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HIGHLIGHTS

• Hierarchically porous Fe–Co/N-doped carbon/rGO (Fe–Co/NC/rGO) composites were successfully prepared. Macropores, mesopores, 

and micropores coexisted in the composites.

• Hierarchically porous Fe–Co/NC/rGO showed effective bandwidth of 9.29 GHz.

ABSTRACT Developing lightweight and 

broadband microwave absorbers for deal-

ing with serious electromagnetic radiation 

pollution is a great challenge. Here, a novel 

Fe–Co/N-doped carbon/reduced graphene 

oxide (Fe–Co/NC/rGO) composite with hier-

archically porous structure was designed and 

synthetized by in situ growth of Fe-doped Co-

based metal organic frameworks (Co-MOF) on 

the sheets of porous cocoon-like rGO followed 

by calcination. The Fe–Co/NC composites are 

homogeneously distributed on the sheets of porous rGO. The Fe–Co/NC/rGO composite with multiple components (Fe/Co/NC/rGO) causes 

magnetic loss, dielectric loss, resistance loss, interfacial polarization, and good impedance matching. The hierarchically porous structure 

of the Fe–Co/NC/rGO enhances the multiple reflections and scattering of microwaves. Compared with the Co/NC and Fe–Co/NC, the 

hierarchically porous Fe–Co/NC/rGO composite exhibits much better microwave absorption performances due to the rational composition 

and porous structural design. Its minimum reflection loss  (RLmin) reaches − 43.26 dB at 11.28 GHz with a thickness of 2.5 mm, and the 

effective absorption frequency (RL ≤ − 10 dB) is up to 9.12 GHz (8.88–18 GHz) with the same thickness of 2.5 mm. Moreover, the widest 

effective bandwidth of 9.29 GHz occurs at a thickness of 2.63 mm. This work provides a lightweight and broadband microwave absorbing 

material while offering a new idea to design excellent microwave absorbers with multicomponent and hierarchically porous structures.
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1 Introduction

With the rapid popularization of electronic equipment, 

electromagnetic radiation pollution brings disturbance to 

the proper functioning of electronic equipment as well as 

significant dangers to military security and human health 

[1–4]. Therefore, it is critical to develop efficient microwave 

absorbing materials that are lightweight and thin with strong 

broadband absorption to address this serious problem [5–7]. 

According to the microwave absorption mechanism, when 

absorbers have magnetic loss, dielectric loss, and imped-

ance match, more microwaves can enter the interior of the 

materials and be converted into other forms of energy and 

dissipated [8, 9]. In past decades, many efforts were devoted 

to researching composites for enhancing microwave absorp-

tion, such as (Fe, Ni, Co)/C [10–12], (Fe, Ni, Co)/rGO 

[13–15],  MFe2O4/rGO (M = Fe, Ni, Co) [16–19],  MFe2O4/

CNTs [20–22], and NiO/SiO2/Fe3O4/rGO [23, 24]. However, 

these materials have the shortcoming of narrow absorption 

bands, which seriously hinders their practical applications.

Recently, metal–organic frameworks (MOFs) have attracted 

wide attention due to their unique structures [25, 26]. The 

Co-MOF-derived Co/C composites have the advantages of 

low density, nanoporous structure, multiple polarization 

centers, and the coexistence of magnetic loss and dielectric 

loss, which are beneficial to improve the impedance match-

ing and multiple reflection and scattering of microwaves. Zhu 

et al. synthesized Co/C composites by carbonization of Co-

MOFs; the minimum reflection loss  (RLmin) of the compos-

ites was − 15.7 dB, and the effective bandwidth was 5.4 GHz 

(12.3–17.7 GHz) at a thickness of 1.7 mm [27]. Wang et al. 

fabricated Co–C composite using Co-MOF-74 as the precur-

sor; its  RLmin reached − 62.12 dB, while its effective band-

width was 4.6 GHz (10.1–14.7 GHz) at the thickness of 

2.4 mm [28]. Liao et al. prepared Co/ZnO/C absorbers from 

cuboid-shaped heterobimetallic MOFs; the optimized  RLmin 

was − 52.6 dB, and the effective bandwidth was 4.9 GHz at a 

thickness of 3.0 mm [29]. Wang et al. reported a Co nanopar-

ticles (NPs)/porous C composite by annealing Co NPs/ZIF-

67; its  RLmin was − 30.31 dB, and the effective bandwidth was 

4.93 GHz [30]. Although Co-MOF-based Co/C composites 

show good microwave absorption performances, their narrow 

absorption bands still need to be improved. Thus, in order to 

solve the problem of the impedance mismatch of Co/C com-

posites derived from weak magnetic loss of single Co-MOF 

and further improve absorbers’ microwave absorption per-

formance, we designed porous Fe–Co/N-doped C (Fe–Co/

NC) composites derived from Fe-doped Co-MOF by doping 

strongly magnetic Fe into Co-MOF. At the same time, NC 

obtained by the carbonization of Fe-dope Co-MOF is of great 

benefit to enhance the dielectric loss.

In addition, rGO with a porous structure can effectively 

broaden the effective bandwidth because the microwaves 

entering the pores of rGO can be reflected and multiply scat-

tered [31–36]. Hence, we introduce the Fe-doped Co-MOF 

into porous cocoon-like rGO to prepare multicomponent and 

hierarchically porous Fe–Co/NC/rGO composites. In this 

way, the multicomponent materials can possess both mag-

netic loss and dielectric loss and achieve impedance matching 

to enhance the absorbing performance. At the same time, the 

hierarchically porous structures of the materials can reduce 

the density and broaden the effective bandwidth to obtain 

lightweight absorbers with strong broadband absorption.

Herein, hierarchically porous Fe–Co/NC/rGO composites 

were designed and prepared by carbonization of Fe-doped 

Co-MOF grown in situ on the porous cocoon-like rGO. The 

Fe–Co/NC/rGO with multiple components and unique hier-

archically porous structures exhibited the widest effective 

bandwidth of 9.29 GHz at a thickness of 2.63 mm. Com-

pared to Co/NC and Fe–Co/NC, the absorbing mechanism of 

Fe–Co/NC/rGO was explained. This design strategy of mul-

ticomponent and hierarchically porous structures provides 

a new research direction for the development of lightweight 

and broadband microwave absorbing materials.

2  Experimental

2.1  Materials

Cobalt nitrate hexahydrate (Co(NO3)2·6H2O), ferrous sulfate 

heptahydrate  (FeSO4·7H2O), 2-methylimidazole (2-MIM), 

ascorbic acid (VC), and methanol were purchased from Bei-

jing Chemicals and used without further purification.

2.2  Synthesis of Hierarchically Porous Fe–Co/NC/rGO

The hierarchically porous Fe–Co/NC/rGO composite was 

synthesized using the following steps. First, GO was pre-

pared via the modified Hummers method [37]. Second, 
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porous cocoon-like rGO was fabricated using our previ-

ously reported method [33] (SI). Third, 15 mg of porous 

cocoon-like rGO was dispersed in 10 mL of methanol and 

marked as solution A. 0.4514 g of 2-MIM and 0.3637 g 

of Co(NO3)2·6H2O were separately dissolved in 10 mL of 

methanol. They were uniformly mixed under stirring and 

marked as solution B. 0.037 g of  FeSO4·7H2O was dis-

solved in 10 mL of methanol and mixed with solution B to 

form a uniform solution. Sequentially, solution A was added 

into the above mixed solution and stirred for 30 min con-

tinuously. After the mixture was aged at 25 °C for 24 h, the 

products were collected by centrifugation and washed with 

deionized water. The Fe-doped Co-MOF/rGO was obtained 

by freeze drying. Then, Fe-doped Co-MOF/rGO was heated 

at a rate of 5 °C  min−1 and calcined at 600 °C in Ar for 2 h to 

obtain hierarchically porous NC/rGO composites embedded 

with  Co3Fe7 and Co (Fe–Co/NC/rGO).

For comparison, Co/NC was prepared by the same process 

without solution A and a methanol solution of  FeSO4·7H2O. 

Fe–Co/NC was prepared using the same process without 

solution A.

The diagram of the preparation procedure for Fe–Co/NC/

rGO is shown in Fig. 1.

2.3  Characterization

The morphologies and size of the samples were analyzed 

by a field emission scanning electron microscope (FESEM; 

JEOL JSM-7500F) and high-resolution transmission elec-

tron microscope (HRTEM; Hitachi HT7700). The crystal 

structures of the samples were detected by X-ray diffraction 

(XRD; UItima IV, 40 kV, 150 mA, Cu Kα radiation). The 

structural characteristics of carbon materials were char-

acterized by a Raman spectrometer (LabRAM ARAMIS; 

λ = 514 nm). The element compositions and chemical binding 

states of the samples were determined by X-ray photoelectron 

spectroscopy (XPS; Thermo ESCALAB 250XI). The pore 

size distribution of the samples was measured using a specific 

surface area and pore structure analyzer (Micrometrics ASAP 

2460) and analyzed by the Brunauer–Emmett–Teller (BET) 

method. The magnetic properties of the samples were tested 

by a vibrating sample magnetometer (VSM; Lakeshore, 

model 7404 series). The electromagnetic parameters were 

measured by a vector network analyzer (PNA-N5244A; Agi-

lent coaxial method) in the range of 1–18 GHz. The prepara-

tion process of coaxial rings for electromagnetic parameter 

measurement is shown in Fig. S1.

Fe-Co/NC/rGO Fe doped Co-MOF/rGO

carbonization

Fe doped

Co-MOF

Porous cocoon-like rGO

2-MIM

FeSO4·7H2O

Co(NO)3·6H2OFe-Co/NC

GO

600 °C, 2 h

Ascorbic acid 90 °C,

2 h reduction

Freeze-drying

25 °C

24 h

Fig. 1  Schematic drawings illustrating fabrication process of hierarchically porous Fe–Co/NC/rGO
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3  Results and Discussion

3.1  Morphologies and Structures

As exhibited in Fig. S2a, b, Co-MOF shows a smooth and 

complete dodecahedral morphology; its average particle 

size is approximately 800  nm. Fe-doped Co-MOF also 

presents the same morphology, while the average particle 

size is larger than that of Co-MOF, which is approximately 

1.3 μm. The SEM images of Co/NC, Fe–Co/NC, and Fe–Co/

NC/rGO are displayed in Fig. 2. Compared with Co-MOF 

and Fe-doped Co-MOF, Co/NC and Fe–Co/NC (Fig. 2a, 

b) obtained by the high-temperature carbonization of Co-

MOF and Fe-doped Co-MOF can basically maintain the 

morphologies of their corresponding MOF precursors, and 

their skeletal structure shrinks slightly. The surfaces of the 

Fig. 2  FESEM images of a Co/NC, b Fe–Co/NC, c, d Fe–Co/NC/rGO, and e, f HRTEM images of the Fe–Co/NC/rGO
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samples become rough and sunken. As shown in Fig. S2c, 

cocoon-like rGO with a porous structure is obtained by the 

simple and green reduction method. In Fig. 2c, after the 

in situ growth of Fe-doped Co-MOF on rGO and carboniza-

tion, Fe–Co alloy embedded porous NC (Fe–Co/NC) com-

posites are uniformly distributed on the porous rGO sheets. 

The Fe–Co/NC/rGO shows a hierarchically porous structure. 

In Fig. S2d, the Fe–Co/NC/rGO composites clearly have 

macropores ranging from 0.9 to 25 μm. Fe–Co/NC and rGO 

are connected, which enhances the stability of the compos-

ites. As shown in Fig. S3, the Co, Fe, and N evenly locate 

whole composite. The internal microstructures of the hier-

archically porous Fe–Co/NC/rGO were further explored by 

HRTEM. In Fig. 2e, the porous structure of Fe–Co/NC and 

typical wrinkled sheets of rGO can be clearly observed. In 

Fig. 2f, the clear lattice demonstrates the good crystallinity 

of the Fe–Co alloy for the Fe–Co/NC/rGO, in which the lat-

tice spacing of 0.208 nm is in accord with the (110) crystal 

plane of Fe–Co alloy. The Fe–Co alloy nanoparticles are sur-

rounded by the graphitized NC layer. This unique structure 

is conducive to good electromagnetic matching.

The XRD patterns were employed to analyze the phase 

and structures of the products. As shown in Fig. 3a, three 

characteristic diffraction peaks were obtained at 2θ = 44.2°, 

51.5°, and 75.9° for Co/NC, which can be attributed to the 

(111), (200), and (220) crystal planes of body-centered cubic 

Co metal (JCPDS No. 15-0806) [38]. This suggests that the 

 Co2+ in the precursor was successfully reduced to metal 

particles. In Fig. 3b, there are two main diffraction peaks 

in Fe–Co/NC, which correspond to the (110) and (200) 

crystal planes of  Co3Fe7 alloy (JCPDS No. 48-1816). The 

result reveals that the Fe ion is embedded in the Co-MOF, 

and the Fe–Co alloy is formed via carbonization. There are 

also some peaks of Co, indicating the coexistence of  Co3Fe7 

and Co. As shown in Fig. 3c, the main diffraction peaks 

of Fe–Co/NC/rGO are basically consistent with those of 

Fe–Co/NC, except that a weak wide peak attributed to rGO 

appears at approximately 26°.

The carbon structure of the samples was detected by 

Raman spectroscopy. As shown in Fig. 4, the three samples 

all exhibit two peaks at approximately 1330 and 1590 cm−1, 

which can be assigned to the typical D and G bands of car-

bon materials. The D band usually reflects the lattice defects 

and disorder degree of carbon materials. The G band indi-

cates the graphitic degree of carbon atoms [39, 40]. The 

intensity ratio of the D and G bands (ID/IG) is a common 

criterion for evaluating the degree of graphitization of car-

bon materials. In Fig. 4, the ID/IG of Co/NC, Fe–Co/NC, 

and Fe–Co/NC/rGO is 1.06, 1.10, and 1.09, respectively. 

The intensity of D bands is stronger than that of G bands 

(ID/IG > 1) for all samples, indicating that there are many 
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defects in the samples. This is due to the introduction of N 

atoms into the carbon skeleton. These defects can serve as 

a polarization center to further elevate the dielectric loss. 

Under the premise of impedance matching, the increase in 

dielectric loss due to the defects is beneficial to improve the 

absorbing performances [40, 41].

The chemical composition and valence state of Fe–Co/

NC/rGO were studied by XPS. Based on XPS, the nitro-

gen content of Fe–Co/NC/rGO is 3.51 at.%. Figure 5a 

reveals that Fe–Co/NC/rGO consists of C, N, O, Co, and 

Fe elements. In Fig. 5b, the four peaks in the C 1s spec-

tra correspond to C–C (284.6 eV), C–N (285.2 eV), C–O 
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(286.5 eV), and C=O (288.7 eV). The peak intensities 

of O1s, C–O, and C=O are weak, illustrating that most 

oxygen-containing functional groups disappeared through 

the reduction process. As shown in Fig. 5c, the N 1s spec-

tra are well divided into four peaks, which can be assigned 

to primary pyridine N (398.1 eV), pyrrole N (398.9 eV), 

graphite N (399.9 eV), and oxidized N (400.8 eV). This 

demonstrates that the N atoms have been doped into the 

carbon lattice to form defects, which could act as dipoles 

to enhance the dielectric loss. In Fig. 5d, the Co 2p spectra 

are fitted to three Co states; peaks at 780.1 and 795.2 eV 

belong to  Co0, peaks at 785.2 and 797.8 eV are ascribed 

to  Co2+, and peaks at 781.2 and 796.5 eV are attributed 

to  Co3+. The satellite peaks are located at 787.2 and 

803.1 eV. The multiple valence states of Co suggest the 

surface oxidation of Co NPs in air [40, 42]. As shown in 

Fig. 5e, Fe 2p of the composite can be decomposed into 

 Fe0,  Fe2+, and  Fe3+. The peaks with binding energies of 

708.8 and 719.9 eV are indexed to  Fe0, and 710.2 and 

722.6 eV are  Fe2+, while 712.1 and 724.6 eV correspond 

to  Fe3+ [43–46].

The TG curves are shown in Fig. S3. The weight percent-

ages of metal for Co/NC, Fe–Co/NC, and Fe–Co/NC/rGO 

can be estimated to be 42.5, 58.2, and 41.0 wt%, respec-

tively, from the weight loss in the thermogravimetric curves 

obtained in flowing air (60 mL min−1) using Eq. 1.

where  C (wt%) is the content of metal, mr is the remain-

ing weight, mi is the initial weight of the sample, AM is the 

atomic weight of metal, and MM2O3 is the molecular weight 

of  M2O3. In the case of Fe–Co/NC and Fe–Co/NC/rGO, the 

average atomic weight of the Fe–Co alloy and the average 

molecular weight of the corresponding oxides are calculated 

based on the initial Fe/Co molar ratios of the preparation 

process for Fe-doped Co-MOF and used in Eq. 1.

The nitrogen adsorption–desorption isotherms are used 

to analyze the pore structure of the samples. In Fig. 6, Co/

NC, Fe–Co/NC, and Fe–Co/NC/rGO exhibit the typical type 

IV isotherm [47]. The further pore structure of the sam-

ples can be observed in the pore size distribution based on 

a nonlocal density functional theory (NLDFT) model. In 
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Fig. 6a, the pore size distribution of Co/NC profiles has 

peaks in the range of 0.4–4.4 nm. In Fig. 6b, Fe–Co/NC 

shows a pore size distribution of 0.4–15.4 nm. This indi-

cates that MOF-derived Co/NC and Fe–Co/NC are materials 

with both micropores and mesopores. However, Fe doping 

broadens the pore size distribution. In addition, the pore 

volume of Fe–Co/NC is 0.176 mL g−1, which is smaller 

than the 0.187 mL g−1 of Co/NC. This demonstrates that Fe 

doping decreases the porosity of the material. As shown in 

Fig. 6c, the pore sizes of Fe–Co/NC/rGO are in the range 

of 0.4–25.0 nm, including micropores (0.4–2.0 nm) and 

mesopores (2.0–25.0 nm). Combining the SEM image and 

pore size distribution, macropores, mesopores, and micropo-

res are observed to coexist in Fe–Co/NC/rGO composites. In 

other words, the Fe–Co/NC/rGO composite shows a hierar-

chically porous structure.

3.2  Magnetic Properties

The magnetic hysteresis loops of Co/NC, Fe–Co/NC, and 

Fe–Co/NC/rGO composites are shown in Fig. 7. Compared 

to the saturation magnetization (Ms) of 32.96  emu  g−1 

for Co/NC (Fig. 7b), the Ms of Fe–Co/NC increased to 

39.30  emu  g−1 (Fig.  7c), which proves that Fe doping 

improves the magnetic properties of the materials. As shown 

in Fig. 7a, the Ms of Fe–Co/NC/rGO is 22.50 emu g−1 due to 

the introduction of nonmagnetic rGO. The coercivity of Co/

NC is 139.63 Oe, which is lower than those of Fe–Co/NC 

and Fe–Co/NC/rGO (270.90 and 300.16 Oe, respectively).
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3.3  Electromagnetic Parameters and Microwave 

Absorption Performance

The electromagnetic parameters are used to evaluate the 

microwave absorbing properties. Figure 8 gives the rela-

tive complex permittivity ( �
r
 = �′ − j�′′ ), dielectric loss 

tangent (tanδe = �′′/�′ ), relative complex permeability 

( �
r
 = �′ − j�′′ ), and the magnetic loss tangent (tanδm = �′′

/�′ ). The real parts of the complex permittivity ( �′ ) and 

permeability ( �′ ) stand for the storage ability for electrical 

and magnetic energy, whereas the imaginary parts ( �′′ and 

�
′′ ) are related to the dissipation ability [48]. As shown in 

Fig. 8a, b, �′ and �′′ of the Fe–Co/NC/rGO composite are 

larger than those of Co/NC and Fe–Co/NC. In the range 

of 12.8–18 GHz, �′ of the composite is smaller than that 

of Co-NC or Fe–Co/NC, while �′′ of the composite is still 

large, resulting in greater dielectric loss. In Fig. 8c, tanδe 

of Fe–Co/NC/rGO is much higher than that of the other 

two samples due to the introduction of rGO; rich defects 

on rGO and NC and the interfacial polarization enhance 

the dielectric loss of the composite [49]. As shown in 

Fig. 8d–f, �′ of the Fe–Co/NC/rGO is larger than that of 

Co/NC and Fe–Co/NC, �′′ and tanδm of Fe–Co/NC/rGO 

are smaller than those of other two samples. The intro-

duction of nonmagnetic rGO leads to the decrease in the 

magnetic loss of the composite.
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The microwave absorption performances are evaluated 

by the  RLmin, which is calculated via the electromagnetic 

parameters [50].

where z
0
 is the characteristic impedance of the free space, z

in
 

is the input impedance, and �
r
 and �

r
 are the relative complex 

permittivity and permeability. f is the frequency of micro-

wave, d is the thickness of the absorber, and c is the velocity 

of light.

Figure 9 reveals the microwave absorption performances 

of Co/NC, Fe–Co/NC, and Fe–Co/NC/rGO with the loading 

of 25 wt%. In Fig. 9a  (a1 and  a2), none of the  RLmin of Co/

NC exceeds − 10 dB in the whole frequency and thickness 

ranges. In Fig. 9b  (b1 and  b2), although the  RLmin of Fe–Co/

NC is slightly higher than that of Co/NC, it does not yet reach 

the effective absorption (RL < − 10 dB). This shows that nei-

ther of the two materials can achieve effective absorption. As 

shown in Fig. S5, �′ of the Fe–Co/NC is larger than that of 

Co/NC in the range of 5–17.5 GHz, and �′′ of Fe–Co/NC is 

larger than that of Co/NC in 12.5–18 GHz. In Fig. S6, when 

the mass filling ratios of the materials reach 55 wt%, their 

(2)RL(dB) = 20 log
|
|
|
|

zin − z0
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|
|
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|

(3)z
in
= z
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�
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�
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tan h

�

j
2�fd

c

√

�
r
�

r

�

microwave absorption performance is enhanced. The  RLmin 

of Fe–Co/NC is − 21.83 dB, and the effective bandwidth is 

4.39 GHz. Although the  RLmin of Co/NC is also improved 

(from − 4.09 to − 10.63 dB), its microwave absorption per-

formance is still much worse than that of Fe–Co/NC. This 

illustrates that Fe-doped Co/NC is beneficial to enhance the 

absorption properties of materials. In Fig. 9c  (c1 and  c2), the 

microwave absorption performance of Fe–Co/NC/rGO com-

posite is greatly improved. The  RLmin reaches − 43.26 dB 

at 11.28 GHz at a thickness of 2.5 mm, and the effective 

absorption bandwidth is 9.12 GHz (8.88–18 GHz). Further-

more, in Fig. 9c2, the effective bandwidth of the composite 

achieves 9.29 GHz at the thickness 2.63 mm. In Fig. S7, 

the  RLmin of Co/NC/rGO is − 26.14 dB at a thickness of 

2.5 mm and the effective bandwidth is 4.4 GHz. The absorp-

tion performances of Fe–Co/NC/rGO are much better than 

those of Co/NC/rGO. The effective bandwidth of the Fe–Co/

NC/rGO is much better than that of most absorbers. The 

result suggests that the Fe–Co/NC/rGO not only enhances 

the reflection loss but also effectively broadens the absorp-

tion bandwidth, which gives it broad application prospects 

in the research field of absorbing materials.

According to the microwave absorption mechanism, the 

excellent absorbing performance of the Fe–Co/NC/rGO 

benefits from good impedance matching. When Z = |Zin/Z0| 
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is equal or close to 1, zero reflection appears at the surface 

of the materials; in other words, the absorbers accomplish 

a good impedance match. Hence, in order to inquire into 

the microwave absorption mechanism, the impedance 

matching characteristics are carefully analyzed in Fig. 10. 

As shown in Fig. 10a  (a3), b  (b3), the values of Z of Co/NC 

and Fe–Co/NC are much higher than 1 at all thicknesses. 

This impedance mismatch leads to poor absorption. In 

Fig. 10c  (c3), the values of Z of the Fe–Co/NC/rGO are 

still far greater than 1 at most thicknesses, and it does not 

reach effective absorption at these thicknesses. However, 

at the thicknesses of 2.5 and 3 mm, the values of Z are 

closer to 1, and the absorption properties are enhanced, 

which confirms that excellent microwave absorption per-

formances are attributed to the good impedance match. 

In addition, the good impedance match results from the 

appropriate mass filling ratio, dielectric loss, and magnetic 

loss. Remarkably,  RLmin moves to low frequency with the 

increase in thickness. This phenomenon can be explained 

by the quarter-wavelength matching model. In the model, 

the peak frequency ( fm ) and the absorber thickness ( t
m

 ) 

can be described by Eq. 4 [51, 52].

When t
m

 and f
m

 conform to this equation, incident 

and reflected microwaves would be out of phase of 180°, 

resulting in the disappearance of each at the air–absorber 

interface [53]. As shown in Fig. 10c, the t
m

(tm
fit) curve of 

Fe–Co/NC/rGO is simulated with Eq. 4, and the matching 

(4)tm = nc∕

(

4fm

√
||�r

|
|
|
|�r

|
|

)

, (n = 1, 3, 5,…)

thicknesses (tm
exp) marked with red squares are obtained 

from the  RLmin curves. Apparently, the experimental 

results are consistent with the calculated results at the 

thicknesses of 2.5 and 3 mm, which indicates that the 

 RLmin curves of Fe–Co/NC/rGO conform to the quarter-

wavelength matching model. Therefore, the Fe–Co/NC/

rGO composite shows excellent microwave absorption 

performance.

The microwave attenuation constant (α) is another crucial 

evaluation criterion for the microwave absorption perfor-

mance of an excellent absorber; it can be calculated using 

Eq. 5 [54–56].

In Fig. 11a, α values of Fe–Co/NC/rGO are the largest 

among the three samples over the whole frequency range, 

especially in the high-frequency region. Consequently, 

Fe–Co/NC/rGO, with a larger loss tangent and the highest 

attenuation property, exhibits the best microwave absorption 

performance.

The eddy current loss can be calculated using the 

formula of ���
(

��
)−2

f −1 = 2��
0
�d2∕3 , where �

0
 is the 

vacuum permeability, � is the conductivity, and d is the 

sample thickness. If the magnetic loss only originates 

from the eddy current loss, then the values of ���
(

�
�
)−2

f −1 

should be constant when the frequency is changed. As 

shown in Fig. 11b, the values of ���
(

�
�
)−2

f −1 fluctuate 

with frequency, which illustrates that the eddy current 

loss is weak and the magnetic loss mainly comes from 

(5)

α =

√

2�f

c
×

�

(������ − ����) +

�

(������ − ����)
2 + (����� + �����)
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magnetic resonance [57, 58]. Magnetic hysteresis loops 

in Fig. 7 indicate the existence of hysteresis loss for three 

kinds of materials. In case of Fe–Co/NC and Fe–Co/NC/

rGO, the increased area of magnetic hysteresis loops 

indicates that Fe doping enhances the hysteresis loss.

Based on the above discussion, the microwave absorp-

tion mechanism of Fe–Co/NC/rGO composite is illus-

trated in Fig. 12. First, the impedance matching is an 

important factor affecting the microwave absorption per-

formance of materials [59]. The combination of Fe–Co/

NC and rGO gives the composite excellent impedance 

matching and improves the absorbing performance of the 

composite. Second, hysteresis loss and magnetic reso-

nance of magnetic metals contribute to the magnetic loss 

of the composites. Moreover, Fe doping increases the 

hysteresis loss. On the other hand, Fe–Co alloys embed-

ded in the NC form many interfaces, which increase the 

polarization center of the material and greatly enhance 

the interfacial polarization of the material, resulting in 

the increase in dielectric loss [60, 61]. Third, after car-

bonization of the Fe–Co-MOF, N-doped C is obtained. 

The introduction of N atoms into the C lattice and the 

defects in rGO are beneficial to improve the dielectric 

loss of the material [62]. In addition, the porous rGO not 

only enhances dielectric loss but also provides resistance 

loss. The rGO sheets are overlapped to form a capacitor-

like conductive network, which causes the motion of 

hopping electrons, forming oscillatory current and gener-

ating increased resistance loss [63–65]. Moreover, most 

of the microwaves enter into the absorber due to the good 

impedance match, and the unique hierarchically porous 

structure (the macropores, mesopores, and micropores) 

of Fe–Co/NC/rGO composite then limits more micro-

waves to the interior of materials. Therefore, the micro-

waves are reflected and attenuated for many times in the 

interior of the composite. In another words, the scatter-

ing and multiple reflection resulted from the pore struc-

ture enhance the microwave absorption [66, 67]. In sum-

mary, Fe–Co/NC/rGO with multiple components and a 

unique hierarchically porous structure exhibits excellent 

microwave absorption performance.

4  Conclusions

A novel lightweight Fe–Co/NC/rGO composite with broad-

band absorption was prepared using a simple in situ growth 

method. Fe–Co/NC was uniformly loaded on the sheets of 

porous cocoon-like rGO. The multiple components and 

the hierarchically porous structure are responsible for the 

excellent microwave absorption performances. The  RLmin is 

− 43.26 dB with a thickness of 2.5 mm, and the widest effec-

tive bandwidth is 9.29 GHz at a thickness of 2.63 mm. The 

magnetic loss, dielectric loss, resistive loss, good impedance 

matching, scattering, and multiple reflections contribute to 

the excellent microwave absorption performance. This study 

not only provides an excellent absorber but also puts forward 

a design strategy for lightweight absorbers with broadband 

absorption.
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