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M. Oaksford and N. Chater (O&C; 1994) presented the first quantitative model of P. C. Wason's 

( 1966, 1968) selection task in .which performance is rational. J. St B T Evans and D. E. Over (1996) 

reply that O&C's account is normatively incorrect and cannot model K. N. Kirby's (1994b) or P. 

Pollard and J. St B T Evans's (1983) data. It is argued that an equivalent measure satisfies their 

normative concerns and that a modification of O&C's model accounts for their empirical concerns. 

D. Laming (1996) argues that O&C made unjustifiable psychological assumptions and that a "cor- 

rect" Bayesian analysis agrees with logic. It is argued that O&C's model makes normative and psy- 

chological sense and that Laming's analysis is not Bayesian. A. Almor and S. A. Sloman (1996) argue 

that O&C cannot explain their data. It is argued that Almor and Sloman's data do not bear on O&C's 

model because they alter the nature of the task. It is concluded that O&C's model remains the most 

compelling and comprehensive account of the selection task. 

Research on Wason's (1966, 1968) selection task questions 

human rationality because performance is not "logically cor- 

rect?' Recently, Oaksford and Chater (O&C; 1994) provided a 

rational analysis (Anderson, 1990, 1991 ) of  the selection task 

that appeared to vindicate human rationality. O&C argued that 

the selection task is an inductive, rather than a deductive, rea- 

soning task: Participants must assess the truth or falsity of  a 

general rule from specific instances. In particular, participants 

face a problem of optimal data selection (Lindley, 1956 ): They 

must decide which of  four cards (p, not-p, q, or not-q) is likely 

to provide the most useful data to test a conditional ru le , / fp  

then q. The "logical" solution is to select the p and the not-q 
cards. O&C argued that this solution presupposes falsification- 

ism (Popper, 1959), which argues that only data that can dis- 

confirm, not confirm, hypotheses are of  interest. In contrast, 

O&C's rational analysis uses a Bayesian approach to inductive 

confirmation (Earman, 1992; Horwich, 1982; Howson & Ur- 

bach, 1993 ) and, specifically, to optimal data selection (Lindley, 

1956; MacKay, 1992). According to this approach, people base 

card selections on expected information gain, or E( lg). 

O&C's account contrasts with previous accounts of  the selec- 

tion task in three ways (a partial exception being Kirby, 1994b ). 

First, it provides an explicit alternative to the logical view of  

rational behavior in the task. Second, O&C provide a formal 

model so that predictions are derived mathematically rather 

than by appeal to intuition. Third, O&C provide quantitative 

fits to a large range of empirical data. In this article, we reply to 

commentaries on our model by Evans and Over (E&O), Lam- 

ing, and Almor and Sloman (A&S). 
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CV4 7AL England, or to Nick Chater, Department of Experimental 
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Evans and Over  

E&O argue that our model is inadequate for two reasons. 

First, it is not normatively justified because the E(I~) measure 

has some counterintuitive properties. Second, it is descriptively 

inadequate to Kirby's (1994b) and Pollard and Evans's (1983) 

results. We respond to these points in turn and then consider 

E&O's residual arguments. 

Is Oaksford and Chater" s Theory Normatively Justified? 

E&O suggest that "even as a normative proposal, [O&C's] 

approach has serious problems" ( 1996, p. 358). For example, 

if you begin with P(H) = .25 and, after turning the card, change 

to P(H) = .75, your amount of  uncertainty is the same as be- 

fore, and hence information gain (Ig) is 0. Thus, lg seems an 

inappropriate information measure because you have learned 

something from turning the card. E&O also note that turning a 

card can lead to less certainty about whether the rule is true; 

again, turning the card intuitively provides information, al- 

though Ig is negative. This is a minor matter because expected 

information gain, E(Ig), is always nonnegative (see the 

Appendix), and O&C's calculations all concerned expected val- 

ues. Nonetheless, E&O do point out an unattractive feature of  

O&C's E(I~) measure. 

We can take E&O's insight into account by using an alterna- 

tive to the E(Ig) measure. Intuitively, E&O's point is that a 

card's informativeness depends on the magnitude of  the differ- 

ence between one's degree of belief in the rule before and after 

turning the card. If  one must revise one's belief from certainty 

that the rule is true or false to less certainty, then the card has 
still been informative. 

We can formalize this suggestion by comparing the probabil- 

ity distributions representing the new and old degrees of  belief. 

These probability distributions contain just two values: P( MD ), 

the probability that the conditional is true, and P(MI), the 

probal:ility that the antecedent and consequent are indepen- 

dent. To measure the difference between the new and the old 

distributions, we use the standard information-theoretic mea- 
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sure: the Kullback-Liebler distance, D, between new and old 

probability distributions (Kullback & Liebler, 1951; see the 

Appendix). l D is always nonnegative and is zero only when the 

two distributions are identical (i.e., turning the card has not led 

to any revision of previous beliefs). Specifically, D is positive in 

the cases E&O mention, where Ig is negative or zero. 

Taking on board E&O's point, then, we can switch from Ig 

to D to assess the informativeness of a card. Remarkably, this 

requires no change whatever to our original analysis. Although 

the new and old measures are different, their expected value is 

always the same (we prove this in the Appendix). Because we 

base all of our predictions on expected information gain, this 

means that we can switch to expected Kullback-Liebler dis- 

tance with no theoretical revision whatsoever (apart from ex- 

pository differences). In somewhat different forms, this result 

is well-known in the information-theoretic literature (e.g., see 

Cover & Thomas, 1991; MacKay, 1992). 

Is Oaksford and Chater' s Theory 

Descriptively Adequate? 

O&C's model always assumes that participants interpret the 

four cards in the selection task as a sample from a larger popu- 

lation of cards, over which the conditional rule is defined. E&O 

observe that this interpretation does not seem to apply to Kir- 

by's or Pollard and Evans's experiments, in which participants 

know there are exceptions to the rule. Consequently, they argue 

that the rule can apply only to the four cards. On this assump- 

tion, they then generate predictions from O&C's model that 

seem to conflict with the data. We make three points here. First, 

the occurrence of exceptions does not entail that an excep- 

tionless rule must apply just to the four cards. For example, in 

Kirby's experiments the rule can apply to the cards the machine 

subsequently produces. 2 Second, we have argued elsewhere that 

everyday conditional rules are not interpreted as exceptionless 

(Chater, 1993; Chater & Oaksford, 1990, 1993; Oaksford, 1993; 

Oaksford & Chater, 1991, 1992, 1993, 1995b). It is straightfor- 

ward to produce a more realistic model by incorporating an 

exception parameter. This is not the place to modify our exist- 

ing model; when this is done, however, the model's predictions 

seem to be unchanged, and the fits appear comparable to that 

of the original model. 3 Third, to derive their predictions for Pol- 

lard and Evans's experiment, E&O assume that participants es- 

timate P(p) and P(q) from the data. However, Pollard and Ev- 

ans's learning phase involved a prediction task that focuses at- 

tention on P(q I P). P(q I P) does not determine P(p) and P(q ). 
Consequently, it is reasonable to argue that participants adopt 

default rarity values for P(p) and P(q) in computing informa- 

tion gain. This would bring O&C's predictions into line with 

Pollard and Evans's data. Therefore, Pollard and Evans's results 

may not be inconsistent with O&C's model. 

Residual Arguments 

E&O make three residual points, which we briefly address. 

First, they distinguish between "'Rationality1: reasoning or act- 

ing in such a way as to achieve one's goals [and] Rationality2: 
reasoning or acting in conformity with a relevant normative sys- 

tem such as formal logic or probability theory" ( 1996, p. 357). 

They then note that "it m a y . . ,  appear that [ O&C ] have pro- 

vided a r a t i o n a l 1 . . ,  account of the problem. On reflection we 

fear that this is not so. They have in fact substituted one ra- 

tional2 analysis for another" ( 1996, p. 357). This suggests that 

rational2 analysis is not a good thing. However, because E&O 

give no argument supporting this claim, there is nothing to 

which we can reply. Also, E&O give no argument why our 

model is not a rationall account. In O&C's model, a person's 

goal is to reduce his or her uncertainty in indicative selection 

tasks and to maximize expected utility in deontic tasks. Conse- 

quently, O&C's account appears to be a rationall theory by 

E&O's own definition. 4 

Second, the title of E&O's article suggests that there is an al- 

ternative account, "epistemic utility." However, this concept is 

not defined in the article. 5 E&O state that "intuitively, people's 

subjective epistemic utility is measured by the relevance of 

some data for them given their goals" ( 1996, p. 358). Without 

an account of relevance or goals, this is uncontroversial: O&C 

and E&O agree that explaining the selection task involves spec- 

ifying people's goals and specifying what relevance means. For 

O&C, a person's goal is to reduce uncertainty, and relevance 

means expected reduction in uncertainty. E&O suggest that the 

absolute value of log-likelihood ratios could be used as a mea- 

sure of epistemic utility. However, this measure is insensitive to 

goals and, hence, is not a measure of epistemic utility by their 

criterion. 

Third, E&O state that O&C "provide no psychological theory 

to explain subjects' selection whatever" (1996, p. 356). How- 

ever, E&O do not explain what they mean by "psychological 

theory," why a psychological theory (in their sense) is a good 

thing, or why our theory is not psychological. It is therefore 

difficult to respond to this claim. Our model quantitatively fits 

data from a wide range of experiments and hence appears to be 

a psychological model of sorts. Perhaps E&O are using "psy- 

chological theory" to mean an algorithmic-level account rather 

' Note that it is not a true distance (e.g., it is not symmetrical). 
2 However, participants could interpret the rule as exceptionless but 

as applying to some set of cards not including those that have been 
shown to include errors, such as cards that the computer will print in 
the future. Intuitively, this is analogous to a person checking whether a 
machine is now working after observing a breakdown. Consequently, 
O&C's original model of Kirby's data could apply to participants' in- 
terpretation of the experimental setup. 

3 This may be unsurprising given that we have allowed ourselves the 
luxury of an extra parameter. However, the model's predictions turn out 
to be insensitive to large variations of this parameter. Consequently, its 
function is to achieve a better mapping between task and model, not to 

achieve better data fits. 
4 Discussions of the rationalt-rational2 distinction (Evans, 1993; Ev- 

ans, Over, & Manktelow, 1993) do not appear to be consistent. Evans 
( 1993 ) identified rationalityt as rationality of purpose and rationality2 
as rationality of process and claimed that "the notion of maximizing 
utility is clearly a case of rationality~" (p. 8). O&C used maximizing 
utility to explain deontic selection tasks, but E&O argue that this ac- 
count is a rational2 theory. It is also unclear why E&O imply that ra- 
tional2 explanation is a bad thing, given that according to Evans (1993), 
rationality2 explanation is often successful in psychology (he cited the 
example of learning theory). 

5 Furthermore, we could not find a formal account of epistemic uti- 
lity to compare with E(I~) in any of the references E&O cite. 
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than a rational analysis. Following Anderson (1990, 1991, 

1994), O&C assume that a complete psychological theory re- 

quires both levels of explanation but that rational analysis is 

prior to the algorithmic level (Oaksford & Chater, 1995b). 

Once a rational analysis has been specified, two questions arise: 

Are there algorithmic-level accounts that implement the ra- 

tional analysis? and If there are many such accounts, how can 

they be distinguished empirically? Regarding the first question, 
because our rational analysis involves simple mathematical re- 

lationships, we can provide many different algorithmic-level ac- 

counts. Regarding the second question, because our rational 

analysis already captures the bulk of  the empirical data, any 

implementation would capture these data. Therefore, without 

additional data, speculation at the algorithmic level seems 

premature. 

Summary 

E&O provide a valuable critique that has required us to mod- 

ify our account. First, we accommodated their objections to in- 

formation gain without theoretical revision by using expected 

Kullback-Liebler distance. Second, we suggested that modify- 

ing our model may provide a better account of  tasks in which 

participants know that there are exceptions (e.g., the tasks of 

Kirby, 1994b, and Pollard & Evans, 1983). 

Laming  

Laming (1996) argues that O&C make implausible psycho- 

logical assumptions and that a "correct" Bayesian analysis of 

the selection task makes the same predictions as the logical so- 

lution. We discuss Laming's arguments in the order they arise. 

How to Construct a Psychological Theory 

Here we address each point in Laming's Constructing Psy- 
chological Theories section, which provides an overview of 

Laming's arguments. First, Laming argues that O&C rely on 

arbitrary and psychologically implausible assumptions. O&C's 

assumptions are not arbitrary but were derived from the theory 

of  optimal data selection (Chaloner & Verdinelli, 1994; Good, 

1960; Lindley, 1956; Luttrell, 1985; MacKay, 1992) and Bayes- 

ian epistemology (Earman, 1992; Horwich, 1982; Howson & 

Urbach, 1993; Mackie, 1963). 6 What is remarkable is that 

these assumptions, derived to solve normative problems in sta- 

tistics and in epistemology, also make accurate predictions in 

the selection task. Furthermore, as we show later, each of  our 

assumptions has a psychological justification. 

Second, Laming objects to O&C's information measure 

( Shannon-Wiener information) because "to be psychologically 

meaningful, the measure of  information has to relate to the 
question put to the subjects [ italics added ]" ( 1996, p. 365 ). We 

argue that to be psychologically meaningful, an information 
measure has to relate to the question that participants think 
they have been asked. Experimenters cannot legislate for how 

people understand psychological tasks. The interpretation peo- 

ple adopt is an empirical matter that must be determined by 

fitting theoretical models to data. Because O&C's model fits the 

data and Laming's does not, it would seem that participants 

may indeed interpret the problem as one of optimal data 

selection. 

Third, Laming notes correctly that O&C use the subjective, 

rather than the "objective" interpretation of probability. He ar- 

gnes that the subjective--objective distinction is "irrelevant to the 

validity of [O&C's] theory" (Laming, 1996, p. 365). We argue, 

on the contrary, that the subjective interpretation is crucial and 

that failure to realize this leads laming to misunderstand our 

model and to propose an inappropriate alternative. On the fre- 

quentist interpretation (I_aming's objective interpretation), prob- 

abilities are limiting frequencies in a repeated experiment (e.g., 

von Mises, 1939). Accordingly, probabilities can be assigned only 

to events that are repeatable so that limiting frequencies are de- 

fined. The frequentist view underlies classical approaches to hy- 

pothesis testing (e.g., Fisher, 1922; Neyman & Pearson, 1928). 

On the subjective interpretation, probabilities are degrees of belief 

(Keynes, 1921; Ramsey, 1931 ). Accordingly, probabilities can be 

assigned to all statements, including those describing unrepeatable 

events. Consequently, the probability that, for example, Oswald 

shot Kennedy is well defined, whereas on the frequentist inter- 

pretation it is not. The subjective interpretation underlies the 

Bayesian approach (Cox, 1946; de Finetti, 1937; Good, 1960; Lin- 

dley, 1971; Ramsey, 1931; Rosenkrantz, 1981 ). 

Finally, Laming argues that our data fits are not impressive, 

assuming we set parameters arbitrarily. We show later that we 

set parameter values not arbitrarily but by reference to the lit- 

erature on Bayesian epistemology. Moreover, we show that these 

parameter values, as with our other assumptions, are psycho- 

logically plausible. We now turn to Laming's specific points. 

Optimal Data Selection and Testing 

of  Statistical Hypotheses 

The role of  Laming's Testing Statistical Hypotheses tutorial 

section seems to be twofold. First, it gives the impression that 

O&C's optimal data selection account is suspect. Second, it pro- 

vides the background for Laming's "correct" Bayesian analysis. 

We address these issues in turn. 

First, O&C's analysis is not suspect but is a straightforward 

application of  a Bayesian measure of  the information provided 

by an experiment, introduced by Lindley (1956), one of  the 

world's leading Bayesian statisticians. Lindley (1956, p. 987) 

argued that 

the measure of information [provided by an experiment] is given 
by Shannon's function [i.e., Shannon-Wiener information] . . . 
[and that] prior probability distributions are . . . basic to the 
study. It seems obvious to the author that prior distributions, 
though usually anathema to the statistician, are essential to the no- 
tion of experimental information. To take an extreme case, if the 
prior distribution is concentrated on a single parameter value [or a 

6 In our original submission to this journal, we clearly outlined the 
origins of our assumptions. However, for reasons of journal space, the 
reviewers suggested, and we agreed, that this material should be left out. 
Consequently, we welcome Laming's critique for the opportunity it 
affords us to make the origins of our assumptions explicit. 
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single hypothesis], that is if the state of nature is known, then no 
experiment can be informative. 7 

Thus, O&C simply have applied long-standing ideas from 

Bayesian statistics, S and Laming's suggestion that O&C's infor- 

mation measure is suspect misses the mark. 

Second, Laming appears to misrepresent the Bayesian ap- 

proach. He states that the use of priors is the essence of Bayesian 

statistics. However, as we discuss later, this misrepresents the 

Bayesian approach, which actually depends on the subjective 

interpretation of probability (Howson & Urbach, 1993; Lin- 

dley, 1971 ). Furthermore, Laming recommends estimating pa- 

rameters using maximum likelihood, which has no Bayesian 

justification (Lindley, 1971 ). This is particularly inappropriate 

in the selection task, in which no data are available on which to 

base such estimates. These problems lead Laming to his "cor- 

rect" Bayesian analysis, which, as we show later, is not really 

Bayesian. 

Psycholog ica l  A s s u m p t i o n s  

We now come to the core of Laming's argument: that our 

model does not apply to the selection task and that it fits the 

data only by using arbitrary and psychologically implausible as- 

sumptions. He makes six specific points to which we reply indi- 

vidually. First, however, we outline two important issues bearing 

on Laming's arguments. 

R a t i o n a l  A n a l y s i s  a n d  T a s k  In terpre ta t ion  

Laming states that the task set cannot be captured by O&C's 

model. This presupposes that the purpose of rational analysis 

is to specify what people should do given the task description; 

rational analysis has only a normative function. However, as we 

have argued (Oaksford & Chater, 1995b), the purpose of ra- 

tional analysis is to characterize the task participants think they 

have been assigned. A rational analysis must be both norma- 

tively justified and descriptively adequate. In practice, this 

means that the focus is on modeling people's actual behavior 

rather than deriving models of the experimenter's preconceived 

ideas about what the task investigates. 

The distinction between the task set as viewed by experi- 

menter and participant is familiar in the reasoning literature. 

For example, critiques of Piaget's reasoning studies (Bower, 

1974; Bryant & Trabasso, 1978; Donaldson, 1978; Harris, 

1975 ) argued that many tasks were not understood by children. 

If the tasks were presented in a more child-centered way, rea- 

soning previously absent would emerge. Another example is 

Smedslund's ( 1970; see Evans, 1993 ) observation that one can- 

not assess whether people reason logically independent of their 

task interpretation. A final example is the observation that "er- 

rors" in probabilistic reasoning may occur because the materi- 

als violate people's natural ways of representing probabilistic 

information (Birnbaum, 1983; Gigerenzer, Hell, & Blank, 

1988; Gigerenzer & Murray, 1987) so that the task participants 

tackle is not the task that the experimenter intended. 

In summary, rational analysis characterizes how participants 

both interpret and solve a problem. Consequently, Laming's 

claim that O&C do not model the task people have been as- 

signed is irrelevant because this was not their goal. 

B a y e s i a n  E p i s t e m o l o g y  a n d  R a r i t y  

Laming argues that our data fits rely on setting parameters 

arbitrarily. We now show that our rarity assumption, which de- 

termines our parameter values, is not arbitrary but derives di- 

rectly from the literature on Bayesian epistemology. 

In the quotation to follow, an influential Bayesian epistemol- 

ogist (Horwich, 1982) discusses Mackie's (1963) solution to 

one of the paradoxes of confirmation theory (Goodman, 

1983). The "ravens paradox" is that non-Bayesian confirma- 

tion theory entails that a nonblack nonraven (e.g., a pink 

flamingo) confirms the hypothesis that all ravens are black. 

The central idea of Bayesian accounts is that our background as- 
sumptions concerning the proportion of ravens and black objects 
in the universe affect the extent to which hypotheses are confirmed 
by various kinds of evidence. Suppose we believe that the propor- 
tion of things which are ravens is very small: call it x; and the pro- 
portion of black things y. Then our relevant background assump- 
tions may be represented by the following table: 

R not-R 

B xy (1 - x)y  

not-B x(1 - y) (1 - x)(1 - y) 

Thus we suppose that the subjective probability of observing a 
black raven P( BR ), is xy; and similarly, P( BnotR ) = ( l - x)y, 

P( notBR ) = x( 1 - y), and P( notBnotR ) = ( 1 - x)( 1 - y). 

Now consider the table which according to Mackie, would rep- 
resent the further supposition--All ravens are black: 

R not-R 

B x y - x  

not-B 0 1 - y 

IfH is true, there are no non black ravens. (Horwich, 1982, p. 56) 

Mackie's argument implies that although a nonblack nonraven 

"will tend to confirm 'All ravens are black" it will do so only to 

a negligible degree and will not carry as much weight as the 

observation of a black raven" (Horwich, 1982, p. 57), as long 

as x ~ 0 ( i.e., if rarity holds). Thus, contrary to Laming, O&C's 

parameters were not set simply to fit the data. O&C's goal was 

to determine whether Bayesian models that resolve conceptual 

problems in epistemology could also model human behavior. 

R e s p o n s e  to L a m i n g ' s  A r g u m e n t s  

We now take the six specific assumptions that Laming identi- 

fies and show that they are normatively justified and that they 

make psychological sense. 

7 Note that Lindley, somewhat confusingly but for sound reasons (see 
Lindley, 1956, p. 989), introduced a sign reversal. O&C followed this 
convention, which caused some confusion, as pointed out by both E&O 
and Laming. In the Appendix and elsewhere (Oaksford & Chater, 
1995a, 1995b), we adopt the standard convention of not reversing the 
sign. 

s Laming, by contrast, recommends against using Shannon's mea- 
sure and the use of prior distributions. 
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Shannon-Wiener information. Laming's criticism of O&C's 

use of  Shannon-Wiener information has several problems. First, 

as we have shown, it is standard in Bayesian optimal data selection 

(Gegxt, 1960; Lindley, 1956, 1971; MacKay, 1992). We suspect 

that Laming's objection derives from his view that optimal data 

selection does not apply to the task participants are assigned. But 

as we have already noted, O&C's goal was to model the task par- 

ticipants think they have been assigned. 

Second, Laming claims that using O&C's measure is statisti- 

cally inappropriate. He algebraically transforms our E( Ig ) mea- 

sure into his Equation 10, which measures "'the expected infor- 

mation from a single event in favor of  the communication chan- 

nel being functional (Hi and Dk related) and against the 

alternative that they are independent" (Laming~ 1996, p. 370- 

371 ). Note that Laming's Equation 10 is expected Kullback- 

Liebler distance (see our Equation A4 in the Appendix). 

Hence, Laming's analysis confirms our own. However, Laming 

argues that his interpretation using communication channels 

invalidates our model. This argument rests on the false assump- 

tion that if a formula has one interpretation, it cannot have an- 

other. Rather than invalidating our original interpretation, 

Laming has simply shown that our measure has yet another 

interpretation. 

Third, Laming objects that O&C's measure does not dis- 

criminate between hypotheses. However, it does discriminate 

between hypotheses (Fedorov, 1972, chaos. 6 and 7). Discrimi- 

nation depends on sequential sampling and recomputation of  

information gain to determine the optimal data to select next. 

This involves iteratively recomputing the priors at each stage in 

the standard Bayesian way. By selecting data using E(Ig), the 

posteriors converge on the true hypothesis using the minimum 

number of  observations. Thus, O&C's measure does discrimi- 

nate between hypotheses. Of  course, the selection task is not a 

sequential sampling task; participants never see the data, Nev- 

ertheless, Bayesian hypothesis testers should use their prior be- 

liefs to select data that will optimize discrimination between 

models in the long run. 

Laming also argues that O&C are facedwith a paradox: that 

participants must already possess the information they should 

derive from the data. The "paradox" arises because Laming 

uses a frequentist interpretation of probabilities, whereas O&C 

use a subjectivist interpretation. According to the frequentist 

interpretation, the probability of  uncovering a particular num- 

ber or letter after having turned the card m P(Dk[ H,. ) - -must  be 

either 0 or 1 (as Laming notes later ). This is because however 

many times one turns the card, it will give the same result, and 

hence the limiting frequencies can take only the value 0 (one 

never reveals the number or letter) or 1 (one always reveals the 

number or letter). However, in the selection task, participants 

do not know what is on the other side of  the card and, hence, 

cannot assign these probabilities (in the frequentist sense). But 

O&C used these probabilities in their calculations. Laming con- 

eludes that O&C's account assumes that participants must 
know what is on the back of  the card, even before they have 

turned it. 

Laming's difficulty is inevitable on his frequentist interpreta- 

tion. On the subjectivist interpretation, however, there is no 

difficulty. The P(Dk[ H,-) capture degrees of  belief about what is 

on the back of  the card, before it is turned. Because participants 

are not certain what is on the back of  the card, these probabili- 

ties will take intermediate values rather than being 0 or l, de- 

pending on prior knowledge. This approach is standard in 

Bayesian statistics (e.g., Lindley, 1971 ). It also makes psycho- 

logical sense, reflecting the psychologically reasonable assump- 

tion that prior knowledge will affect where one looks for evi- 

dence. In summary, O&C's information measure makes both 

normative and psychological sense. 

Rationality. Laming objects that our rational recommenda- 

tions do not provide a perfect fit with the experimental data 

(e.g., only 89% of participants choose the p-card, which is the 

most informative card). But requiring a perfect fit between the- 

ory and data seems entirely unreasonable and is not demanded 

of any other psychological theory. 

Laming also states that 

a rational Bayesian theory ought to look like this: Calculation 
shows that some particular card offers the greatest expected gain of 
information, and that card is the universal first choice. Depending 
on what is discovered on the underside of the card, one or other of 
the remaining cards is chosen next because it offers the greatest 
expected gain of information of those remaining. ( 1996, p. 370) 

Laming is correct that a Bayesian analysis of  the task assumes 

sequential sampling. But he is wrong to conclude that such an 

analysis is inappropriate to the selection task, in which partici- 

pants choose cards without turning them over. As mentioned 

in the previous section, it is perfectly rational to select data to 

minimize the length of  a sequential sample required to discrim- 

inate hypotheses before that sample becomes available. 

Bayesian analysis. We are unclear about Laming's argu- 

ment here. He appears to believe that, for the Bayesian, priors 

must be set from previous data, if they are not to reflect mere 

bias. Because, in the selection task, the participant sees no data, 

he or she assumes that priors cannot meaningfully be set. But 

Bayesian analysis must always begin from some priors before 

data are observed, on pain of  infinite regress. The question of  

how priors should be set to take account of  general knowledge 

• is a major issue in Bayesian statistics (Berger, 1985; Box & Tiao, 

1973; Lindley, 1971 ). Moreover, O&C have argued that people 

have a great deal of  prior knowledge about conditionals (e.g., 

that rarity almost always holds), which is taken to be relevant 
to the task. 

Characterization of the task. Here, Laming's objection 

seems to arise from his frequentist interpretation of  O&C's 

probabilities. He imagines the situation in which there are 

many vowels, some with odd and some with even numbers on 

their undersides; in this context, the probability that a randomly 

chosen vowel has an even number on the back may lie between 

0 and 1 (if one repeatedly chooses a random card with a vowel 

uppermost many times, the limiting frequency will be in pro- 

portion to the number of vowels with odd and even numbers 

on their undersides). Laming argues that O&C are implicitly 

committed to this setup if their intermediate probability values 
are to make sense. 

Because O&C's account is Bayesian, however, all probabili- 

ties are degrees of  belief, and hence no fictitious repeated exper- 

iments need be imagined to make sense of  O&C's probabilities. 

Furthermore, there is evidence that participants do interpret the 
cards as being drawn from a larger population when only con- 
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fronted with four cards (Beattie & Baron, 1988). Moreover, 

when the experimenter draws the four cards from a larger pack 

in front of  each participant before he or she performs the task 

(Evans & Lynch, 1973; Oaksford & Stenning, 1992), the results 

are the same as in the standard task. 

Laming also argues that O&C do not consider the full range 

of  possible hypotheses. O&C compare the rule with a particular 

independence model rather than a fully general "foil" model. 

This assumption was not introduced arbitrarily to fit the data. 

As the earlier quotation from Horwich reveals, Mackie used the 

same characterization of  people's background knowledge to re- 

solve the ravens paradox. Moreover, although Laming down- 

plays explaining the data, that our simple model accurately cap- 

tures the empirical results must be a virtue. Other researchers 

may propose alternative rational analyses, should these be nec- 

essary to capture further empirical data. 

Laming also objects to O&C's assumption that participants 

discriminate between two particular instances of  MD and Mx 

rather than comparing these models in the abstract. This is rea- 

sonable because the values of  a and b reflect particular degrees 

of  belief in the antecedent being true and in the consequent be- 

ing true when the antecedent is false. This assumption is psy- 

chologically innocuous. These values relate to people's degrees 

of  belief about the proportions of  various properties in their en- 

vironments. It is psychologically reasonable to assume that peo- 

ple have access to this information. This assumption also makes 

normative sense; it resolves an important paradox in the logic 

of confirmation. In summary, our choice of  models makes both 

normative and psychological sense. 

Identification of model parameters, l aming  objects that 

O&C equate parameters a and b between models. As shown in 

the quotation from Horwich, Mackie (1963) made a similar 

assumption, except that Mackie equated P(p) and P(q) be- 

tween models, whereas O&C equate P(p) (a) and P(ql not-p) 

(b). Laming's objection is unclear because he endorses our ra- 

tionale for equating these parameters, as we now show. 

Equating a between models, as Laming notes, is equivalent to 

asserting that the antecedent (p) has the same probability in each. 

As O&C argue, if, by contrast, the probability ofp were, say, higher 

in MD than in Mx, this would mean that observing p and not-p 

instances alone (without being able to see both sides of the cards) 

would discriminate between models (by the application of Bayes's 

theorem). Laming's response is puzzling: "Not true . . . .  [The 

conditional rule] says nothing about the relative frequencies of 

vowels [p cards ] and consonants [ not-p cards ]" ( t996, p. 369 ). 

This is puzzling because Laming agrees that the conditional rule 

says nothing about the frequendes of  p and not-p cards, which 

implies that it should not be possible to discriminate between 

models by observing one side of  the cards. It is this intuition that 

requires equating the parameter a between models. 

Similarly, we equated b, the probability of  q in the absence 

of p,  between models. Laming ( 1996, p. 369) argues that our 

"models are formulated the way they are in order to accommo- 

date the relatively uncommon selection of  the 'K? '" He then 

proposes alternative models in which the 2 card receives zero 

information gain rather than the K card, as in O&C. The sug- 

gestion is that O&C's decision to keep b constant between 
models was made solely to fit the data. However, O&C's as- 

sumption was constrained both psychologically and norma- 

tively. Psychologically, it reflects the finding that participants re- 

gard false antecedent instances (i.e., the not-p cases) as irrele- 

vant to the truth or falsity of  a conditional rule. This has been 

established with an independent experimental paradigm: the 

truth-table task (Evans, 1972; Evans & Newstead, 1977; John- 

son-Laird & Tagart, 1969). Furthermore, normatively, Quine 

(1959) suggested that conditional sentences do not assert a con- 

ditional but, rather, assert the consequent, q, conditional on the 

antecedent, p.  From this logical point of  view, cases in which 

the antecedent is false, not-p cases, are irrelevant to the truth 

or falsity of  a conditional rule. No such evidence or normative 

proposals exist in support of  the models Laming proposes in 

which the 2 card has zero information gain. Consequently, 

Laming's alternative model is irrelevant. 

The rarity assumption. Laming objects to the rarity as- 

sumption, that P(p) and P(q) are low. He suggests that the rar- 

ity assumption has a bizarre consequence in the standard selec- 

tion task. If  the antecedent and consequent of  the rule I f  there is 

a vowel on one side of  the card there is an even number on the 

other are rare, then most cards must have consonants on one 

side and odd numbers on the other. However, the rarity assump- 

tion again makes perfect normative and psychological sense. 

Normatively, the quotation from Horwich reveals that the 

rarity assumption is critical to Mackie's resolution of  the ravens 

paradox. Moreover, Horwich's (1982) own analysis of  this par- 

adox assumes that P(not-p & not-q) ~ 1. Consequently, the 

assumption that Laming appears to find bizarre is precisely the 

one that allows Bayesian confirmation theory to avoid paradox. 

Again, we based our assumptions on Bayesian epistemology and 

did not introduce them simply to fit the data. What is remark- 

able is that an assumption derived for this normative purpose 

should prove so valuable in modeling empirical data. 

Psychologically, O&C argued that people's everyday encoun- 

ters with conditionals influence their behavior in the selection 

task and that, in everyday contexts, rarity almost invariably 

holds. Thus, everyday strategies for hypothesis testing may be 

adapted to an environment where rarity is the norm. Moreover, 

O&C assumed that these default strategies are a major influence 

on behavior, even when participants do not know whether rarity 

holds. O&C ( 1994, pp. 627-628) provided two lines of  experi- 

mental support for this claim: that explaining results on Wa- 

son's (1960) 2-4-6 task (Klayman & Ha, 1987) and causal rea- 

soning (Anderson, 1990) both require rarity. More generally, 

we have argued extensively that people transfer their reasoning 

strategies from the everyday world to the laboratory (Chater & 

Oaksford, 1990, 1993; Oaksford & Chater, 1991, 1992, 1995a, 

1995b). In summary, contrary to Laming, the rarity assump- 

tion is normatively and psychologically reasonable, a 

Data Coverage 

Laming then argues that 

all these assumptions [in O&C's rational analysis] are invoked to 
match merely the rank order of the frequencies with which the 

9 Klayman and Ha's minority phenomena assumption is somewhat 
less restrictive than our rarity assumption, specifying only that proba- 
bilities are less than one half. 
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different cards are selected for inspection [ in the standard selection 
task ] . . . .  Moreover, if that rank order had been other than it is, it 
would simply have dictated different parameter values and as- 
sumptions. For that reason there is no need to examine O&C's 
treatment beyond the basic experimental paradigm. (1996, p. 
371). 

Laming's argument is wrong in two respects. First, O&C's pa- 

rameters are not set arbitrarily. Consequently, according to his 

own reasoning, he must consider the other data that O&C ex- 

plain. Second, even ifO&C's parameters were set to explain the 

rank order in the standard task, then the other data would pro- 

vide a test of  O&C's model. 
O&C have shown good fits with data from most of  the studies 

reported on the selection task since Wason's ( 1966, 1968) orig- 

inal papers. For example, O&C's model captures the associa- 

tions between card selections observed in abstract selection 

tasks (Pollard, 1985), data from the reduced array selection 

task (Johnson-Laird & Wason, 1970), the negations paradigm 

(e.g., Evans & Lynch, 1973; Manktelow & Evans, 1979), tasks 

with "fictional" outcomes (Kirby, 1994b), therapy experiments 

(Wason, 1969; Wason & Johnson-Laird, 1970), and a range of  

thematic selection tasks results (e.g., Clieng & Holyoak, 1985; 

Cosmides, 1989; Gigerenzer & Hug, 1992; Manktelow & Over; 

1991 ). These studies do not represent a homogeneous set con- 

sisting of  many near replications. On the contrary, they show 

that varying the nature of  the task produces radically different 

results. O&C's rational analysis explains this variation. Further- 

more, no other account of  the selection task attempts this 

breadth of data coverage. We now turn to the second part of  

Laming's argument, that a "correct" Bayesian analysis con- 

firms the standard logical solution. 

Laming's "Correct" Bayesian Analysis 

Laming provides a "correct" Bayesian analysis of  the selec- 

tion task. He assumes that the conditional probability of  an odd 

or even number on the back of, say, the A card must be one or 

zero, depending on whether the underside actually is odd or 

even. For Laming, that participants do not know whether the 

underside of  the card is odd or even is not grounds for some 

intermediate probability because he does not interpret proba- 

bilities as degrees of  belief. Laming argues that participants 
should turn only the A and 7 cards in the standard task, in line 

with the standard logical account. 

Laming's "correct" Bayesian analysis is mathematically cor- 

rect, but it is not Bayesian because it begins by rejecting the 

fundamental principle o f  Bayesian statistics, that probabilities 

are degrees of  belief. Laming states that "the essence of  Bayes- 

ian analysis is the inclusion of  the priors, not that they be sub- 

jective" ( 1996, p. 366). This is a common misunderstanding 

against which Bayesians often warn (e.g., Howson & Urbach, 

1993; Lindley, 1971 ). Comparing the Bayesian approach with 

the frequentist view, Howson and Urbach ( 1993, p. 11 ) stated 
that, 

methodology based on this idea is usually referred to as the meth- 
odology of Bayesianism. 

Laming confuses the use of  Bayes's theorem (an uncontrover- 

sial theorem of probability theory) and Bayesian statistics (a 

vigorous, although controversial, approach to statistical 

inference). 

In summary, Laming's "correct" Bayesian account poses no 

problems for O&C's rational analysis. Laming grants that his 

account does not fit the empirical data; for Laming, partici- 

pants' behavior is simply not rational. However, O&C's rational 

analysis shows that behavior can be viewed as rational. It does 

not, and could not, show that behavior is rational on any defen- 

sible view of  rationality. Therefore, the fact that Laming's non- 

Bayesian account gives different prescriptions is irrelevant. 

Summary 

Laming misrepresents O&C's rational analysis because he is 

concerned with the task set rather than the task that participants 

think they have been assigned and because he misinterprets the 

statistical basis of  our theory. Rational analysis must be norma- 

tively justified and descriptively adequate. O&C's account is 

normatively justified because it is based on Bayesian optimal 

data selection. It is descriptively adequate because it provides 

fits to a wide range of  data without setting parameters 

arbitrarily. 

A l m o r  and  Sloman 

A&S argue that O&C's model cannot account for data in 

cases in which p and not-q card responses are elicited without 

using deontic materials. A&S use four rules that they claim are 

not deontic and for which it is not clear whether O&C's rarity 

assumption holds. However, the logical p and not-q card re- 

sponse predominates for these rules. A&S conclude that O&C 

cannot explain these data. Moreover, they argue that their re- 

suits are not compatible with any theory that uses the distinc- 

tion between deontic and indicative tasks to explain so-called 

"facilitation" effects (i,e., choosing the p and not-q cards ).~° 
A&S raise the important issue of  how to explain p and not-q 

responses in n_ondeontic selection tasks. Such results threaten 

any theory that rules out p and not-q responding for nondeontic 

tasks. They are less threatening to O&C's model because it also 

allows p and not-q responses when the materials violate rarity. 

However, as A&S argue, it is unclear whether their materials do 

violate rarity. 

There have been other demonstrations of  p and not-q re- 

sponses in abstract tasks without violating rarity (Green, 1995; 

Green & Larking, 1995; Platt& Griggs, 1993, 1995). However, 

they are problematic only on a strong interpretation of  O&C's 

claim that violating rarity is not only sufficient but also neces- 

sary for thep and not-q response. Although A&S and these other 

experiments suggest that rarity violation may not be a necessary 

the other strand of inductive probability treats the probabilities as 
a property of our attitude toward them; such probabilities are then 
interpreted, roughly speaking, as measuring degrees of belief. This 
is called the subjectivist or personalist interpretation. The scientific 

~o Note that ifO&C are right, the view underlying this terminologym 
that participants' performance is facilitated from an initially irrational 
baselineois wrong (see also Manktelow & Over, 1987). A&S are care- 
ful to avoid this misleading terminology. 
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condition for the p and not-q response, they do not  question 

that rarity violation is a sufficient condition. Moreover, there is 

evidence that rarity violation is indeed sufficient for the p and 

not-q response (Kirby, 1994a, 1994b; Oaksford & Chater, 

1995a; Sperber, Cara, & Girotto, 1995). Consequently, induc- 

ing high p, not-q selections without violating rarity is consistent 

with O&C's account. 

However, we argue that A&S obtain high p, not-q selections 

only by altering the task. A&S's materials are either analytic 

(i.e., true by definition),  and so O&C's model does not  apply, 

or deontic, and so O&C's max imum expected utility model ap- 

plies. We first compare A&S's experiments with other studies 

revealing the p and not-q response in the abstract task. 

The p and not-q Response in the Abstract Task 

Other exper iments  revealing high 17, not-q selections have 

used manipu la t ions  to force a logical in terpre ta t ion  of  the 

rule (Green,  1995; Green  & Larking, 1995; Plat t  & Griggs, 

1993, 1995). For example,  Plat t  and Griggs (1995, p. 60) 

explicitly provided the logical interpretat ion,  tel l ing partici-  

pants  that  "a  card with an A on its letter side can only have a 

4 on its n u m b e r  side, bu t  a card with a B on its letter side 

can have either a 4 or 5 on its n u m b e r  s ide"  They also told 

par t ic ipants  to look for cards that  violated this rule. ~ Green  

(1995)  first told par t ic ipants  to imagine  and  write down all 

of  the different possible combina t ions  of  letters and number s  

for each card. Par t ic ipants  then had to imagine  which com- 

b ina t ions  could violate the rule. Finally, they were asked to 

indicate which cards had such a combina t ion .  With  this 

a m o u n t  of  coercion, observing high p, not-q selections is no t  

surprising. What  is more  surpris ing is how few par t ic ipants  

gave the p and not-q response. In  most  of  Green ' s  (1995)  ex- 

periments ,  in the full external izat ion condi t ion  (ou t l ined  

earlier) more than  50% of  par t ic ipants  still did no t  make the 

p and  not-q response. Plat t  and Griggs (1993, 1995) and  

Green  and Larking (1995)  ob ta ined  similar  results. It seems 

that  par t ic ipants '  na tura l  reasoning strategies are very resis- 

tant  even to these quite extreme a t tempts  to force a logical 

in terpre ta t ion in  the abstract  selection task.~2 

A&S's exper iments  contrast  with these studies because 

A&S do not  use any addi t ional  ins t ruc t ions  to force a logical 

interpretat ion,  bu t  they achieve similar-sized effects. There- 

fore, A&S's manipu la t ions  are of  more  theoretical  interest.  

Deontic and Analytic Rules 

We argue that A&S's rules are either deontic or analytic. ~3 

However, even in their "abstract" experiment, A&S cue partic- 

ipants into realistic settings that have plausible deontic inter- 

pretations. Consequently, we could argue that our max imum 

expected utility account of  the deontic selection task explains 

all of  A&S's results. Our  model predicts the p and not-q re- 

sponse for obligation rules and an enforcer's perspective that 

could reasonably characterize A&S's materials. However, as we 

noted earlier, we believe that the analytic nature  of  two of  A&S's 

rules affects their results. 

One  can compare standard rules with each of  A&S's rules by 

asking what the reaction would be to a counterexample.  Con- 

sider two standard rules: 

1. IfA on one side then 2 on the other. 
A3 implies that the rule is false. 

2. If it's a raven then it's black. 
White raven implies that the rule is false. 

Rule 1 is a standard selection task rule. As does Rule 2, it rep- 

resents a claim about  the way the world is. The reaction to the 

counterexample,  A3, is that the rule is false. ~4 Compare this 

with the reaction to a p ,  not-q instance of A&S's rules: 

3. lfa large object is stored then a large container must be used. 
Large object in a small container implies a contradiction. 

4. lfthe weak force wins the strong force must have been weakened 
first. 
Weak force wins, strong force not weakened implies a 
contradiction. 

In both Rule 3 and Rule 4, the counterexamples seem to violate 

the meaning of "large object" and "strong force." For example, 

large objects require large containers; otherwise, they would not  

be large. Similarly, strong forces overcome weak forces; other- 

wise, they would not  be strong. This contrasts with the indica- 

tive rules in Rules I and 2. 

Another  test is to append "It  must  be the case that" to Rules 

1-4. Although this results in true sentences for Rules 3 and 4, it 

is nonsense for Rule 2 (i.e., it is simply not  true that "It  must  be 

11 AS Platt and Griggs (1995) observed, the use of much modal ter- 
minology ( i.e., "can" and "can only") and the violation instruction may 
well have induced a deontic context that produced the facilitation. 

12 Two of the studies just discussed, Green (1995) and Platt and 
Griggs ( 1995 ), claim to show that probabilistic manipulations fail to 
have the effects predicted either by Kirby (1994b) or by O&C (1994). 
However, in both cases the experimenters embedded the probabilistic 
manipulation in other manipulations, which we have outlined, designed 
to force a logical interpretation of the rule. Consequently, how these 
data bear on our model is obscure; other factors so confound the data as 
to make them uninterpretable. Moreover, as Platt and Griggs (1995) 
conceded, they cannot be sure that participants' subjective probabilities 
were appropriately calibrated to the letter and number frequencies used 
in these experiments. This is especially true because they made no dis- 
tinction between type and token frequencies, which O&C (1994) ar- 
gued may be an important factor. Green (1995) and Platt and Griggs 
(1995) assumed that what matters in terms of people's everyday hy- 
pothesis testing is that there are 5 vowelsand 21 consonants (i.e., the 
frequencies of letter types). However, as O&C (1994) argued, it is more 
likely that people's prior experience with particular letter and number 
tokens provides the priors they use in optimal data selection. 

13 All of A&S's rules also use the modal "must" in the consequent. In 
contrast, the rules used in other studies eliciting p and not-q responses 
were explications of standard abstract rules. However, A&S used this 
modal in all of the rules in their experiments, so this is unlikely to be a 
factor. 

14 However, participants may not interpret the occurrence of a falsi- 
fying instance, A3, immediately as meaning that the rule is false, as 
A&S's Rule 9 reveals. It makes s~nse to seek evidence for the truth or 
falsity of this generalization; however, observing a white raven would 
not necessarily lead one to reject Rule 9 as a very useful rule. As we 
have argued (Oaksford&Chater, 1991, 1992, 1993, 1995b), most of the 
rules that make up people's world knowledge admit some exceptions. 
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the case that if  it 's a raven then it 's black" and similarly for Rule 

1 ). Rules I and 2 make contingent claims about how the world 

might be. Rules 3 and 4, in contrast, make definitional or ana- 

lytic claims about how the world must be for these terms to 

apply. Analyticity matters for O&C's account because it is about 

how people optimally select data to determine the truth of  a 

rule. But when a rule is analytically t r ue - -P (MD)  = l - - t he re  

is no uncertainty, and so no data (no card selections) can re- 

duce it. Consequently, optimal data selection does not apply to 

analytic materials in our model. It is therefore not surprising 

that A&S's results differed from results in standard selection 

tasks. No current theory of  the selection task makes predictions 

when the conditional rule is analytic. Consequently, A&S's ex- 

periments require a novel theoretical analysis from any point of  

view. A&S's remaining rules have a different interpretation: 

5. Ifa product gets a prestigious prize then it must have a distinc- 
tive quality. 
Winning prize has no distinctive quality implies that the rule is 
still in force. 

6. If the product breaks then it must have been used under abnor- 
mal conditions. 
Product breaks under normal conditions implies that the rule is 
still in force. 

We argue that A&S's contexts encourage participants to un- 

derstand Rules 5 and 6 deontically. For example, in Rule 5, par- 

ticipants adopt the perspective of  a journalist investigating 

prize-winning products. The criterion for winning the prize 

(having a distinctive quality) defines a norm (i.e., which prod- 

ucts ought to win prizes). The rule is deontic. Specifically, the 

journalist is interested in whether these norms really determine 

which products win prizes (rather than, for example,  prizes be- 

ing awarded by corrupt means).  

A final test is to append "It  should be the case that" to Rules 

2-6.  Although this makes sense for Rules 5 and 6, it is nonsense 

for Rule 2 (i.e., "It  should be the case that if  it 's a raven then it 's 

black").  It is equally nonsensical for Rules 3 and 4 (e.g., it is 

not that one should store large objects in large containers; rather, 

one must store large objects in large containers). Given the 

deontic interpretation of Rules 5 and 6, we can explain these 

data using our maximum expected utility model. 

All of  the rules that A&S use differ from the rules normally 

used in the abstract selection task. For A&S's rules, it does not 

make sense to collect information to determine whether they 

are true or false. Therefore, O&C's optimal data selection 

model could not apply to any of  them and, hence, is not chal- 

lenged by A&S's results. 

Conc lus ion  

E&O and Laming have given us the chance to elaborate the 

theoretical foundations and empirical consequences of  our ac- 

count. Our measure, to which E&O and Laming object for 

different reasons, is standard in Bayesian optimal data selection 

and can be reinterpreted to meet E&O's concerns. Further- 

more, the assumptions to which Laming objects make sound 

normative sense, being derived from Bayesian epistemology. 

Our model also makes sound psychological sense, both because 

its assumptions are psychologically reasonable and because it is 

consistent with further data that E&O believe to be problem- 

atic. Furthermore, A&S's data showing that analytic rules also 

elicit high p, not-q selections do not question that our model 

provides a sufficient condition for the p and not-q response in 

the abstract task. Nor do they question the theoretical distinc- 

tion many researchers in this area have drawn between abstract 

and deontic tasks. In summary, E&O, Laming, and A&S do not 

provide grounds to question the view that our model provides 

the most compelling and comprehensive explanation of  the se- 

lection task currently available. 
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A p p e n d i x  

Proof of the Equivalence of Expected Information Gain and Expected Kullback-Liebler Distance 

Consider hypotheses, h, and data, d. The uncertainty associated with 

h before the data are collected is 

-log2[P(h)]. (AI)  

This is sometimes known as the surprisal ofh.  The uncertainty associ- 

ated with h after the data are collected is 

-log2[P(h I d)] (A2) 

(i.e., the same as Equation A1 but with the appropriate revision of the 

probability). Information gain, Is, is therefore 

-log2[ P(h) ] - { -log~[ P( h I d) ] } 

= log2[P(hld)] - Iog2[P(h)]. (A3) 

We are interested in the expectation of this quantity with respect to the 

joint distribution of h and d. Expected information gain, E(Is), is 

f ,  [P(hld)]] 
E(Is) = h,a{ l o g 2 [ P ( h i d ) ]  - l o g ~ ( P ( h ) ] }  = l,og [ e--rff-jj 

[ P(hld)1 
= ~, P (h ,d ) l og2 l  D'-'~;~-~ I .  (A4 )  

h,d L , I , , * )  j 

The calculations in Equation A4 simply write out the expectation 

explicitly. 
Now we turn to our new approach, which is based on the difference 

between new and old distributions. The Kullback-Liebler distance 

from a distribution P'(x) and a distribution P(x) i s  

, [P'(Xk)] (A5) 
D(P',P) = ~, P (Xk)lOg2 P(Xk) " 

k 

The distribution of interest here is the distribution of belief in the avail- 

able hypotheses, h. The new distribution is given by the P(hl d) values 
that take the data into account; the old distribution is given by the P(h) 

values. Applying Equation A5, the Kullback-Liebler distance from the 

new to the old distribution is 

[ P(hld)] 
D(P"~,P°td) = ~ P(hl d)log2L'-~'-~ j .  (A6) 

We are already summing over hypotheses, so we need take expectations 
only over data (taking expectations over the joint distribution ofh  and 

d produces the same result). The expected value o lD,  E(D), is given 

by 

etD)= { h 1 [P(hld)'[~ 
L jl 

I P(hld) = ~ap(d)~hP(hid)og 2 = ] =  • P(hld) 

Because all of the calculations in O&C (1994) involve E(Is), we can 
adopt E(D) without altering any substantive aspect of the original anal- 
ysis. Furthermore, D has none of the counterintuitive properties that 

E&O point out for I s. Specifically, Kullback-Liebler distance is non- 
negative, unlike information gain, which may be l~sitive or negative. 

Note also that expected Kullbaek-Liebler distance is nonnegative 
( because the expectation of a nonnegative quantity is nonnegative), and 

therefore expected information gain must also be nonnegative. 
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