations for the

Inverse of the Error Function

By J. M. Blair, CA. Edwards and J. H. Johnson

Abstract.   This report presents near-minimax rational approximations for the inverse

of the error function invert x, for 0 < x < 1 — 10 , with relative errors rang-
—23

ing down to 10       .   An asymptotic formula for the region x —► 1 is also given.

1. Introduction.  The inverse error function inverf x occurs in the solution of

nonlinear heat and diffusion problems [ 1 ].  It provides exact solutions when the diffu-

sion coefficient is concentration dependent, and may be used to solve certain moving

interface problems.  The percentage points of the normal distribution, which are impor-

tant in statistical calculations, are expressible in terms of inverf x,  and a common method

of computing normally distributed random numbers [2], [3] requires efficient approxi-

mations.

The basic mathematical properties of the related function inverfc x axe discussed

in [4] and [1], and 10S Chebyshev series expansions are given in [1].   [5] lists 3D

rational approximations, and [6] contains 7S rational minimax approximations to

inverf x and inverfc x.  The most accurate set of approximations is given in [7], which

contains Chebyshev series expansions accurate to at least 18S for 0 <x < 1 - 10~300.

This report gives near-minimax rational approximations for inverf x for 0 < x <

1 - lo-10000, with relative errors ranging down to 10~23.  An asymptotic series is

developed which gives at least twenty-five digits of accuracy over the remaining part

of the range 1 - io-10000 <x < 1.  Tables 1-88 computed by this method are in-

cluded in the microfiche section of this issue.  These tables provide the most efficient

representations available, and the low order approximations should be useful in normal

random number generators.

2. Functional Properties.  The error function is defined for all real values of the

argument y by

x =eri> = 2iTV4Jo e~t2dt

and is an odd function of y.  For y > 0, x lies in the range [0, 1).  The complemen-

tary error function is defined as

erfc y = 1 - erf y.

The inverse error function is defined by
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y

y = inverf x,

and the inverse error function complement by

y = inverfc (1 - x).

inverf x exists for x in the range -1 < x < 1 and is an odd function of x, with a Mac-

laurin expansion of the form

oo

inverf* = £ Cnx2n~y.

n-\

The first two hundred values of Cn are listed in [7].

By inverting the standard asymptotic series

0) «r ~ > - T^1 [' + t,(-t ' •3 • 5(V)12"' - »].

we can derive an asymptotic expansion for inverf * of the form

(inverf x)2 ~<n- |lnij + if'Qlni} ~|)

+ rí-2(¿ln2r?-¡lnr? + ^)

(2) +^(è^-H^ + ïite"-f)
,„-4/1,4        23  . 3    , 29. 2       31 ,        ,  1489 \
+ T?    felnT?-192lnT? + 35ln7?-TlnT?+-r92-j

+ .. . ,      x-*l,

where 17 = -In [itV2(l - x)].

3.  Generation of Approximations.   Rational minimax approximations to inverf x

were computed in twenty-nine decimal arithmetic on a CDC 6600 using a version of

the second algorithm of Remes due to Ralston [8].  The relative error of the approx-

imations was levelled to three digits.

The approximation forms and intervals are

inverf x s* xRlm(x2), 0 < x < 0.75,

^xR,m(x2), 0.75 <x < 0.9375,

-r1^©, 0.9375 <jc<1 - 10-100,

^%~2Rlm(%), 1 - 10"100 <jc < 1 - 10-10000,

where Rlm(x) is a rational function of degree / in the numerator and m in the denom-

inator, and where % = [_ln(l -x)]~Vl.

The auxiliary variable | is necessary in the higher ranges to allow high accuracy

approximations with rational functions of reasonable degree.  The form of the asymp-

totic expansion (2) might suggest |_1/î/m(|2) as a more natural approximating function.

This form was checked, in addition to f1R¡m(i) and %~~1Rlm(%Vl) for the highest
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range of x, and the latter found to be the most efficient.  However, the improvement

in accuracy is not enough to offset the cost of the additional square root evaluation.

For the range 0 <x < 0.9975 the master routine computes inverf x by solving the

equation erf y - x = 0 by the Newton-Raphson technique.  For larger values of x, in

the range 0.9975 < x < 1 - e~62S, we solve instead the equation erfc y - (I - x) = 0.

The computation of erf y and erfc y is based on the algorithm in [9], which was pro-

grammed in FORTRAN in 29S arithmetic on a CDC 6600.   For x > 1 - e-625 under-

flow occurs in evaluating 1 - x, and the equation is rewritten as £(-ln erfc y)Vl - 1 =

0, where % = [~ln(l - x)]_y2.  Newton-Raphson iteration is again used, starting with

y = l/£, and the asymptotic formula (1) is used to compute erfc v.  Because of the

algorithms used, the computed values of inverf x and inverfc x are expected to be

accurate to almost full-working precision.

The master routine was checked by comparing the results against the published

formulae of Strecok [7].  The maximum relative differences for the ranges [0, 0.8],

[0.8,0.9975], [1 -25 x 10~~4, 1 -5 x 10_16],and [1 - 5 x 10~16, 1 - 10"300]

are 0.67 x 10"24, 0.13 x 10~22,0.45 x 10-22, and 0.39 x 10~22, respectively,

which are consistent with the magnitudes of the coefficients of the last terms retained

by Strecok in his series expansions.

Additional checks consisted of a comparison of the results on either side of the

transition points 0.9975 and 1 - e~625, a comparison between the master routine and

(2) at x = 1 - 10~10000, and differencing of the values generated by the master

routine.  The results indicate that the master routine is accurate to at least twenty-

seven digits.

4.  Results.  The details of the approximations are given in Tables 1-88, in a

format similar to that used in [10].  Tables 1-4 summarize the best approximations

in the /,„ Walsh arrays of the function, and Tables 5—88 give the coefficients of

selected approximations.

The precision is defined as

-log, „max
fix) - Rlm(x)

fix)

where f(x) is the function being approximated, and the maximum is taken over the

appropriate interval.

For the ranges [0, 0.75] and [0.75, 0.9375] the rational functions are ill-condi-

tioned, both in the power polynomial and Chebyshev polynomial forms and lose up to

three significant digits by cancellation.  To eliminate the cancellation the numerator

and denominator were subsequently converted to minimal Newton form (MNF) [11],

and the resulting coefficients rounded off by an algorithm similar to that described in

[10].  For each of the approximations in the tables the MNF has a particularly simple

form, being a polynomial in (x - xR), where xR is the right-hand end of the approxi-

mation interval; and hence, the MNF is no more costly to evaluate than the power

polynomial form.
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The approximations in Tables 5-88 were verified by comparing them with the

master routine for 5000 pseudorandom values of the argument in each interval.
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