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Skin wound healing often contains a series of dynamic and complex physiological healing
processes. It is a great clinical challenge to effectively treat the cutaneous wound and
regenerate the damaged skin. Hydrogels have shown great promise for skin wound
healing through the rational design and preparation to endow with specific functionalities.
In the mini review, we firstly introduce the design and construction of various types of
hydrogels based on their bonding chemistry during cross-linking. Then, we summarize the
recent research progress on the functionalization of bioactive hydrogel dressings for skin
wound healing, including anti-bacteria, anti-inflammatory, tissue proliferation and
remodeling. In addition, we highlight the design strategies of responsive hydrogels to
external physical stimuli. Ultimately, we provide perspectives on future directions and
challenges of functional hydrogels for skin wound healing.
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INTRODUCTION

As the largest organ of the human body, skin is the most important natural barrier to protect human
from external injuries (Gao et al., 2019). Due to various types of internal and external factors, such as
mechanical injuries, burns, chronic skin trauma caused by diabetes and malignant tumors, human
skin is extremely vulnerable to damage. At present, it is still a great clinical challenge to effectively
treat the cutaneous wound and regenerate the damaged skin. Cutaneous wound healing is a dynamic
and complex physiological process, which generally includes four overlapping but different periods:
hemostasis, inflammation, proliferation, and remodeling (Chen et al., 2021). These four healing
stages involve interactions among various types of cells and their products, bioactive factors, and
extracellular matrices (ECMs) (Xiao et al., 2019; Zhang et al., 2019). However, due to the imbalance
of the physiological environment under severe conditions, the wound healing process may stop at
one of the above stages, resulting in impaired cell function at the wound site and the failure of normal
healing. Therefore, an accurate wound management is of great significance to promote wound
healing.

One of the promising treatment strategies for promoting wound healing is to provide an artificial
matrix as the wound dressing. Simulating the wound healing microenvironment, many wound
dressing or skin substitutes have been developed. Specifically, hydrogels have attracted much
attention as wound adjuvants because of their high porosity, interconnected macro-porous
network, large specific surface area, and appropriate degradation rate, as well as their capability
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of maintaining moist microenvironment and absorbing tissue
exudates (Wang Z. et al., 2019; Asadi et al., 2021). In addition,
functional hydrogels can be obtained through rational design and
preparation. Among them, injectable in-situ moldable hydrogels
are gaining attention, which can be directly applied to irregular
wounds (Xuan et al., 2021). A plain hydrogel is often not effective
enough in repairing skin wounds by only serving as a covering
material. Therefore, it is essential to integrate the hydrogel matrix
with typical types of drugs, bioactive factors, cells, and/or specific
genes to promote wound repair and accelerate skin regeneration.

The overview of this review is shown in Figure 1. We firstly
introduce the design and construction of various types of
hydrogels based on their bonding chemistry during cross-
linking. Then, we summarize the recent research progress on
the functionalization of bioactive hydrogel dressings for skin
wound healing (Table 1). Finally, we provide suggestions and
perspectives on future directions and improvement strategies for
hydrogel wound dressings. We hope that this literature will
provide ideas and references for research in the field of skin
wound repair.

FORMATION MECHANISM OF
HYDROGELS

Static Covalent Bonds
Static covalent bonds of hydrogels are formed by chemical
reaction or static cross-linking of complementary functional
groups. Static covalent bonds are usually stable and robust,
but cannot be recovered once broken. Though the self-healing
ability of static covalent bonds is relatively weak, on the other
hand, it can significantly improve the mechanical properties of
hydrogels. For example, a double network hydrogel was prepared
by oxidized methacrylic acid sodium alginate and collagen-
polypeptide-functionalized carboxymethyl chitosan, which
were based on the dynamic covalent Schiff’s base bond and
UV irradiation to form a static covalent bond (He et al., 2021).

Dynamic Covalent Bonds
Dynamic covalent bonds are usually reversible covalent bonds
formed by dynamic crosslinking, including disulfide, imine, acyl
hydrazone, phenylboronate ester, etc. (Yang et al., 2019).

FIGURE 1 | Schematic showing the rational design and preparation of functional hydrogels for skin wound healing.
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TABLE 1 | Functional hydrogels for skin wound healing.

Hydrogels Bond chemistry
of hydrogels

Structure of
hydrogels

Functionalization of
hydrogels

Animal models References

Gelatin/poly (vinyl alcohol) hydrogels Dynamic phenylboronic
acid−diol-ester bonds

Injectable
hydrogel

Vancomycin-conjugated silver
nanoclusters, pH-sensitive micelles
loaded with Nimesulide

Diabetic rat model Wang et al.
(2021b)

Heparin-poloxamer hydrogels Amido bond Patch Different growth factor (a-FGF and b-FGF) Rat full-thickness
skin defect model

Wu et al.
(2016)

Bacterial cellulose/MXene hydrogels Hydrogen bond, chemical
covalent cross-linking bond,
chain self-entanglement

Patch Ti3C2Tx-MXene Rat full-thickness
skin defect model

Mao et al.
(2020)

Calcium peroxide-GelMA hydrogels Carbon-carbon covalent
bonds

3D printed
patch

Calcium peroxide — Erdem et al.
(2020)

Bilayered thiolated alginate/
polyethylene glycol diacrylate
hydrogels

Disulfide bond, Carbon-
carbon covalent bonds

Bilayered
patch

The small extracellular vesicles (sEVs)
secreted by bone marrow derived
mesenchymal stem cells, and the sEVs
secreted by miR-29b-3p-enriched bone
marrow derived mesenchymal stem cells

Full-thickness skin
defect model of rats
and rabbit ears

Shen et al.
(2021)

VEGF-decorated t-ZnO-laden
hydrogels

Carbon-carbon covalent
bonds

3D printed
patch

Tetrapodal zinc oxide, VEGF Full-thickness skin
defect model

Siebert et al.
(2021)

Poly (lactic-co-glycolic acid)
microcapsules hydrogels

Imine crosslinking Injectable
hydrogel

TGF-β inhibitor Rabbit ear and
porcine skin
wounding model

Zhang et al.
(2021a)

Bio-multifunctional hydrogels MgO-catechol, Schiff’s base
bond

Injectable
hydrogel

MgO Full-thickness
cutaneous defect
and burn model

Tang et al.
(2021)

Multifunctional double colorimetry-
integrated polyacrylamide-
quaternary ammonium chitosan-
carbon quantum dots-phenol red
hydrogels

Carbon-carbon covalent
bonds, physical
entanglement

Patch Carbon quantum dots, phenol red Rat skin defect
model

Zheng et al.
(2021)

The peptide modified nanofibers
reinforced hydrogels

Schiff’s base bond Composite
hydrogel

Antimicrobial peptide (RRRFRADA) Murine diabetic
wound healing
model

Qiu et al.
(2021)

Sodium alginate-chitosan
oligosaccharide-zinc oxide hydrogels

Schiff’s base bond Patch Zinc oxide nanoparticles Second-degree
scald wounds
model

Zhang et al.
(2021b)

Catechol/ε-polylysine hydrogels Schiff’s base bond Patch Catechol, ε-polylysine Burn Wound
Infection Model

Xu et al.
(2019b)

Polypeptide-based FHE hydrogels Schiff’s base bond Injectable and
self-healing

stimuli-responsive adipose-derived
mesenchymal stem cells exosomes

Diabetic rat model Wang et al.
(2019a)

Metallohydrogels Coordination self-assembly Patch Amino acid, Ag+ Bacterial infection
rat model

Song et al.
(2020)

Hydrogel/polycaprolactone core/
shell fiber scaffolds

Ionic bond 3D printed
patch

Polydopamine, doxorubicin Rat full-thickness
skin defect model

Liu et al.
(2021)

Gelatin-Tannic acid hydrogels Hydrogen Bond Patch Tannic acid, allantion Rat full-thickness
skin defect model

Ahmadian
et al. (2021)

Epigallocatechin-3-gallate-3-
acrylamido phenylboronic acid
complex-based polyacrylamide
hydrogels

Boronate ester bond,
phenylboronate ester

Patch Epigallocatechin-3-gallate, 3-acrylamido
phenylboronic acid

The diabetic rat
model

Zhao et al.
(2021b)

Injectable multifunctional hydrogels Schiff’s base bond Injectable
hydrogel

ε-polylysine-coated MnO2 nanosheets,
insulin

The diabetic rat
model

Wang et al.
(2020)

Polydopamine-modified graphene
oxide hydrogels

Schiff’s base bond Patch Graphene oxide, ε-polylysine The diabetic rat
model

Tu et al. (2021)

Sprayable hydrogels Carbon-carbon covalent
bonds

sprayable Cerium oxide nanoparticles, antimicrobial
peptide

Infected rat model Cheng et al.
(2021)

Dual-dynamic-bond cross-linked
antibacterial adhesive hydrogels

pH-sensitive coordinate
bond, Schiff’s base bond

Patch Protocatechualdehyde, ferric iron Rat skin incision
model

Liang et al.
(2021)

Polyvinyl alcohol-iodine hydrogels Hydrogen bond Patch Iodine Rat skin incision
model

Miao et al.
(2021)

Cellulose-based adhesive hydrogels Covalent bond, hydrogen
bond, cation-π, π-π
stacking, electrostatic
interaction

Patch — Rat full-thickness
skin defect model

Lu et al. (2021)
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Compared with static covalent bonds, dynamic covalent bonds
can be reversibly broken and reorganized under a certain external
stimulus, such as pH, light, and heat (Chakma and Konkolewicz,
2019; Huang et al., 2020). Therefore, hydrogels with good shape
recovery ability and excellent self-healing ability can be prepared
by introducing multiple reversible bonds as cross-linking agents.
For example, the catechol group in epigallocatechin-3-gallate can
form two reversible borate ester bonds with phenylboronic acid,
which can be used as a dynamic cross-linking agent to form
hydrogel with acrylamide (Zhao X. et al., 2021). This dynamic
reversible property endows the hydrogel excellent self-healing
properties. Tang et al. (2021) used catechol-modified chitosan
and oxidized dextran as the main chain segments of the hydrogels
to form dynamic covalent bonds via the Schiff’s base reaction,
while MgO and catechol-modified chitosan were
chelated as another gel agent to form a double chemical bond
hydrogel.

Ionic Bonds
Electrostatic interactions can form ionic bonds, especially
between metal ions and nonmetal ions. The formation of ionic
bonds can enhance the properties of hydrogels to a certain extent,
and different ions can also impart specific characteristics to
hydrogels. For instance, magnesium ions bonded cross-linked
hydrogels can effectively improve the attachment and enhance
the bioactivity of primary osteoblasts in vitro (Yin et al., 2015).
Hydrogels based on alginate and chondroitin sulfate are cross-
linked by calcium ionic bonds (Fajardo et al., 2012). Under acidic
conditions, the functional groups in both alginate and
chondroitin sulfate are in neutral form, making the hydrogel
network more hydrophobic and thus giving it a pH-dependent
water absorption ability. The presence of iron ions can increase
the strength of ionic bonds. For example, the carboxyl group in
the copolymer of acrylamide and acrylic acid (PAMAAc) strongly
interacts with iron through coordination interactions and then
generates agar/PAMAAC-Fe3+ double network hydrogel (Chen
et al., 2016). This highly coordinated interaction dramatically
improves the self-healing ability and good fatigue resistance of the
hydrogel.

Hydrogen Bonds
Hydrogen bonding is the intermolecular force between hydrogen
atoms and another atom with high electronegativity. Hydrogen
bond complexes can be formed by the dense arrangement of
hydrogen bonds between polymers. For example, the hydroxyl
group of tannic acid acts as the hydrogen donor, and the carboxyl
and amino groups of gelatin act as the hydrogen acceptor,
forming abundant hydrogen bonds and generating hydrogels
rapidly (Ahmadian et al., 2021). Although hydrogen bonds are
unstable in an aqueous environment, they are stable under
hydrophobic conditions. Hydrogels formed from methacrylic
acid and methacrylamide can be cross-linked by hydrogen
bonds (Wang Y. J. et al., 2019). Methyl groups are
hydrophobic groups that cover hydrogen bonds and stabilize
the hydrogel from attack by water molecules. Moreover, the dense
and robust hydrogen bonding network gives the hydrogel super
stiffness.

Other Non-covalent Interactions
Other non-covalent bonds also contribute to the formation of
hydrogels with a 3D network structure, including hydrophobic
interaction (Liu X. et al., 2020), dipole-dipole interaction (Jia
et al., 2017), π-π interaction (Li et al., 2010), electrostatic
interaction (Zhang and Khademhosseini, 2017), and host-guest
interaction (Sinawang et al., 2020), etc. The non-covalent bond is
relatively weak, so multiple types of non-covalent bonds are often
used at the same time to form a hydrogel. In addition, non-
covalent bond can be applied as a complement to covalent bonds
to form hydrogels. For example, an injectable micellar hydrogel
was developed by combining Schiff’s base dynamic covalent
bonds, hydrogen bonding, and π-π stacking interactions (Yang
et al., 2020).

STRUCTURE OF HYDROGELS FOR
WOUND HEALING

Hydrogel Microspheres
Compared to the traditional bulk hydrogels, hydrogel
microspheres are smaller in size and can reach the nanoscale.
Hydrogel microspheres can be used to deliver drugs, bioactive
factors, and stem cells for tissue repair (Zhao Z. et al., 2021). The
commonly used preparation methods of hydrogel microspheres
are batch emulsion, microfluidic, lithography, electro jetting, and
mechanical crushing (Daly et al., 2020). For example, Griffin et al.
(2015) prepared polyethylene glycol-based hydrogel
microspheres using a microfluidic emulsion.

Hydrogel Implants
Hydrogel patches are the most common form of wound
dressings. In addition to the use of molds to prepare wound
dressing with regular shapes, 3D printing technology offers a new
method for patch preparation. According to the shape of the
wound, 3D printing can be used to prepare individualized patches
conforming to the shape of the wound. Alizadehgiashi et al.
(2021) used cellulose nanocrystals and methyl acrylamide-
chitosan as printing inks to prepare hydrogel patches with
homogeneous composition and mesh structure by 3D printing
for active substance delivery, which is not possible with
conventional patches for their incompetent in reaching the
deeper layers of the skin. The bulged microstructure on the
surface of the patch can penetrate well into the deep part of
the damaged skin, realizing the profound delivery of bioactive
factors to promote skin repair. Sun et al. (2021) prepared MXene-
integrated microneedle array patches loaded with adenosine to
achieve a controlled release under near-infrared (NIR)
stimulation.

Injectable Hydrogels
For irregular wounds, it is difficult for the traditional hydrogel
patches to completely and perfectly cover and fit the shape and
size of the wound (Gao et al., 2020). Injectable hydrogels offer a
solution for the repair of a wound with irregular shapes. The
fabrication of injectable hydrogels can be realized by regulating
the bond chemistry of hydrogels. Dynamic covalent bonds, ionic
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bonds, hydrogen bonds, and other non-covalent bonds can
provide ideas for the preparation of injectable hydrogels. For
example, injectable hydrogels were fabricated through a Schiff’s
base reaction between ε-polylysine-coated MnO2 nanosheets and
insulin-loaded self-assembled aldehyde Pluronic F127 micelles
(Wang et al., 2020).

Self-Healing Hydrogels
Due to the low mechanical strength of hydrogel, it is easily
damaged during application (Xuan et al., 2021). The
development of self-healing ability is crucial for hydrogel
patches. Similar to the preparation of injectable hydrogels,
self-healing hydrogels can also be realized by reversible
dynamic covalent bonds or non-covalent bonds. For instance,
a self-healing hydrogel dressing was obtained through the
formation of boronate ester (Zhao X. et al., 2021). When the
two surfaces of the separated hydrogel contacted to each other,
the rearrangement of the boronate ester bond could promote the
self-healing of the separated hydrogel. Takashima et al. (2012)
reported a self-healing hydrogel based on supramolecular host-
guest interaction, which was prepared by copolymerization of
acrylamide with the complex of β-cyclodextrin (host) and
adamantane (guest) monomer. After being damaged, the
hydrogel was self-healing through the host-guest interaction
between β-cyclodextrin and adamantane. At room
temperature, the mechanical properties of the self-healing
hydrogel could be fully restored after contact at the cutting
site for 24 h, showing excellent self-healing properties.

Hydrogel Fibers
Compared with traditional hydrogels, hydrogel fibers have a 3D
network structure with a higher specific surface area, which can
simulate the structure and characteristics of the ECM and provide
more sites for cell adhesion, migration, and proliferation (Li et al.,
2021). The standard preparation methods of hydrogel fibers
include electrospinning (Liu W. et al., 2020), 3D printing
(Kong et al., 2020), microfluidic spinning (Cai et al., 2019),
and dynamic polymer spinning (Chen et al., 2020). The most
commonly used method is to prepare nanofibers by
electrospinning and then cross-link the obtained fibrous
membrane to improve its mechanical properties. Chen et al.
(2019) successfully prepared gelatin methacryloyl (GelMA) fibers
by electrospinning. They soaked the fibrous membrane in the
solution containing initiator crosslinking to fabricate hydrogel
fibers. Hydrogel fibers can be further functionalized by surface
modifications to endow themwith special functions. For example,
Liu et al. (2021) used 3D printing technology to prepare core-shell
hydrogel/Polycaprolactone fibers and grafted a layer of dopamine
on the outermost layer to endow it with the ability of NIR-
triggered drug release.

Composite Hydrogels
Although hydrogels can absorb tissue exudates and maintain
water balance at the wound site, most hydrogels have poor
mechanical properties, limiting their biomedical applications
(Teixeira et al., 2021). Qiu et al. (2021) incorporated the
peptide modified fiber composite into the hydrogel, and the

stability and mechanical strength of the hydrogel was
greatly improved. In addition to poor mechanical stability,
a plain hydrogel scaffold cannot mimic the complexity of the
natural ECM, making the development of novel composite
hydrogels critical. For example, gelatin nanofibers were
combined with a photo-crosslinking composite hydrogel-
loaded with epidermal growth factor (EGF) to prepare a
bionic bilayer composite hydrogel scaffold (Zandi et al.,
2021). In the scaffold, the nanofibers and the EGF-loaded
composite hydrogel acted as the dermal and the epidermal
layer, respectively.

FUNCTIONALIZATION OF HYDROGELS
FOR WOUND HEALING

Anti-Bacteria and Anti-inflammatory
When skin injuries occur, microorganisms can easily invade and
cause severe wound infections, thus preventing wound healing.
Some hydrogel materials have inherent antibacterial properties,
such as chitosan (Chi et al., 2020) andmodified chitosan (Lu et al.,
2020). However, these materials alone are less effective as
antimicrobial agents, and therefore the addition of
antimicrobial active ingredients is required to achieve an
excellent antimicrobial efficacy. The most common solution is
to load antimicrobial agents, antibiotics, and/or metal
nanomaterials into the hydrogel to treat the infection at the
wound site. Wang et al. (2021b) reported an antibacterial
hydrogel prepared by coupling vancomycin with silver
nanoparticles. ZnO nanoparticles were also loaded in a
hydrogel to endow it with the antibacterial ability (Zhang M.
et al., 2021). However, the abuse of antimicrobial agents,
antibiotics, and metal nanomaterials may lead to drug
resistance, making the drugs cytotoxic and limiting their
potential applications (Song et al., 2020). In addition to
finding new antimicrobial drugs as an alternative, many
researchers have chosen incorporating antibacterial peptides,
such as Epsilon-Poly-L-lysine antimicrobial peptides, in the
hydrogel dressings or microneedles to achieve deep
bactericidal effects (Wang C. et al., 2019; Xu M. et al., 2019).
Brushing cationic polyelectrolyte poly (dially ldimethyl
ammonium chloride) onto bacterial cellulose via surface-
initiated atom transfer radical polymerization could impart a
sustained antimicrobial activity to the resultant hydrogels (Yang
Z. et al., 2021). Additionally, hydrogels loaded with cationic
carbon dots also showed an antimicrobial function (Cui et al.,
2021). The prepared cationic carbon dots had an ultra-high
positive charge and a small particle size, which could rapidly
bind to bacteria and disrupt their surface charge, leading to the
apoptosis of bacteria. To prevent the drug resistance of bacteria,
incorporating stimuli-responsive substances into hydrogels and
combining them with exogenous physical stimuli can achieve
effective antibacterial properties. For instance, a catechol-Fe
cross-linked matrix with good photothermal conversion ability
was combined with quaternized chitosan, and the resultant
hydrogel showed good antibacterial properties under NIR
irradiation (Liang et al., 2021).
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The wound healing process is also severely affected by the
failure of macrophage response, during which persistently high
levels of pro-inflammatory chemokines and large amounts of
ROS are presented at the wound site (Kharaziha et al., 2021). The
main idea of preparing anti-inflammatory hydrogels is to give
them the ability to promote macrophage polarization, eliminate
ROS, reduce pro-inflammatory chemokines, and improve
inflammatory inhibitory factors. The most common solution is
to add anti-inflammatory drugs to the hydrogels. For example,
nanomicelles loaded with pH-responsive nimesulide-loaded anti-
inflammatory drugs can promote the transformation of
macrophages from M1-type to M2-type, realizing anti-
inflammatory function (Wangetal., 2021). In addition to the
delivery of anti-inflammatory drugs, loading stem cells and/or
genes in hydrogels is another feasible strategy to promote the
healing of chronic inflammatory wounds (da Silva et al., 2017).
For example, an adhesion GelMA hydrogel containing hyaluronic
acid nanoparticles-encapsulated with miR-223 5P mimics was
used for chronic wound healing to control the polarization of
tissue macrophages (Saleh et al., 2019). Some specific types of ions
or elements can regulate the inflammation response. In one study,
selenium nanoparticles were loaded into bacterial cellulose/
gelatin hydrogel, which could significantly reduce the
expression of TNF-α and IL-6, reducing the inflammatory
effect during wound healing and promoting wound healing
(Mao et al., 2021). Tu et al. (2021) grafted dopamine onto
graphene oxide and then loaded the composite into a
polydopamine-modified graphene oxide hydrogel. As the
catechol on dopamine turned into quinone to trap free
radicals, graphene oxide promoted the macrophage
polarization, thus conferring the hydrogel with capabilities of
anti-inflammatory and capturing ROS. Low levels of reactive
oxygen species can promote wound healing, while excessive ROS
can hinder wound healing (Xu et al., 2020). Especially in chronic
wounds, a sustained inflammation can lead to a high level of ROS,
thereby preventing the transition to the next regeneration stage.
Therefore, it is particularly important to maintain the balance of
ROS level at the wound. Delivering drugs that can scavenge ROS
is the most common strategy. For example, thioketone-modified
chitosan hydrogel loaded with curcumin could remove excessive
ROS to promote wound healing (Yang C. et al., 2021).

Tissue Proliferation and Remodeling
The proliferation and remodeling periods are the most critical
periods of skin wound healing, which mainly involve the
formation of granulation tissue, re-epithelialization,
angiogenesis, and other events. In the stage of re-tissue
regeneration, loading growth factors into hydrogel is an
effective manner to improve the wound healing rate. Wu et al.
(2016) loaded a-FGF and b-FGF into the thermosensitive
heparin-Poloxamer hydrogel, significantly promoting the
granulation tissue formation, re-epithelialization, and cell
proliferation. However, due to the short half-life and poor
stability of growth factors, it is imperative to explore new
wound healing agents as an alternative for promoting wound
healing. Wang et al. (2021a) isolated a short peptide (RL-QN15)
from Rana limnocharis skin secretions, which was proved to

promote wound healing in mice. This short peptide could activate
the signaling pathway and selectively regulate the secretion of
cytokines by macrophages, thereby accelerating the formation of
granulation tissue and the regeneration of skin wound.

Hypoxia caused by vascular damage can inhibit wound
healing. Therefore, it is extremely important to endow
hydrogel trauma excipients with a particular ability to
transport oxygen and promote angiogenesis. For example,
MnO2 nanosheets were loaded into nanoenzyme-reinforced
injectable hyaluronic acid hydrogel to provide oxygen to the
wound site because the reaction between the high concentrations
of reactive oxygen with the MnO2 nanosheets could generate
oxygen (Wang et al., 2020). In addition to the above endogenous
oxygen generation methods, calcium peroxide and catalase were
added to GelMA hydrogel to produce oxygen continuously
(Erdem et al., 2020). This method could not only improve the
cell survival rate loaded in GelMA hydrogel, but also provide
oxygen for the wound to promote wound healing.

Angiogenesis at skin wounds plays a key role in the
transportation of oxygen and nutrients. Therefore, loading
growth factors or peptides that promote angiogenesis in
hydrogels has become a feasible strategy. For example,
Siebert et al. (2021) developed a 3D printing hydrogel patch
coated with VEGF and modified by tetrapod zinc oxide (t-ZnO)
particles with photoactivity and antibacterial effect. The
controlled release of VEGF could be achieved by chemical
modification of t-ZnO and activation with ultraviolet/visible
light. Endothelial growth factor modified t-ZnO hydrogel patch
showed lower cytotoxicity and improved angiogenesis with an
excellent antibacterial capability. In addition to the direct release
of angiogenesis-related exogenous growth factors, it is another
viable means with the use of growth factors secreted from
mesenchymal stem cells or stem cell exosomes by paracrine
effect to promote angiogenesis. Eke et al. (2017) loaded adipose-
derived mesenchymal stem cells into hydrogel made of a
mixture of GelMA and methacrylic acid hyaluronan. The in
vivo results showed that the hydrogel loaded with stem cells
could increase vascularization by three times relative to the case
without stem cells, thereby accelerating angiogenesis in the
damaged skin. Although the above strategies can accelerate
the angiogenesis in the wound defect, sometimes the
angiogenesis can be extremely slow or blocked under the
influence of uncertain factors. In vitro pre-vascularization can
be a feasible method. For example, Lei et al. (2019) prepared a
hierarchical microchannel network using 3D printing
technology, which could reasonably simulate the natural
vascular network and showed good structural characteristics.

Scar formation often occurs late in wound healing due to
excessive deposition and dislocation of ECM, increased cell
density, and chronic inflammation (Xu T. et al., 2019). Scar
formation often leads to several complications that can
seriously endanger the health of patients. Current research
shows that transforming growth factor-β (TGF-β) signal
transduction disorder is closely associated with pathological
scar formation (Song et al., 2019). Therefore, TGF-β related
pathways have been considered as a very promising target for
the treatment of abnormal skin scar formation. Yet, TGF-β also
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plays a very important role in the process of wound healing,
including regulating the proliferation and differentiation of
epidermal cells and dermal cells and regulating tissue
regeneration (Mokoena et al., 2018). Therefore, rational
delivery of TGF-β inhibitors at the late stage of wound healing
by certain methods becomes a feasible strategy to inhibit scar
formation. For example, Zhang J. et al. (2021) loaded TGF-β
inhibitor-containing biodegradable microcapsules into a light-
cured hydrogel. TGF-β inhibitor was released from the
microcapsules by pulse during the late wound healing,
resulting in the acceleration of skin wound healing and the
inhibition of collagen deposition in wounds and thereby
reducing scar formation during wound healing. In addition to
TGF-β inhibitors, Shen et al. (2021) designed and prepared a
double-layer sodium alginate/polyethylene glycol diacrylate
hydrogel for the continuous release of extracellular vesicles at
different wound healing stages to achieve a rapid wound healing.
In the late stage of wound healing, the small extracellular vesicles
secreted by miR-29b-3p-enriched bone marrow-derived
mesenchymal stem cells were released from the upper layer of
the hydrogel, inhibiting the excessive capillary proliferation and
collagen deposition.

Furthermore, external physical stimuli such as mechanical
force (Saiding et al., 2020), photothermal (Zhang X. et al., 2021),
electrical filed (Korupalli et al., 2021), ultrasound (Lyu et al.,
2021), and magnetic field (Shang et al., 2019) at the wound can
also accelerate wound healing. Different from the introduction
of various drugs or cells into hydrogels to passively promote
wound healing, these exogenous signals can directly and actively
regulate the behaviors of fibroblasts, keratinocytes, and
epithelial cells, modulating the cell behavior to promote
wound healing. In one study, the main network of poly
(N-isopropyl acrylamide) hydrogels were formed by free
radical polymerization of N-isopropyl acrylamide, a
temperature-sensitive monomer, while the semi-crosslinked
network was further formed by introducing poly (methacrylic
acid) (Hu et al., 2021). The hydrogel could effectively accelerate
wound healing in mouse and pig models by promoting
angiogenesis, collagen deposition and reducing inflammation
through the strong adhesion to tissue and mechanical
contraction of the wound. Photothermal therapy is another
interesting strategy for promoting wound skin repair. Gao
et al. (2019) reported a photothermal hydrogel film, which
could convert light energy into heat energy under sunlight
irradiation. Excessive local wound temperature can reduce
inflammation and promote epithelialization, angiogenesis,
and collagen deposition. Mao et al. (2020) prepared a
cellulose/MXene composite hydrogel, which could actively
regulate the cell behavior and improve the cell viability under
the external electric field stimulation, accelerating the wound
healing process. Ultrasonic treatment can also accelerate the
speed of chronic wound healing. Lyu et al. (2021) fabricated
flexible ultrasonic patches, in which ultrasound could accelerate
the wound healing by activating RAC1 in the dermis and
epidermis, thus effectively treating chronic wounds. Shi et al.
(2020) seeded normal human dermal fibroblasts on an

anisotropic magnetic hydrogel, and the cells were oriented to
grow under the guidance of the magnetic field, indicating that
the anisotropic magnetic hydrogel showed a beneficial effect on
the skin tissue regeneration.

CONCLUSIONS AND PERSPECTIVES

Hydrogels have been widely used as a wound dressing for
skin wound repair because they are simple to prepare and
easy to be modified and functionalized. Hydrogels can be
fabricated from many natural and synthetic polymers,
meanwhile, they can be loaded with a variety of bioactive
substances such as growth factors, proteins, genes, etc., thus
making them more biologically active to facilitate wound
healing. As a dynamic process, wound healing involves
several stages, and each stage involves the synergistic action
of multiple factors and cells to promote tissue regeneration.
Therefore, modulating the on-demand release of active
substances according to the specific needs at the different
phases has become a major challenge for current wound
dressings. On-demand release must focus on the whole
process of wound healing but not only on a particular phase.
For example, Ma et al. (2020) reported a multilayer injectable
hydrogel, which can sequentially deliver bioactive molecules to
meet the requirements for bioactivity and timeline of each
wound healing stage. In addition, hydrogel scaffolds with
integrated monitoring and therapeutic functions will be a
new direction for the development of hydrogel wound
dressings in the future. By remotely monitoring wound
healing process, a real-time dynamic intervene in vivo
during the treatment process can be adopted, guiding the
targeted therapy. For instance, a wound healing dressing
with a double-layer structure can monitor the temperature
of the wound in real-time, detect bacterial infection, and
release antibiotics through in situ UV irradiation to provide
an on-demand infection treatment (Pang et al., 2020). Overall,
the ultimate goal is to transfer hydrogels from laboratory to
industry, from bench to bedside, and finally achieve a true
industrialization for the clinical treatment.
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