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o« Introduction.

For a non-singular quasi-projective variety X the Chow ring A(X) provides simul-

taneously a covariant functor for proper morphisms and a contravariant functor for

arbitrary morphisms (cf. [AC]). This appendix develops a "homology" theory A.

and a (< cohomology 9? theory A* for arbitrary quasi-projective schemes over a field

which agree with the Chow ring for non-singular varieties.

The definition of A.X as algebraic cycles modulo rational equivalence, on a

possibly singular variety X, has been known for some time ([AC; 4-30], [S; p. V-2Q]),

although a systematic account has never appeared. In § i we construct this homology

theory for the category of algebraic schemes over a field.

The construction of a corresponding cohomology theory A* (§ 3), for quasi-

projective schemes over a field, is based on Serre's intersection theory [S] and Chow's

moving lemma (cf. [AC], [R]). The two theories have the usual formal properties:

cap products A*®A.^A,, a projection formula, Chern classes, etc.

We have been able to show (§ 4) that rational equivalence specializes. If/:X-»C

is a flat morphism to a regular curve C, and teC, i : X^X the inclusion of the fibre,

we construct the Gysin map

z* : A^X->A^X<.

From this one deduces that the Chow group of the general fibre specializes to the Chow

group of the special fibre. Even for non-singular varieties this question has been open

for some time (cf. Grothendieck's discussion in [SGA6; X, 7]).
The final § 5 contains A. Landman's result that, modulo torsion, there are only

the obvious natural transformations from A. to itself. This was used to prove the

uniqueness of the Riemann-Roch map in [B-F-M]. We also thank him for help in

constructing Chern classes (cf. § 3.2).

Invariants of singular varieties tend to lie in homology rather than cohomology

(cf. [B-F-M], [M], [F]), with cohomology playing an auxiliary role. Our Chow

cohomology is constructed in this spirit by passing to a limit over non-singular varieties

containing the given variety. This gives a theory which is as fine as possible, in that

it maps to any other theory with Chern classes and Poincar^ duality; it is also probably

the correct theory up to torsion (cf. § 3.2, 3.3).

R. MacPherson, to whom we are grateful for many stimulating conversations on

these topics, has suggested constructing the Chow cohomology of a singular variety by

taking as (( cocycles " those cycles which intersect the singular locus nicely, with a

similar restriction on the rational equivalence. Although this method would depend on

a more general moving lemma than is now available, it would be better than our theory

in those situations where the invariants do lie in cohomology (cf. [B-F-M; IV, § 5]).

We also thank R. Piene and others who read and commented on a preliminary

version.
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RATIONAL EQUIVALENCE ON SINGULAR VARIETIES 149

i. The Chow Homology Groups A..

In this section we construct the Chow homology groups for algebraic schemes over

a field, and study some of their basic properties. However, most of the results extend

without difficulty at least to the category of excellent schemes [EGA IV], and our proofs
are designed for this generality.

i •i. Cycles and Sheaves*

For a (noetherian) scheme X, we denote by ^T(X) the group of algebraic cycles

on X$ ^T(X) is the free abelian group on the set of integral (reduced and irreducible)

closed subschemes of X. We write ^T(X)=^:X== © ̂ X, where ^X consists of

cycles of dimension k. We may also write ^(X)==^X== (B ̂ X, where ^X
consists of cycles of codimension k.

If y is a coherent sheaf on X, let

Z(^)=S^(^).W,.

(The sum is over the components W, of the support of ̂ , ^ is a generic point of W,.

(9^ is the local ring of X at ^, ̂ . is the stalk of^" at x,, and t denotes length of an

artinian module.) If^ has support of dimension <_k, we let Z^G^X be the part
of Z(^) of dimension k. Similarly if codim(Supp ̂ )^k, Z^e^X is the part
of Z(e^) of codimension k.

Any closed subscheme Y of X determines a cycle

[Y]==Z(6y in j2T(X)

where ffy is ^e structure sheaf of Y (extended by o to X). If the components Y, ofY

have multiplicities m,, then [Y] = Sm,[YJ. In particular, X has a fundamental cycle [X],

1.2. Pushing Cycles Forward.

Let /: X->Y be a proper morphism. To define /„ : ̂ .X->^Y it is enough to

define/, [V] for an integral closed subscheme V ofX. Let /(V) ==W. If dim W<dim V,

set /JV]=o. If dimW=dimV, set /JV]=rf[W], where rf=[R(V) : R(W)] is

the degree of the function field extension (cf. [EGA IV, 5.6.6]). If we extend by

linearity, 3£. becomes a covariant functor from (noetherian) schemes and proper
morphisms to graded abelian groups.

If ZE^X, z=Z^), and f:X->Y is proper, then

/^=Z,(R°/^)==S(-i)%(R1/^)
i

in ^Y (cf. [S; V, § 6]).
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1.3, Divisors.

If D is an effective Carrier divisor on X, it determines a Well divisor [D]e^X

by § 1.1. Since [D+E]=[D]+[E], this extends to give a homomorphism

Div^X^^X

from the group of Cartier divisors to the group of Weil divisors [EGA IV, 21.6.7];
we write [D] for the Well divisor determined by the Carrier divisor D.

If r is a non-zero element in the function field R(X) of an integral scheme X,

or more generally, a " regular meromorphic function 5? [EGA IV, 20. i .8] on a general
scheme X, we write div(r) for the principal Gartier divisor determined by r, and [div(r)]
for the corresponding Weil divisor.

i •4. An Algebraic Lemma.

Lemma. — Let A be a one-dimensional local noetherian domain with maximal ideal P and

quotient field K. Let L be a finite extension ofK, B a finite A-algebra whose quotient field is L.

Let Pi, . . ., P, be the prime ideals ofK lying over P, B,=Bp^.. Suppose teK and N(^)eA,

where N : L*->K* is the norm. Then

^(A/N(^)A)=S[B,/P,B, : A/P]^.(BJffy.
i

Proof. — The right-hand side is equal to ^(B/ffi), so we are reduced to showing

^(B/^B)=^(A/N(^A). If there is a free A-submodule F of B such that tF cF and

F®^K=L, then ^(A/N(^)A)==^(F/riF) [EGAIV, 21.10.17.3], and since ^(B/F)<oo,
^(F/^F)=^(B/ffi) (cf. [EGA IV, 21.10.13]).

In the general case choose any free A-submodule FofBso that F®^K = L. Then

ffc-F for some seA. We know the result for st and s by the previous case. Since

both sides take products to sums, the result follows for t by subtraction.

1.5. Divisors and Mappings.

Proposition 1. — Let X, Y be integral schemes of the same dimension, f : X-^Y a proper,

surjective morphism. Let [R(X) : R(Y)]=TZ, and let N : R(X)* -> R^Y)* be the norm.

(1) If reR(X)*, then

/,[div(r)]=[div(N(r))].

(2) If D is a Cartier divisor on Y, then /J/'D]==7z[D].

Proof. — Let W be an integral subscheme ofY of codimension i, w a generic point

ofW, A==^Y^. We may take the base change Spec(A)->Y, and so assume Y=SpecA
Then X==Spec B, where B is a finite A-algebra [EGA III, 4.4.2].
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RATIONAL EQUIVALENCE ON SINGULAR VARIETIES 151

To prove (i), we may multiply r by seA to achieve the situation where reB

and N(r)eA. Then the result follows from the lemma of§ 1.4. (This is also proved

in [AC; 2-12].)

Assertion (2) follows from the same lemma, and the fact that N(^)==^ if teA

(cf. also [EGA IV, 21.10.18]).

Proposition 2. — Let X, Y be integral schemes, f : X->Y proper, dim X>dim Y. Then

/,[div(r)]-o

for all reR(X)*.

Proof. — We may assume dimY==dimX—i, and make the base change

Spec(R(Y))->Y to calculate the multiplicity of [Y] in/Jdiv(r)]. By Proposition i,

we may assume X is a normal curve over Y=Spec K. Factory into a finite map X->P^

followed by the projection to Y. Applying Proposition i again reduces it to the case

X==P|^, where it is obvious.

Proposition 3. — Let 'K be a scheme, [X]==2m^[XJ, with ^ : X^->X the inclusions
i

of the irreducible components into X. Let D be a Cartier divisor on X. Then <p^D is a Carfier

divisor on X^, and

[D]-S^<p.j9:D] in ^(X).
i,

Proof. — As in the proof of Proposition i, we may assume X = Spec A, where

A is a one-dimensional local ring. We may assume D is effective, with local equation
teA. Then the result reduces to an algebraic lemma [EGA IV, 21.10.17.7].

1.6. A Gysin Map for Flat Morphisms.

Let f : X-^Y be a flat morphism, Then we define the (( Gysin ?? homomorphism

f*: ̂ Y->^X as follows: If V is a closed, integral subscheme ofY, let /'[V]^ [/"^V]

where f~~
1
^ is the scheme-theoretic inverse image ofV; set y*[V]==o ify'^V is empty.

If z=7}y for a coherent sheafed on Y, then /^^Z^/*^).

Proposition. — Let f : X->Y be aflat morphism of relative dimension d.

(1) If'D is a Cartier divisor on Y, then /ilt[D]=[/*D].

(2) If g : Y'—^Y is proper, and we form the fibre square

X' -̂ -> Y'

•i [•Y Y

X -^Y

then g'J' •=/•.?. from ^(Y') to ^(X).
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Proof. — (i) follows easily from the definition (cf. [EGA IV, 21.10.6]). For (2)
let y=Zfc(^-')e^Y'; then

/^y^-i^^R '̂)

and g:f'V=^{-i}^^g^f1^1)}.
i

But since/is flat, f^g^'^g^f^') [EGA III, 1.4.15], so the two cycles are
equal.

1.7. A Gysin Map for Divisors.

Let D==div(^) be a principal effective Cartier divisor on X, z:D->X the inclusion.
We define a Gysin map i* : ̂ X-^^D as follows: ifV is an integral closed subscheme
of X, let

,'[V]=(° tf VCD

[[VJ if V4=D

where V, is the subscheme of V defined by the function t.

If y is a coherent sheaf on X and 7^y==z, and the support of i*y^=y^Q^

has codimension >_k, then i*z== S (—lyZ^Tor?^^,^)). This follows from the
»==o

fact that if^ has support in D, and codim(Supp ̂ )^A+i, then

^(-^(Torf^^^o

(cf. [EGA IV, 21 .10 .13 ] ) .

Proposition. — Let f : X->Y be a morphism, D a principal effective Cartier divisor on Y

such that the Cartier divisor f*D is defined. Let i :D->Y, j :/*D~>X be the inclusions,

g :/*D->D the morphism induced by f.

(i) If f is proper, then the diagram

/* . /w y\r\^T(X) ^(Y)

i*

g*
^V'D) —> ^(D)

commutes.

(2) If f is flat, then the diagram

^T(Y) ^T(X)

9*
^(D.) —> ^(/*D)

COfftOTMfej.
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RATIONAL EQUIVALENCE ON SINGULAR VARIETIES 153

Proof. — (i) Let V be an integral closed subscheme of X, /JV]=?z[W]. We

want to show &[VJ==7z[WJ, in case W4:D. Then ^W<==V^ and the result

follows from Proposition i (2) of § 1.5. (2) is clear from the definition.

1.8. Definition of the Chow Groups.

Proposition. — Let ze^(X). The following are equivalent:

(1) There is a scheme Y, a principal Cartier divisor D on Y, and a proper morphism n: Y -> X

such that n^[D]==z.

(2) There are integral schemes Y,, rational functions r^eR^Y^)* and proper mor-

phisms 7T,:Y,->X so that ^==S7r,Jdiv(r,)].
i

(3) There are closed integral subschemes Y, ofX, and r,eR(YJ*, so that z == S [div(^)]

in ^(X). '

Proof. — (i) => (2) follows from §1.5, Proposition 3. (2) =>(3) follows from §1.5,

Propositions i and 2: if TC, : Y,->X is proper we may replace Y, by 7r,(YJ cX.

Remarks. — ( i) If zeS^K, we may choose the Y, in (2) or (3) to have dimen-
sion k 4-1.

(2) We may replace Y, in (2) by any \[ for which there is a birational proper

morphism Y '̂->Y, (§ 1.5, Proposition i). Thus for example we may replace Y^ by

the closure of the graph ofr, to assume ^ gives a section of P .̂ over Y,, or a morphism

to the projective line if the Y^ are algebraic varieties. Or we may assume each Y,

is normal.

Definition. — A cycle z in Jf(X) is rationally equivalent to zero, z^o, if it satisfies

the conditions of the proposition. The cycles rationally equivalent to zero form a graded

subgroup of o^.X, and the quotient group

A.x=^r.x/—

is called the Chow (homology) group of X.

We may use the same notation for a cycle and its equivalence class in A.X. For

example, ifY is a closed subscheme ofX, we say (( [Y] in A.X5 9 to denote the equivalence

class of the cycle [Y] modulo rational equivalence.

Corollary. — Let X be an integral scheme of dimension n. Then

(1) A^X^Z, with generator [X].

(2) A Weil divisor ze^X. is rationally equivalent to zero if and only if it is the divisor

of a rational function on X.

153
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i«9« Properties of the Chow Homology.

If f : X—^Y is proper, and z^o on X, it follows from the definition that f^z^o

on Y. So f induces

/,: A.X-^A.Y

and A. becomes a covariant functor for proper morphisms.

If f: X-^Y is a flat morphism, and z^o on Y, then f*z^o on X. For if

^:Y'->Y is proper, and ^^^[D'] tor a principal Carrier divisor on Y', then

^z^g^f'*!^] is the image of a principal Carrier divisor on XXyY' (Proposition (2)

of § i .6). So f induces a Gysin map

/': A.Y->A.X

and A. is contravariant for flat morphisms; ify is of relative dimension d, f* raises

degrees by d.

In particular, if U is an open subscheme of X, j : U->X the inclusion, we have

a restriction homomorphism

A.X^A.U.

Proposition (cf. [AC; 4, § 4]). — Let i : X—U->X be the inclusion. Then the sequence

A.(X--U) ̂  A.X ̂  A.U -> o

is exact.

Proof. — IfYo is a closed integral subscheme of U, and roeR(Yo)1'1, then Y==Y()

is a closed integral subscheme of X, and r^ determines a rational function r in

R(Y) == R(Yo), so j*[div r] = [div To], Exactness follows easily from this, for if a cycle z

on X becomes rationally equivalent to zero on U, we can find Y^cX and r,eR(Y,)

so 2'—S[div(r,)] has support on X—U.

Other identities we proved for cycles, as in § 1.5 and § i. 6, carry over to the Chow

group. We will return to the Gysin map of § i. 7 in § 4.

Remark. — It follows from the definition of rational equivalence that the mapping

^f,X-^ Gr.X which takes a subvariety V of dimension k of X to its structure sheaf

^eFilt^KoX modulo Filt^KoX (cf. [SGA6; X], [B-F-M; III, § i]) induces a

homomorphism

A.X->Gr.X

which is covariant for proper morphisms.
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RATIONAL EQUIVALENCE ON SINGULAR VARIETIES 155

2. Intersections.

In this section we work in the category of algebraic schemes over a field k.

2«.i. Serre's Intersection Theory.

If /: X-^Y is a morphism, and Y is non-singular, Serre [S; V, § 7] has defined

an intersection of cycles as follows. If xeSpX, j/e^Y, let \x\, \jy\ be the supports
of x and y. We say that x and y intersect properly (along /) if all components of

M^/~1(M) have dimension p—q. In this case the intersection cycle

x.^e^_,X

is defined. If x==Z^) and y-^V^, then

x.^=^{-iYZ^{Torf^, ̂ )).

If X ==Y we write just x^y.

We write f*y instead of [X]^. If /: X-^Y is flat, this definition agrees with

that given in § i. 6. For example, if /: X->P1, and y^= [o] — [oo], then /*j/= [div(/)].

Proposition. — Let X be an algebraic scheme, ^rXxP^X, ^XxP1-^?1 the

projections. A cycle xe^X is rationally equivalent to zero if and only if there is a cycle

2'e.2^(XxP1) such that ^([o]--[oo]) is defined, and A:=^(^([o]—[oo])).

Proof. — If ^==S[div(r,)], with r, rational functions on (A+i)-dimensional

subvarieties Y, of X, let F, be the closure of the graph of r, in X x P1. Then z = S [FJ
will work, since [div(rj]=j^(r^([o]—[oo])) by § 1.5. Proposition i. '

2.2. Basic Identities.

Lemma [S; ¥-30]. — (i) Let X-^Y-^Z, x,y, z cycles on X, Y, Z respectively. Assume

Y and Z ar^ non-singular^ and all the intersections are proper. Then

^^•g2) == (^fjO •gf2 == ̂ •gfZ) •fV.

(2) Let X->Y->Z, x, z cycles on X, Z respectively. Assume Z ^ non-singular, f is a

proper morphism, and all the intersections are proper. Then

/^•gfZ)==f,X^gZ.

(3) Let fi: X->Y^ Y, non-singular,^ cycles on Y,, i==i, 2, x a cycle on X. Let

^(/D/2) ^X-^Y^x^Yg. If all intersections are proper, then

(̂ •̂ i) •f^2 == ̂ •^ •^ == x^ (j/i x^a).

J<?5
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(4) Let

X' -̂ » Y'

9' 9

\ ^

X -^> Y

6^ a ^6re square^ with g proper^ Y <aW Y' non-singular. If ye^(Y'), <mrf 60^ '̂rf̂  ar^

defined, then

gJ'V-Fg^ in ^(X).

proofs. — (i) Let x==Zp^, y^V^S, ^==2^. Then (i) follows from the spectral

sequence of triple Tor, as in [S; V-go], Similarly (2) follows from a spectral sequence
relating R^Tor?^,^)) and Torf^R-/^, ^) (cf. [S; ¥-29, 30] and [EGA III,

6.9.8]). The proof of (4) uses the same spectral sequence. For (3), if A:==Z^,
^^ZJi^ use the spectral sequence with Eg-term Torf^Tor^1^, ^), ^3) converging

to Tor^10^2^,^®^).

This lemma generalizes the usual associativity and commutativity properties of

intersections on non-singular varieties, as well as the fact that /* is multiplicative and

functorial on non-singular varieties, and the projection formula. We will use these

identities quite freely in what follows. As an application we verify that our definition

of rational equivalence agrees with the more usual definition [AC] for non-singular

varieties.

Proposition. — If X is non-singular^ a cycle x in ̂ X is rationally equivalent to ^ero if

and only if there is a cycle ^e^+^XxP1) such that ^ intersects Xx{o} and Xx{oo} properly,

and A:==^(^fXx{o}—Xx{oo})) , where ^XxP^X is the projection.

proof. — This follows from the proposition in § 2.1, together with the fact that,

from Lemma (i) , ^•g([o]—[oo])== ^• (Xx{o}—Xx{oo}) .

2.3. Moving Lemma.

Let Y be non-singular and quasi-projective, f, : X,->Y morphisms, x, cycles on X,,

z'==i, . . ., m, y a cycle on Y. Then there is a cycle y ' on Y, rationally equivalent toy., such that

x^ and y intersect properly along f^ for all i==i, ..., m.

proof. — By looking at the components of the cycles ^, we are reduced to the

case where the X, are varieties and x,== [X,]. Stratify Y into a disjoint union of locally

closed subsets Wj so that the restriction of each ̂  to each W, is equidimensional. If

y is a cycle on Y which intersects all the W, properly, then y ' intersects all the [Xj

properly along f,. So it suffices to apply the usual moving lemma ([AC], [R]) to y

and the W,.
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Proposition. — Let /:X-^Y, Y non-singular and quasi-projective, xe^X, yeS^Y

cycles which intersect properly along f.

(1) If j^^o, then x^fjy^o.

(2) If x^o, then x^^y^Q.

Proof. — (i) If ^==S^[VJ, it suffices to show [VJ^.j/^o on V,, where

fi: V(->Y is the induced map (this follows from Lemma (2) of § 2.1 applied to

V,->X->Y). Thus we may assume x==[X], where X is irreducible, and we want to
show f*y^Q.

By the proposition of § 2.2, there is a cycle z on YxP1 so that if D==[o]—[oo]
on P1 and q : YxP1-^?1 is the projection, then y=.p^% D).

Consider the fibre square

XxP1 -^> YxP1

P p

X ——f-—> Y

Then by § 2.2, Lemma (4), /^/^(^D) =p^f
f
\^•qD), so it suffices to show/'^^D)

is rationally equivalent to zero. But /'*(^D) =/'ilt(^) •^D by § 2.2, Lemma (i), where
q ' : XxP^P1 is the projection, and /"(^•^D==[div(y/')].

(2) We may assume ;v==7rjdiv(r)], where TC : X'-^X is proper, reR(X').

Then ^•^=7T»([div(r)]»^) by § 2.2, Lemma (2), so we may assume X is irreducible

and x== [div(r)]. As usual, we may assume r is a morphism from X to P1, so x== [X] •y.D,

D=[o]-[oo]. By § 2.2, Lemma (3), ^J-([X]^D)^-([X]^)^D-o.

3. The Chow Cohomology Groups A".

In this section we work in the category of quasi-projective schemes over a field k.

3.1. Definition and Basic Properties.

If Y is a non-singular variety, define A^Y to be ^Y modulo the cycles rationally

equivalent to zero. It follows from the results of § 2 that A'Y^^A^Y is a graded
q

ring, and that Y-^-A'Y is a contravariant functor from non-singular quasi-projective

varieties to graded rings (cf. [AC]).

If X is an arbitrary quasi-projective scheme, let ^(X) denote the category of

pairs (Y,/), where Y is non-singular and/is a morphism from X to Y. A morphism

from (Y,/) to (Y',/') in ^(X) is a morphism g : Y-^Y' such that gof=f
/
.
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Assigning A'Y to (Y,y) gives a contravariant functor from ^(X) to rings, and

we define

A-X^limA-Y.
^(X)

More concretely, A^X is the disjoint union of the A^Y for all f : X->Y, Y non-singular,

modulo the equivalence relation generated by setting g*y==jy whenever g is a morphism

from (Y,/) to (Y',/'), and feA^. If f,: X-^Y, and j^eA-Y,, z= i ,2 , we add

(resp. multiply) the classes represented byj^ and ̂  by setting Y=Y^xYg, j^ : Y-^Y,

the projections; then ^.^i+J^J^ (^P- ^^•^J^) represents the sum (resp. product)

ofj^ andj/2-
A morphism h: X^X^ induces a map (Y,/) -^ (Y,/oA) from ^(Xg) to ^(X^),

and hence a morphism A* : A'Xa—^A'X^. We see that A' is a contravariant functor

from quasi-projective schemes to graded rings. Note that if X is non-singular ^(X)

has an initial object, so the two definitions ofA'X agree.

The cap product

A^X®A,X ̂ > Ap_,X

is defined as follows. If f : X-^Y, with Y non-singular, and A:eApX, j/eA^'Y, then

^•^eAp_^X is well-defined by § 2. This definition is compatible with maps in ^(X)

by Lemma (i) of § 2.2, and so it passes to the limit to give the desired cap product.

This makes A.X into a module over A'X.

From Lemma (2) of § 2.2 we deduce the

Projection formula. — I fyrX^-^Xg is proper, and aeA.X^, ^eA'Xg, then

Wb-a^b^a.

Two other properties relate the Chow cohomology groups to the Gysin map in

the Chow homology (§ 1.9).

Proposition. — Let

Q^> P

4 \'
X ^-> Y

be a fibre square^ with i, j closed immersions^ and py q flat.

(1) If A:eA.X, j^A-Y, then

q\y^x)^p*y^q*x in A.Q.

(2) IfY is non-singular and p is smooth, A:eA.X, -s:eA'P, then

^U^ ̂  f^ == ̂ (A^) ̂  x ^ A.x•
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Here q* : A.X -^ A.Q is the Gysin map of§i.9, and j&, : AT ->• A'Y is the Gysin

map that always exists (by Poincar^ duality) in the non-singular case.

Both parts are proved by reducing to the case when ^=[X], and using the

lemma in § 2.

3.2. Chem Classes.

To extend the theory of Ghern classes from non-singular varieties to singular

varieties we need the following lemma. A. Landman showed us the proof of (3).

Lemma. — (i) Let E be a vector-bundle on a quasi-projective scheme X. Then there is

a non-singular variety M, an imbedding i : X-^M, and a vector-bundle F on M so that i*F^E.

(2) If o->E'->E->E"-^o is an exact sequence of bundles on X, there is a non-singular M,

an imbedding i : X->-M, and an exact sequence

o-.F'->F->F"->o

on M so that o->z*F'->z*F-^i*F"->o is isomorphic to the given sequence on X.

(3) y f : X ->^ Y non-singular, and E^, Eg are vector-bundles on Y such that f* E^ ̂ f* Eg,

then there is a factorisation f=gof' off, f : X-W, g : Y'->Y, with Y' non-singular, such

that ^E^Eg.

Proof. — Since (i) is a special case of (2), we prove (2). Imbed X in a projective

space P^P^ For 772 sufficiently large there is a surjection eN->E(77^) ->o from a trivial

bundle onto E(w) =E®6?(m). Let G be the flag manifold classifying successive quotients

of s^ of ranks e == rank E, 0"==- rank E", and let
sN_^_^

be the universal example of successive quotients on G. G is a Grassmann-bundle over

a Grassmannian, so G is non-singular. There is a morphism f: X -> G so that s^ -> ̂  -> ̂ / /

pulls back to ^-^(TT^-.E'^TTZ).

Let M=PxG, i{x)=={x,f{x)), and let F=j^(--m)0j^ V"=p\Q{-m)®p^
1

(where p^ p^ are the projections), and F'==Ker(F—»-F"). It is clear that this restricts

to the given sequence on X.

To prove (3), let Y'=Isom(E^, Eg) be the open subscheme of the vector-bundle

Hom(E^, Eg) over Y consisting of isomorphisms, and let g : Y'->Y be the projection.

Since g is locally a bundle with the general linear group for fibre, g is smooth, so Y'

is non-singular. There is a one-to-one correspondence between bundle maps fromy*E^

to f*E^ and factorizations of f through Hon^E^Eg); under this correspondence the

isomorphisms correspond to factorizations through Y', which proves (3).

Definition. — For non-singular quasi-projective varieties there is a theory of Ghern

classes of vector-bundles with the usual formal properties [G], IfE is a bundle on a non-
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singular Y, we let c(E)=i +c^(E)+... be the total Chern class, ^(E)eA tY the z-th

Ghern class.
If X is singular and E is a bundle on X, choose a non-singular variety Y, a

morphism /: X->Y, and a bundle F on Y so that /T^E. Then c(F)eA'Y defines

an element c(E) in A*X, which is independent of choices by the construction ofA'X

and Lemma (3), and is called the total Chern class of E.

Proposition. — (i) If /:X'-^X, ^/*E)==/^(E).

(2) c^ : Pic(X) -> A^ is an isomorphism.

(3) If D is a Cartier divisor on X, ^72

^(D))-[X]==[D] ^ A.X.

(4) y o-^E'-^E-^E"-^o ^ <?A:̂ , ̂

,(E)=.(E'ME").

(5) The usual formulas [G] for Chern classes of dual bundles^ exterior powers^ and tensor

products hold.

Proof. — ( i) is clear. (2) follows from the non-singular case by passing to the limit.

Given L on X, choose f: X->Y, Y non-singular, and a Carrier divisor D on Y

so that/*D=D is defined, and ffl(D)^L (for example, Y^P^ D == the difference of

two hypersurfaces). Then <'i(L) ̂  [X] == [X] •^.D = [D] by definition of the intersection

cycle. This proves (3).

The additivity follows from the non-singular case and the Lemma (2). The

formulas referred to in (5) likewise pull back from the non-singular case.

3.3. The Chern Character.

The construction of Ghern classes gives rise to a Chern character

ch : K°X-.A-XQ

which is a homomorphism of rings.

Proposition. — chq : K* XQ -> A* XQ is an isomorphism for all X.

proof. — It follows from the Riemann-Roch theorem ([SGA6] or [B-F-M; III,

§ i]) that the assertion is true when X is non-singular.

It follows from the lemma in § 3.2 that K°X===lim K°Y where the limit is over

all f : X->Y, Y non-singular. Thus the general case follows from the non-singular case.

Corollary. — There is a natural (contravariant) isomorphism A'Xq^Gr'Xq of graded

rings obtained by filtering K°X by the ^-filtration [SGA 6].

Proof. — If X is non-singular, the mapping is the composite

A-XQ—^Gr^XQ^-Gr-XQ
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where Gr^pX is the graded ring obtained from the topological filtration of K°X

(cf. [SGA 6; VII, 4.11]). Since Chern classes correspond in this isomorphism, we may

pass to the limit (for general X, and /: X->Y) to get a homomorphism A'XQ — Gr'Xq,

so that the diagram

K°X

commutes. Since both Ghern characters cho are isomorphisms (cf. [YH. I. Manin,

Lectures on the K-fanctor in algebraic geometry, Russ. Math. Surveys, 24 (1969), p. 49]

for the second), the bottom is also an isomorphism.

Remark. — Grothendieck et al. have defined Gysin homomorphisms

/,: Gr-X^Gr-YQ

for proper complete intersection morphisms y:X-^Y [SGA 6]. So there are corre-

sponding Gysin homomorphisms A'XQ-^A'YQ. It is not clear how to define these

maps without rational coefficients; even if/is a smooth morphism the definition ofA*

given here is not amenable to pushing forward.

4. A Gysin Map; Specialization.

In § 4.1-4.3 we remain in the category of quasi-projective schemes over a field.

4 •i. Rational Equivalence Specializes.

Let f : X->C be a flat morphism from a scheme X to a non-singular curve C.

Let t be a closed point in G, and let X^/"1^) be the scheme-theoretic fibre, i : X^—X

the inclusion. We will define a (< Gysin homomorphism " (1)

i - : A,X^A,,,X,.

The map V : ̂ X -> ̂ ^X, has already been defined (§ 1.7): i*[V]==o if

VcX^, i*[V]===[V^] otherwise. Note that we may replace G by an open neighborhood

of{^}, so we may assume {t} is a principal Cartier divisor on C, so X^y"^} is principal

on X. The problem is to show that rational equivalence is preserved by i*. Since

this Gysin map is compatible with pushing forward (§ 1.7, Proposition ( i )) , we are

reduced to proving the following case.

(l) M)te added in proof. J.-L. Verdier has used this to define Gysin. homomorphisms for arbitrary complete

intersection morphisms [Seminaire Bourbaki, n° 464, Feb. 1975].
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Lemma. — Suppose X is integral, and reR(X)'11. Then z*[div(r)] is rationally equivalent

to ^ero on X^.

Proof. — As in the remark in § i. 8, we may assume r is a morphism from X to P1.

Then (/, r) is a morphism from X to GxP1. If (/, r) were not dominant, [div(r)] would

lie in a finite number of fibres of/, and then z*[div(r)]===o. So we may assume (/, r)

is dominant. As in [B-F-M; II, § 2.5], we may find proper, birational maps

p : V->GxP1, ^ : X'->X,

where V is non-singular, and a flat morphism F : X'-^V so that the diagram

X' V

X
(Ar)

GxP1

is commutative. Since we may replace X by X', we may assume (/, r) factors into

X-^V-^GxP1, where F is flat.

Let E=p"~ l({^}xP l), and let Co and C^ be the non-singular curves on V that

map isomorphically by p to Gx{o} and Gx{oo}. E consists of a connected collection

of non-singular rational curves intersecting transversally. Blowing up more points if

necessary, we may assume Go and G^ meet E transversally at points VQ, v^ ofV.

For any curve D on V, let X^ be the fibre over D, [Xp] the corresponding Weil

divisor. Then [div(r)]=[X^]—[XcJ plus components that lie in fibres of/. So
the lemma reduces to showing that ^[XcJ^*[Xc ] in ^.X^.

Let D be a smooth curve on V which intersects E transversally in a simple point v;

let L be the irreducible component of E which contains y, and let F^ : XL->L be the

morphism induced by F. We claim that ^[XI)]=F^|>] in ^.X^. Since XD=F*[D],

this follows from Proposition (2) of§ 1.7; note that [D] pulls back to [v] on LcE.
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To finish the proof we must show that all the cycles F^[y], yeLcE are rationally

equivalent. This is clear for fixed L as v varies in L, since L^P1. Since E is connected,

we need only show that in case v is the point of transversal intersection of two components L^

and 1,2 ofE, then F^[y] = F^[y]. The argument for this is the same as in the preceding
paragraph.

4.9. Properties of the Gysin Map.

This shows that the Gysin map

z* : A.X->A.X,

is well-defined on the Chow groups. From the Proposition in § i. 7 it follows that if

X and Y are flat over C, and g : X->Y is proper, then the Gysin maps commute with

pushing forward. To call ;* a Gysin map, one should check that it is compatible with
the cohomology map i* : A'X-^A'X^.

Proposition. — The diagram

A-X®A.X -̂ > A.X

»*®i*

A-X^A.X, -̂ > A.X,

commutes.

Proof. — We must show if g : X->Y, Y non-singular, A-eA.X, jeA'Y, then

Z*(A:^J/) ==i*x9g^jy. By looking at the components of A:, we may assume x== [X], X integral;

and we may move y so all the intersections are proper. Then

i^x ̂ y} = [XJ •, {x ̂ y) == [X, •, x] ̂ y = i^x •,,y

as in § 2.2, Lemma (i).

4.3. Products.

If X and Y are schemes, there is a K-iinneth map ^X®^Y-> .S^(XxY)

which takes [V]®[W] to [VxW] for V, W irreducible subvarieties of X, Y respectively.

This is covariant for proper maps, and passes to the Chow groups, giving a Ktinneth map

A.X®A.Y-^A.(XxY).

Proposition. — If Y = A^ is of fine space^ then

A.X0A.Y->A.(XxY)

is an isomorphism for all X.
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Proof. — We may assume n==i. The surjectivity of the mapping follows by

induction on the dimension ofX, using the exact sequence of § 1.9 (cf. [AC; 4, § 4]).

The injectivity follows from the fact that if i{x)==(x^ o), then

i'{xx[Y])==x for all xeA.X.

This also proves the following fact:

Corollary. — If C is a non-singular rational curve, and ^ : X -> X X C is the imbedding

x->(x, t), then the Gysin maps i^: A.(Xx C) ->- A.X are the same for all k-rational points teC.

4.4. Specialization.

The existence of the Gysin map leads easily to a specialization map (cf. [SGA 6;

X, 7J). In this paragraph all rings and schemes are noetherian and excellent.

Let R be a discrete valuation ring with residue field R/m==A;, and quotient field K.

Let X be a scheme which is flat and quasi-projective over R, and write Xg:=X0RK

and X^==X®RA for the generic and special fibres, i : X^-^X, j : X^->X the inclusions.

From §1.9 we have the exact sequence

Ap+i^fc —L> ̂ p+i^ —> ApX^ —> o.

We remark first that the argument of § 4.2 extends to the case where C=Spec R,

and GXP^PR and V are regarded as arithmetic surfaces. (Note that a suitable V

for the specialization lemma may be constructed by successively blowing up ^-rational

points, and that only A-rational points need be considered in the proof of the lemma).

Thus we obtain a Gysin map

Ap+iX —> A^X^.

Since i%==o (even on the cycle level), we conclude that there is a unique map

(T==(7x : A^XK-^A^X^

the specialization homomorphism, such that the diagram

^APXK

Ap+iX

-A,X,

commutes.
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Proposition. — (i) Let f : X->Y be a proper morphism of flat quasi-projective R-schemes.

Then the diagram

A.X
fe*

••^K AY,• • ^ K

A.X,
^

A.Y,

commutes.

(2) 7y /: X->Y ^ <z^(^ morphism of flat quasi-projective V^schemeSy then the diagram

A.Y• ^ K A X.^K

A.Y
n

. ^fc A X••^fc

commutes, where the horizontal maps are the Gysin maps of § 1.9.

Proof. — These follow from the proposition in § 1.7.

If R is henselian (say complete), let K (resp. A) be the algebraic closure of K

(resp. A). One may pass to the limit over all finite extensions R' o f R i n K (using the

Gysin maps A.X->A.X^ for the flat morphism XR,->X) and arrive at a specialization
homomorphism

A.X^-^A.X^

of geometric fibres.

As explained by Grothendieck [SGA6; X, 7.13-7.16], the existence of these

specialization maps implies that if X is proper over C = Spec R, with regular fibres,
there is a commutative diagram

A-XK ̂  H^X^Z^))

A% -^ H^X,,^-))
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which passes to the limit to give

A-XK -^ H^XK^))

A-X, -^ HP^Z^))

Here ^=t=char/;, and H2^ , Z^')) is the ^-adic cohomology.

5. Natural Transformations.

In this section we work in the category of projective varieties over a field. Let

H.X==A.XQ==A.X®Q,. Regard H. as a covariant functor from projective varieties to

abelian groups. We thank A. Landman for the proof of the following proposition.

Proposition. — Let a : H.-̂ H. be a natural transformation of functors. If for each

projective space P^ n=o, i, 2, ...

a [P^ == [P"] + terms of degree =t= n

then a is the identity.

Proof. — Let (3= a—I, where I is the identity transformation. It suffices to

show (B [X] == o for all varieties X, since H. X is generated by [V] for V a subvariety

of X, and we can apply naturality to the inclusion of V in X.

We claim first that (B [P^ = o. For suppose the coefficient of [H] in (B [P
71

] were

non-zero, where H is a A-plane in P"; k =)= n by hypothesis. Choose a morphism /: P" -> P'1

such that /[P^^^E?^ /[H]==^[HL an(! d^e. Such a morphism can be obtained

by composing the Veronese imbedding by a projection. Then apply naturality to/to

get a contradiction.

Now given an ^-dimensional variety X, choose a separable finite morphism

/: X-^P". Since it is enough to show p[X']=o for any X" for which there is a finite

morphism from X' to X (apply naturality to this morphism), we may assume /: X-^P^

is a Galois (branched) covering, with Galois group G, and X is normal.

By naturality with respect to the automorphisms in G, (B[X] must belong to the

fixed part H.X0 of H.X. Finally, applying naturality to the morphism f-.X-^V

it is enough to check that/, maps H. X° isomorphically to H.P^ since we know (3 [P^ == o.

And this follows easily from the identity

/7^= Sg,c
geG

for a cycle c on X. This identity can be seen by applying/ to both sides and using

the projection formula to count the number of times cycles must occur on both sides.
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Remark. — If X is a complex projective variety, then there is a homomorphism

^X-^H.(X;Z)

which assigns to each subvariety V of X its homology class c[V] (say by triangulation

or resolution of singularities). This is a natural transformation of covariant functors.

If r : X->P1 is a morphism, then ^[div(r)]==o in H.(X$ Z), so c induces a natural

transformation

A. -^ H.( ; Z)

from complex projective varieties to abelian groups.

The proof of the proposition extends to this case to show that c gives the only

natural transformation from A.Q==A.®<^ to H.( ; QJ which takes [P"] to [?"]+lower

terms for each projective space P^ In the last step of the proof it is necessary to know

that if X/G=Pn, then H.(X; QJ^HHP"; QJ. This follows by suitably triangulating

the map from X to Pn [B. Giesecke, Simpliziale Zerlegung abzahlbarer analytischer

Raume, Math. ^eit., 83 (1964), 177-213, Satz 7].
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