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A series of D–A novel star-shaped molecules with 2,4,6-triphenyl-1,3,5-triazine (TPTA)

as core, diketopyrrolo[3,4-c]pyrrole (DPP) derivatives as arms, and triphenylamine (TPA)

derivatives as end groups have been systematically investigated for organic solar

cells (OSCs) applications. The electronic, optical, and charge transport properties

were studied using density functional theory (DFT) and time-dependent DFT (TD-DFT)

approaches. The parameters such as energetic driving force 1EL−L, adiabatic ionization

potential AIP, and adiabatic electron affinity AEA were also calculated at the same level.

The calculated results show that the introduction of different groups to the side of

DPP backbones in the star-shaped molecules can tune the frontier molecular orbitals

(FMOs) energy of the designed molecules. The designed molecules can provide match

well with those of typical acceptors PCBM ([6,6]-phenyl-C61-butyric acid methyl ester)

and PC71BM ([6,6]-phenyl-C71-butyric acid methyl ester). Additionally, the absorption

wavelengths of the designed molecules show bathochromic shifts compared with that

of the original molecule, respectively. The introduction of different groups can extend

the absorption spectrum toward longer wavelengths, which is beneficial to harvest more

sunlight. The calculated reorganization energies suggest that the designed molecules are

expected to be the promising candidates for ambipolar charge transport materials except

molecule with benzo[c]isothiazole group can be used as hole and electron transport

material. Moreover, the different substituent groups do not significantly affect the stability

of the designed molecules.

Keywords: star-shaped molecules, diketopyrrolopyrrole derivatives, optical and electronic properties, frontier
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INTRODUCTION

Nowadays, organic π-conjugated small molecules (SMs) used
as the donors in organic solar cells (OSCs) have drawn intense
attention because of their outstanding advantages, such as
excellent reproducibility, easy purification, well-defined chemical
and optoelectronic properties (Coughlin et al., 2014; Yao et al.,
2016; Bin et al., 2017). Owing to the tremendous efforts on
improving the performance of OSCs based on SMs, their power
conversion efficiency (PCE) has surpassed over 10% recently
(Zhou et al., 2012; Kan et al., 2015). However, it is worth noting
that their overall performance still falls behind that of their
polymer counterparts (Ni et al., 2013; Lin and Zhan, 2016).
Accordingly, to address this issue, it is a big challenge to design
and synthesize high-performance and desirable donor novel SMs
(Chaudhry et al., 2018; Irfan et al., 2018; Wazzan et al., 2018). In
general, the high-efficiency SMs donor materials should possess
suitable frontier molecular orbital (FMOs) (including the highest
occupied molecular orbital, HOMO, and lowest unoccupied
molecular orbital, LUMO) energy levels, high charge carrier
mobility, broad absorption region, and miscibility with fullerene
derivatives. In this regard, the HOMO level of the designed
donor materials should been reduced to increase the open circuit
voltage (Voc), because the HOMO of donor and the LUMO of
acceptor are closely relate to the Voc. With the aim to harvest
more sunlight, the energy gaps of the designed donor materials
should been decreased, which results in an increase in the short
circuit current density (Jsc) (Loser et al., 2017; Maglione et al.,
2017; Zhang et al., 2017). Moreover, a key factor that impact
on the efficient exciton splitting and charge dissociation is the
downhill energetic driving force (1EL−L), which is the energy
differences between the LUMOs of the donor and acceptor. The
1EL−L value should be about 0.3 eV to ensure efficient charge
transfer, exciton splitting, and charge dissociation (Scharber et al.,
2006). Therefore, an ideal donor material should have narrowing
the HOMO-LUMO gap (Eg) and suitable FMOs energy levels
with PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) and
PC71BM ([6,6]-phenyl-C71 butyric acid methyl ester), which are
widely employed as acceptors in OSCs (He et al., 2007; Lenes
et al., 2008). Among the various approaches to design organic π-
conjugated SMs materials with the long range absorption, one of
the successful approaches is to incorporate the electron-donating
(D) and electron-accepting (A) moieties in π-conjugated SMs
(Qu and Tian, 2012; Guo et al., 2017; Wang et al., 2017). The
FMOs energy levels, absorption and emission properties as well
as intermolecular charge transfer of these materials can be tuned
effectively by altering the chemistries of the donor and acceptor
units. At the same time, adjusting the donor and acceptor units
can also affect their self-assembly in the solid state. Among
the various D–A type SMs donors for OSCs, diketopyrrolo[3,4-
c]pyrrole (DPP)-based molecules are promising building blocks

owing to their excellent coplanarity, broader absorption region,

and thermal stability (Chen et al., 2013; Lin et al., 2013;
Zhang et al., 2014). Furthermore, the introduction of the planar
heteroarenes into the strong electron-withdrawing DPP-based
molecules backbones can lead to lower the band gap because of
increasing effective conjugation length (Dutta et al., 2012; Patra

et al., 2013). In addition, star-shaped SMs materials with π-
conjugated arms can harvest sunlight effectively because of their
extended dimensionality. Meanwhile, their steric hindrances can
prevent the formation of an ordered, long-range, and coplanar
π-π stacking, which are beneficial for their charge transport
property (Irfan et al., 2017). Therefore, the star-shaped D–A type
DPP-based molecules may possess narrower band gap, broader
absorption region, strong light absorption, and high charge
carrier mobility (Sharma et al., 2014; Shiau et al., 2015).

Considering these merits and characteristics mentioned
above, in this contribution, we report the design of a series
of novel star-shaped DPP-based molecules with electron-
accepting 2,4,6-triphenyl-1,3,5-triazine (TPTA) as core, electron
accepting DPP derivatives as arms, and electron-donating
triphenylamine derivatives (TPA) as end groups for OSCs
applications (as shown in Scheme 1). With the aim to investigate

the relationships between structure and properties of the
designed molecules, the different planar heteroarenes have been
introduced into the side of DPP molecules backbones in the
star-shaped molecules. The HOMO energy (EHOMO), LUMO

energy (ELUMO), HOMO–LUMO gap (Eg), energetic driving
force 1EL−L, and absorption spectra of the designed molecules
were systematically investigated by applying density functional
theory (DFT) and time-dependent DFT (TD-DFT)methodology.

The charge transfer properties (reorganization energy, λ) were
also simulated.

COMPUTATIONAL DETAILS

Using the Gaussian 09W software package (Frisch et al., 2009),
all the geometry optimizations and frequency for the designed
molecules in the gas phase were performed with the DFTmethod.
No imaginary frequency was used to ensure the nature of the
stationary point for the optimized molecules. On the basis of
the optimized structures, the absorption spectra of the designed
molecules were predicted using the TD-DFT method. The 6-31G
(d,p) basis set was employed for all calculations in this work.
For the FMOs energy levels of the designed molecules, because
it is difficult to describe the virtual orbitals theoretically (Wu
et al., 2013). The LUMO energy levels can be calculated with
the equation, ELUMO = EHOMO + Eex, where Eex represents
the first vertical excited energy (Zhang and Musgrave, 2007; Ku
et al., 2011; Zhang et al., 2012). A crucial step in the theoretical
investigations is to select an appropriate exchange correlation
functional. With the aim to select an appropriate approach, we
chose various functionals such as B3LYP (Lee et al., 1988), PBE0
(Adamo and Barone, 1999), LC-wPBE (Tawada et al., 2004),
M062X (Zhao and Truhlar, 2008), and CAM-B3LYP (Yanai
et al., 2004) to optimize the geometries of the parent molecule
1. Based on the optimized geometries, the absorptions were
predicted using the TD-DFT method. The longest wavelengths
of absorption (λabs) as well as the experimental data are shown
in Figure 1. As showing Figure 1, the calculated λabs value
obtained at PBE0 (543 nm) level provided better agreement with
the experimental value (523 nm) (Shiau et al., 2015) than those
obtained with other levels of theory, with the deviation being
20 nm. Although B3LYP appeared adapted to 1,3,5-triazine and
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SCHEME 1 | Molecule models of 1–8 investigated in this work.

DPP derivatives in literature (Feng et al., 2014; Vala et al., 2014;
Jin, 2015; Jin and Irfan, 2015; Jin and Xiao, 2015; Fujii et al.,
2016), the λabs value obtained at the B3LYP/6-31G (d,p) level
is worsen accordance with the experimental data (the deviation

is 48 nm) than that for at the PBE0/6-31G (d,p) level (the
deviation is 20 nm). Additionally, we also calculated the FMOs
energy levels of molecule 1 using both at PBE0 and B3LYP

methods. The calculated EHOMO and ELUMO values (−5.04 and
−2.76 eV) at the PBE0/6-31G (d,p) level are more close to
the electrochemical measurements data (−5.47 and −3.41 eV)
(Shiau et al., 2015) than those obtained at the B3LYP/6-31G
(d,p) level (−4.82 and −2.67 eV), respectively. Furthermore,
in order to make further investigation of the validity of the
selected approach, both PBE0 and B3LYP methods were also

employed to optimize the structure of PCBM and PC71BM.
The calculated EHOMO and ELUMO of PCBM and PC71BM
along with available experimental data are listed in Table S1.
Inspection of Table S1 reveals clearly that the EHOMO and ELUMO

at the PBE0/6-31G (d,p) level of PCBM are −5.98 and −3.99 eV,
and the corresponding values of PC71BM are −5.92 and
−3.82 eV, respectively. These are well reproduce the experimental

values of PCBM (−6.00 and −3.80 eV) (Jeon et al., 2016) and
PC71BM (−6.00 and −3.95 eV) (Chandrasekharam et al., 2014),
respectively. However, at B3LYP/6-31G (d,p) level, the calculated
EHOMO and ELUMO of PCBM are −5.67 and −3.75 eV, while

the corresponding values of PC71BM are −5.61 and −3.60 eV,
respectively. It was noticed that B3LYP overestimate the EHOMO

and ELUMO of PCBM and PC71BM. The B3LYP overestimate

the EHOMO and ELUMO compared with experimental value, as

reported in the literature (Blouin et al., 2008; Xiao et al., 2010;
Abbotto et al., 2012). Therefore, PBE0 functional is reasonable to

investigate the current system. In order to obtain insight into the
method to describe and the influence of functionals on the optical
properties, the absorption spectrum of the designed molecules
were also simulated at B3LYP/6-31G (d,p) levels.

It is well-known that the reorganization energy (λ) play
the dominant role in the effective charge transfer according

FIGURE 1 | Calculated absorption wavelengths (λabs) of 1 using various

functionals, together with the experimental result.

to the Marcus theory (Marcus, 1964, 1993). A good charge
transfer materials should possess lower λ values, which led
to higher charge transfer rate. We only pay attention to the
internal reorganization energy in this work owing to the low
dielectric constant of medium in OSCs materials (Marcus, 1964).
The electron (λe) and hole (λh) reorganization energy can be
expressed as follows (Köse et al., 2007; Sancho-García, 2007):

λe =
(

E
−

0 −E
−
−

)

+
(

E
0
−−E

0
0

)

(1)
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(

E
+

0 −E
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+

)

+
(

E
0
+−E

0
0

)

(2)

Here, E
±

0 and E
±
± are the energies of the cationic (anionic) states

with the optimized neutral and cationic (anionic) geometry,
respectively. E0± and E00 represent the energy of the neutral states
with the optimized geometry of the cationic (anionic) and neutral
structures, respectively. The λe and λh of the designed molecules
were predicted at the PBE0/6-31G(d,p) level.
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FIGURE 2 | The FMOs of the designed molecules at the PBE0/6-31G(d,p) level.

It is noteworthy that the stability is the most important criteria
to evaluate the nature of devices for OSCs. Generally, the absolute
hardness (η) was applied to explore the stability of the materials.
From a viewpoint of conceptual density functional theory, the
η values of the designed molecules were calculated with the
following equation (Cheung and Troisi, 2010):

η =
1

2

(

∂µ

∂N

)

=
1

2

(

∂2E

∂N2

)

=
AIP − AEA

2
(3)

Here, µ and N correspond to the chemical potential and total
electron number, respectively. The adiabatic ionization potential
(AIP) is the energy difference between the cation radical specie
and its neutral specie, while the adiabatic electron affinity (AEA)
represents the energy difference between the neutral molecule
and its anion radical molecule.

RESULTS AND DISCUSSION

Frontier Molecular Orbitals and Band Gaps
In order to characterize the optical and electronic properties,
we investigated the distributions of the FMOs for the designed
molecules. The distribution of HOMOs and LUMOs are plotted
in Figure 2. Based on Mulliken population analysis, molecular
orbital contribution (%) from core TPTA, arms DPP, and end
groups TPA to the FMOs of 1–8 are given in Table 1. The
corresponding contributions (%) from TPTA, DPP, and TPA
groups to the HOMOs-1 and LUMOs+1 of 1–8 are given in
Table S2. As visualized in Figure 2, the distribution of HOMOs
and LUMOs are spread over the conjugated backbone and show
π orbital features. The HOMOs are mainly localized on the arm
groups DPP and end groups TPA with only minor contributions
from the core fragments TPTA. The sum contributions of
DPP and TPA fragments are larger than 96.1%, while the
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TABLE 1 | Molecular orbital contribution (%) from core TPTA, arms DPP, and end

groups TPA to the FMOs of 1–8 at the PBE0/6-31G(d,p).

Species HOMO LUMO

TPTA DPP TPA TPTA DPP TPA

1 0.7 32.5 66.4 17.8 79.4 2.8

2 0.6 34.5 64.9 8.3 88.4 3.3

3 0.3 18.3 81.4 8.4 88.5 3.1

4 0.8 53.7 45.5 17.2 80.9 2.0

5 0.3 29.8 69.9 8.4 89. 2.5

6 2.4 76.5 21.1 16.9 79.9 3.2

7 3.9 71.1 25.0 11.6 82.7 5.6

8 3.1 69.6 27.3 25.8 69.9 4.3

TPTA, 2,4,6-triphenyl-1,3,5-triazine moieties; DPP, diketopyrrolopyrrole moieties; TPA,

triphenylamine moieties.

TABLE 2 | Calculated EHOMO, ELUMO, Eg, and 1EL−L (all in eV) for investigated

molecules at the PBE0/6-31G(d,p).

Species EHOMO ELUMO Eg 1EL-L
a 1EL-L

b

1 −5.04 −2.76 2.28 1.23 1.06

2 −5.07 −3.26 1.81 0.73 0.56

3 −5.03 −3.05 1.98 0.94 0.77

4 −5.02 −2.84 2.18 1.15 0.98

5 −5.02 −2.94 2.08 1.05 0.88

6 −4.86 −2.95 1.91 1.04 0.87

7 −4.80 −3.25 1.55 0.74 0.57

8 −4.69 −2.63 2.06 1.36 1.19

aEnergetic driving force for PCBM as donor.
bEnergetic driving force for PC71BM as donor.

corresponding values of TPTA fragments are within 3.9% for
HOMOs. On the contrary, the LUMOs are mainly distributed on
the DPP and TPTAmoieties with minor contributions from TPA
fragments. The sum contributions of DPP and TPTA fragments
for LUMOs are larger than 94.4%, while the corresponding values
of TPA fragments are within 5.6%. Obviously, the contributions
of both DPP and TPTA fragments for LUMOs are larger than
those of for HOMOs, respectively. The contributions of TPA
fragments to LUMOs are decreased compared with those of
to HOMOs, respectively. Similar phenomena are found for the
HOMOs-1 and LUMOs+1 of 1–8. The changes in contributions
suggest that the electronic density flow from the end groups TPA
to the arms groups DPP and cores groups TPTA for HOMOs→
LUMOs excitations. This indicates that the end groups TPA serve
as donors, whereas, the arm groups DPP and core groups TPTA
serve as acceptors, respectively.

It is worth noting that the EHOMO, ELUMO, Eg, and 1EL−L

are strongly related to the optical and electronic properties.
The calculated values of EHOMO, ELUMO, Eg, and 1EL−L of
the designed molecules are given in Table 2 and depicted in
Figure 3. As shown in Figure 3, it is clear that the EHOMO values
of 3–8 increase, while the corresponding value of 2 decreases
compared with that of 1. The EHOMO values is in the order

FIGURE 3 | Evaluation of calculated FMO energies for the designed molecules

as well as FMO energies for PCBM and PC70BM at the

PBE0/6-31G(d,p) level.

of 8 > 7 > 6 > 4 ≈ 5 > 3 > 1 > 2. On the other hand,
the ELUMO values of 2–7 decrease, while the corresponding
value of 8 increases compared with that of 1. The sequence
of ELUMO values is 8 > 1 > 4 > 5 > 6 > 3 > 2 > 7.
Therefore, the Eg values of 2–8 decrease compared with that
of 1. The Eg values are in the order of 1 < 4 < 5 < 8 < 3

< 6 < 2 < 7. The analysis indicates that the decrease of Eg is
mainly attributable to the increased EHOMO and declined ELUMO.
The reducing the Eg of the designed molecules should leads to
bathochromic shifts of the maximum absorption compared with
that of 1. Consequently, the introduction of different groups
to the side of DPP molecules backbones in the star-shaped
molecules can tune the FMOs energy and Eg values of the
original molecule. It provides a powerful strategy for design
high-performance and desirable donor novel SMs. Furthermore,
in order to ensure efficient charge transfer, the 1EL−L values
must exceed the binding energy (0.2 ∼ 1.0 eV) (Hill et al., 2000;
Knupfer, 2003). From Table 2, it is noteworthy that the 1EL−L

values of the designed molecules are all beyond the binding
energy with regard to PCBM and PC71BM as acceptors. It is
clear that the sequence of the values of 1EL−L with regard
to PCBM and PC71BM are all 8 > 1 > 4 > 5 > 6 > 3

> 7 > 2. In addition, the differences between the EHOMO of
1–8 and the ELUMO of PCBM and PC71BM are larger than
0.73 and 0.56 eV, respectively. Thus, it is quite clear that the
designed molecules can provide match well with PCBM and
PC71BM as acceptors.

Absorption Spectra
The absorption wavelengths λabs (in nm), the oscillator strength
f, and main assignments (coefficient), and the absorption region
R of 1–8 at the PBE0/6-31G(d,p) level are listed in Table 3. R
denotes for the difference of the longest and shortest wavelength
values with oscillator strength larger than 0.01 considering the
first 15 excited states (see Table S3). The simulated absorption
spectra of 1–8 are shown in Figure 4, which were plotted by
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TABLE 3 | The electronic transition, absorption wavelengths λabs (in nm), the

oscillator strength f, main assignments (coefficient), and the absorption region R of

1–8 at the TD-PBE0/6-31G(d,p)//PBE0/6-31G(d,p) level, along with available

experimental data.

Species λabs f Assignment R

1 543.4 1.79 H → L (0.12)

H-2 → L (0.50)

H-1 → L (0.20)

72.2

2 686.4 1.30 H-2 → L (0.66)

H-5 → L (−0.17)

142.2

3 626.4 1.37 H → L (0.59)

H → L+2 (0.21)

H-2 → L+1 (0.21)

155.3

4 569.5 1.79 H → L (0.30)

H-1 → L (0.43)

H-1 → L+2 (−0.22)

82.3

5 597.2 1.01 H-2 → L (0.64)

H-5 → L (0.23)

106.1

6 648.0 3.13 H → L (0.60)

H → L+2 (0.21)

H-2 → L+1 (−0.19)

139.1

7 799.6 2.19 H → L (0.24)

H-2 → L (0.45)

H → L+1 (−0.41)

225.7

8 602.4 2.83 H → L (0.51)

H-2 → L (0.20),

H-2 → L+1 (0.30)

152.7

Exp 523

Exp, Experimental results of 1 in thin film were taken from Sharma et al. (2014), Shiau et al.

(2015).

using the GaussSum 1.0 program (O’Boyle and Vos, 2003).
As expected, the results displayed in Table 3 reveals that the
λabs of 2–8 exhibit bathochromic shifts compared with that of
1. The bathochromic shifts values of 2–8 are 143, 83, 26.1,
53.8, 104.6, 256.2, and 59.0 nm (3834, 2439, 844, 1658, 2971,
5897, and 1803 cm−1), respectively. Moreover, the λabs values
are in the order of 7 > 2 > 6 > 3 > 8 > 5 > 4 > 1,
which is in excellent agreement with the corresponding reverse
sequence of their Eg values. It reveals that the introduction
of different groups to the side of DPP molecules backbones
leads to bathochromic shifts of the maximum absorption for
the original molecule. The order of the bathochromic shifts
values compared with that of 1 is thieno[3,4-b]pyrazine (7) >

benzo[c][1,2,5]thiadiazole (2) > thieno[3,2-b]thiophene (6) >

benzo[c]isothiazole (3) > 2,3-dihydrothieno[3,4-b][1,4]dioxine
(8) > quinoxaline (5) > benzo[c]thiophene (4). Additionally,
one can find that 6–8 have larger oscillator strengths, while
the corresponding values of 2, 3, and 5 possess slightly <

that of 1. The oscillator strength value of 4 is almost equal
to that of 1, indicating that the designed molecules shown
large absorption intensity. At the same time, the designed
molecules have large absorption region R (82.3–225.7 nm). The
R values of 2–8 are larger than that of parent compound 1.
It suggests that the introduction of different groups to the
side of DPP molecules backbones lead to the increase of R
values compared with parent molecule 1. The order of R

values compared with that of 1 is thieno[3,4-b]pyrazine (7) >

benzo[c]isothiazole (3) > 2,3-dihydrothieno[3,4-b][1,4]dioxine
(8) > benzo[c][1,2,5]thiadiazole (2) > thieno[3,2-b]thiophene
(6) > quinoxaline (5) > benzo[c]thiophene (4). It is noticeable
that a good overlap between the absorption spectrum of the
designed molecules and the solar emission spectrum, which can
improve the light-absorption efficiency. It clearly shows that
the introduction of different groups can extend the absorption
spectrum toward longer wavelengths, which is beneficial to
harvest more sunlight. These results imply that the designed
compounds have strong absorption and are expected to be the
promising candidates for donor materials in OSCs applications.

The calculated λabs, f, and main assignments (coefficient)
of 1–8 at the B3LYP/6-31G(d,p) level are listed in Table S4.
Comparing the results shown in Table 3 with Table S4,
one can find that the calculated λabs values of 1–8 at the
B3LYP/6-31G(d,p) are larger than those obtained at the
PBE0/6-31G(d,p), respectively. The differences between λabs

at the B3LYP/6-31G(d,p) and PBE0/6-31G(d,p) levels are
about 30 ∼ 50 nm. It should be mentioned that although
the EHOMO and ELUMO are overestimated with both the
PBE0 and B3LYP functionals, the predicted λabs values using
PBE0 are found to be closer to the experimental findings.
The trend for λabs at B3LYP/6-31G(d,p) is similar to using
PBE0/6-31G(d,p) method. Obviously, B3LYP functional
underestimate the Eg value, resulting in the large λabs

compared with experimental value. Considering the FMOs
energy levels and the predicted absorption spectra mentioned
above, the PBE0/6-31G(d,p) approach is the best choice
to well reproduce the experimental results. Therefore,
the λ, η, AIP, and AEA of the designed molecules were
computed at PBE0/6-31G(d,p).

Adiabatic Ionization Potential and Electron
Affinity
It is well known that AIP and AEA are two major parameters
that determine the charge transfer behavior for materials. The
carrier polarity of materials can be adjusted by the AIP and
AEA values (Chen and Chao, 2005; Liu et al., 2010). The
lower AIP and higher AEA revealed that material would be
better hole and electron transporter, respectively (Li et al.,
2012). The calculated AIP and AEA of 1–8 are collected in
Table 4. Obviously, the results displayed in Table 4 show that
the increasing sequence of AIP values is 8 < 7 < 6 < 4 <

5 < 1 < 3 < 2. On the other hand, the decreasing order
of AEA values is 7 > 2 > 3 > 6 > 5 > 4 > 1 > 8.
It indicates that the introduction of benzo[c]thiophene (4),
quinoxaline (5), thieno[3,2-b]thiophene (6), and thieno[3,4-
b]pyrazine (7) groups can decrease/increase AIP/AEA values
compared with that of 1. However, the benzo[c][1,2,5]thiadiazole
(2) and benzo[c]isothiazole (3) groups can increase both AIP and
AEA values, whereas 2,3-dihydrothieno[3,4-b][1,4]dioxine (8)
group can decrease bothAIP andAEA values compared with that
of 1. It is noticeable that the introduction of different aromatic
heterocyclic group to the side of DPP molecules backbones can
affect the AIP and AEA of the designed molecules.
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FIGURE 4 | The calculated absorption spectra of the investigated molecules (value of full width at half maximum is 3,000 cm−1 ). (A) Molecules 1–4; (B) Molecules

5–8.

TABLE 4 | Calculated molecular AIP and AEA (both in eV) of 1–8 at the

PBE0/6-31G(d,p) level.

Species AIP AEA

1 5.404 1.953

2 5.435 2.372

3 5.406 2.272

4 5.362 1.979

5 5.378 2.068

6 5.209 2.196

7 5.163 2.449

8 5.048 1.781

TABLE 5 | Calculated molecular λe, λh, and η (all in eV) of 1–8 at the

PBE0/6-31G(d,p) level.

Species λh λe η

1 0.054 0.134 1.725

2 0.058 0.112 1.532

3 0.046 0.209 1.567

4 0.090 0.135 1.692

5 0.051 0.138 1.655

6 0.107 0.091 1.506

7 0.129 0.122 1.357

8 0.128 0.128 1.633

Reorganization Energies and Stability
Properties
The calculated λe, λh, and η of 1–8 are listed in Table 5. It is
worth noting that the lower the reorganization energy values can
be beneficial to the higher charge transfer rate (Marcus, 1964,
1993). Usually, tris(8-hydroxyquinolinato)aluminum(III) (Alq3,
λe = 0.276 eV) and N,N′-diphenyl-N,N′-bis(3- methlphenyl)-
(1,1′-biphenyl)-4,4′-diamine (TPD, λh = 0.290 eV) are taken

as typical electron and hole transport materials, respectively
(Gruhn et al., 2002; Lin et al., 2005). It is clear from Table 5

that the λh values of 1–8 (0.046–0.129 eV) are smaller than
that of TPD. It indicates that the hole transfer rates of 1–8 are
higher than that of TPD. On the other hand, the λe values of
1–8 (0.091–0.209 eV) are smaller than that of Alq3. It implies
that the electron transfer rates of 1–8 might be higher than
that of Alq3. The λh values of 1–5 are slightly smaller than
those of 6–8, suggesting that the hole transfer rates of 1–5
should be higher than those of 6–8, respectively. It indicates that
the introduction of benzene (1), benzo[c][1,2,5]thiadiazole (2),
benzo[c]isothiazole (3), benzo[c]thiophene (4), and quinoxaline
(5) groups may lead to higher charge transfer rates than that of
thieno[3,2-b]thiophene (6), thieno[3,4-b]pyrazine (7), and 2,3-
dihydrothieno[3,4-b][1,4]dioxine (8) groups, respectively. The
λe values is in the order of 3 > 5 > 4 > 1 > 8 > 7 > 2

> 6. It suggests that molecules with benzo[c][1,2,5]thiadiazole
(2), thieno[3,2-b]thiophene (6), thieno[3,4-b]pyrazine (7), and
2,3-dihydrothieno[3,4-b][1,4]dioxine (8) possess higher electron
transfer rates, while molecules with benzo[c]isothiazole (3),
benzo[c]thiophene (4), and quinoxaline (5) groups have lower
electron transfer rates compared with that of 1, respectively.
Additionally, the λh values of 1–5 are smaller than those of
their λe values, suggesting that the carrier mobility of the hole
is larger than that of the electron. However, the λe values of 6
and 7 are smaller than those of their λh values, implying that

the carrier mobility of the electron is larger than that of the

hole. Moreover, the differences between λe and λh values of
the designed molecules are in the region of 0.00 ∼ 0.087 eV
except the corresponding value of 3 is 0.163 eV, respectively. It
indicates that they exhibit better equilibrium feature for hole and

electron transport. Therefore, 1, 2, and 4–8 are expected to be the

promising candidates for ambipolar charge transports materials,
whereas 3 can be used as hole and electron transport material.

The absolute hardness η of 1–8 were calculated and shown in
Table 5. The η values is in the order of 1 > 4 > 5 > 8 > 3 > 2

> 6 > 7. Inspection of Table 5 reveals clearly that the η values of
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2–8 are smaller slightly than the value of 1, which may be owing
to the steric hindrances of the heterocyclic groups introduced to
the side of DPP backbones in star-shaped DPP-based molecules.
It implies that the introduction of different heterocyclic groups
do not significantly affect the stability of the designed molecules.

CONCLUSION

In this contribution, a series of novel star-shaped molecules have
been systematically investigated. Their electronic, optical, and
charge transport properties studied using DFT and TD-DFT
approaches. The calculated results show that the introduction
of different groups to the side of DPP backbones in the star-
shaped molecules can tune the FMOs energy and Eg values
of the original molecule. The designed molecules can provide
match well with PCBM and PC71BM as acceptors. Additionally,
the λabs of 2–8 show bathochromic shifts compared with that
of the original molecule 1, respectively. The introduction of
different groups can extend the absorption spectrum toward
longer wavelengths, which is beneficial to harvest more sunlight.
Our results suggest that the designed molecules are expected
to be the promising candidates for ambipolar charge transport
materials except molecule with benzo[c]isothiazole group (3) can

be used as hole and electron transport material. Moreover, the
different substituent groups do not significantly affect the stability
of the designed molecules.
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