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RATIONAL EQUIVALENCE
ON SINGULAR VARIETIES (%)
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148 WILLIAM FULTON

o. Introduction.

For a non-singular quasi-projective variety X the Chow ring A(X) provides simul-
taneously a covariant functor for proper morphisms and a contravariant functor for
arbitrary morphisms (cf. [AC]). This appendix develops a  homology * theory A,
and a “ cohomology ” theory A’ for arbitrary quasi-projective schemes over a field
which agree with the Chow ring for non-singular varieties.

The definition of A, X as algebraic cycles modulo rational equivalence, on a
possibly singular variety X, has been known for some time ([AC; 4-30], [S; p. V-29]),
although a systematic account has never appeared. In § 1 we construct this homology
theory for the category of algebraic schemes over a field.

The construction of a corresponding cohomology theory A* (§ 3), for quasi-
projective schemes over a field, is based on Serre’s intersection theory [S] and Chow’s
moving lemma (cf. [AC], [R]). The two theories have the usual formal properties:
cap products A°®A, S A,, a projection formula, Chern classes, etc.

We have been able to show (§ 4) that rational equivalence specializes. If f:X—~>C
is a flat morphism to a regular curve G, and ¢teC, 7 : X,—X the inclusion of the fibre,
we construct the Gysin map

e AX A X

From this one deduces that the Chow group of the general fibre specializes to the Chow
group of the special fibre. Even for non-singular varieties this question has been open
for some time (cf. Grothendieck’s discussion in [SGA 6; X, 7]).

The final § 5 contains A. Landman’s result that, modulo torsion, there are only
the obvious natural transformations from A, to itself. This was used to prove the
uniqueness of the Riemann-Roch map in [B-F-M]. We also thank him for help in
constructing Chern classes (cf. § g.2).

Invariants of singular varieties tend to lie in homology rather than cohomology
(cf. [B-F-M], [M], [F]), with cohomology playing an auxiliary role. Our Chow
cohomology is constructed in this spirit by passing to a limit over non-singular varieties
containing the given variety. This gives a theory which is as fine as possible, in that
it maps to any other theory with Chern classes and Poincaré duality; it is also probably
the correct theory up to torsion (cf. § 3.2, 3.3).

R. MacPherson, to whom we are grateful for many stimulating conversations on
these topics, has suggested constructing the Chow cohomology of a singular variety by
taking as ‘ cocycles ” those cycles which intersect the singular locus nicely, with a
similar restriction on the rational equivalence. Although this method would depend on
a more general moving lemma than is now available, it would be better than our theory
in those situations where the invariants do lie in cohomology (cf. [B-F-M; IV, § 5]).

We also thank R. Piene and others who read and commented on a preliminary
version.
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RATIONAL EQUIVALENCE ON SINGULAR VARIETIES 149

1. The Chow Homology Groups A,.

In this section we construct the Chow homology groups for algebraic schemes over
a field, and study some of their basic properties. However, most of the results extend
without difficulty at least to the category of excellent schemes [EGA IV], and our proofs
are designed for this generality.

1.1. Cycles and Sheaves.

For a (noetherian) scheme X, we denote by & (X) the group of algebraic cycles
on X; Z(X) is the free abelian group on the set of integral (reduced and irreducible)
closed subschemes of X. We write Z (X)=£",X=?&“},X, where 2, X consists of

cycles of dimension k.. We may also write Z(X)=2% 'X=@£"‘X, where Z*X
consists of cycles of codimension .
If &# is a coherent sheaf on X, let

Z(F)=LZly, (#,) Wi

(The sum is over the components W; of the support of #, x; is a generic point of W .
0,, is the local ring of X at x;, &, is the stalk of & at x;, and ¢ denotes length of an
artinian module.) If & has support of dimension <%, we let Z,FecZ X be the part
of Z(#) of dimension k. Similarly if codim(Supp F)>k, Z¥FeZ*X is the part
of Z(#) of codimension &.

Any closed subscheme Y of X determines a cycle

[YI=Z(¢) in 2(X)

where 0O is the structure sheaf of Y (extended by o to X). If the components Y; of Y
have multiplicities m;, then [Y]=2m,[Y;]. In particular, X has a fundamental cycle [X].

1.2. Pushing Cycles Forward.

Let f: X—Y be a proper morphism. To define f, : ZX—->ZY it is enough to
define £,[ V] for an integral closed subscheme Vof X. Let f{V)=W. If dim W<dimV,
set f,[V]=o0. If dim W=dimV, set f,[V]=d[W], where d=[R(V):R(W)] is
the degree of the function field extension (cf. [EGA IV, 5.6.6]). If we extend by
linearity, 2, becomes a covariant functor from (noetherian) schemes and proper
morphisms to graded abelian groups.

If 262X, 2=72,(F), and f:X—>Y is proper, then

Sz =L RS, F)=Z(—1)'Z (R} F)
in Y (cf. [S; V, § 6]).
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150 WILLIAM FULTON

1.3. Divisors.

If D is an effective Cartier divisor on X, it determines a Weil divisor [D}e Z'X
by § 1.1. Since [D+E]=[D]+[E], this extends to give a homomorphism
Div(X) —»2'X
from the group of Cartier divisors to the group of Weil divisors [EGA 1V, 21.6.7];
we write [D] for the Weil divisor determined by the Cartier divisor D.
If r is a non-zero element in the function field R(X) of an integral scheme X,
or more generally, a ¢ regular meromorphic function >’ [EGA IV, 20.1.8] on a general

scheme X, we write div(r) for the principal Cartier divisor determined by r, and [div(r)]
for the corresponding Weil divisor.

I.4. An Algebraic Lemma.

Lemma. — Let A be a one-dimensional local noetherian domain with maximal ideal P and
quotient field K. Let L be a finite extension of K, B a finite A-algebra whose quotient field is L.
Let Py, ..., P, be the prime ideals of B lying over P, B,=By.. Suppose teB and N(t)eA,
where N : L*—>K* is the norm. Then

L(AN()A) =2 [B,/B;B; : A/P]ép,(B,/iB).

Proof. — The right-hand side is equal to ¢,(B/tB), so we are reduced to showing
{,(B/tB)=¢,(A/N(#)A). If there is a free A-submodule F of B such that tFcF and
F®,K=L, then ¢, (A/N(t)A)={¢,(F[tF) [EGA1V, 21.10.17.3], and since /,(B/F)<oo,
£, (F[tF)=¢,(B[iB) (cf. [EGA IV, 21.10.13)).

In the general case choose any free A-submodule F of B so that F®, K=1.. Then

iF CEF for some seA. We know the result for st and s by the previous case. Since

both sides take products to sums, the result follows for ¢ by subtraction.

1.5. Divisors and Mappings.
Proposition 1. — Let X, Y be integral schemes of the same dimension, f:X—Y a proper,
surjective morphism. Let [R(X) : R(Y)]=n, and let N :R(X)*—> R(Y)* be the norm.
(1) If reR(X)*, then
S [div(r)]=[div(N(r))].
(2) If D s a Cartier divisor on Y, then f.[ f*D]=n[D].
Proof. — Let W be an integral subscheme of Y of codimension 1, w a generic point

of W, A=0y ,. We may take the base change Spec(A)—Y, and so assume Y=Spec A
Then X==Spec B, where B is a finite A-algebra [EGA III, 4.4.2].
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RATIONAL EQUIVALENCE ON SINGULAR VARIETIES 15K

To prove (1), we may multiply r by seA to achieve the situation where reB
and N(r)eA. Then the result follows from the lemma of § 1.4. (This is also proved
in [AC; 2-12].)

Assertion (2) follows from the same lemma, and the fact that N(f)=¢" if teA
(cf. also [EGA IV, 21.10.18]).

Proposition 2. — Let X, Y be integral schemes, f: XY proper, dim X>dim Y. Then
Sldiv(n)]=o
Sor all reR(X)*.

Progf. — We may assume dim Y=dim X—1, and make the base change
Spec(R(Y)) —>Y to calculate the multiplicity of [Y] in f,[div(r)]. By Proposition 1,
we may assume X is a normal curve over Y=Spec K. Factor finto a finite map X P}
followed by the projection to Y. Applying Proposition 1 again reduces it to the case
X =P, where it is obvious.

Proposition 3. — Let X be a scheme, [X]=2Xm[X], with ¢, : X;—>X the inclusions

of the irreducible components into X. Let D be a Cartier divisor on X. Then oD is a Cartier
divisor on X;, and

[D]=2me;.[¢iD]  in Z'(X).

Proof. — As in the proof of Proposition 1, we may assume X =Spec A, where
A is a one-dimensional local ring. We may assume D is effective, with local equation
teA. Then the result reduces to an algebraic lemma [EGA IV, 21.10.17.7].

1.6. A Gysin Map for Flat Morphisms.

Let f: X—Y be a flat morphism. Then we define the “ Gysin > homomorphism
fr Y > Z*X as follows: If V is a closed, integral subscheme of Y, let f*[V]=[f~1V]
where f~'V is the scheme-theoretic inverse image of V; set f*[V]=o0 if f~'V is empty.
If z=Z7Z%F for a coherent sheaf & on Y, then f*z=Z7ZFf*F).

Proposition. — Let f: X—>Y be a flat morphism of relative dimension d.
(1) If D is a Cartier divisor on Y, then f*[D]=[f*D].
(2) If g :Y'=>Y is proper, and we form the fibre square

x Ly
y'l lg
¥
then g, f'*=f*g, from Z(Y') to Z(X).
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152 WILLIAM FULTON

Progf. — (1) follows easily from the definition (cf. [EGA IV, 21.10.6]). For (2)
let y=2Z,(F")eZ,Y'; then
8. =2(—1)Z o f'R'gF)
and & f' Y =E (=12 (Rg(fF)).
But since f is flat, f*Rig, F'~Rig,(f*F') [EGA III, 1.4.15], so the two cycles are
equal.

1.7. A Gysin Map for Divisors.

Let D =div(¢) be a principal effective Cartier divisor on X, 7:D->X the inclusion.
We define a Gysin map " : Z¥X - Z*D as follows: if V is an integral closed subscheme
of X, let
0 if VeD
T\[v] if V&D

where V, is the subscheme of V defined by the function ¢.
If & is a coherent sheaf on X and Z*# =z, and the support of *F=F R0,

1
has codimension >k, then ¢*z= .ZO(——I)"Z"(Tor?’(ﬂ , 0p)). This follows from the

fact that if &# has support in D, and codim(Supp #)>%+1, then
X (— 1) ZHTorf(F, G)=o

#IV]

(cf. [EGA 1V, 21.10.13)]).

Proposition. — Let f: X—Y be a morphism, D a principal effective Cartier divisor on Y
such that the Cartier divisor f*D 1is defined. Let i : DY, j:f*D—X be the inclusions,
g :*D—>D the morphism induced by f.

(1) If f s proper, then the diagram
Z(X) > z(Y)

Z(f'D) -2 z[D)
commules,

(2) If f is flat, then the diagram
zv) 5 72X

(D) 2> Z(f*D)
commutes.
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RATIONAL EQUIVALENCE ON SINGULAR VARIETIES 153

Proof. — (1) Let V be an integral closed subscheme of X, f,[V]=nr[W]. We
want to show g, [V,]=n[W,], in case W& D. Then g*W,=V,, and the result
follows from Proposition 1 (2) of § 1.5. (2) is clear from the definition.

1.8. Definition of the Chow Groups.

Proposition, — Let 2% (X). The following are equivalent:

(1) Thereis a scheme Y, a principal Cartier divisor D on'Y, and a proper morphism w:Y —X
suck that = [D]=z.

(2) There are integral schemes Y,, rational functions r,eR(Y,)* and proper mor-
phisms w,: Y,—»X so that z=2m,[div(r)].

(3) There are closed integral subschemes Y, of X, and r,eR(Y,)*, so that z=2 [div(r;)]
n Z(X). '

Progf. — (1) = (2) follows from § 1.5, Proposition 3. (2)=>(3) follows from § 1.5,
Propositions 1 and 2: if =; : Y;—>X is proper we may replace Y; by =,(Y;) cX.

Remarks. — (1) If 2e 2, X, we may choose the Y; in (2) or (3) to have dimen-
sion k1.

(2) We may replace Y; in (2) by any Y, for which there is a birational proper
morphism Y;—Y, (§ 1.5, Proposition 1). Thus for example we may replace Y; by
the closure of the graph of 7; to assume r; gives a section of P}, over Y;, or a morphism
to the projective line if the Y; are algebraic varieties. Or we may assume each Y;
is normal.

Definition. — A cycle z in Z(X) is rationally equivalent to zero, z~o, if it satisfies
the conditions of the proposition. The cycles rationally equivalent to zero form a graded
subgroup of Z,X, and the quotient group

AX=2.X/|~

is called the Chow (homology) group of X.

We may use the same notation for a cycle and its equivalence class in A, X. For
example, if Y is a closed subscheme of X, we say * [Y] in A, X to denote the equivalence
class of the cycle [Y] modulo rational equivalence.

Corollary. — Let X be an integral scheme of dimension n. Then

(1) A, XxZ, with generator [X].
(2) A Weil divisor ze Z'X is rationally equivalent to zero if and only if it is the divisor
of a rational function on X.

153
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154 WILLIAM FULTON

1.9. Properties of the Chow Homology.

If f: XY is proper, and z~o0 on X, it follows from the definition that f,z~0
on Y. So f induces

Lt AX>AY

and A, becomes a covariant functor for proper morphisms.

If f:X—-Y is a flat morphism, and z~o0 on Y, then f*2~o0 on X. For if
g:Y'>Y is proper, and z=g,[D’] for a principal Cartier divisor on Y’, then
Sfra==g,[f'"D] is the image of a principal Cartier divisor on X XyY’ (Proposition (2)
of § 1.6). So f induces a Gysin map

FrrAY->AX

and A, is contravariant for flat morphisms; if f is of relative dimension d, f* raises
degrees by d.

In particular, if U is an open subscheme of X, j: U—>X the inclusion, we have
a restriction homomorphism

Axiau

Proposition (cf. [AG; 4, § 4]). — Let i : X—U—>X be the inclusion. Then the sequence
AX-U)B5AXLAUSO

s exact.

Proof. — If Y, is a closed integral subscheme of U, and r,eR(Y,)*, then Y=Y,
is a closed integral subscheme of X, and r, determines a rational function 7 in
R(Y)=R(Y,), so j*[divr]=[divr,]. Exactness follows easily from this, for if a cycle z
on X becomes rationally equivalent to zero on U, we can find Y,cX and 7eR(Y))
so z—2[div(r)] has support on X—U.

Other identities we proved for cycles, asin § 1.5 and § 1.6, carry over to the Chow
group. We will return to the Gysin map of § 1.7 in § 4.

Remark. — 1t follows from the definition of rational equivalence that the mapping
Z.X — Gr,X which takes a subvariety V of dimension %2 of X to its structure sheaf
OyeFilt, K;X modulo Filt, KX (cf. [SGA6; X], [B-F-M; IlI, § 1]) induces a

homomorphism
A X—-Gr, X
which is covariant for proper morphisms.
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RATIONAL EQUIVALENCE ON SINGULAR VARIETIES 155

2. Intersections.

In this section we work in the category of algebraic schemes over a field Z.

2.1. Serre’s Intersection Theory.

If f:X-Y is a morphism, and Y is non-singular, Serre [S; V, § 7] has defined
an intersection of cycles as follows. If xeZ X, yeZ?Y, let |x|, | | be the supports
of x and y. We say that x and y intersect properly (along f) if all components of
|#|nf~*(|y]) have dimension p—gq. In this case the intersection cycle

xe, e, X
is defined. If x=Z, (%) and y=72?%, then
xe,y=2(—1)Z,_ (Tor{*(F, %)).
If X=Y we write just xey.

We write f*y instead of [XJe,y. If f:X-—Y is flat, this definition agrees with
that given in § 1.6. For example, if f: X—P' and y=[o]—[ow0], then f*y=[div(f)].

Proposition. — Let X be an algebraic scheme, p: XXP'=X, g:XXP'->P! the
projections. A cycle x€ 2, X is rationally equivalent to zero if and only if there is a cycle
2€ %, (X XPY) such that ze ([0]—[c0]) is defined, and x=p,(ze ([0]—[c0])).

Proof. — If x=2[div(r)], with 7; rational functions on (k4 1)-dimensional

subvarieties Y; of X, let T; be the closure of the graph of r; in XxXP". Then z=2X[I}]
will work, since [div(r)]=p.(Tse,([0]—[e0])) by § 1.5, Proposition . ‘

2.2. Basic Identities.
Lemma [S; V-g0]. — (1) Let X—f>Y1>Z, %, 9, 2 cycles on X, Y, Z respectively.  Assume
Y and Z are non-singular, and all the intersections are proper. Then
x‘f()"gz) = (x‘f)’) @ 2= (xo,2) 0 .

(2) Let X—f>Y—g>Z, x, 2 cycles on X, Z respectively. Assume Z is non-singular, f is a
proper morphism, and all the intersections are proper. Then

Su(xo,2)=f,x0 2.

(3) Let f;: X—=Y;, Y, non-singular, y; cycles on Y;, t=1,2, x a cycle on X. Let
=(f1,/a) : X>Y X, Yo If all intersections are proper, then

(xor, y1) @, o ={(x0; y;)@; y3=x0:( 91 X7s).
156



156 WILLIAM FULTON

X Ity

be a fibre square, with g proper, Y and Y' non-singular. If y'e Z(Y'), and both sides are
defined, then
&S y=ray wm Z(X).

Proofs. — (1) Let x=2,F, y=2'9, z=72'#. 'Then (1) follows from the spectral
sequence of triple Tor, as in [S; V-30]. Similarly (2) follows from a spectral sequence
relating R*f,(Tor%(F,#)) and Tor®*(R'f,.#, 4) (cf. [S; V-29, 30] and [EGA III,
6.9.8]). The proof of (4) uses the same spectral sequence. For (3), if x=Z %,

y,=27%%,, use the spectral sequence with E,-term Tor(Tor® (%, %,), %,) converging
to Torf®%(F & ®%,).

This lemma generalizes the usual associativity and commutativity properties of
intersections on non-singular varieties, as well as the fact that f* is multiplicative and
functorial on non-singular varieties, and the projection formula. We will use these
identities quite freely in what follows. As an application we verify that our definition
of rational equivalence agrees with the more usual definition [AC] for non-singular
varieties.

Proposition. — If X is non-singular, a cycle x in Z,X s rationally equivalent to zero if
and only if there is a cycle ze 25, (X X PY) such that z intersects X x{0} and X x{c0} properly,
and x=p,(z8(Xx{0}—Xx{w0})), where p=XxP'—>X 1is the projection.

Progf. — This follows from the proposition in § 2.1, together with the fact that,
from Lemma (1), ze ([0]—[c0])=ze(Xx{0}—XX{0}).

2.3. Moving Lemma.

Let Y be non-singular and quasi-projective, f; : X;—Y morphisms, x; cycles on X,
i=1,...,m, yacyleonY. Then there is a cycle y' on'Y, rationally equivalent to y, such that
x; and ¥ intersect properly along f; for all i=1, ..., m.

Proof. — By looking at the components of the cycles x;, we are reduced to the
case where the X, are varieties and x,=[X;]. Stratify Y into a disjoint union of locally
closed subsets W; so that the restriction of each f; to each W; is equidimensional. If
2" is a cycle on Y which intersects all the W; properly, then y' intersects all the [X]
properly along f;. So it suffices to apply the usual moving lemma ([AC], [R]) to »
and the W;.
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RATIONAL EQUIVALENCE ON SINGULAR VARIETIES 157

Proposition. — Let f:X—Y, Y non-singular and quasi-projective, xe Z.X, ye 'Y
cycles which intersect properly along f.

(1) If y~o, then xe;y~o.
(2) If x~o, then xe,y~o.

Proof. — (1) If x-—-Zn,-[VJ, it suffices to show [V,] *.y~0 on V,;, where
Ji 1 V;=Y is the induced r;1ap (this follows from Lemma (2) of § 2.1 applied to
V;-»X—Y). Thus we may assume x=[X], where X is irreducible, and we want to
show f*y~o.

By the proposition of § 2.2, there is a cycle z on Y XP! so that if D=[0]—[o0]
on P* and ¢:YxP'-P! is the projection, then y=p,(ze D).

Consider the fibre square

XxP' -1 YxP!

X—f>Y

Thenby § 2.2, Lemma (4), f*y=f"p,(ze,D)=p, /" (ze,D), soitsuffices toshow f*(ze D)
is rationally equivalent to zero. But f"(ze D)=f"(z)e,D by §2.2, Lemma (1), where
¢’ : XxP'—>P! is the projection, and f"*(z)e,D=[div(¢f")].

(2) We may assume x=m,[div(r)], where =:X'—>X is proper, reR(X’).
Then xe;y=m,([div(r)}e, ) by § 2.2, Lemma (2), so we may assume X is irreducible
and x=[div(r)]. As usual, we may assume 7 is a morphism from X to P!, so x=[X]e D,
D=[o]—[w]. By § 2.2, Lemma (3), xe;y=([X]e,D)e,y=([X]e;3)e, D~o.

3. The Chow Cohomology Groups A°.

In this section we work in the category of quasi-projective schemes over a field £.

3.1. Definition and Basic Properties.

If Y is a non-singular variety, define A?Y to be 2?Y modulo the cycles rationally
equivalent to zero. It follows from the results of § 2 that A'Y=(P A?Y is a graded
q

ring, and that Y—A"'Y is a contravariant functor from non-singular quasi-projective
varieties to graded rings (cf. [AC]).

If X is an arbitrary quasi-projective scheme, let ¥(X) denote the category of
pairs (Y, f), where Y is non-singular and f is a morphism from X to Y. A morphism
from (Y,f) to (Y, f’) in €(X) is a morphism g :Y—Y’' such that gof=f".
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158 WILLIAM FULTON

Assigning A'Y to (Y,f) gives a contravariant functor from % (X) to rings, and

we define
A*X =lim A'Y.
€

More concretely, A?X is the disjoint union of the A?Y for all f: XY, Y non-singular,
modulo the equivalence relation generated by setting g*y»'=y whenever g is 2 morphism
from (Y,f) to (Y',f'), and y'eA?Y’. If f,: XY, and yeA’Y,, i=1,2, we add
(resp. multiply) the classes represented by y, and 3, by setting Y=Y, XY,, #,: Y->Y,

the projections; then g} y,+p; 9, (resp. p;y,ep;¥,) represents the sum (resp. product)
of », and y,.

A morphism £ : X, —X, induces amap (Y,f)— (Y,foh) from €(X,) to €(X,),
and hence a morphism 4 :A'X, > A"X,. We see that A" is a contravariant functor
from quasi-projective schemes to graded rings. Note that if X is non-singular % (X)
has an initial object, so the two definitions of A*X agree.

The cap product

ATX®A X > A _ X

is defined as follows. If f:X-Y, with Y non-singular, and xeA X, yeA?Y, then
xe,yeA, ,X is well-defined by § 2. This definition is compatible with maps in €(X)
by Lemma (1) of § 2.2, and so it passes to the limit to give the desired cap product.
This makes A, X into a module over A*X.
From Lemma (2) of § 2.2 we deduce the
Projection formula. — If f:X,—X, is proper, and acA,X,, beA'X,, then
f(f*b—~a)=b~f,a.

Two other properties relate the Chow cohomology groups to the Gysin map in
the Chow homology (§ 1.9).

Proposition. — Let
Q<> P
ql lp
X i Y

be a fibre square, with 1, j closed immersions, and p, q flat.

(1) If xeA X, yeA’Y, then
gO~x)=py~¢x mAQ.

(2) If Y is non-singular and p is smooth, xeA, X, zeA'P, then
a(J e~ gxR)=i"(h2) ~x i AX
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Here ¢": A, X+ A,Q isthe Gysin mapof§ 1.9, and g, : A'P - A'Y is the Gysin
map that always exists (by Poincaré duality) in the non-singular case.

Both parts are proved by reducing to the case when x=[X], and using the
lemma in § 2.

3+2. Chern Classes.

To extend the theory of Chern classes from non-singular varieties to singular
varieties we need the following lemma. A. Landman showed us the proof of (3).

Lemma. — (1) Let E be a vector-bundle on a quasi-projective scheme X. Then there is
a non-singular variety M, an imbedding i : X~ M, and a vector-bundle F on M so that i*F~E.

(2) If o>E'->E—E"—o0 is an exact sequence of bundles on X, there is a non-singular M,
an imbedding 1 : X—>M, and an exact sequence

o—-F sF-F'>o

on M so that o—i*F' —i*F—i*F'"—>o0 is isomorphic to the given sequence on X.

(38) If f: XY, Y non-singular, and E,, E, are vector-bundles on Y such that f*E,~f*E,,
then there is a factorization f=gof’ of f. f':X->Y', g:Y' =Y, with Y’ non-singular, such
that ¢*'E,~g'E,.

Proof. — Since (1) is a special case of (2), we prove (2). Imbed X in a projective
space P=P". For m sufficiently large there is a surjection e¥—E(m)->0 from a trivial
bundle onto E(m)=E®0(m). Let G be the flag manifold classifying successive quotients
of e¥ of ranks ¢=rank E, ¢’=rank E”, and let

N sEE"

be the universal example of successive quotients on G. G is a Grassmann-bundle over
a Grassmannian, so G is non-singular. There is a morphism f: X-G so that ¥ £ —£"
pulls back to &¥—E(m)—E"(m).

Let M=PxG, i(x)=(x, f(x)), and let F=p;0(—m)Sp;&, F'=p;0(—m)@psE"
(where p,, p, are the projections), and F'=XKer(F—>F’). It is clear that this restricts
to the given sequence on X.

To prove (3), let Y'=1Isom(E,, E;) be the open subscheme of the vector-bundle
Hom(E,, E,) over Y consisting of isomorphisms, and let g :Y'—Y be the projection.
Since g is locally a bundle with the general linear group for fibre, g is smooth, so Y’
is non-singular. There is a one-to-one correspondence between bundle maps from f*E,
to f*E, and factorizations of f through Hom(E,, E,); under this correspondence the

isomorphisms correspond to factorizations through Y’, which proves (3).

Définition. — For non-singular quasi-projective varieties there is a theory of Chern
classes of vector-bundles with the usual formal properties [G]. IfE isa bundle on a non-
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singular Y, we let ¢(E)=1+¢,(E)+... be the total Chern class, ¢(E)eA'Y the i-th
Chern class.

If X is singular and E is a bundle on X, choose a non-singular variety Y, a
morphism f:X—Y, and a bundle F on Y so that f*F~E. Then ¢(F)eA'Y defines
an element ¢(E) in A*X, which is independent of choices by the construction of A*X
and Lemma (g), and is called the total Chern class of E.

Proposttion. — (1) If f:X' =X, ¢(f*E)=f*c(E).
(2) ¢ : Pic(X) - A'X is an isomorphism.
(3) If D s a Cartier divisor on X, then
a(0(D)) ~[X]=[D] un AX.
(4) If o+E'—~E—-E"—>0 1is exact, then
¢(EY=¢(E").c(E").
(5) The usual formulas [G] for Chern classes of dual bundles, exterior powers, and tensor
products hold.

Proof. — (1) is clear. (2) follows from the non-singular case by passing to the limit.

Given L on X, choose f:X—Y, Y non-singular, and a Cartier divisor Dony
so that f *D=D is defined, and O(D)zL (for example, Y=P", D = the difference of
two hypersurfaces). Then ¢ (L)~ [X]=[X] ofI~)= [D] by definition of the intersection
cycle. This proves (3).

The additivity follows from the non-singular case and the Lemma (2). The
formulas referred to in (5) likewise pull back from the non-singular case.

3.3. The Chern Character.
The construction of Chern classes gives rise to a Chern character
ch: K°X - A"X,
which is a homomorphism of rings.
Proposition. — chq : K" Xg — A"Xy is an isomorphism for all X,

Proof. — It follows from the Riemann-Roch theorem ([SGA 6] or {B-F-M; III,
§ 1]) that the assertion is true when X is non-singular.

It follows from the lemma in § 3.2 that K°X=1lim K°Y where the limit is over
all f:X—Y, Y non-singular. Thus the general case follows from the non-singular case.

Corollary. — There is a natural (contravariant) isomorphism A*Xq>Gr Xy of graded
rings obtained by filtering K°X by the A-filtration [SGA 6].

Proof. — If X is non-singular, the mapping is the composite
A*Xq —> Gr}, Xq <= Gr'X,
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where Gr;,, X is the graded ring obtained from the topological filtration of K°X
(cf. [SGA 6; VII, 4.11]). Since Chern classes correspond in this isomorphism, we may
pass to the limit (for general X, and f: X—Y) to get a homomorphism A*Xg— Gr'X,,
so that the diagram

K*X

A" X g Gr' X,

commutes. Since both Chern characters chy are isomorphisms (cf. [Yu. I. Manin,
Lectures on the K-functor in algebraic geometry, Russ. Math. Surveys, 24 (1969), p. 49]
for the second), the bottom is also an isomorphism.

Remark. — Grothendieck et al. have defined Gysin homomorphisms
Soi GrrX,— Gr'Y,

for proper complete intersection morphisms f:X—->Y [SGA 6]. So there are corre-
sponding Gysin homomorphisms A*X,— A"Yy. It is not clear how to define these
maps without rational coefficients; even if f is a smooth morphism the definition of A*
given here is not amenable to pushing forward.

4. A Gysin Map; Specialization.

In § 4.1-4.9 we remain in the category of quasi-projective schemes over a field.

4.1. Rational Equivalence Specializes.

Let f:X—C be a flat morphism from a scheme X to a non-singular curve C.
Let ¢ be a closed point in C, and let X,=7f"'(¢) be the scheme-theoretic fibre, i: X,—X
the inclusion. We will define a “ Gysin homomorphism » (?)

P AX A, X,

The map *: Z,X — Z,_, X, has already been defined (§ 1.7): *[V]l=o0 if
VcX,, i*[V]=[V,] otherwise. Note that we may replace G by an open neighborhood
of {¢}, so we may assume {¢}is a principal Cartier divisor on C, so X,=f"*{¢}is principal
on X. The problem is to show that rational equivalence is preserved by :*. Since
this Gysin map is compatible with pushing forward (§ 1.7, Proposition (1)), we are
reduced to proving the following case.

() Note added in proof. J.-L. Verdier has used this to define Gysin homomorphisms for arbitrary complete
intersection morphisms [Séminaire Bourbaki, n® 464, Feb. 1975].
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Lemma. — Suppose X is integral, and reR(X)*. Then ¢*[div(r)] is rationally equivalent
to zero on X,. :

Proof. — As in the remark in § 1.8, we may assume r is a morphism from X to P,
Then (f, r) is a morphism from X to CxPL If (£, r) were not dominant, [div(r)] would
lie in a finite number of fibres of f, and then i*[div(r)]=0. So we may assume (f, r)
is dominant. As in [B-F-M; II, § 2.5], we may find proper, birational maps

p: V>CxP, ¢: X'>X,

where V is non-singular, and a flat morphism F : X’V so that the diagram

X sV
¢l lp
x %1 axpt

is commutative. Since we may replace X by X', we may assume (f, r) factors into

X 5V 5 CxP!, where F is flat.

Let E=p~'({t}xP"), and let G, and G, be the non-singular curves on V that
map isomorphically by ¢ to Cx{o} and Cx{o}. E consists of a connected collection
of non-singular rational curves intersecting transversally. Blowing up more points if
necessary, we may assume C, and G, meet E transversally at points »,, v, of V.

For any curve D on V, let X, be the fibre over D, [X,] the corresponding Weil
divisor. Then [div(r)]=[X¢]—[X¢,] plus components that lie in fibres of f. So
the lemma reduces to showing that *[Xy]~i"[X¢ ] in ZX,.

Let D be a smooth curve on V which intersects E transversally in a simple point ;
let L be the irreducible component of E which contains s, and let Fj : X;—L be the
morphism induced by F. We claim that *[X;]=Fi[v] in £ X,. Since X,=F[D],
this follows from Proposition (2) of § 1.7; note that [D] pulls back to [#] on LcE.
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To finish the proof we must show that all the cycles F;[7], veLcE are rationally
equivalent. This is clear for fixed L as » varies in L, since L~P!.  Since E is connected,
we need only show that in case v is the point of transversal intersection of two components L,
and L, of E, then Fj [¢v]=Fj [¢v]. The argument for this is the same as in the preceding
paragraph.

4.2. Properties of the Gysin Map.

This shows that the Gysin map
i*: AX—>AX,
is well-defined on the Chow groups. From the Proposition in § 1.7 it follows that if

X and Y are flat over G, and g : XY is proper, then the Gysin maps commute with

pushing forward. To call i* a Gysin map, one should check that it is compatible with
the cohomology map ¢* : A'X — A" X,.

Proposition. -— The diagram
AX®AX = AX

Fi* W

A'X,®A X, = AX,
commutes.
Progf. — We must show if g:X-—Y, Y non-singular, xeA X, yeA'Y, then

*(ve, y) =1"xe,; y. By looking at the components of x, we may assume x=[X], X integral;
and we may move y so all the intersections are proper. Then

f(xe, p)=[X,]0(xe, y)=[X,0;x]e, y=1"x0;y

as in § 2.2, Lemma (1).

4.3. Products.

If X and Y are schemes, there is a Kiinneth map ZX®ZY - Z  ,(XXY)
which takes [V]®[W] to [VXW] for V, W irreducible subvarieties of X, Y respectively.
This is covariant for proper maps, and passes to the Chow groups, giving a Kiinneth map

A X®A Y~ A(XXY).

Proposition. — If Y=A" is affine space, then
A XOAY - A(XXY)

is an isomorphism for all X.
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Proof. — We may assume z=1. The surjectivity of the mapping follows by
induction on the dimension of X, using the exact sequence of § 1.9 (cf. [AC; 4, § 4]).
The injectivity follows from the fact that if #(x)=(x, 0), then

Pax[Y])=x for all xeA X.

This also proves the following fact:

Corollary. — If G is a non-singular rational curve, and i, : X —~ X X C is the imbedding
x—(x, t), then the Gysin maps 1;: A (X X Q) - A, X are the same for all k-rational points teC.

4.4- Specialization.

The existence of the Gysin map leads easily to a specialization map (cf. [SGA 6;
X, 7]). In this paragraph all rings and schemes are noetherian and excellent.

Let R be a discrete valuation ring with residue field R/m=#, and quotient field K.
Let X be a scheme which is flat and quasi-projective over R, and write Xy=X®&;K
and X, =X®gk for the generic and special fibres, i : X;—»X, j: Xg—X the inclusions.
From § 1.9 we have the exact sequence

A, X AL X TS A X —> o

We remark first that the argument of § 4.2 extends to the case where C=Spec R,
and CxP'=P}% and V are regarded as arithmetic surfaces. (Note that a suitable V
for the specialization lemma may be constructed by successively blowing up k-rational
points, and that only k-rational points need be considered in the proof of the lemma).
Thus we obtain a Gysin map

A, X > A X,.

Since #*i,=o0 (even on the cycle level), we conclude that there is a unique map

c=ox: A Xy~ AKX,

the specialization homomorphism, such that the diagram

A Xg
/

commutes,
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Proposition. — (1) Let f: X—Y be a proper morphism of flat quasi-projective R-schemes.
Then the diagram

AXe 2 ALY,

le lcY
AX, s AY,
commules.

(2) If f: XY s a flat morphism of flat quasi-projective R-schemes, then the diagram

AY, s AX,

l },

AY, 5 AX,
commules, where the horizontal maps are the Gysin maps of § 1.9.

Progf. — These follow from the proposition in § 1.7.

If R is henselian (say complete), let K (resp. %) be the algebraic closure of K
(resp. k). One may pass to the limit over all finite extensions R’ of R in K (using the
Gysin maps A, X—A, Xy, for the flat morphism X, —X) and arrive at a specialization
homomorphism

AXz—>AX;

of geometric fibres.

As explained by Grothendieck [SGA 6; X, 7.13-7.16], the existence of these
specialization maps implies that if X is proper over C=Spec R, with regular fibres,
there is a commutative diagram

AX, 5 HY (X, Z,(i))

AX, 5 H¥(X,, Z,())
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which passes to the limit to give

AXy > H¥(Xg, Z,(5))

AX; > HY(X;, Z,(0))

Here f¢+chark, and H*( , Z,(¢)) is the ¢-adic cohomology.

5. Natural Transformations.

In this section we work in the category of projective varieties over a field. Let
HX=AX=AX®Q. Regard H, as a covariant functor from projective varieties to
abelian groups. We thank A. Landman for the proof of the following proposition.

Proposition. — Let o : H,—~H, be a natural transformation of functors. If for each
projective space P, n=o, 1,2, ...

«[P"]=[P"] +terms of degree=+n
then o is the identity.

Proof. — Let B=a—1, where I is the identity transformation. It suffices to
show B[X]=o0 for all varieties X, since H,X is generated by [V] for V a subvariety
of X, and we can apply naturality to the inclusion of V in X.

We claim first that B[P"]=o0. For suppose the coefficient of [H] in B[P"] were
non-zero, where His a k-planein P*; k+n by hypothesis. Choose a morphism f:P" —P"
such that f,[P"]=d4d[P"], f.[H]=e¢[H], and d=e¢. Such a morphism can be obtained
by composing the Veronese imbedding by a projection. Then apply naturality to f to
get a contradiction.

Now given an #n-dimensional variety X, choose a separable finite morphism
f: X—P" Since it is enough to show B[X']=o0 for any X’ for which there is a finite
morphism from X' to X (apply naturality to this morphism), we may assume f: X—>P"
is a Galois (branched) covering, with Galois group G, and X is normal.

By naturality with respect to the automorphisms in G, B[X] must belong to the
fixed part H, X% of H,X. Finally, applying naturality to the morphism f:X-—>P"
it is enough to check that f, maps H, X% isomorphically to H,P", since we know B[P"]=o.
And this follows easily from the identity

fife= 2 g.c
gEG

for a cycle ¢ on X. This identity can be seen by applying f, to both sides and using
the projection formula to count the number of times cycles must occur on both sides.
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Remark. — If X is a complex projective variety, then there is a homomorphism
ZX %> H(X; Z)

which assigns to each subvariety V of X its homology class ¢[V] (say by triangulation
or resolution of singularities). This is a natural transformation of covariant functors.
If r:X—>P!' is a morphism, then ¢[div(r)]=o0 in H,(X;Z), so ¢ induces a natural
transformation

A, —>H/(;Z)

from complex projective varieties to abelian groups.

The proof of the proposition extends to this case to show that ¢ gives the only
natural transformation from A,q=A,®Q to H,( ; Q) which takes [P"] to [P"]+lower
terms for each projective space P*. In the last step of the proof it is necessary to know
that if X/G=P", then H,(X;Q)%~H, (P*; Q). This follows by suitably triangulating
the map from X to P" [B. Giesecke, Simpliziale Zerlegung abzihlbarer analytischer
Raume, Math. Zeit., 83 (1964), 177-213, Satz 7].
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