
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 27, Number 1, July 1992

RATIONAL FUNCTION CERTIFICATION

OF MULTISUM/INTEGRAL/"? " IDENTITIES

HERBERT S. WILF AND DORON ZEILBERGER

Abstract. The method of rational function certification for proving termi-

nating hypergeometric identities is extended from single sums or integrals to

multi-integral/sums and " q " integral/sums.

1. Introduction

Special functions have been defined by Richard Askey [As2] as "functions

that occur often enough to merit a name," while Turan [Asi, p. 47] defined
them as "useful functions." The impact of these special functions on classical

mathematics and physics can be gauged by the stature of those whose names they

bear: Bessel, Gauss, Hermite, Jacobi, Legendre, Tschebycheff, to name a few. It

turns out that most special functions are of hypergeometric type, which is to say

that they can be written as a sum in which the summand is a hypergeometric
term. Also of great interest are the so-called ^-analogs of special functions and

hypergeometric series, called ^-series. These have many applications to number
theory, combinatorics, physics, group theory [An], and other areas of science

and mathematics.

There are countless identities relating special functions (e.g., [PBM, R, An,

Asl]). In addition to their intrinsic interest, some of them imply important

properties of these special functions, which in turn sometimes imply deep the-

orems elsewhere in mathematics (e.g., [deB, Ap]). Just as important for math-

ematics are the extremely successful attempts to instill meaning and insight,

both representation-theoretic (e.g., [Mi]) and combinatorial (e.g., [Fo]), into

these identities.
The general theory of multivariate hypergeometric functions is currently a

very active field, rooted in multivariate statistics and the physics of angular

momentum. A very novel and fruitful approach is currently being pursued by

Gelfand, Kapranov, Zelevinsky (e.g., [GKZ]) and their collaborators.

We now know [ZI, WZ1] that terminating identities involving sums and

integrals of products of special functions of hypergeometric type can be proved
by a finite algorithm, viz., find recurrence or differential equations that are

satisfied by the left and the right sides of the claimed identity (they always
exist), and then compute enough initial values of the two sides to assure that

the two recurrence or differential equations have the same solution. We know
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further that for one-variable hypergeometric sums [WZ1, WZ2, Z2, Z3] and

single "hyperexponential" integrals [AZ] there are efficient algorithms for doing
this, so computers really can do the job.

Here we announce fast, efficient algorithms for such identities that involve

multiple sums and integrals of products of special functions of hypergeometric

type. We also announce the algorithmic provability of single- and multivariate
^-identities and, furthermore, that the algorithms are fast and efficient. The
proofs that are generated by these programs are extremely short, and human

beings can verify them easily.

Further we show how to extend to "explicitly-evaluable" multiple sums and

integrals the notions of rational function certification, WZ-pair, and companion
identity that were introduced in [WZ1] and [WZ2] for single sums.

The present theory applies directly only to terminating identities, by which

we mean that for any specific numerical assignment of the auxiliary parame-
ters the integral-sum is trivially évaluable. However, very often nonterminating

identities are limiting cases or "analytic continuations" of terminating ones, so
our results also bear on them.

Our method proves (or refutes) any such given conjectured identity, but hu-

mans are still needed to conjecture interesting ones.

Full details and many examples will appear elsewhere [WZ3]. Our Maple

programs are available from < zeilbergQeuclid.math. temple. edu > .

2. Hypergeometric multivariate identities

For a function F(k, y) of r discrete variables k and j continuous variables
y let Ki be the operator defined by KtF(k, y) = F(kx, ... , k¡ + l, ... , kr,y),
and let D¡ = d/dyj , for i = I, ... , r and j = I, ... , s.

Definition. A   function    F(k, y)    is   a   hypergeometric   term   if   K¡F/F

(i = 1, ... , r) and DjF/F  (j = 1, ... , s) are all rational functions of (k, y).

A sequence of special functions of hypergeometric type (in one variable) is a

sequence that is of the form P„(x) := ¿^k F(n, k)xk where F is a hypergeo-
metric term.

A typical identity in the theory of special functions involves multiple integral-

sums of products of polynomials of hypergeometric type. After a full expansion,
such an identity is of the form "left side"="right side" where both sides are

of the form ¿^k L ^"0* > n » x > y)^y- Here ^ is a hypergeometric term in the

discrete multivariables (k, n) and the continuous multivariables (x, y). It
might happen that one of the sides, say the right side, has no ¿^ 's or / 's in it,
i.e., it is already hypergeometric, in which case we speak of explicit evaluation.

Finally, we also require that our integrand/summands be holonomic. This

is certainly the case for what we call proper-hypergeometric terms, which for
purely discrete summands, look like

m n(a,»+b,-.k+c)!        k
]!(","+ v,-k + iu,)!

where the a's and u 's are specific integers, b and v are vectors of specific

integer entries, the c 's and the w 's are complex numbers that may depend
upon additional parameters, P is a polynomial in k, and £ is a vector of

parameters.
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This allows us to use the holonomic theory of [Zl]. However for pure multi-

sums, we give proofs of our results, with effective bounds, that are self-contained

and independent of the theory of holonomic functions.

3. The fundamental theorem

Let A, = K,:— 1 be the forward difference operator in k¡, and let N be the

forward shift in n : Nf(n) = f(n + 1).

Theorem 1. Let F(n, k, y) (resp. F(x, k, y)) be aproper-hypergeometric term,

or more generally, a holonomic hypergeometric term, in (k, y) and n (resp. x),

where n, k are discrete and x, y are continuous variables. Then there exist a

linear ordinary recurrence (resp. differential) operator P(N, n) (resp. P(DX , x))

with polynomial coefficients and rational functions Rx, ... , Rr,

Sx,... , Ss such that
r s

(1) P(N, n)F   (resp. P(DX, x)F) = £Akl{R¡F) + ^Dy,(SjF).
i=i j=\

For proper-hypergeometric F we give explicit a priori bounds for the order
of the operator P. By summation-integration of ( 1 ) over k, y we obtain the

following

Corollary A. If F(n, k, y) (resp. F(x, k, y)) is as above and of compact sup-

port in (k,y) for every fixed n (resp. x) then

(2) An) (resp. /(*)):= WiWy
k Jy

satisfies a linear recurrence (resp. differential) equation with polynomial coeffi-

cients

(3) P(N, n)f(n) = 0   (resp. P(DX, *)/(*) = 0).

The denominators of the rational functions R, S can be predicted for any

given F, and an upper bound for the order of the operator P can be given in

advance. Hence by assuming the operator and the rational functions in the most

general form with those denominators and with that order, the determination of

the unknown operator and rational functions quickly reduces to solving a system

of linear equations with symbolic coefficients. By [W] this reduces to solving

such a system with numerical coefficients, and that in turn reduces to solving

linear systems with integer coefficients, a problem for which fast parallelizable

algorithms exist [CC].
Using the terminology of [WZ1, WZ2] one can say that the rational functions

(R, S) certify the recurrence (resp. the differential equation) (3).

Corollary B. Any identity of the form "left side" ="right side," where both sides

have the form (2) and F is a proper-hypergeometric or holonomic-hypergeometric

term, has a two-line elementary proof, constructible by a computer and verifiable

by a human or a computer.

4. Sketch of the proof of the theorem

From the general theory of [Zl] we can find a linear partial recurrence-

differential operator T(n, N,K, Dy), independent of k, y, that annihilates
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F. For proper-hypergeometric functions we have a completely elementary proof

that also gives explicit upper bounds for the orders in N and K.  This ele-
mentary proof was obtained by extending to multisums-integrals Sister Celine

Fasenmyer's technique [Fa, R] as systematized by Verbaeten [V].

Once the operator T has been found, we write

r s

(4) T(n,N, K, Dy) = P(N, n)+Y,(Ki-l)T(N, K, D)+^DjTj(N, K, D).
;=1 j=\

It is easy to see that this is always possible. Next set

G t{n, k,y):=-r,F(«,k,y)       (i=\,...,r),

Gj(n,k, y) := -fjF(n,k, y)       (j = 1, ... , s).

Since F is hypergeometric, the G¡ and the Gj are rational multiples of

F : G,: = R¡F, Gj = SjF . Now apply (4) to F(n, k, y), remembering that
TF = 0, to get (1).   D

5. Discrete and continuous ^-analogues

The above extends to multivariate ^-hypergeometric identities. Let Qj be

the operator that acts on F by replacing y¡ by qy¡ wherever it appears. Then

we say that a function F(k, y) is a ^-hypergeometric term if for each i =

1, ... , r and j = 1, ... , s, it is true that K¡F/F and QjF/F are rational

functions of (q, qk[, ... , qkr, yx, ... , ys). There is also a natural definition

of q-proper-hypergeometric, which is given in [WZ3].

The fundamental theorem still holds, where the integration is replaced either

by Jackson's ^-integration [An] or by an ordinary contour integral, or, in the

case of a formal Laurent series, by the action of taking "constant term of."

Macdonald's ^-constant term conjectures ([Ma], see [Gu, GG] for a recent

update) for every specific root system, fall under the present heading.

6. Explicit closed-form identities:
wz-tuples and companion identities

In the case where the identity "left side"="right side" is such that the right
side does not contain any ' ¿2 ' or ' / ' signs, i.e., is of closed form, one has an

explicit identity. If the right side is nonzero one can divide through by it to get
an identity of the form

YJ¡F{n,k,y)dy=\.
k Jy

Since the summand satisfies (1), the left side, call it L(n), satisfies some linear

recurrence P(N, n)L(n) = 0, by Corollary A. Often the operator P turns

out to be the minimal order recurrence that is satisfied by the sequence that is
identically 1, viz. (N - l)L(n) = 0. If that happens then if we let G¡ := —R¡F
and Hj := —SjF we find that (1) becomes

r s

(6) AnF + Y, A¿Gi + Y, DyjHj = 0.
¿=i j=\
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We call (F, G, H) a WZ-tuple. It generalizes the idea of WZ-pair developed

in [WZ1, WZ2]. Recall that a WZ pair gave, as a bonus, a new identity, the
companion identity. Here, if we sum-integrate (6) w.r.t. all of the variables
except one, we get a new identity for each choice of that one variable, for a
total of r + s new companion identities altogether!

7. Example: The Hille-Hardy Bilinear Formula

for Laguerre Polynomials

As an example we will now show the computer proof of the Hille-Hardy

formula [R, Theorem 69, p. 212], namely,

*     ^(^(y) = J- /     „-'(1 - ,)-« exp {-£±*£}
(a+ 1)„ 27TZ 7|M|=e I     (1 - u) J

x(ç^K^((r^)m)^

Many other examples appear in [WZ3].

To this end, it is enough to prove that the right side is annihilated by the well-
known second-order differential operator annihilating the Laguerre polynomials,

both w.r.t. x and y. Of course, by symmetry, it suffices to do it only for x,

but the computer does not mind doing it for both x and y. We still need
to prove that the initial conditions match, but they are just the usual defining

generating function for the Laguerre polynomials. The computer output was as
follows.

Theorem. Let

(1 - u)-a~x exp(-(x + y)u/(l - u))(xyu/(\ -u)2)m
F(u, m, x) :-

un+lm\Y(a+ 1 +m)

and let a(x) be its contour integral w.r.t. u and sum w.r.t. m. Let Dx be

differentiation w.r.t. x. The function a(x) satisfies the differential equation

(n + (a+l- x)Dx + xD2x)a(x) = 0.

Proof. It is routinely verifiable that

(n + (a + 1 - x)Dx + xD2x)F(u ,m,x)

= Du(-uF(u, m, x)) + Am(-(m(a + m)/x)F(u, m, x))

and the result follows by integrating w.r.t.  u and summing w.r.t. m .   D

Remark. The phrase "routinely verifiable" in the above means that after carrying
out the indicated differentiation and differencing, and after dividing through by

F and clearing denominators, what will remain will be a trivially verifiable
polynomial identity.
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