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This paper presents a new approach for solving accurate approximate analytical solutions for non-
linear phenomena governed by pendulum-like differential equations. The new approach couples Tay-
lor series expansion with rational harmonic balancing. An approximate rational solution depending
on a small parameter is considered. After substituting the approximate solution into the governing
differential equation, this equation is expanded in Taylor series of the parameter prior to harmonic
balancing. The approach gives a cubic equation, which must be solved in order to obtain the value
of the small parameter. A method for transforming this cubic equation into a linear equation is pre-
sented and discussed. Using this approach, accurate approximate analytical expressions for period
and periodic solutions are obtained. We also compared the Fourier series expansions of the ana-
lytical approximate solution and the exact one. This allowed us to compare the coefficients for the
different harmonic terms in these solutions. These analytical approximations may be of interest for
those researchers working in nonlinear physical phenomena governed by pendulum-like differential
equations in fields such as classical mechanics, vibrations, acoustics, electromagnetism, electronics,
superconductivity, optics, gravitation, and others.

Key words: Nonlinear Oscillator; Rational Harmonic Balance Method; Approximate Solutions;
Nonlinear Pendulum.

1. Introduction

Nonlinear oscillations in physics, mathematics, and
engineering has been a topic to intensive research
for many years. A large variety of approximate
technologies have been developed to determine the
periodic solutions of nonlinear oscillatory systems.
The most common and most widely studied methods
of all approximation methods for nonlinear differential
equations are perturbation methods [1, 2]. Some
other techniques include variational iteration [3 – 6],
Exp-function [7], homotopy perturbation [8 – 12],
equivalent linearization [13], standard and modified
Lindstedt-Poincaré [14, 15], parameter expanding
[15 – 17], harmonic balance [1, 18, 19] methods, etc.
Surveys of the literature with numerous references,
a useful bibliography, and a review of these methods
can be found in detail in [4] and [15].

The simple pendulum oscillatory motion is
among the most investigated motions in physics
[2, 11, 19, 20 – 24] and many nonlinear phenomena in
real world are governed by pendulum-like differential
equations [21, 22]. As Lima [22] pointed out, these
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nonlinear equations arise in many fields of science and
technology, such as acoustic vibrations [2], oscilla-
tions in small molecules [21], oscillations of buildings
during earthquakes [25], post-buckling in cantilever
columns [26], optically torqued nanorods [27], Joseph-
son superconductivity junctions [21, 28], elliptic filters
for electronic devices [21], analysis of smectic C
liquid crystals [29], gravitational lensing in general
relativity [30], advanced models in field theory [31],
and others.

The method of harmonic balance is a well-
established procedure for determining analytical ap-
proximations to the solutions of differential equations,
the time domain response of which can be expressed as
Fourier series [1]. In the usual harmonic balance meth-
ods, the solution of a nonlinear system is assumed to be
of the form of a truncated Fourier series [1, 18]. Being
different from the other nonlinear analytical methods,
such as perturbation techniques, the harmonic balance
method does not depend on small parameters, such
that it can find wide application in nonlinear problems
without linearization or small perturbations. Various
generalizations of the harmonic balance method have
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been made and one of them is the rational representa-
tion proposed by Mickens [1, 32 – 34]. In this method
the approximate solution obtained approximates all of
the harmonics in the exact solution [34, 35], whereas
the usual harmonic balance techniques provide an ap-
proximation to only the lowest harmonic components.
For most cases, the application of the rational har-
monic balance method leads to very complicated sets
of algebraic equations with very complex nonlinearity
that have to be solved even for the second-order ap-
proximation. In an attempt to provide better solution
methodology a modification in this technique is pro-
posed for constructing the second-order analytical ap-
proximate solution. In this paper a modified rational
harmonic balance method is investigated in terms of
the truncation terms of the series expansion of the non-
linear differential equations. This new procedure has
been proved to be effective for various conservative
nonlinear oscillations with odd nonlinearities [36, 37]
and now it is proposed for constructing approximate
analytical periodic solutions for nonlinear phenomena
governed by pendulum-like differential equations.

2. Solution Procedure

The dimensionless nonlinear differential equation
for the free, undamped simple pendulum is

d2x
dt2 + sinx = 0 (1)

with the initial conditions

x(0) = A and
dx
dt

(0) = 0. (2)

The periodic solution x(t) of (1) and the period de-
pend on the amplitude A. In the small-angle regime,
the approximation sinx ≈ x works, yielding the usual
linearization for (1), as given by

d2x
dt2 + x = 0. (3)

For the initial conditions given in (2), the solution
of this problem is the well-known expression x(t) =
Acost and in this regime the motion is harmonic with
a dimensionless frequency ω = 1 and a period T = 2π .
Beyond this regime, (1) can be numerically solved but
we are interested in analytical approximations.

There exists no small parameter in (1), so the stan-
dard perturbation methods cannot be applied directly.

Due to the fact that the rational harmonic balance
method (RHBM) requires neither a small parameter
nor a linear term in a differential equation [1], one
possibility to approximately solve (1) is by means of
this method. The main purpose of this paper is to con-
struct an analytical approximation to the solution of (1)
using a modified RHBM introduced by Beléndez et
al. [36, 37] and which has been applied for truly con-
servative nonlinear oscillators with good results. To
solve (1) by the modified RHBM, a new independent
variable τ = ω t is introduced. Then (1) and (2) can be
rewritten as

ω2 d2x(τ)
dτ2 + sin(x(τ)) = 0, (4)

x(0) = A,
dx
dτ

(0) = 0. (5)

The new independent variable is chosen in such a way
that the solution of (4) is a periodic function of τ of pe-
riod 2π . The corresponding frequency of the nonlinear
oscillator is ω and it is a function of the amplitude A.

In order to determine an improved approximation
we use a rational form given by the following expres-
sion [1]:

x2(τ) =
A1 cosτ

1 + B2 cos2τ
. (6)

In this equation it is satisfied that |B2| � 1, and
A1 and B2 are constants, one of which can be de-
termined from the initial conditions expressed in (5),
which yield A1 = A(1 + B2), i. e.,

x2(τ) =
(1 + B2)Acosτ
1 + B2 cos2τ

, (7)

whose substitution into (4) yields

−ω2 A(1 + B2)cosτ
1 + B2 cos2τ

+ ω2 4AB2(1 + B2)cos3τ
(1 + B2 cos2τ)2

+ ω2 8AB2
2(1 + B2)cosτ sin2 2τ
(1 + B2 cos2τ)3

+ sin
(

A(1 + B2)cosτ
1 + B2 cos2τ

)
≈ 0,

(8)

which can be written as follows:

F(A,B2,ω ,τ) = 0. (9)

As |B2| � 1 we can do the following Taylor series ex-
pansion:

F(A,B2,ω ,τ) ≈ F0(A,ω ,τ)+ F1(A,ω ,τ)B2

+ F2(A,ω ,τ)B2
2,

(10)
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where

F0(A,ω ,τ) = −Aω2 cosτ + sin(Acosτ), (11)

F1(A,ω ,τ) = −1
2

ω2A(cosτ −9cos3τ)

+
1
2

A(cosτ − cos3t)cos(Acosτ),
(12)

F2(A,ω ,τ) =
1
4

ω2A(9cos3τ −25cos5τ)

−A(cosτ + cos3τ)sin 2τ cos(Acosτ)

−2A2 cos2τ sin 4τ sin(Acosτ). (13)

Expanding (10) in a trigonometric serie and taking into
account (9) we can write

H(1)(A,B2,ω)cosτ + H(3)(A,B2,ω)cos3τ
+ HOH = 0,

(14)

where HOH stands for higher-order harmonics and

H(1)(A,B2,ω) = f (1)
0 (A,ω)+ f (1)

1 (A,ω)B2

+ f (1)
2 (A,ω)B2

2,
(15)

H(3)(A,B2,ω) = f (3)
0 (A,ω)+ f (3)

1 (A,ω)B2

+ f (3)
2 (A,ω)B2

2.
(16)

In (15) and (16), f (1)
m (A,ω) and f (3)

m (A,ω) (m = 0,1,2)
are given as follows:

f (1)
m (A,ω) =

4
π

∫ π/2

0
Fm(A,ω ,τ)cosτdτ (17)

f (3)
m (A,ω) =

4
π

∫ π/2

0
Fm(A,ω ,τ)cos3τdτ (18)

and their analytical expressions are

f (1)
0 (A,ω) = −ω2A + 2J1(A), (19)

f (1)
1 (A,ω) = −1

2
ω2A+4J1(A)− 12

A
J2(A), (20)

f (1)
2 (A,ω) =

8
A3

[
(−30 + A2)AJ1(A)

+ 3(40−3A2)J2(A)
]
,

(21)

f (3)
0 (A,ω) = 2J1(A)−8

J2(A)
A

, (22)

f (3)
1 (A,ω) =

9
2

ω2A +
(

4− 240
A2

)
J1(A)

+
(
− 60

A
+

960
A3

)
J2(A),

(23)

f (3)
2 (A,ω) =

9
4

ω2A +
(

8− 2640
A2 +

60480
A4

)
J1(A)

−
(

264
A

− 20640
A3 +

241920
A5

)
J2(A).

(24)

In (19) – (24), Jn(A) is the n-order Bessel function of
the first kind.

Setting the coefficients of cosτ and cos3τ to zero
in (14) it follows that

H(1)(A,B2,ω) = 0, (25)

H(3)(A,B2,ω) = 0, (26)

which allow us to obtain B2 and the second-order ap-
proximate frequency ω as a function of A. Solving (25)
for ω yields

ω(A) =
2

A2
√

2 + B2

{[
A3 + 2A3B2

+(4A3 −120A)B2
2
]
J1(A)

− [
6A2B2 + 6(6A2−80)B2

2
]
J2(A)

}1/2

(27)

and substituting (27) into (26) gives the following cu-
bic equation which must be solved to obtain B2:

B3
2 + a2(A)B2

2 + a1(A)B2 + a0(A) = 0, (28)

where

a2(A) =
b2(A)
b3(A)

, (29)

a1(A) =
b1(A)
b3(A)

, (30)

a0(A) =
b0(A)
b3(A)

, (31)

and b0, b1, b2, and b3 are given as follows:

b0 = 2A4J1(A)−8A3J2(A), (32)

b1 = (−240A2 + 13A4)J1(A)

+ (960A−60A3)J2(A),
(33)

b2 = (60480−2640A2+ 26A4)J1(A),

−
(

241920
A

−20640A + 318A3
)

J2(A),
(34)

b3(A) = (−1080A2 + 36A4)J1(A)

+ (4320A−324A3)J2(A).
(35)
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The polynomial discriminant D(A) of the cubic
equation given in (28) is defined as follows [1]:

D(A) =
p3(A)

27
+

q2(A)
4

, (36)

where

p(A) =
3a1(A)−a2

2(A)
3

, (37)

q(A) =
9a1(A)a2(A)−27a0(A)−2a3

2(A)
27

. (38)

Determining which roots of (28) are real and which
are complex can be accomplished by noting that, if the
polynomial discriminant D > 0, one root is real and
two are complex conjugates; if D = 0, all roots are real
and at least two are equal; and if D < 0, all roots are
real and unequal [1]. As we can see (28) is cubic and
therefore has three solutions. However, the root of in-
terest is one for which |B2| � 1. To proceed, assume
that such a solution B2 exists and its value is lower than
one. A first approximate value B(1)

2 can be determined
by neglecting the first two terms in (28)

a1(A)B(1)
2 + a0(A) = 0. (39)

Solving this equation gives

B(1)
2 (A) = −a0(A)

a1(A)
. (40)

To further improve this result, we assume that B2 can
be written as follows:

B2 = B(1)
2 + δ , (41)

where δ is a correction term and |δ | � |B(1)
2 |. Substi-

tuting (41) into (28) and linearizing with respect to the
correction term δ lead to

[B(1)
2 ]3

(
1 +

3δ
B(1)

2

)
+ a2[B

(1)
2 ]2

(
1 +

2δ
B(1)

2

)

+ a1B(1)
2

(
1 +

δ
B(1)

2

)
+ a0 = 0,

(42)

which is a linear equation instead of a cubic equation.
Solving (42) it follows that

B2 = − a0(2a2
0 + a3

1 −a0a1a2)
a1(3a2

0 + a3
1 −2a0a1a2)

= − b0(2b2
0b3 + b3

1 −b0b1b2)
b1(3b2

0b3 + b3
1 −2b0b1b2)

,

(43)

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120 140 160 180

 A (º)

B 2 

Fig. 1. Parameter B2 as a function of A.

where (43) has been taken into account and b0, b1, b2,
and b3 are given in (32) – (35). In Figure 1 we have
plotted B2 as a function of A.

Substituting (43) into (27) we obtain the value for
the second-order approximate frequency ω2 as a func-
tion of A. Therefore, the second approximation to the
periodic solution of the nonlinear oscillator is given by
the following equation:

x2(t)
A

=
(1 + B2)cosω2t
1 + B2 cos2ω2t

. (44)

This periodic solution has the following Fourier series
expansion:

x2(t)
A

=
∞

∑
n=0

a2n+1 cos [(2n + 1)ω2t], (45)

where

a2n+1 =
4
π

∫ π/2

0

(1 + B2)cosτ
1 + B2 cos2τ

cos [(2n+1)τ]dτ. (46)

As we can see, (44) gives an expression that ap-
proximates all of the harmonics in the exact solution,
whereas the usual harmonic balancing techniques pro-
vide and approximate only the lowest harmonic com-
ponents.

3. Results and Discussion

We illustrate the accuracy of the modified approach
by comparing the approximate solutions previously
obtained with the exact period Tex = 2π/ωex for the
nonlinear pendulum. The exact value of the period of
oscillations is given by the equation [38]

Tex = T0
2
π

K(k), (47)
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where k = sin 2(A/2) and K(k) is the complete elliptic
integral of the first kind defined as follows:

K(k) =
∫ π/2

0

dθ√
1− k sin2 θ

. (48)

For small values of A it is possible to do the power
series expansions of the exact and approximate angu-
lar periods Tex(A) (see (47)) and T2(A) = 2π/ω2(A)
(see (27)). Doing these expansions, the following equa-
tions can be obtained:

Tex

2π
= 1 +

1
16

A2 +
11

3072
A4 +

173
737280

A6

+
22931

1321205760
A8 + . . . ,

(49)

T2

2π
= 1 +

1
16

A2 +
11

3072
A4 +

175
737280

A6

+
23583

1321205760
A8 + . . . .

(50)

Taking into account (32) – (35), we can also obtain
the power series expansion of B2 (see (43)) for small
values of A and we obtain

B2 =
1

96
A2 +

11
18432

A4 +
43

1105920
A6 + . . . . (51)

These series expansions were carried out using MATH-
EMATICA. As can be seen in (50), the first three terms
are the same as the first three terms obtained from the
expansion of the exact period Tex (see (49)), whereas
the fourth term of the expansion of the exact period is

173
737280 compared with 175

737280 obtained in our study, that
is, the relative error in this term is 1.2%. The fifth term
in the expansion of the exact period is 22931

1321205760 com-
pared with 23583

1321205760 obtained in this study, that is, the
relative error in this term is 2.8%. As we can see the
second-order approximate period T2(A) = 2π/ω2(A)
obtained in this paper provides excellent approxima-
tions to the exact period Tex(A) for high values of the
oscillation amplitude A.

Comparison of the exact period Tex obtained us-
ing (47), with the proposed period T2 computed us-
ing (27) and (43) is shown in Table 1 for different val-
ues of the initial amplitude A. The percentage errors
have been computed by using the following equation:

PE(%) = 100
∣∣∣∣T2 −Tex

Tex

∣∣∣∣ . (52)

Table 1. Comparison of the second-order approximate pe-
riod obtained using the rational harmonic balance method
(T2) with the exact one (Tex) and relative errors. In the first
column the values of B2 obtained using (43) are included.
A (◦) B2 T2 Tex PE (%)
20 0.0012782 6.33137 6.33137 0.0000005
40 0.0052233 6.48011 6.48010 0.000033
60 0.012197 6.74303 6.74300 0.00041
80 0.022913 7.14726 7.14708 0.0026

100 0.038691 7.74323 7.74232 0.012
120 0.062088 8.62993 8.62606 0.045
140 0.098824 10.0349 10.0182 0.17
160 0.16679 12.7121 12.6135 0.78
170 0.23687 15.7113 15.3270 2.5
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-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

h

x/A

Fig. 2. Comparison of the normalized second-order approxi-
mate solution (� and dashed line) with the exact solution (◦
and continuous line) for A = 100◦.

For the rational harmonic approximation constructed
in this paper, the relative error between the approxi-
mate and the exact values of the period is less than 1%
for A < 162.5◦.

The normalized exact periodic solution [38]:

xex(t)
A

=
2
A

arcsin
{

sin
(

A
2

)

· sn
[

K
(

sin2
(

A
2

))
− t; sin2

(
A
2

)]}
,

(53)

where sn(v;m) is the Jacobi elliptic function. The ap-
proximate periodic solutions x2/A in (44), are plotted
in Figures 2 – 5 for A = 100◦, 120◦, 140◦, and 160◦,
respectively. In these figures, the parameter h is de-
fined as h = t/Tex(A). These figures show that (27),
(43), and (44) can provide high accurate approxima-
tions to the exact frequency and the exact periodic so-
lutions for A < 160◦.
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Fig. 3. Comparison of the normalized second-order approxi-
mate solution (� and dashed line) with the exact solution (◦
and continuous line) for A = 120◦ .
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Fig. 4. Comparison of the normalized second-order approxi-
mate solution (� and dashed line) with the exact solution (◦
and continuous line) for A = 140◦ .

The Fourier representation of (44) is given in (45).
The following result was obtained by Beléndez et
al. [36] for the Fourier coefficients a2n+1:

a2n+1 = (−1)n2n+1
√

1 + B2

1−B2

(
B2

1−B2

)n

·
( √

1−B2√
1−B2 +

√
1 + B2

)2n+1

.

(54)

The Fourier expansion of (53) is

xex(t)
A

=
∞

∑
n=0

b2n+1 cos [(2n + 1)ωext], (55)
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0 0.2 0.4 0.6 0.8 1

h

x/A

Fig. 5. Comparison of the normalized second-order approxi-
mate solution (� and dashed line) with the exact solution (◦
and continuous line) for A = 160◦.

where

b2n+1 =
4
π

∫ π/2

0

xex(η)
A

cos [(2n+1)η ]dη . (56)

From (53), (55), and (56) we obtain for A = 30◦ and
η = ωext

xex(t)
A

= 1.00145cosωext

−0.00145284cos3ωext
+ 0.00000377745cos5ωext − . . . ,

(57)

while from (44) and (54), and also for A = 30◦, it fol-
lows

x2(t)
A

= 1.00145cosω2t

−0.00145284cos3ω2t
+ 0.00000210768cos5ω2t − . . . .

(58)

For A = 60◦ we obtain
xex(t)

A
= 1.00607cosωext

−0.00613545cos3ωext
+ 0.0000661616cos5ωext − . . . ,

(59)

x2(t)
A

= 1.00610cosω2t

−0.00613573cos3ω2t
+ 0.000037419cos5ω2t − . . . .

(60)

For A = 90◦ we obtain
xex(t)

A
= 1.01487cosωext

−0.0152493cos3ωext
+ 0.00039542cos5ωext − . . . ,

(61)
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x2(t)
A

= 1.01503cosω2t

−0.0152546cos3ω2t

+ 0.000229256cos5ω2t − . . . .

(62)

These equations allow us to compare the first Fourier
coefficients of the Fourier series expansions of exact
and analytical approximate solutions for different val-
ues of A.

4. A Simpler Approximate Formulae for the
Nonlinear Pendulum

Now we can obtain two simple expressions for the
periodic solutions and the frequency for which the rel-
ative error for the frequency is less than 1% for A =
124◦. For small values of A we can approximate (51)
as

B2(A) ≈ 1
96

A2 +
11

18432
A4. (63)

Substituting (63) into (27) and doing the power series
expansion for small values of A, we obtain

T2(A) =
2π

ω2(A)
≈ 2π√

1− 1
8 A2 + 7

1536 A4
. (64)

Substituting (63) and (64) into (7) leads to

x2(t) ≈(
A + 1

96 A3 + 11
18432 A5)cos

(√
1− 1

8 A2 + 7
1536 A4t

)

1 +
( 1

96 A2 + 11
18432A4

)
cos

(
2
√

1− 1
8 A2 + 7

1536A4t
) .

(65)

5. Conclusions

Based on the rational harmonic balance method a
new procedure has been developed and has been used
to determine analytical approximate solutions for non-
linear phenomena governed by pendulum-like differ-
ential equations. This method is based on the substitu-
tion of a rational solution, depending on a small param-
eter B2, into the nonlinear differential equation, Tay-
lor series expansion with respect to the small parame-
ter B2, neglect of the terms proportional to Bn

2 (n ≥ 3)
in the Taylor series expansion, and harmonic balanc-
ing. The major conclusion is that this scheme provides
excellent approximations to the solution of these non-
linear systems with high accuracy. The relative error
of the second-order analytical approximate frequency
obtained using the approach considered in this paper
is lower than 1% for oscillation amplitudes as high
as 162◦. In summary, this new procedure to apply the
rational harmonic balance method is very simple in its
principle, and it can be used to solve other conservative
nonlinear oscillators.

Acknowledgements

This work was supported by the “Generalitat Va-
lenciana” of Spain under project ACOMP/2009/150
and by the “Vicerrectorado de Tecnologa e Innovación
Educativa” of the University of Alicante, Spain (GITE-
09006-UA).

[1] R. E. Mickens, Oscillations in Planar Dynamics Sys-
tems, World Scientific, Singapore 1996.

[2] P. Amore and A. Aranda, J. Sound Vib. 283, 1115
(2005).

[3] J. H. He, Chaos, Solitons & Fractals 34, 1430 (2007).
[4] J. H. He, Int. J. Mod. Phys. B 22 3487 (2008).
[5] E. M. Abulwafa, M. A. Abdou, and A. H. Mahmoud,

Z. Naturforsch. 63a, 131 (2008).
[6] S. Abbasbandy and E. Shivanian, Z. Naturforsch. 63a,

538 (2008).
[7] F. Xu, Z. Naturforsch. 62a, 685 (2007).
[8] M. T. Darvishi and F. Khani, Z. Naturforsch. 63a, 19

(2008).
[9] J. H. He, Int. J. Nonlinear Sci. Numer. Simul. 6, 207

(2005).

[10] A. Beléndez, M. L. Alvarez, D. I. Méndez, E. Fernán-
dez, M. S. Yebra, and T. Beléndez, Z. Naturforsch. 63a,
529 (2008).

[11] A. Beléndez, A. Hernández, T. Beléndez, C. Neipp, and
A. Márquez, Eur. J. Phys. 28, 93 (2007).

[12] M. M. Mousa and S. F. Ragab, Z. Naturforsch. 63a, 140
(2008).

[13] A. Beléndez, C. Pascual, C. Neipp, T. Beléndez, and
A. Hernández, Int. J. Nonlinear Sci. Numer. Simul. 9,
9 (2008).

[14] J. H. He, Int. J. Nonlinear Mech. 37, 309 (2002).
[15] J. H. He, Int. J. Mod. Phys. B, 20,1141 (2006).
[16] L. N. Zhang and L. Xu, Z. Naturforsch. 62a, 396

(2007).
[17] M. T. Darvishi, A. Karami, and B. C. Shin, Phys. Lett.

A 372, 538 (2008).



826 E. Gimeno and A. Beléndez · Harmonic Balancing Approach to Pendulum-Like Differential Equations

[18] S. K. Lai, Y. Xiang, C. W. Lim, X. F. He, and Q. C.
Zeng, J. Sound Vib. 317, 440 (2008).

[19] A. Beléndez, A. Hernández, A. Márquez, T. Beléndez,
and C. Neipp, Eur. J. Phys. 27, 539 (2006).

[20] F. M. S. Lima and P. Arun, Am. J. Phys. 74, 892 (2006).
[21] G. L. Baker and J. A. Blackburn, The Pendulum: A

Case Study in Physics, Oxford University Press, Ox-
ford 2005.

[22] F. M. S. Lima, Eur. J. Phys. 29, 1091 (2008).
[23] P. Amore, M. C. Valdovinos, G. Orneles, and S. Z.

Barajas, Rev. Mex. Fis. E 53, 106 (2007).
[24] M. S. Alam, M. E. Haque, and M. B. Hossain, Int. J.

Nonlinear Mech. 42, 1035 (2007).
[25] A. C. Lazer and P. J. McKenna, SIAM Rev. 32, 537

(1990).
[26] A. Valiente, Am. J. Phys. 72, 1008 (2004).
[27] W. A. Shelton, K. D. Bonin, and T. G. Walker, Phys.

Rev. E 71, 036204 (2005).
[28] A. Marchenkov, R. W. Simmonds, J. C. Davis, and

R. E. Packard, Phys. Rev. B 61, (2000) 4196.

[29] G. J. Barclay and I. W. Stewart, J. Phys. A: Math. Gen.
33, 4599 (2000).

[30] P. Amore, M. Cervantes, A. de Pace, and F. M.
Fernández, Phys. Rev. D 75, 083005 (2007).

[31] V. E. Grishin and V. K. Fedyanin, Theor. Math. Phys.
59, 609 (1984).

[32] K. Cooper and R. E. Mickens, J. Sound. Vib. 250, 951
(2002).

[33] R. E. Mickens, J. Sound Vib. 111, 515 (1986).
[34] R. E. Mickens and D. Semwogerere, J. Sound Vib. 195,

528 (1996).
[35] A. Beléndez, E. Gimeno, M. L. Álvarez, S. Gallego,
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