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Nature has mastered the art of creating complex structures

through self-assembly of simpler building blocks. Adapting such a

bottom-up view provides a potential route to the fabrication of

novel materials. However, this approach suffers from the lack of a

sufficiently detailed understanding of the noncovalent forces that

hold the self-assembled structures together. Here we demonstrate

that nature can indeed guide us, as we explore routes to helicity

with achiral building blocks driven by the interplay between two

competing length scales for the interactions, as in DNA. By char-

acterizing global minima for clusters, we illustrate several realiza-

tions of helical architecture, the simplest one involving ellipsoids of

revolution as building blocks. In particular, we show that axially

symmetric soft discoids can self-assemble into helical columnar

arrangements. Understanding the molecular origin of such spatial

organisation has important implications for the rational design of

materials with useful optoelectronic applications.

anisotropic interactions � columnar arrangements � helix � self-assembly

Nature provides ubiquitous examples of helical architecture
with diverse functions. Helical structures are common

structural motifs in biomolecules and are involved in the storage
of genetic information (1). They are also important in solid- and
liquid–crystal engineering for fabricating functional materials
with useful optoelectronic applications (2–5). For example,
discotic molecules in crystalline or liquid crystalline states often
exhibit helical order in columnar arrangements (2–6), and such
materials are attractive for use in optoelectronic devices because
of the exceptional 1D charge-carrier mobilities along the col-
umns (2–4). A common route to induce helicity in columnar
arrangements is inclusion of chiral centers in discotic molecules
(7). Helical columnar arrangements have also been realized in a
few cases with achiral discotic molecules (8, 9), although no
general strategy seems to have emerged.

Self-assembly is nature’s prescription for the creation of
complex structures from simpler building blocks (10, 11). Al-
though many novel building blocks have been discovered for
self-assembly, differing in shape, composition, and functionality
(12, 13), the basic rules that govern this process are not yet
understood in sufficient detail to realize target structures rou-
tinely through a priori design of building blocks. Here we ask the
specific question: Can we learn from nature how to design
building blocks that self-assemble into helical structures? In
seeking a guiding principle from nature for obtaining helical
architectures, we considered DNA, in which two competing
length scales exist, one characterizing the distance between
consecutive nucleotides in the sugar-phosphate backbone and
the other governing the stacking of the base pairs (1). The
present contribution thus explores realizations of helical archi-
tectures with achiral building blocks driven by the interplay
between two competing length scales. To this end, we charac-
terize global minima (14–16) for clusters bound by generic
intermolecular potentials. (See the SI Appendix for a detailed
description of the potentials describing the interactions between
the building blocks and Fig. S1 of the SI Appendix.)

Section Results and Discussion. We first consider assembly of
asymmetric dipolar dumbbells driven by an electric field, in-
spired by recent experimental work that used asymmetric col-

loidal dumbbells linked at the waist by magnetic belts (17). We
model the asymmetric dipolar dumbbells by using multiple
interaction sites within a rigid-body framework (18). Each
dumbbell involves two spherical lobes, modeled by Lennard–
Jones (LJ) sites (labeled 1 and 2), and a point dipole directed
across the axis between the lobes. The total energy of a system
of N dumbbells in an electric field E is
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Here, rI is the position vector for the point dipole on dumbbell
I, �̂I is the unit vector defining the direction of the dipole
moment whose magnitude is �D, rIJ � rI � rJ is the separation
vector between dipoles on dumbbells I and J with magnitude rIJ,
r̂IJ � rIJ/rIJ, and rij is the separation between LJ sites i and j. The
units of energy and length are chosen as the LJ parameters �11

and �11, respectively. For the LJ interactions, we set �11 � �22 �
�12 � 1 and �11 � 1. �22 � 1 was varied to explore the effects of
asymmetry with �12 � (�11 � �22)/2. With the lobes character-
ized as spheres with diameters �11 and �22, we define an
asymmetry parameter � � �11/�22. The direction of the electric
field E � (0, 0, E) was held fixed along the z axis of the
space-fixed frame as its strength, E, was varied. �D is then in
reduced units of (4��0�11�11

3)1/2 and E is in [�11/(4��0�11
3)]1/2,

where �0 is the permittivity of free space. Although a number of
parameters are involved here, we restrict ourselves to varying
only �22 � 1, �D, and E to manipulate the two competing
interactions.

In Fig. 1, we illustrate putative global minima for clusters of
asymmetric dumbbells under different conditions. We first focus
on the cluster size n � 6 with the asymmetry parameter � fixed
to 2. A distorted octahedral packing results when dipolar inter-
actions are absent (Fig. 1 A and E). In the presence of point
dipoles, we observe a slightly distorted hexagonal arrangement
of the dipoles, thus allowing approximate octahedral packing for
the smaller spheres (Fig. 1 B and F). When an electric field is
applied, a single helical strand grows along the direction of the
field (Fig. 1 C, D, G, and H). The asymmetry of the dumbbells,
which controls the steric factor, proves to be crucial for helix
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formation in this case, competing against the dipole interactions
with the field (see SI Text and Fig. S2 of the SI Appendix). It is
clear that the dumbbells tend to align perpendicular to the field
because of the dipolar interactions. However, competition with
a second length scale that controls the steric interactions causes
a rototranslational axis to appear in the growth process. Al-
though particles interacting via a single-site LJ plus a point-
dipole (Stockmayer) potential tend to form strings (19, 20),
helical order has not been reported for this system. In the
presence of an applied electric field, linear chains are observed
instead for clusters of Stockmayer particles as well as for
symmetric dumbbells (Fig. S2 of the SI Appendix), when the
interactions of the dipoles with the field are sufficiently strong.
Hence, competition between two length scales is crucial in
driving helix formation for asymmetric dipolar dumbbells in an
applied field: We find helical strands only when the asymmetry
parameter is between 	2 and 2.8 and the field is strong enough
(E 
 2 for �D � 0.7). When � � 2, a second strand emerges for
n � 13, as shown in Fig. 1I, and the two strands do not run in
parallel. For n � 20, although the three strands we observe are
nearly parallel (Fig. 1J), the radius of the helical strand is much
diminished. On the contrary, a single helical strand is observed

for n � 13 as well as n � 20 when � � 2.5 (Fig. 1 K and L); see
also Fig. S3 of the SI Appendix. When the restricted parameter
space is explored, the well-defined single helical strand for
n � 20 is found to be robust over a wide parameter range (see
SI Appendix). It is thus apparent that one can tune the two
length scales for these anisotropic interactions to design helical
architectures.

An ellipsoid of revolution is perhaps the simplest building
block that provides a realization of two competing length scales
for anisotropic interactions. Oblate ellipsoids, which are often
invoked in coarse-grained descriptions of discotic molecules, are
therefore promising building blocks for self-assembling helical
structures. Hard ellipsoids of revolution are not suitable as they
do not form a columnar phase (21). It is therefore instructive to
explore routes to helicity with soft ellipsoids of revolution. We
consider two pair potentials of this sort: (i) a suggestion by
Paramonov and Yaliraki (PY) (22); and (ii) a version of the
Gay–Berne (GB) potential (23), modified by Bates and Luck-
hurst (BLmGBD) (24) for uniaxial oblate ellipsoids. We focus
here on parameterizations where the face-to-face configuration
of two uniaxial oblate ellipsoids is favored over the edge-across-
edge configuration (Fig. S1 of the SI Appendix). This bias is

A B

F G

K

C D

HE

LJI

Fig. 1. Global minima for clusters of asymmetric dumbbells. (A–D) Structures obtained for n � 6 asymmetric dumbbells with the size ratio between the spherical

lobes, characterized by the asymmetry parameter �, set to 2. (A) Apolar dumbbells. (B) Dipolar dumbbells. (C and D) Dipolar dumbbells in the presence of an

applied electric field (top view and side view, respectively). (E–H) The same structures as in A–D in the same order but, for clarity, depicting only the position of

the point dipole on the dumbbell axis. (I–L) Structures for larger cluster sizes (side views). (I) n � 13 for � � 2; (J) n � 20 for � � 2; (K) n � 13 for � � 2.5; (L) n �

20 for � � 2.5. When dipolar interactions are present, the dipole vectors are also shown. Emergence of helicity under the applied field is clearly evident, especially

in the reduced representations. Here the dipole moment �D � 0.7 and the electric field strength E � 5. In C and D and G–L, the arrows indicate the field direction.
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conducive to columnar stacking, as for ��� interactions in
aromatic systems (7–9).

The PY potential is a generalization of the LJ potential for
ellipsoidal particles, based on the distance of closest approach of
two ellipsoids with given orientations, as measured by the elliptic
contact function (22). For identical ellipsoids, the potential
involves a set of eight parameters, six of them, {a1k} and {a2k}
(k � 1,2,3), defining two different shape matrices for the
repulsive and attractive parts of the interaction, and the other
two, �0

PY and �0
GB, defining the length and energy scales, respec-

tively. For the PY model, we tune the parameters so that the
lowest-energy configuration for two axially symmetric discoids
involves an offset geometry (8) (Fig. S1 of the SI Appendix). Fig.
2 shows that for an appropriate parameter set the global
minimum for a 13-discoid cluster has a double-helical morphol-
ogy. In this case, the stacked helical structure appears without
the long-range interactions (25).

We now illustrate the emergence of chiral structures for
assemblies of axially symmetric discoids bound by the BLmGBD
potential, even when the lowest-energy configuration for two
discoids does not correspond to an offset geometry. The
BLmGBD potential makes use of the orientation-dependent
molecular shape parameter � and the energy parameter � to
model the interaction between two uniaxial oblate ellipsoids
(24), each having a single-site representation. The potential
involves four essential parameters, i.e., {	, 	�, �, 
}. Here 	 is the
aspect ratio of the ellipsoid, 	� � �ee/�ff, where �ee is the depth
of the minimum of the potential for a pair of ellipsoids aligned

parallel in the edge-across-edge configuration, and �ff is the
corresponding depth for the face-to-face alignment. The other
two parameters control the orientation-dependent depth of the
potential. Two additional parameters, �0

GBD and �0
GBD, define the

length and energy scales, respectively. Here we set 	 � 0.345
from the parameterization of the GB potential that mimics the
interaction between two molecules of triphenylene (26), which is
known to form the core of many discotic mesogens (2). Fig. 3
shows putative global minima for 13-discoid clusters bound by
the BLmGBD potential for different sets of parameters. We
fixed 	 � 0.345, 	� � 0.2, and 
 � 1, and varied �. For � � 0,
even though two length scales are involved for the closest
approach, there is no bias between the face-to-face and edge-
across-edge configurations for a pair of discoids. The global
minimum is then a squashed icosahedron for n � 13 and a
squashed double icosahedron for n � 19. For � � 0, the bias
toward the face-to-face configuration, set by 	� � 0.2, ensures
columnar stacking. As � increases, this bias does not change, but
the orthogonal approach gradually becomes favored over the
edge-on arrangement (see Fig. S1 of the SI Appendix for � � 2).
For � � 0.4, chiral character for the columnar arrangements
starts to emerge.

For n � 38, we find a central column around which there are six
other stacks that form a regular helical arrangement (Fig. 4A).
Handedness is clearly established upon symmetry breaking, which
in turn is caused by the packing of soft discoids driven by the two
competing length scales. Right- and left-handed structures exist
with equal energies, and similar chiral structures have been found
for n � 49 (Fig. 4B). When the parameter space is explored for n �
49, the chirality of the self-assembled structures is evident over a
wide regime (see SI Text and Figs. S4–S6 of the SI Appendix). In
particular, the relative twist of the adjacent stacks is found to vary
nonmonotonically as the aspect ratio 	 changes. This observation
lends firm support to the idea that competing interactions involving
two length scales form a route to the emergence of chiral structures.
Although our results here are for relatively small clusters, where
surface effects are important, the insight they provide is also
relevant for bulk systems (27).

In conclusion, drawing inspiration from nature, we have
demonstrated how chiral structures can emerge for building
blocks bound by the interplay between two competing length
scales. Factors suggested previously to induce chiral structures,
such as competing dipolar and quadrupolar interactions (28), or
particle shape anisotropy (25), are consistent with this view,
which the present study establishes via explicit case studies. The
competing interactions might be tuned in practice through
aromatic ��� stacking (7), hydrogen bonding (29), metal
ligation (30), or by the application of a field (17). The simplest
example we have found involves an axially symmetric discoid as
the building block. This observation further demonstrates that
noncentrosymmetric particles and chiral fields are not necessary
for helices to be favorable (31, 32). We believe that the insights

Fig. 2. Global minimum for a cluster of 13 axially symmetric discoids bound

by the PY potential. A double-helical structure emerges for the following

parameter set: a11 � a12 � 0.5, a13 � 0.15, a21 � a22 � 0.45, a23 � 0.19, �0
PY �

1, and �0
PY � 1.
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Fig. 3. Global minima for clusters of axially symmetric discoids bound by the BLmGBD potential. (A–D) Here, for 13 discoids 	 � 0.345, 	� � 0.2, and 
 � 1, and

� varies as follows: � � 0 (A); � � 0.2 (B); � � 0.4 (C); and � � 2 (D). (E) The same parameter set as in D, but for 20 discoids. The stacks are colored differently

for the chiral structures.
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our results provide are sufficiently general to aid rational design
of materials with helical order, especially for optoelectronic
applications (2–4).

Materials and Methods

We used the basin-hopping (15) approach to identify the global minima. This

method is based on hypersurface deformation where the transformation of

the potential energy surface neither changes the global minimum nor the

relative energies of any local minima. We accept a structure as the global

minimum for a cluster if at least five different runs starting from random

configurations at a given size produce the same lowest minimum.
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