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1 Introduction

Timing of information plays an important role in a variety of economic settings. De-

lays in learning contribute to lags in adjustment of macroeconomic variables, in adop-

tion of new technologies, and in prices in financial markets. The speed of information

processing is a crucial determinant of response times in psychological experiments.

In each of these cases, the timing is shaped in large part by individuals’ efforts to

acquire information.

We study a general dynamic decision problem in which an agent chooses what and

how much information to acquire, as well as when to acquire it. In each period, the

agent can choose an arbitrary signal about a payoff-relevant state of the world before

taking an action. At the end of each period, she observes a costless signal that may

depend on her action choice; for example, she may observe her realized flow payoff.

The state follows an arbitrary stochastic process, and the agent’s flow payoff is a

function of the histories of actions and states. Following Sims (2003), the agent pays

a cost to acquire information that is proportional to the reduction in her uncertainty

as measured by the entropy of her beliefs. We characterize the stochastic behavior

that maximizes the sum of the agent’s expected discounted utilities less the cost of

the information she acquires.

We find that the optimal choice rule coincides with dynamic logit behavior (Rust,

1987) with respect to payoffs that differ from the agent’s true payoffs by an endogenous

additive term.1 This additional term, which we refer to as a “predisposition”, depends

on the history of actions but does not depend directly on the history of states. Relative

to dynamic logit behavior with the agent’s true payoffs, the predisposition increases

the relative payoffs associated with actions that are chosen with high probability on

average across all states given the agent’s information at the corresponding time.

If states are positively serially correlated, the influence of predispositions can

resemble switching costs; because learning whether the state has changed is costly,

the agent relies in part on her past behavior to inform her current decision, and is

therefore predisposed toward repeating her previous action.

Our results provide a new foundation for the use of dynamic logit in empirical

research with an important caveat: the presence of predispositions affects counter-

factual extrapolation of behavior based on identification of utility parameters. An

1This result extends the static logit result of Matějka and McKay (2015) to the dynamic setting.
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econometrician applying standard dynamic logit techniques to the agent in our model

would correctly predict her behavior in repetitions of the same dynamic decision prob-

lem. However, problems involving different payoffs or distributions of states typically

lead to different predispositions, which must be accounted for in the extrapolation

exercise. The difference arises because the standard approach takes switching costs

as fixed when other payoffs vary, whereas the predispositions in our model vary as

parameters of the environment change.

A major difficulty in solving the model and obtaining the dynamic logit character-

ization arises due to the influence of current information acquisition on future beliefs.

One approach would be to reduce the problem to a collection of static problems using

the Bellman equation, with payoffs equal to current payoffs plus continuation values

that depend on posterior beliefs. However, the resulting collection of problems can-

not be solved by directly applying techniques developed for static rational inattention

problems (henceforth, RI problems). In static RI problems, not including information

costs, expected payoffs are linear in beliefs; in the Bellman equation, continuation val-

ues are not linear in probabilities. Nevertheless, we show that the solution can be

obtained in a similar fashion by ignoring the effect of information acquisition on future

beliefs: one can define continuation values as a function only of the histories of actions,

costless signals, and states, and treat those values as fixed when optimizing at each

history. Because of this property, we can characterize the solution to the dynamic RI

problem in terms of solutions to static RI problems that are well understood.

The key step behind the reduction to static problems is to show that the dynamic

RI problem can be reformulated as a control problem with observable states. In this

reformulation, the agent first chooses a default choice rule that specifies a distribu-

tion of actions at each history independent of which states are realized. Then, after

observing the realized state in each period, she chooses her actual distribution of ac-

tions, and incurs a cost according to how much she deviates from the default choice

rule.2 Because states are observable in the control problem, beliefs do not depend on

choice behavior; as a result, this reformulation circumvents the main difficulty in the

original problem of accounting for the effect of the current strategy on future beliefs.

We illustrate the general solution in three applications. In the first, the agent

seeks to match her action to the state in each of two periods. We show that positive

2Mattsson and Weibull (2002) study essentially the same problem for a fixed default rule in a
static setting.
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correlation between the states can lead to an apparent status quo bias: the agent never

switches her action from one period to the next, and her choice is, on average, better

in the first period than in the second. The correlation between the states creates

a relatively strong incentive to learn in the first period because the information she

obtains will be useful in both periods. Acquiring more information in the first period

in turn reduces the agent’s incentive to acquire information in the second, making

her more inclined to choose the same action.3

Our second application extends the first one to a stationary, infinite-horizon set-

ting. A binary state follows a Markov chain. The agent chooses a binary action in each

period with the goal of matching the state. This model can be viewed, for instance,

as capturing an investor’s choice between two asset classes, or a consumer’s choice be-

tween two products. Unlike analogous models with exogenous information or restric-

tions on available signals, long-run behavior satisfies a simple Markov property: choice

probabilities in each period depend only on the action in the preceding period and the

current state. Inertia in states is reflected by inertia in actions. Provision of costless

information, although beneficial for the agent’s payoff, can have a perverse effect on

behavior: relative to the case in which all information is costly, additional costless

signals can make the agent’s actions less likely to match the state. The expectation

of free signals in the future crowds out the agent’s incentive to acquire costly infor-

mation, in some cases to the extent that the overall precision of information declines.

The final application concerns a classic question in psychology, namely, the rela-

tionship between response times and accuracy of decisions. The state is binary and

fixed over time. The agent chooses when to take one of two actions with the goal of

matching her action to the state. Delaying is costly, but gives her the opportunity to

acquire more information. We focus on a variant of the model in which the cost of

information is replaced with a capacity constraint on how much information she can

acquire in each period. The solution of the problem gives the joint distribution of the

decision time, the state, and the chosen action. We find that, for a range of delay

costs, the probability of choosing the correct action is constant over time, and so is

the hazard rate at which decisions are made (up until the final period). In addition,

the expected delay time is non-monotone in the agent’s capacity, with intermediate

levels being associated with the longest delays.

3As in Baliga and Ely (2011), the agent’s second-period beliefs are directly linked to her earlier
decision, although the effect here arises due to costly information acquisition rather than forgetting.
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We focus throughout the paper on information costs that are proportional to the

reduction in entropy of beliefs. There are two related reasons for this choice. The first

is tractability. Since the agent in our model can choose any signal in each period, the

set of possible information acquisition strategies is very large. With entropy-based

costs, we show that one can restrict attention to strategies that associate at most one

signal realization to each action (and hence each action history is associated with just

one belief). This substantially reduces the dimensionality of the problem in that it

permits direct optimization over distributions of actions without explicitly considering

all information acquisition strategies.4 Entropy-based costs are also important for the

reformulation of the dynamic RI problem as a control problem with observable states.

The second reason for using this cost function is that it abstracts from incentives to

smooth or bunch information acquisition because of the shape of the cost function. In

a problem involving a one-time action choice, the cost function we use has the feature

that the number of opportunities to acquire information before the choice of action

is irrelevant: the cost of multiple signals spread over many periods is identical to the

cost of a single signal conveying the same information (Hobson, 1969). Similarly, in

dynamic contexts, it makes no difference whether there are multiple opportunities to

acquire information between action choices or just one; in this sense, preferences over

the timing of information acquisition across periods are driven by the payoffs in the

decision problem (together with discounting of costs). Although varying the shape of

the cost function could generate interesting and significant effects, our goal is to first

understand the problem in which we abstract away from these issues.5

This paper fits into the RI literature. This literature originated in the study of

macroeconomic adjustment processes (Sims, 1998, 2003). More recently, Maćkowiak

and Wiederholt (2009, 2015); Maćkowiak, Matějka, and Wiederholt (2016); and

Matějka (2016) study sluggish adjustment in dynamic RI models. Luo (2008) and

Tutino (2013) consider dynamic consumption problems with RI. Each of these pa-

pers focuses either on an environment involving linear-quadratic payoffs and Gaussian

shocks or on numerical solutions. A notable exception is Ravid (2014), who analyzes

4In the static case, this one-to-one association of actions and signals holds under much weaker
conditions on the cost function; see the discussion in Section 2.1.

5Moscarini and Smith (2001) focus on information costs that are convex in the volume of in-
formation and study delay in decision-making resulting from the incentive to smooth information
acquisition over time. Sundaresan and Turban (2014) study a different model with a similar incen-
tive.
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a class of RI stopping problems motivated by dynamic bargaining. In general static

RI problems, Matějka and McKay (2015) show that the solution generates static logit

behavior with an endogenous payoff bias. Our dynamic extension of this result links

it back to the original motivation for the RI literature.

Although optimal behavior in our model fits the dynamic logit framework, the

foundation is quite different from that of Rust (1987). He derives the dynamic logit

rule in a complete information model with i.i.d. taste shocks that are unobservable

to the econometrician. Our model has no such shocks and focuses on the agent’s

information acquisition. This difference accounts for the additional payoff term in

our dynamic logit result.

While information acquisition dynamics appear to be central to many economic

problems, they are rarely modeled explicitly in settings with repeated action choices.

Exceptions outside of the RI literature include Compte and Jehiel (2007), who study

information acquisition in sequential auctions, and Liu (2011), who considers infor-

mation acquisition in a reputation model. In both cases, players acquire information

at most once, in the former because information is fully revealing and in the latter

because the players are short-lived. Their focus is on strategic effects, whereas we

study single-agent problems with repeated information acquisition. In a single-agent

setting, Moscarini and Smith (2001) analyze a model of optimal experimentation with

explicit information costs of learning about a fixed state of the world.

As described above, a key step in proving our results is to reformulate the problem

as a control problem. This reformulation connects logit behavior in RI to that found

by Mattsson and Weibull (2002), who solve a problem with observable states in which

the agent pays an entropy-based control cost for deviating from an exogenous default

action distribution. We show that, in both static and dynamic settings, each RI

problem is equivalent to a two-stage optimization problem that combines Mattsson

and Weibull’s control problem with optimization of the default distribution. Like us,

Fudenberg and Strzalecki (2015) derive dynamic logit choice as a solution to a control

problem. They focus on preferences over flexibility, while we focus on incomplete

information and optimization of the default choice rule.
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2 Model

A single agent chooses an action at from a finite set A in each period t = 1, 2, . . . .6 A

payoff-relevant state θt is drawn in each period t from a finite set Θt according to a

probability measure π ∈ ∆(
∏

t Θt). Let Θt =
∏

τ≤t Θτ , and, for any sequence (bτ )τ , let

bt = (b1, . . . , bt) for each t. Before choosing an action in any period t, the agent can ac-

quire costly information about the history of states, θt. There is a fixed signal space X

satisfying |A| ≤ |X| < ∞.7 At time t, the agent can choose any signal about the his-

tory θt with realizations xt in X. In addition, after choosing her action in each period

t, she observes a costless signal yt from a finite set Y distributed according to a given

gt(yt | θ
t, at, yt−1) ∈ ∆(Y ); we denote by g the complete family of these distributions

across all histories (θt, at, yt−1). The signal yt incorporates all of the costless informa-

tion the agent receives. For example, yt may correspond to observation of the payoff

she receives in period t, or observation of the realized state (either perfectly or with

noise in each case). One important special case—which has been the focus of the pre-

vious dynamic RI literature—is when there is no costless information, corresponding

to |Y | = 1. Let zt = (xt, yt) and Z = X×Y . We refer to zt−1 as the decision node at t.

We assume that, for each at, yt is independent of xt conditional on θt and yt−1;

while the agent’s choice of actions may affect the distribution of yt, her choice of

information does not.

A strategy s = (f, σ) is a pair comprised of

1. an information strategy f consisting of a system of signal distributions ft(xt |

θt, zt−1), one for each θt and zt−1, with the signal xt conditionally independent

of future states θt′ for all t′ > t, and

2. an action strategy σ consisting of a system of mappings σt : Z
t−1 × X −→ A,

where σt(z
t−1, xt) indicates the choice of action at time t for each history zt−1

and current costly signal xt.
8

6Although the action set is constant across time, the model can implicitly allow for varying action
sets by making certain choices payoff-irrelevant.

7The restriction to finite action, signal, and state spaces is technically convenient in that it allows
us to work with discrete distributions, avoiding issues of measurability, and the need to condition
on zero probability histories along the realized action path. We conjecture that Lemma 1, Theorem
1, and Proposition 3 would extend to standard continuous models.

8This formulation implicitly assumes that the agent perfectly recalls all past information. In
contrast, Woodford (2009) analyzes a model in which all information is costly, even observation of
the current time.
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Given an action strategy σ, we denote by σt(zt−1, xt) the history of actions up to time

t given the realized signals.

The agent receives flow utilities ut(a
t, θt) that depend on the entire history of

actions and states, and that are uniformly bounded across all t. We refer to ut as

gross utilities to indicate that they do not include information costs. The agent

discounts payoffs received at time t by a factor δ(t) :=
∏t

t′=1 δt′ , where δt′ ∈ [0, 1] and

lim supt δt < 1. This form of discounting accommodates both finite and infinite time

horizons.

As is standard in the RI literature, we focus throughout this paper on entropy-

based information costs. Consider a random variable W with finite support S dis-

tributed according to p ∈ ∆(S). Recall that the entropy

H(W ) = −
∑

w∈S

p(w) log p(w)

of W is a measure of uncertainty about W (with the convention that 0 log 0 = 0). At

any signal history zt−1, we assume that the cost of signal xt is proportional to the

conditional mutual information

I
(

θt; xt | z
t−1
)

= H
(

θt | zt−1
)

− Ext

[

H
(

θt | zt−1, xt

)

| zt−1
]

(1)

between xt and the history of states θt. The conditional mutual information captures

the difference in the agent’s uncertainty about θt before and after she receives the

signal xt. Before, her uncertainty can be measured by H (θt | zt−1). After, her level

of uncertainty becomes H (θt | zt−1, xt). The mutual information is the expected

reduction in uncertainty averaged across all realizations of xt.
9

The agent solves the following problem.

Definition 1. The dynamic rational inattention problem (henceforth dynamic RI

problem) is

max
f,σ

E

[

∞
∑

t=1

δ(t)
(

ut

(

σt(zt−1, xt), θ
t
)

− λI
(

θt; xt | z
t−1
)

)

]

, (2)

where λ > 0 is an information cost parameter, and the expectation is taken with

9Note that I
(

θt;xt | zt−1
)

depends on the realization of zt−1. Other authors sometimes use this
notation to refer to the expectation of this quantity across zt−1.
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respect to the distribution over sequences (θt, zt)t induced by the prior π together with

the strategy (f, σ) and the distributions g of costless signals.

To simplify notation, we normalize λ to 1. Although we assume the information

cost parameter is fixed over time, one could allow for varying cost by adjusting the

discount factors and correspondingly rescaling the flow utilities (as long as doing so

does not violate the restrictions on δ(t) or the uniform boundedness of the utilities).

Note that the sum in (2) converges because the gross flow payoffs are bounded,

and the mutual information is bounded (since the signal space is finite).

One implicit assumption of our model is that the agent’s actions do not affect

the distribution of future states. However, since flow payoffs depend on the entire

histories of actions and states, any problem having this feature is equivalent to one

with larger state spaces that fits within our framework. The idea is to make each

state θ̃t in the equivalent problem correspond to a vector of states in the original

problem, one for each history at−1 of actions. Payoffs in state θ̃t are equal to those

in the original problem for the component of θ̃t associated with at−1. Similarly, the

distribution of θ̃t conditional on θ̃t−1 is constructed so as to ensure that, for each

at−1, the marginal distribution of the component associated with at−1 matches the

distribution of states in the original problem.

To make this precise, suppose for simplicity that Θt = Θ for all t, and let πt(θ |

θt−1, at−1) ∈ ∆(Θ) denote the probability of state θ in period t following the history

(θt−1, at−1). Let Θ̃t = ΘAt−1

, with typical element θ̃t : A
t−1 −→ Θ, where A0 := {∅}.

An equivalent problem with state spaces Θ̃t and distributions that are independent

of actions may be obtained by taking gross utilities to be

ũt(a
t, θ̃t) ≡ ut

(

at,
(

θ̃1(∅), . . . , θ̃t(a
t−1)

))

and the distribution of states in each period t to be

π̃t(θ̃t | θ̃
t−1) ≡

∏

at−1∈At−1

πt

(

θ̃t(a
t−1) |

(

θ̃1(∅), . . . , θ̃t−1(a
t−2)

)

, at−1
)

.

Thus following each history (θ̃t−1, at−1), for θt−1 =
(

θ̃1(∅), . . . , θ̃t−1(a
t−2)

)

, there is

probability equal to πt(θt | θ
t−1) of reaching a state θ̃t in period t satisfying θ̃t(a

t−1) =

θt, ensuring that gross payoffs from each action correspond to ut(a
t, θt).
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2.1 Preliminaries

Our main goal is to characterize the agent’s action choices. Let ωt = (θt, at−1, yt−1).

A (stochastic) choice rule p is a system of distributions pt (at | ω
t) over A, one for

each ωt, interpreted as the probability of choosing at at the history ωt. We say that

a strategy s = (f, σ) generates the choice rule p if

pt
(

at | ω
t
)

≡ Pr
(

σt

(

zt−1, xt

)

= at
∣

∣ θt, σt−1
(

zt−2, xt−1

)

= at−1, yt−1
)

,

for all at and ωt = (θt, at−1, yt−1), where the probability is evaluated with respect to

the joint distribution of sequences of states and signals generated according to f , σ,

and g.

Conversely, a choice rule p can be associated (non-uniquely) with a strategy (f, σ).

Roughly speaking, one can choose a particular signal realization in X for each action,

and then match the probability of each of those signal realizations with the probability

the choice rule assigns to its associated action.10 If s is a strategy obtained in this

way from a choice rule p, we say that p induces s.

The following lemma simplifies the analysis considerably by allowing us to focus

on a special class of information strategies in which signals correspond directly to

actions. See also Ravid (2014), who independently proved the corresponding result

in a related model with a continuum of states, and without costless signals.

Lemma 1. Any strategy s solving the dynamic RI problem generates a choice rule p

solving

max
p

E

[

∞
∑

t=1

δ(t)
(

ut

(

at, θt
)

− I
(

θt; at | a
t−1, yt−1

)

)

]

, (3)

where the expectation is with respect to the distribution over sequences (θt, at, yt)t

induced by p, the prior π, and the distributions g. Conversely, any choice rule p

solving (3) induces a strategy solving the dynamic RI problem.

Accordingly, we henceforth dispense with the signals xt, replacing them with ac-

tions at, so that zt = (at, yt), and we abuse terminology slightly by calling (3) the

dynamic RI problem, and any rule p solving (3) a solution to the dynamic RI problem.

Proofs are in the appendix.

10Formally, fix any injection φ : A −→ X and, for any t, let φt denote the mapping from At to
Xt obtained by applying φ coordinate-by-coordinate. Given any choice rule p, let s = (f, σ) be such
that ft(φ(at) | θt, φt−1(at−1), yt−1) ≡ pt(at | θt, at−1, yt−1) and σ((φt−1(at−1), yt−1), φ(at)) ≡ at.
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In static models, the conclusion of Lemma 1 holds as long as the cost of signals

is nondecreasing in Blackwell informativeness and all signal structures are feasible.

To see why, consider a strategy in which two distinct signal realizations (each oc-

curring with positive probability) lead to the same action. Combining these into a

single realization has no effect on the distribution of actions and (weakly) reduces the

information cost.

In dynamic problems, more structure is needed because information that is ac-

quired but not used in a given period may be used later on. For the lemma to hold,

it must be that delaying the acquisition of information until the time when it is used

never increases the information cost relative to acquiring it earlier. For example, if

the cost were a nonlinear function of the mutual information, then the agent could

have an incentive to acquire more information than what is necessary for her choice

in a given period if she plans to use that information in a later period where, given

the other information she acquires, the marginal cost of acquiring it would be higher.

When the cost is linear in mutual information and the agent (weakly) discounts the

future, the additive property of entropy ensures that delaying information acquisition

never increases the cost, regardless of other information acquired by the agent.

Lemma 1 also relies on several other assumptions of our model. The result would

not necessarily hold if |X| < |A|, or if there were restrictions on what information

strategies are feasible. For example, it fails if past states are payoff-relevant but the

agent can only learn about the current state. This lemma also relies on the conditional

independence of xt and yt, for otherwise the choice of costly signal could affect the

value of the free information conveyed by yt directly (as opposed to indirectly through

the choice of action).

Proposition 1. There exists a solution to the dynamic RI problem.

Proposition 1 makes use of the finiteness of A, Y , and each Θt to ensure that the

strategy space is compact, and the boundedness of payoffs together with discounting

to ensure that the agent’s objective function is continuous in her strategy.

3 Solution

This section presents two characterizations of the solution to the dynamic RI problem—

the first in relation to dynamic logit behavior, and the second in relation to static RI
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problems. Both characterizations rely on a reformulation of the problem as a control

problem with observable states described in Section 3.3.

3.1 Dynamic logit

Our main result states that the solution of the dynamic RI problem is a dynamic logit

rule with a bias. We begin by recalling the definition of dynamic logit for general

payoffs with states (θt, yt−1) in period t. We denote the payoff function in period t

by vt to distinguish it from the payoff function ut in the rational inattention problem

(which does not depend on yt−1). Recall that ωt = (θt, at−1, yt−1).

Definition 2 (Rust (1987)). A choice rule r is a dynamic logit rule under payoffs

(vt(at, ω
t))t if

rt
(

at | ω
t
)

=
exp (v̂t (at, ω

t))
∑

a′
t

exp (v̂t (a′t, ω
t))

,

where

v̂t
(

at, ω
t
)

= vt
(

at, ω
t
)

+ δt+1E
[

Vt+1

(

ωt+1
)

| at, ω
t
]

,

and the continuation values Vt satisfy

Vt

(

ωt
)

= log
(

∑

at

exp
(

v̂t
(

at, ω
t
))

)

. (4)

The solution to the dynamic RI problem is a dynamic logit rule under payoffs

that are modified by an endogenous state-independent term. A default rule q is a

system of conditional action distributions qt(at | zt−1), one for each decision node

zt−1 = (at−1, yt−1). The difference between a default rule and a choice rule is that the

latter conditions on θt while the former does not.

Given any default rule q, write u+log q to represent the system of payoff functions

vt(at, θ
t, at−1, yt−1) = ut

(

at, θt
)

+ log qt
(

at | a
t−1, yt−1

)

for all t. Let V(v) = Eθ1 [V1(θ1, ∅, ∅)] denote the first-period expected value from (4)

under the system of payoff functions v = (vt)t. For any choice rule p, let pt (at | z
t−1)

denote the probability of choosing action at conditional on reaching decision node

zt−1, that is,

pt
(

at | z
t−1
)

= Eθt
[

pt
(

at | θ
t, zt−1

)

| zt−1
]

.
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We adopt the convention that log 0 = −∞ and exp(−∞) = 0.

Theorem 1. Let q be a default rule that solves

max
q̃

V(u+ log q̃).

Then the dynamic logit rule p under payoffs u+ log q solves the dynamic RI problem.

Moreover,

qt
(

at | z
t−1
)

= pt
(

at | z
t−1
)

(5)

for every decision node zt−1 that is reached with positive probability according to p

and g.

A converse to Theorem 1 also holds, with a minor caveat: for any solution p to

the dynamic RI problem, and for q satisfying (5), p coincides with the dynamic logit

rule under payoffs u+ log q at every ωt that is reached with positive probability.

Given a default rule q, we refer to qt(at | z
t−1) as the predisposition toward action

at at the decision node zt−1. According to the theorem, the optimal predispositions

are identical to the average behavior at each decision node.

The log q term in the payoffs has a natural interpretation. To keep the discussion

simple, consider the case in which there is no costless signal yt. The agent behaves

as if she incurs a cost

ct
(

at−1, at
)

≡ − log qt
(

at | a
t−1
)

(6)

whenever she chooses at after the action history at−1. This endogenous virtual cost

is high when the action at is rarely chosen at at−1. The cost captures the cost of

information that leads to the choice of action at; actions that are unappealing ex ante

can only become appealing through costly updating of beliefs.

Theorem 1 may be relevant for identification of preferences in dynamic logit mod-

els. Suppose that, as in Rust (1987), an econometrician observes the states θt to-

gether with the choices at, and estimates the agent’s utilities using the dynamic logit

rule from Definition 2. If our model correctly describes the agent’s behavior, then

instead of estimating the utility ut, the econometrician will in fact be estimating

ut (a
t, θt)− ct (a

t−1, at)—the utility less the virtual cost.

For a fixed decision problem, separately identifying ut and ct is not necessary to

describe behavior: choice probabilities depend only on the difference ut − ct. Put
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differently, the two models provide an equally good fit for the data. However, the

distinction is important when extrapolating to other decision problems (as in counter-

factual experiments). For example, Rust (1987) considers a bus company’s demand

for replacement engines. He estimates the replacement cost by fitting a dynamic

logit model in which the agent trades off the replacement cost against the expected

loss from engine failure. He then obtains the expected demand by extrapolating to

different engine prices, keeping other components of the replacement cost fixed.

Our model suggests that, if costly information acquisition plays an important role,

Rust’s approach underestimates demand elasticity. Consider an increase in the engine

price. Ceteris paribus, replacement becomes less common, leading to a decrease in

the predisposition toward replacement (by (5)). This corresponds to an increase in

the virtual cost ct associated with replacement (by (6)), and hence to an additional

decrease in demand relative to the model in which ct is fixed. Intuitively, the price

increase not only discourages the purchase of a new engine, it also discourages the

agent from checking whether a new engine is needed.11

Kennan and Walker (2011) estimate a dynamic model of migration decisions.

Each agent chooses a location to maximize her expected income less the cost of mov-

ing. Estimated moving costs are surprisingly large. If, as in our model, agents can

acquire costly information about wages at other locations, estimates of the moving

costs would decrease: since moves are relatively rare, the log-predisposition term in

our model creates a virtual cost of moving, which the cost identified by Kennan and

Walker (2011) combines with the true moving cost. In addition, Kennan and Walker

(2011) consider a counterfactual policy experiment involving a subsidy for moving.

In our model, the effect of the subsidy would be larger than their estimates. Not

only does the subsidy have a direct effect on payoffs, it also increases the predispo-

sition toward moving, thereby lowering the associated virtual cost; the information

acquisition induced by the subsidy reinforces the increase in migration.

Distinguishing the actual utility ut from the virtual cost ct is feasible using data

on choices and states. As described above, one can estimate ut − ct by fitting the

dynamic logit rule from Definition 2. The virtual cost ct(a
t−1, at) = − log pt(at | a

t−1)

can be identified directly based on the frequency with which each action is chosen.

11Similar comments apply to other work estimating demands using dynamic logit models. For
example, Gowrisankaran and Rysman (2012) study demand for durable goods, while Schiraldi (2011)
focuses on automobiles.
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3.2 Reduction to static problems

The dynamic logit characterization of Theorem 1 is related to a reduction of the

dynamic RI problem to a collection of static RI problems. This reduction allows us to

draw on well developed solution methods from the static RI literature. In particular,

we obtain a system of equations describing necessary and sufficient conditions for the

solution of the dynamic RI problem.

As noted in the introduction, the characterization in terms of static RI problems

does not follow from the Bellman equation alone. Gross expected utilities in static

RI problems are linear in beliefs, but the continuation value function is not. For the

resulting problems to fit the static RI framework, we show that one can ignore the

dependence of continuation values on beliefs and treat them simply as functions of

histories. Doing so restores the linearity of the expected gross payoffs and ensures

that the static problem has the usual RI structure. We explain this step in detail in

Section 3.3.

We begin with a brief description of existing results for the static case. Consider

a fixed, finite action set A, a finite state space Θ, a prior π ∈ ∆(Θ), and a payoff

function u(a, θ). A static choice rule p is a collection of action distributions p(a | θ),

one for each θ ∈ Θ. We write πp(θ | a) for the posterior belief after choosing action

a given the choice rule p.12

Definition 3. The static rational inattention problem for a triple (Θ, π, u) is

max
p

E [u(a, θ)− I(θ; a)] .

Proposition 2 (Matějka and McKay, 2015; Caplin and Dean, 2013). The static RI

problem with parameters (Θ, π, u) is solved by the choice rule

p(a | θ) =
q(a) exp (u(a, θ))

∑

a′ q(a
′) exp (u(a′, θ))

, (7)

where the default rule q ∈ ∆(A) maximizes

Eπ

[

log
(

∑

a

q(a) exp (u(a, θ))
)]

. (8)

12The literature on static rational inattention is richer than Definition 3 suggests. We restrict to
the definition provided here because it is sufficient for our characterization.
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If action a is chosen with positive probability under the rule p, then the posterior belief

after choosing a satisfies

πp(θ | a) =
π(θ) exp (u(a, θ))

∑

a′ q(a
′) exp (u(a′, θ))

. (9)

We show that the dynamic RI problem can be reduced to a collection of static RI

problems, one for each decision node zt−1. These static problems are interconnected

in that the payoffs and prior in one generally depend on the solutions to the others.

At each zt−1, the gross payoff consists of the flow payoff plus a continuation value,

and the prior belief is obtained by Bayesian updating given zt−1.

We write πp(θ
t | zt−1) for the agent’s prior over θt at the decision node zt−1 given

a choice rule p, and πp(θt | zt) for the posterior over θt after zt.

We say that a dynamic choice rule is interior if, at every decision node, it chooses

each action with positive probability. For simplicity, we state here the result only for

interior dynamic choice rules. We extend the result to the general case in Proposition

7 in Appendix B.

Proposition 3. An interior dynamic choice rule p solves the dynamic RI problem if,

at each decision node zt−1 = (at−1, yt−1), pt(at | θ
t, zt−1) solves the static RI problem

with state space Θt, prior belief

πp

(

θt | zt−1
)

= πp
(

θt−1 | zt−1
)

π
(

θt | θ
t−1
)

, (10)

and payoff function

ût

(

at, θ
t; zt−1

)

= ut

(

at, θt
)

+ δt+1E
[

Vt+1

(

θt+1, zt
)

| at, θ
t, zt−1

]

, (11)

where the posterior belief πp(θt | zt) satisfies Bayes’ rule with respect to the prior

πp (θ
t | zt−1), and the continuation values satisfy

Vt

(

θt, zt−1
)

= log
(

∑

at

pt
(

at | z
t−1
)

exp
(

ût

(

at, θ
t; zt−1

))

)

. (12)

As for Theorem 1, the converse to this proposition holds at all decision nodes

reached with positive probability.

Perhaps surprisingly, this result indicates that when optimizing behavior at a
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particular node, we can treat the continuation value as fixed as a function of the

history. To understand the role of the continuation values, we note that the solution

can be interpreted as an equilibrium of a common interest game played by multiple

players, one for each period. The player in each period observes the history (at−1, yt−1)

but not the choice rule used in the past. In equilibrium, each player forms beliefs

according to the others’ equilibrium strategies, corresponding to the updating rule

described in the proposition. Since deviations in the choice rule are unobservable to

future players, each treats the strategies of the others (and hence the continuation

values) as fixed. Even though the agent in our model can recall her own past strategy,

the proposition indicates that she can ignore the effect of deviations on future beliefs.

When combined with a result from Caplin and Dean (2013), Proposition 3 provides

necessary and sufficient conditions for solutions to dynamic RI problems. Theorem

1 in Caplin and Dean (2013) describes necessary and sufficient first-order conditions

characterizing the solutions of static RI problems. Therefore, satisfying Caplin and

Dean’s conditions in each of the static problems in Proposition 3 is necessary and

sufficient for a choice rule to be a solution to the dynamic RI problem.

In finite horizon and in stationary problems, the proposition leads to a finite

system of equations characterizing the solution to the dynamic RI problem. Sections

4.2 and 4.3 illustrate this approach.

A complication arises for the characterization in Proposition 3 when the solution

of the dynamic RI problem is not interior. If the choice rule assigns zero probability

to some action at a decision node, then it is not immediately clear how to define

the posterior belief following that action. This posterior is needed to pin down the

optimal continuation play and value associated with taking the action, which in turn is

needed to determine whether taking the action with zero probability is indeed optimal.

Formula (24) in Appendix B extends the posteriors defined by (9) to histories reached

with zero probability. We show in the appendix how the extended definition can be

obtained by solving the problem in which the probability of each action is constrained

to be at least some ε > 0, then taking the limit as ε → 0.

3.3 The control problem

We now describe the key step of the proof that leads to the dynamic logit characteri-

zation and allows us to reduce the dynamic problem to a collection of static ones. The

17



main idea is to establish an equivalence between the dynamic RI problem and a con-

trol problem with observable states in which the agent must pay a cost for deviating

from a default choice rule.

Reformulating the dynamic RI problem as a control problem with observable states

addresses the difficulty described above involving the link between the current action

distribution and the future beliefs. The control problem clarifies why this link can

be disregarded and hence the continuation values associated with each history can be

treated as fixed when optimizing the action distribution at each decision node.

Definition 4. Given any default rule q, the control problem for q is

max
p

E

[

∞
∑

t=1

δ(t)
(

ut

(

at, θt
)

+ log qt
(

at | z
t−1
)

− log pt
(

at | ω
t
)

)

]

, (13)

where p is a stochastic choice rule, and the expectation is with respect to the joint

distribution generated by π, p, and g.

This definition is a dynamic extension of a static control problem studied by Matts-

son and Weibull (2002). In the control problem, the agent has complete information

about the history ωt (and in particular about θt), but must trade off optimizing her

flow utility ut against a control cost: for each ωt = (θt, zt−1), she pays a cost

Ept

[

log pt
(

at | ω
t
)

− log qt
(

at | z
t−1
)

| ωt
]

for deviating from the default action distribution qt (at | z
t−1) to the action distribu-

tion pt (at | ω
t).

The next result shows that the dynamic RI problem is equivalent to the control

problem with the optimal default rule. In other words, the dynamic RI problem can

be solved by first solving the control problem to find the optimal choice rule p for

each default rule q, and then optimizing q.

Lemma 2. A stochastic choice rule solves the dynamic RI problem if and only if it

(together with some default rule) solves

max
q,p

E

[

∞
∑

t=1

δ(t)
(

ut

(

at, θt
)

+ log qt
(

at | z
t−1
)

− log pt
(

at | ω
t
)

)

]

, (14)
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where the expectation is with respect to the joint distribution generated by π, p, and

g.

To see how Lemma 2 addresses the difficulty due to the link between the current

action distribution and subsequent beliefs, note that for any fixed default rule q,

optimizing the choice rule p in the control problem does not involve updating of

beliefs since the agent observes θt in period t. Since q cannot depend on the history

of states, the optimal q at each decision node zt−1 does depend on the distribution

πp(θ
t | zt−1); however, for any fixed p, optimizing q does not require varying these

distributions because they are determined by p, not by q.

The proof of the lemma relies on two well-known properties of entropy:

Symmetry For any random variables X, Y , and Z, I(X ; Y | Z) = I(Y ;X | Z).

Properness For any random variable X with finite support S and distribution

p(x) ∈ ∆(S),

H(X) = − max
q∈∆(S)

Ep[log q(x)].

To interpret the latter property, consider an agent who believes that X is dis-

tributed according to p and is asked to report a distribution q ∈ ∆(S) before observ-

ing the realization of X, with the promise of a reward of log q(x) if the realized value

is x. Properness states that the truthful report q = p maximizes the expected reward.

The use of properness in the proof also relies on the information cost being pro-

portional to the reduction in entropy; the result would not hold for costs that are

nonlinear functions of the mutual information.

Proof of Lemma 2. By the symmetry of mutual information, the dynamic RI problem

is equivalent to

max
p

E

[

∑

t

δ(t)
(

ut

(

at, θt
)

− I
(

at; θ
t | zt−1

)

)

]

= max
p

E

[

∑

t

δ(t)
(

ut

(

at, θt
)

−H
(

at | z
t−1
)

+H
(

at | ω
t
)

)

]

. (15)

By properness,

E
[

−
∑

t

δ(t)H
(

at | z
t−1
)

]

= max
q

E
[

∑

t

δ(t) log qt
(

at | z
t−1
)

]

.
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Substituting this into (15) and recalling that

E
[

H
(

at | ω
t
)

]

= E
[

− log pt
(

at | ω
t
)

]

gives the result.

The dynamic logit result in Theorem 1 follows from solving problem (14). As the

following lemma indicates, dynamic logit choice behavior (with biased payoffs) arises

as the solution to the control problem for any fixed q. This lemma extends a result of

Mattsson and Weibull to the dynamic case: they show that, in the static version of

the control problem, the optimal action distribution is a logit rule with a bias toward

actions that are relatively likely according to the default rule.

Lemma 3. Given any default rule q, the dynamic logit rule under payoffs u + log q

solves problem (13).

4 Applications

In this section, we apply our results in three examples. The first illustrates the

mechanics of the model in a particularly simple setting. The second shows how

allowing for unrestricted information choice can generate a simpler solution than one

would obtain with exogenous information or standard restricted classes of signals.

The last example demonstrates that Proposition 3 can be useful in problems with a

constraint on information acquisition in each period instead of a cost.

4.1 Status quo bias

Our first application uses a particularly simple instance of our model to illustrate in-

tertemporal incentives to acquire information. In doing so, we show that the dynamics

of choice by a rationally inattentive agent may resemble status-quo-bias behavior (see,

e.g., Samuelson and Zeckhauser (1988)). The agent chooses an action at ∈ {0, 1} at

t = 1, 2. The gross flow payoff ut is 1 if at = θt, and is 0 otherwise. There is no dis-

counting. The states are symmetrically distributed and positively correlated across

time in the following way: θ1 is equally likely to be 0 or 1, and, whatever the realized

value of θ1, the probability that θ2 6= θ1 is γ < 1/2. The agent receives no costless

signal.
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This example can be interpreted as a stylized model of investment in a risky asset.

The agent prefers to invest (corresponding to at = 1) if and only if the return from

the asset exceeds the risk-free rate (corresponding to θt = 1). Learning about the

quality of the asset is costly, as is monitoring its performance.

We analyze the correlation between actions across the two periods. If the agent

chooses not to acquire any information in the second period, then her behavior ex-

hibits an apparent status quo bias insofar as she never reverses her decision, even if

the state changes; an outside observer who sees the realized states and the agent’s

actions might conclude that she has a preference for maintaining the same choice.

The following proposition shows that the optimal strategy has this feature whenever

the serial correlation in the state is sufficiently high.

Proposition 4. There exists γ∗ ∈ (0, 1/2) such that, under the optimal choice rule,

Pr(a2 = a1) = 1 whenever γ < γ∗.

The proposition holds for γ∗ ≈ 0.16; thus if the probability that the state changes

is less than 0.16 then the agent acquires information only in the first period, and

relies on that information in both periods. Since the state may change in between

the periods, the agent performs better in the first period than in the second (in the

sense that her action is more likely to match the state).

The superior performance in the first period illustrates the importance of the

endogenous timing of information acquisition in our model. In a variant of the model

with exogenous conditionally i.i.d. signals, the agent would perform better in the

second period than in the first since she obtains more precise information about θ2

than about θ1. When information is endogenous, the correlation between the two

periods creates an incentive to acquire more information in the first period because

that information can be used twice.

However, correlation does not generate the status quo bias on its own—the tem-

poral structure also plays an important role in the sense that the effect would not

arise if the agent could acquire information about both states in the first period. To

see this, consider a static variant in which the agent simultaneously chooses a pair of

actions (a1, a2) to maximize

E
[

u1(a1, θ1) + u2(a2, θ2)− I
(

(θ1, θ2); (a1, a2)
)]

.

In this case, as in the original example, the optimal strategy involves a single binary
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signal and identical actions in the two periods if γ is sufficiently small. In the static

variant, however, the expected performance is constant across the two periods. The

asymmetric performance in the original example arises because it is impossible for

the agent to learn directly about the second period in the first, when information is

most valuable.

Finally, to illustrate the role of correlation in the state across periods, consider a

benchmark in which θ1 and θ2 are independent and uniform on {0, 1}. In that case,

any information obtained in the first period is useless in the second. The problem

therefore reduces to a pair of unconnected static RI problems (one for each period).

The solution involves switching actions with probability 1/2 and constant performance

across the two periods.

Although the solution when the states are correlated may appear as if the agent

has a preference against switching her action, the independent case highlights the

difference between such a preference and the effect of information acquisition; if the

“status quo bias” behavior were driven by preferences, it would not depend on corre-

lation between the states.

4.2 Inertia

Our second application consists of a stationary infinite-horizon environment in which

the state follows a Markov chain and the agent chooses an action in each period with

the goal of matching the state. This example can be viewed as a stylized model of a

wide range of economic phenomena. The action could represent a consumer’s choice

of what product to purchase, an investor’s choice of whether to hold a particular

asset, or a worker’s choice of whether to participate in the labor market. We start

by analyzing a model in which all information acquired by the agent is costly. For

example, in product choice, one can think of the state as capturing which product

offers a larger surplus, which is costly to monitor.

Comparative statics of adjustment patterns with respect to the stochastic prop-

erties of the agent’s environment are a central question in the RI literature. Existing

studies, such as Sims (2003), Moscarini (2004), Luo (2008), and Maćkowiak and

Wiederholt (2009), provide results for quadratic payoffs and normally distributed

shocks. Our framework provides an alternative approach suitable for general payoffs

and distributions in discrete environments.
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The agent chooses an action at ∈ {0, 1} in each period t ∈ N. The state θt follows

a Markov chain on {0, 1} with time-homogeneous transition probabilities γ(θ, θ′) from

θ to θ′. In each period t, the gross flow payoff u(at, θt) is ua > 0 if at = θt = a, and 0

if at 6= θt. Payoffs are discounted exponentially with discount factor δ ∈ (0, 1). The

agent receives no costless signal.

In contrast to the analogous model with exogenous information, behavior in this

framework is Markovian: the choice rule, continuation values, and predispositions

in any period t depend on the last action at−1 and the current state θt, but not on

any earlier actions or states. Moreover, after a finite number of periods, the choice

rule is stationary. This implies that the long-run behavior is characterized by a

finite set of equations, making it amenable to numerical computation. This Markov

property of the solution holds for arbitrary finite sets of actions and states, general

time-homogeneous Markov processes, and general utilities as long as all actions are

chosen with positive probability at all decision nodes.13 This feature highlights the

relative simplicity of the rationally inattentive solution compared to that of similar

decision problems with exogenous conditionally i.i.d. signals. In the exogenous case,

the optimal strategy is not Markov: actions depend on the entire history of signals, the

probabilities of which in turn depend on the entire history of states. Characterizing

the distribution of actions is therefore complicated even in the simplest cases.

The Markov property of the solution follows from Proposition 3 together with a

result of Caplin and Dean (2013). They show that in static RI problems, the set of

posterior beliefs that arises from the optimal choice of signal is constant across priors

lying within its convex hull. By Proposition 3, the same result holds in dynamic

problems. In the present setting, it follows that the agent’s posterior after choosing

at is independent of her prior at the beginning of period t whenever she acquires a

nontrivial signal. In particular, this posterior is independent of at−1.

Given an optimal choice rule p, we denote by p̂(at | θt, at−1) the long-run stationary

choice rule; thus p̂(at | θt, at−1) ≡ pt(at | θ
t, at−1) for sufficiently large t.

We say that a solution is eventually interior if there exists t′ such that, for every

t > t′, each action is chosen with positive probability at each at−1. Lemma 6 in the

appendix translates Proposition 3 to characterize the long-run solution in the present

13The structure of our solution resembles that of the bounded memory model of Wilson (2014).
Each action in our model can be viewed as a “memory state,” with the agent’s strategy describing
stochastic transitions among them. As in Wilson’s model, beliefs in each memory state depend on
the agent’s entire strategy.
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setting in terms of a system of equations, provided that it is eventually interior. One

can check whether this is the case by solving the system of equations in the lemma.

If all of the resulting predispositions lie in (0, 1) then there is indeed an eventually

interior solution.

The next result shows that the model generates intuitive comparative statics.14

We say that the states θt have positive persistence if γ(0, 0) + γ(1, 1) > 1; similarly,

actions at eventually have positive persistence if Pr(at = 0 | at−1 = 0) + Pr(at = 1 |

at−1 = 1) > 1 for all t sufficiently large. Positive persistence captures inertia in the

process: it says that the state one period earlier is more likely to be the same as the

current state than different.

Proposition 5. Suppose states have positive persistence and the solution is eventually

interior. Then

1. actions eventually have positive persistence, and moreover, the choice rule sat-

isfies p̂(at | θt, at−1) > p̂(at | θt, a
′
t−1) whenever at = at−1 6= a′t−1; and

2. the posterior probability πp(θt = a | at = a′) is nonincreasing in the payoff ua

for all a, a′ ∈ {0, 1} and all t.

The first part of the proposition says that inertia in the state will be reflected by

inertia in behavior. The second part says that if ua increases, the agent adjusts her

information in such a way that her degree of certainty when choosing a falls, while

her degree of certainty when choosing the other action rises. Both results follow from

analyzing the system of equations described in Lemma 6.

We now extend the model to allow for the agent to receive costless signals—in

the form of observation of flow payoffs—at the end of each period. How does the

provision of free information affect choice behavior? We show that costless signals

crowd out information acquisition. In some cases, the crowding-out effect is so strong

that the agent is less likely to choose the optimal action with costless signals than

without them. This result implies that providing free information can lower the

agent’s gross payoffs. Her net payoffs, however, cannot decrease: whatever loss she

incurs from choosing suboptimal actions is compensated by a lower cost of information

acquisition.

14Additional comparative statics results may be found in an earlier version of this paper (Steiner,
Stewart, and Matějka, 2015).
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As a benchmark, consider a static RI problem (Θ, π, u) with solution p. Suppose

the agent, before acquiring information, receives a costless signal, y. We focus on the

case in which y is less informative than the signal the agent acquires in the original

problem; that is, we suppose that for each realization of y, the belief π(θ | y) lies in

the convex hull of the posteriors arising from p.15 Upon observing y, the agent solves

the static RI problem (Θ, π(· | y), u). We denote the optimal choice after observing

y by p̃(a | θ, y). We are interested in the distribution of the agent’s actions in each

state; accordingly, define the average choice rule p̃(a | θ) :=
∑

y π(y | θ)p̃(a | θ, y).

In this case, the average choice rule p̃(a | θ) is identical to p(a | θ); whether or

not the agent receives free information has no effect on her behavior in each state.

This observation follows from the result in Caplin and Dean (2013) that the optimal

posteriors in static RI problems are the same across all priors within their convex hull:

since the prior belief and the sets of posteriors are the same in the two problems, so

is the distribution of actions in each state.

In dynamic decision problems, provision of free information has an additional

effect. In choosing what information to acquire, the agent must consider its value not

only in the current period but also in the future. If the agent did not expect to receive

costless signals in future periods, the effect of a (not-too-strong) costless signal before

the current period would be to exactly crowd out information acquisition, as in the

static case. However, receiving additional signals in the future tends to lower the

value of acquiring information today, leading to a reduction in the overall precision

of information in each period.

To illustrate, suppose the realized payoff given at and θt is stochastic. More

specifically, if at = θt, the agent receives—and freely observes—a flow payoff of 1
2λ−1

with probability λ and of 0 with probability 1− λ, where λ ∈ (1/2, 1]. If at 6= θt, the

agent receives a flow payoff of 1
2λ−1

with probability 1 − λ and of 0 with probability

λ. Flow payoffs are independent across periods conditional on the history of states.

Let u(at, θt) denote the expected flow payoff given (at, θt), and note that, for every λ,

the payoff difference u(θ, θ)− u(1− θ, θ) is 1 for each θ.

Higher values of λ correspond to more precise costless signals. When λ = 1, the

flow payoff perfectly reveals the state θt at the end of each period. In this case, con-

tinuation values are independent of the current action. The agent therefore acquires

the same signal as if the choice for the current period were a static problem. At the

15Whenever π(θ | y) lies outside this convex hull, the agent acquires no additional information.
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Figure 1: Precision, π(λ), as a function of the informativeness of flow payoffs for
discount factor δ = 0.9 and transition probabilities γ(0, 1) = γ(1, 0) = 0.9.

other extreme, for λ close to 1/2, this model approximates the one with no costless

signal.

Suppose γ(0, 1) = γ(1, 0). Symmetry implies that the solution is characterized by

a precision π(λ) ∈ (1/2, 1) such that, in every period t for which the agent’s prior

belief that θt = 0 lies in [1−π(λ), π(λ)], her posterior after observing xt is either π(λ)

or 1− π(λ).

From the characterization in Proposition 3, it follows that the optimal precision

is the value of π that maximizes

π +H(π)− δEy [H (πp (π, y))] , (16)

where πp (π, y) denotes the prior belief assigned to a given state in period t + 1 if π

is the belief in period t at the time the action is chosen, and the agent receives flow

payoff y in period t. The first term in (16) captures the impact of π on the expected

gross payoff in period t. The second term captures the impact on the information

cost in period t. The third term captures the impact of the belief in period t on the

information cost in period t + 1 through its effect on the prior belief in the latter

period.

Figure 1 depicts the optimal precision, obtained by maximizing (16) numerically.

Precision decreases in the informativeness of the flow payoffs. Since the precision is

equal to the probability that the agent’s action matches the state in each period, the

agent’s gross payoff also decreases with λ.
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4.3 Response times

A large body of research in psychology—and more recently in economics—has exam-

ined response times in decision-making (e.g., see Rubinstein, 2007). An important

methodological question in this area is whether choice procedures should be modeled

explicitly or in reduced form. Sims (2003) argues that the RI framework is a promis-

ing tool for incorporating response times into traditional economic models that treat

decision-making as a black box. Our model, with its focus on sequential choice, is a

step in this direction. Woodford (2014) studies delayed decisions in an RI model that

focuses on neurological decision procedures.16

We focus on the following simple model. The state θ ∈ {0, 1} is uniformly dis-

tributed and fixed over time. In each period t = 1, . . . , T , the agent chooses a terminal

action 0 or 1, or waiting (denoted by w). She receives a benefit of 1 if her terminal

action matches the state, and 0 otherwise. In addition, she incurs a cost c ∈ (0, 1) for

each period that she waits. Letting wt = (w, . . . , w) (t times), the agent’s total gross

payoff is the undiscounted sum of the flow payoffs

ut(a
t, θ) =































1 if at = (wt−1, θ),

0 if at = (wt−1, 1− θ),

−c if at = wt,

0 otherwise.

This formulation is similar to the model of Arrow, Blackwell, and Girshick (1949)

except that information is endogenous; see also Fudenberg, Strack, and Strzalecki

(2015).

With the information cost function as in our general model, the solution to this

problem is trivial: since delay is costly, any strategy that involves delayed decisions

is dominated by a strategy that generates the same distribution of terminal actions

in the first period. However, some delay is optimal in a closely related variation of

the model in which—as in much of the RI literature—there is an upper bound on

how much information the agent can process in a given amount of time; thus delaying

allows her to process more information. We view this formulation as natural for

capturing perceptual experiments that take place over a short time. Accordingly, the

16See Spiliopoulos and Ortmann (2014) for a review of psychological and economic research on
decision times, and of the methodological differences between the two fields.
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agent solves

max
f,σ

E
[

T
∑

t=1

ut

(

σt(xt), θ
)

]

, (17)

s.t. I
(

θ; xt | x
t−1
)

≤ κ for all xt−1 and t = 1, . . . , T,

where κ > 0 is the capacity constraint on the information acquired per period, f =

(f(xt | x
t−1))t is the information strategy, and σ = (σt(x

t))t is the action strategy.

We assume that there are at least four signal realizations (i.e., |X| ≥ 4), and that

κT < log 2, which means that the capacity is not large enough for the agent to learn

the state perfectly within the T periods.

Given a strategy for the agent, let rt = Pr (at 6= w | at−1 = wt−1) and gt = Pr(at =

θ | at−1 = wt−1 and at 6= w). We refer to rt as the (hazard) rate and gt as the accuracy

of terminal actions at time t.

Proposition 6. For each κ, there exist c and c with c > c > 0 such that if c ∈ (c, c),

then (17) has a solution in which the rate rt is positive and constant across t < T ,

rT = 1, and gt =
exp(κ/c)

1+exp(κ/c)
for every t.

This result indicates that the solution involves constant accuracy across periods,

and a constant rate until the final period (at which point taking a terminal action

is always optimal). This solution reflects two tradeoffs. First, for given rates rt, the

agent can trade off accuracy across periods: decreasing accuracy in one period frees

up capacity that can be used to acquire information that improves the accuracy of

future decisions. The marginal value of capacity must be equalized across periods,

which occurs when accuracy is constant. The second tradeoff is between speed and

accuracy. Increasing the rate of terminal actions lowers the expected waiting cost

but requires a corresponding decrease in accuracy so as not to violate the capacity

constraint. The optimal accuracy therefore depends on both the capacity, κ, and the

waiting cost, c.

Although problem (17) does not fit directly into our general model, we show in

the proof of Proposition 6 that it can be solved by transforming it into a problem

that does. We first consider a relaxed problem in which capacity is storable; the

agent therefore faces a cumulative capacity constraint at each decision node. Because

of the additivity of mutual information, the behavior in any solution to this relaxed

problem can be replicated in the original problem (although the timing of information
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acquisition may differ). The Lagrangian for this relaxed problem is a special case of

the objective function in our general model; accordingly, we find the solution using

Proposition 3.

Unlike our general model, problem (17) cannot be solved by a strategy in which

signal realizations map one-to-one to actions (as in Lemma 1): with constant accuracy

and binding constraints, the only way to achieve a higher rate in the final period

is to acquire information even when choosing to wait. With four possible signal

realizations, an optimal strategy has two realizations leading to posteriors gt and

1 − gt—at which the agent chooses a terminal action—and two realizations leading

to posteriors closer to 1/2, at which the agent waits. Lemma 1 does hold in the

relaxed problem with storable capacity; in that problem, any information obtained

while waiting can be delayed until it is used for a terminal decision.

How do response times vary with the capacity κ? Higher values of κ can be

interpreted as describing an agent with higher ability, or a decision problem that

is easier to solve. Given the solution in Proposition 6 together with the fact that

the constraints in (17) bind, one can compute the rate rt numerically. We find that

the rate is not monotone in the capacity: decisions are fastest when the capacity is

high or low, and slowest for intermediate capacities. If the capacity is low, there is

little incentive to delay the decision since the cost of delay is large relative to the

value of the additional information that can be acquired. If the capacity is high, the

agent can acquire precise information quickly and then has little incentive to delay

in order to acquire additional information. If individual subjects can be treated as

having a fixed capacity across problems in an experiment, this suggests that we should

expect significant differences in the correlation between accuracy and decision times

depending on whether the data is within or across subjects.

5 Summary

We solve a general dynamic decision problem in which an agent repeatedly ac-

quires information, facing entropy-based information costs. The optimal behavior is

stochastic—the action distribution at each decision node complies with a logit choice

rule—and biased—compared to the standard dynamic logit model, the agent behaves

as if she incurs a cost for choosing actions that are unlikely ex ante. When incentives

are serially correlated, the agent exhibits an endogenous conservative bias that results
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in stickiness in her actions. The distinction between real and informational frictions

is a central topic of the RI literature that has been studied in particular settings. This

paper formalizes, in a general setting, an equivalence between the two frictions within

any given decision problem, while showing that they lead to distinct predictions when

extrapolating to different problems.

As a tool for solving the problem, we show that the RI model with incomplete

information and learning is behaviorally equivalent to a complete information control

problem. The agent behaves as if she faces a cost of deviating from a default choice

rule, but also engages in a second layer of optimization: at the ex ante stage, she

optimizes the default rule, which is independent of the state of the world, and ex post,

the agent chooses an optimal deviation from the default rule given the incentives in

the realized state and the control cost.

Appendix

A Proofs for Section 2.1

The next two lemmas are used to prove Lemma 1. The first relies on the conditional

independence of xt and yt, the additive property of entropy, and the symmetry of

mutual information.

Lemma 4. Let at = σt(zt−1, xt). The total discounted information cost associated

with any strategy (f, σ) satisfies

E

[

∞
∑

t=1

δ(t)I(θt; xt | z
t−1)

]

= E

[

∞
∑

t=1

((

−δ(t) + δ(t+1)
)

H(θt | xt, yt)− δ(t)H(yt | x
t, yt−1)

+δ(t)H(yt | θ
t, at, yt−1) + δ(t)H(θt | θ

t−1)
)

]

. (18)
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Proof. Recall that

E

[

∞
∑

t=1

δ(t)I(θt; xt | z
t−1)

]

= E

[

∞
∑

t=1

δ(t)
(

H(θt | xt−1, yt−1)−H(θt | xt, yt−1)
)

]

.

(19)

By the symmetry of mutual information, for at = σt(zt−1, xt),

E
[

H(θt | xt, yt−1)−H(θt | xt, yt)
]

= E
[

I(θt; yt | x
t, yt−1)

]

= E
[

I(yt; θ
t | xt, yt−1)

]

= E
[

H(yt | x
t, yt−1)−H(yt | θ

t, xt, yt−1)
]

= E
[

H(yt | x
t, yt−1)−H(yt | θ

t, at, yt−1)
]

,

where the last step follows from the independence of xt and yt conditional on (θt, yt−1, at).

In addition, by the additive property of entropy and the independence of θt and

(xt−1, yt−1) conditional on θt−1,

E
[

H(θt | xt−1, yt−1)
]

= E
[

H(θt−1 | xt−1, yt−1) +H(θt | θ
t−1, xt−1, yt−1)

]

= E
[

H(θt−1 | xt−1, yt−1) +H(θt | θ
t−1)

]

.

Substituting the last two identities into the right-hand side of (19) gives

E

[

∞
∑

t=1

δ(t)
(

H(θt−1 | xt−1, yt−1)−H(θt | xt, yt)−H(yt | x
t, yt−1)

+H(yt | θ
t, at, yt−1) +H(θt | θ

t−1)
)

]

.

Rearranging terms gives the result.

Lemma 5. Let χ, ξ, and ζ be finite random variables such that ζ is measurable with

respect to ξ. Then E[H(χ | ξ)] ≤ E[H(χ | ζ)].

Proof. Since ζ is measurable with respect to ξ, Pr(χ | ζ) ≡
∑

ξ Pr(χ | ξ) Pr(ξ | ζ).

Thus Pr(χ | ζ) is a convex combination of the distributions Pr(χ | ξ) (as ξ varies).

The result follows from the concavity of entropy.

Proof of Lemma 1. Let s be a strategy and p the choice rule generated by s. By

construction, s and p give the same stream of expected gross payoffs. We claim that
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the information cost

E

[

∞
∑

t=1

I(θt; at | a
t−1, yt−1)

]

associated with p is no larger than that associated with s, which, by Lemma 4, is equal

to the right-hand side of (18). The information cost associated with p can be expressed

in the exactly same way except with at in place of each xt. These two expressions can

be compared term-by-term. By Lemma 5, E [H(θt | xt, yt)] ≤ E [H(θt | at, yt)] and

E [H(yt | x
t, yt−1)] ≤ E [H(yt | a

t, yt−1)] for every t. Since δ(t+1) ≤ δ(t), this implies

that the first two terms of the sum on the right-hand of (18) are at least as large as

the corresponding terms in the expression associated with p. Since the last two terms

of the sum are identical in the two cases, the claim follows.

We have shown that the discounted expected payoff from any strategy s is no larger

than the value of the objective function in (3) given the choice rule generated by s.

Conversely, the discounted expected payoff from any strategy induced by a choice

rule p is identical to the value of the objective function in (3) given p. Together, these

two relationships imply the result.

Proof of Proposition 1. Consider the space of strategies Π =
∏

t∆(A)Θ
t×At−1×Y t−1

.

By Tychonoff’s Theorem, the space Π is compact in the product topology, and because

ut is uniformly bounded, the objective function is continuous. Therefore, an optimum

exists.

B Proofs for Section 3

Proof of Lemma 3. Given q, let vt(at, ω
t) = ut(a

t, θt) + log qt(at | at−1, yt−1) for all

ωt = (θt, at−1, yt−1). For each ωt such that Pr(ωt) > 0 (where the probability is with

respect to π, q, and g), let

Vt(ω
t) =

1

δ(t)
max

{pτ (·|ωτ )}∞
τ=t

E

[

∞
∑

τ=t

δ(τ)
(

vτ (aτ , ω
τ)− log pτ (aτ | ωτ)

)

| ωt

]

;

thus Vt(ω
t) is the continuation value in the control problem for q. If Pr(ωt) = 0, we

define Vt(ω
t) arbitrarily.
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When Pr(ωt) > 0, the value Vt satisfies the recursion

Vt(ω
t) = max

pt(·|ωt)
E
[

vt(at, ω
t)− log pt(at | ω

t) + δt+1Vt+1(ω
t+1) | ωt

]

(20)

(recall that δt+1 = δ(t+1)/δ(t)).

To solve the maximization problem in (20), note first that, since vt(at, ω
t) =

ut(a
t, θt) + log qt(at | z

t−1) (for zt−1 = (at−1, yt−1)), if qt(at | z
t−1) = 0—and hence

log qt(at | zt−1) = −∞—for some at, then we must have pt (at | (θ
t−1, θt), z

t−1) =

0 for every θt satisfying π(θt−1, θt) > 0.17 Accordingly, let A(zt−1) = {at ∈ A :

qt(at | zt−1) > 0}, and suppose at ∈ A(zt−1) and π(θt−1, θt) > 0. If A(zt−1) is a

singleton, then pt (at | (θ
t−1, θt), z

t−1) = 1. Otherwise, the first-order condition for

the optimization problem in (20) with respect to pt(at | ω
t) is

vt(at, ω
t)−

(

log pt(at | ω
t) + 1

)

+ δt+1E
[

Vt+1

(

ωt+1
)

| ωt, at
]

= µt(ω
t), (21)

where µt(ω
t) is the Lagrange multiplier associated with the constraint

∑

a′
t

pt(a
′
t |

ωt) = 1.

Rearranging the first-order condition gives

pt(at | ω
t) = exp

(

vt(at, ω
t)− 1 + δt+1V t+1

(

at, ω
t
)

− µt(ω
t)
)

,

where V t+1 (at, ω
t) := E [Vt+1 (ω

t+1) | ωt, at]. Since
∑

a′
t
∈A(zt−1) pt(a

′
t | ωt) = 1, it

follows that

pt(at | ω
t) =

exp
(

vt(at, ω
t)− 1 + δt+1V t+1 (at, ω

t)− µt(ω
t)
)

∑

a′
t
∈A(zt−1) exp

(

vt(a′t, ω
t)− 1 + δt+1V t+1 (a′t, ω

t)− µt(ωt)
)

=
exp

(

vt(at, ω
t) + δt+1V t+1 (at, ω

t)
)

∑

a′
t
∈A(zt−1) exp

(

vt(a′t, ω
t) + δt+1V t+1 (a′t, ω

t)
) .

17If π(θt−1, θt) = 0 then pt
(

at | (θt−1, θt), z
t−1
)

has no effect on the value and can be chosen
arbitrarily.
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Substituting into (20) gives the recursion

V t(at−1, ω
t−1) = E

[

− δt+1V t+1(at, ω
t)

+ log





∑

a′
t
∈A(zt−1)

exp
(

vt(a
′
t, ω

t) + δt+1V t+1(a
′
t, ω

t)
)



+ δt+1V t+1(at, ω
t)

∣

∣

∣

∣

ωt−1, at−1

]

,

and therefore,

V t(at−1, ω
t−1)

= E



log





∑

a′
t
∈A(zt−1)

exp
(

vt(a
′
t, ω

t) + δt+1V t+1(a
′
t, ω

t)
)





∣

∣

∣

∣

ωt−1, at−1





= E



log





∑

a′
t
∈A

q(a′t|z
t−1) exp

(

ut((a
t−1, a′t), θ

t) + δt+1V t+1(a
′
t, ω

t)
)





∣

∣

∣

∣

ωt−1, at−1



 ,

as needed.

Proof of Theorem 1. The first assertion follows immediately from Lemmas 2 and 3.

For the second assertion, fixing p, if zt−1 is reached with positive probability, proper-

ness implies that qt(at | zt−1) = pt(at | zt−1) maximizes the objective in problem

(14).

Proof of Proposition 3. Given zt−1 and continuation values Vt+1(ω
t+1), we refer to the

static problem described in the proposition as the static RI problem at zt−1. Each

of these static problems is a special case of our general model; in particular, Lemma

2 implies that pt(at | θ
t, zt−1) solves the static RI problem at zt−1 if and only if it,

together with some qt(· | z
t−1) solves the corresponding control problem

max
qt(·|zt−1),{pt(·|θt,zt−1)}

θt

E
[

ût

(

at, θ
t; zt−1

)

+ log qt
(

at | z
t−1
)

− log pt
(

at | θ
t, zt−1

)

| zt−1
]

,

(22)

where the expectation is with respect to the joint distribution of at, θ
t, and yt gen-

erated by the prior πp(θ
t | zt−1) together with {pt(· | θ

t, zt−1)}θt . We call (22) the

control problem at zt−1.

By Lemma 2, it suffices to prove that any solution of the control problem (problem
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(14)) coincides at every zt−1 with a solution of the control problem at zt−1. By Lemma

3, for any given q, the objective function in (14) is maximized by p satisfying

pt(at | θ
t, zt−1) =

qt(at | z
t−1) exp (û(at, θ

t; zt−1))
∑

a′
t

qt(a
′
t | z

t−1) exp (û(a′t, θ
t; zt−1))

. (23)

Similarly, for each zt−1, given qt(· | z
t−1), this pt maximizes the objective function in

the control problem at zt−1.

Let q be a solution to (14) (together with p given by (23)). Since p is interior,

it follows from (23) that pt(at | ω
t) > 0 for every ωt. The result now follows from

the Principle of Optimality: the control problem at zt−1 corresponds to the Bellman

equation at that decision node, and hence qt(· | z
t−1) and pt(· | θ

t, zt−1) also solve the

control problem at zt−1 (and conversely).

We now extend Proposition 3 to cases in which the solution to the dynamic RI

problem is not interior. To do this, we must ensure that prior beliefs in the static

problems are defined appropriately to generate the correct continuation values. We

define the posterior belief in a static RI problem after an action a is taken with zero

probability to be

πp(θ | a) =
1

∑

θ′ π(θ
′) expu(a,θ′)∑

a′
q(a′) exp u(a′,θ′)

π(θ) exp u(a, θ)
∑

a′ q(a
′) exp u(a′, θ)

. (24)

This expression coincides with (9) when a is chosen with positive probability. Other-

wise, it differs from (9) only by a renormalization. The main idea of the proof is to

add an additional constraint placing a lower bound on every qt(at | z
t−1) in both the

original control problem and the control problem at zt−1, and then examine the limit

as this lower bound vanishes. The same argument as in the proof of Proposition 3

applies to the problems with the lower bound, and continuity yields the desired result

in the limit.

Proposition 7. There exists a dynamic choice rule p solving the dynamic RI problem

such that, at each decision node zt−1, pt(at | θ
t, zt−1) solves the static RI problem with

state space Θt, prior belief πp(θ
t | zt−1) satisfying (10), and payoff function ût given

by (11), where the posterior belief πp(θt | at, z
t−1) formed after taking action at at the

decision node zt−1 complies with (24), and the continuation values satisfy (12).
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Proof. Consider, for ε ∈ (0, 1/|A|), the ε-control problem, which is identical to the

original control problem (problem (14)) except that for each at and zt−1, there is a

constraint that qt(at | z
t−1) ≥ ε. Define the ε-control problem at zt−1 analogously.

The argument in the proof of Proposition 3 applies here to show that, for each ε, the

solutions to the ε-control problem coincide with those of the full collection of ε-control

problems at decision nodes zt−1. Moreover, essentially the same argument as in the

proof of Proposition 1 establishes that a solution to each ε-control problem exists.

By Lemma 3, the solution to (and value of) the control problem for q is contin-

uous in q (with respect to the product topology). Therefore, any limit point—as ε

vanishes—of the set of solutions to the ε-control problem is a solution to the original

control problem. An analogous argument applies to the ε-control problem at each

zt−1 provided that the continuation values and priors approach those described in the

proposition as ε vanishes.

For each ωt = (θt, at−1, yt−1) and ε, let V ε
t (ω

t) denote the continuation value in the

ε-control problem. Consider the ε-control problem at zt−1 = (at−1, yt−1), and write

πp for the prior and ûε
t for the analogue of ût with continuation values V ε

t in place of

Vt. We have

V ε
t (ω

t) = log

(

∑

at

qt(at | z
t−1) exp(ûε

t(at, ω
t))

)

,

which converges to the expression in (12) since pt(at | zt−1) = qt(at | zt−1) at an

optimum.

For the priors, note that the first-order condition with respect to qt(at | z
t−1) for

a solution of the ε-control problem at zt−1 with qt(at | z
t−1) ∈ (ε, 1) is

∑

θt

πp(θ
t) exp ûε(at, ω

t)
∑

a′
t

qt(a′t | z
t−1) exp ûε(a′t, ω

t)
= µ, (25)

where µ is the Lagrange multiplier associated with the constraint
∑

a′
t

qt(a
′
t | z

t−1) = 1.

Note that there must exist some at for which qt(at | z
t−1) ∈ (ε, 1). For this action at,

we have pt(at | z
t−1) = qt(at | z

t−1), and hence the left-hand side of (25) is the sum

of posterior beliefs, which must be equal to 1.

Now consider at for which the solution is qt(at | z
t−1) = ε (if such an at exists).
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Then we must have

∑

θt

πp(θ
t) exp ûε(at, ω

t)
∑

a′
t

qt(a′t | z
t−1) exp ûε(a′t, ω

t)
≤ µ = 1.

In this case, the posterior beliefs satisfy

πp(θt | at, z
t−1) =

πp(θ
t)

pt(at | z
t−1)

pt(at | ω
t)

=
qt(at | z

t−1)

pt(at | z
t−1)

πp(θ
t) exp(ûε(at, ω

t))
∑

a′
t

qt(a′t | z
t−1) exp(ûε(a′t, ω

t))

=
1

∑

θ̃t πp(θ̃t)
exp(ûε(at,ωt))∑

a′
t
qt(a′t|z

t−1) exp(ûε(a′t,ω̃
t))

πp(θ
t) exp(ûε(at, ω

t))
∑

a′
t

qt(a
′
t | z

t−1) exp(ûε(a
′
t, ω

t))
,

where ω̃t = (θ̃t, at−1, yt−1). Therefore, as ε vanishes, the posteriors indeed approach

those given by (24).

C Proofs and computations for Section 4

C.1 Status quo bias

Proof of Proposition 4. By symmetry, the predispositions in the first period are given

by q1(0) = q1(1) = 1/2, and in the second period, q2(0 | 0) = q2(1 | 1). Denote the

latter by s. Also by symmetry, the continuation value function attains only two

values:

V2

(

a1, θ
2
)

=







Vc if a1 = θ2,

Vw if a1 6= θ2,

where Vc is the expected payoff in period 2 (including the information cost) when

a1 = θ2, and Vw is the corresponding payoff when a1 6= θ2. By Theorem 1 and (4),

the continuation values satisfy Vw = log(s+ (1− s)e) and Vc = log(se+ (1− s)).

Applying Theorem 1 and (4) together with symmetry in the first period gives the

expected payoff

log

(

1

2
exp (1 + (1− γ)Vc + γVw) +

1

2
exp ((1− γ)Vw + γVc)

)

,
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where the predisposition s maximizes this expression (subject to 0 ≤ s ≤ 1). This is

equivalent to maximizing

W (s; γ) := exp (1 + (1− γ)Vc + γVw) + exp ((1− γ)Vw + γVc)

= e(se+ (1− s))1−γ(s+ (1− s)e)γ + (s+ (1− s)e)1−γ(se + (1− s))γ.

Note that, because γ ∈ (0, 1/2), W (s; γ) ≥ W (1 − s; γ) for s > 1/2, and thus the

maximand is at least 1/2.

It is straightforward to verify that W (s; γ) is concave in s, and its derivative (with

respect to s) at s = 1 is positive when γ = 0. It follows that the optimal value of s is

1 when γ = 0, and therefore, by continuity, there exists γ∗ ∈ (0, 1/2) such that this

is true whenever γ < γ∗.

C.2 Inertia

Lemma 6. Suppose there is an eventually interior solution. Then there exists t′

such that for t > t′, conditional on at−1 and θt, at is independent of θt−1 and at−2.

Moreover, there is an optimal choice rule for which pt(at | θ
t, at−1) ≡ p̂(at | θt, at−1)

in each period t > t′, where

p̂(at | θt, at−1) =
q̂(at | at−1) exp (u(at, θt) + δE [V (at, θt+1) | θt])

∑

a′
t

q̂(a′t | at−1) exp (u(a′t, θt) + δE [V (a′t, θt+1) | θt])
, (26)

where the continuation payoffs solve

V (at−1, θt) = log

(

∑

at

q̂(at | at−1) exp (u(at, θt) + δE [V (at, θt+1) | θt])

)

, (27)

the predispositions q̂(at | at−1) solve

∑

θt−1

πp(θt−1 | at−1)γ(θt−1, θt) =
∑

at

q̂(at | at−1)π
p(θt | at) (28)

for all θt and at−1, and the posteriors π̂p(θt | at) ≡
∑

θt−1 πp((θt−1, θt) | (at−1, at))

satisfy
π̂p(θt | at)

π̂p(θt | a′t)
=

exp (u(at, θt) + δE[V (at, θt+1) | θt])

exp (u(a′t, θt) + δE[V (a′t, θt+1) | θt])
. (29)
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Proof. The result follows directly from Proposition 3. It suffices to verify that p̂(at |

θt, at−1) and q̂(at | at−1) solve the static RI problem at each at−1.

Proof of Proposition 5. For each a ∈ {0, 1}, let πa denote the posterior π̂p(θt = 1 |

at = a), and πa the prior π̂p(θt = 1 | at−1 = a) ≡
∑

θt−1 πp((θ
t−1, 1) | (at−2, a))

associated with the stationary solution when t is sufficiently large. Since the expected

posterior is equal to the prior, we have q̂(a|a)πa + q̂(1 − a|a)π1−a = πa for each

a ∈ {0, 1}. Together with q̂(a | a) + q̂(1− a | a) = 1, these two equations imply

q̂(a | a)− q̂(a | 1− a) =
πa − π1−a

πa − π1−a

for each a. Substituting πa = πaγ(1, 1)+(1−πa)γ(0, 1) and the analogous expression

for π1−a leads to q̂(a | a)− q̂(a | 1−a) = γ(1, 1)−γ(0, 1) = γ(1, 1)+γ(0, 0)−1, which

is positive since states have positive persistence. That p̂(a | θ, a) > p̂(a | θ, 1− a) for

each a follows from this last result together with (26).

For part 2, suppose without loss of generality that a = 1. Consider a static RI

problem with Θ = A = {0, 1} and payoffs u(a, θ) satisfying u(a, a) ≡ ua > 0 and

u(1 − a, a) = 0 for each a ∈ {0, 1}. Suppose moreover that the solution is interior.

By (9),
π1
s

π0
s

= exp u1 and
1− π1

s

1− π0
s

= exp(−u0),

where πa
s denotes the posterior πp(θ = 1 | a). It is straightforward to verify that the

posteriors π1
s and π0

s solving these two equations decrease in u1 and increase in u0.

Now consider the dynamic problem. By Proposition 3 and Lemma 6, the so-

lution is the same as in a static RI problem with payoffs û(at, θt) = uat1at=θt +

δE [V (at, θt+1; u1) | θt], where V (at, θt+1; u1) solves (27) (given u1). By the previous

paragraph, it suffices to prove that the payoff difference û(1, θ)− û(0, θ) increases in

u1 for each θ ∈ {0, 1}, which follows if V (1, θ; u1)−V (0, θ; u1) increases in u1 for each

θ ∈ {0, 1}.

Differentiating (27) gives

∂

∂u1
V (at−1, θt; u1) = p̂(1 | θt, at−1) + δE

[

∂

∂u1
V (at, θt+1; u1) | at−1, θt

]

. (30)

Letting d(at, θt) := p̂(at | θt, 1)−p̂(at | θt, 0) and ∆(θt; u1) := V (1, θt; u1)−V (0, θt; u1),
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(30) implies

∂

∂u1
∆(θt; u1) = d(1, θt) + δE

[

d(1, θt)
∂

∂u1
V (1, θt+1; u1) | θt

]

+ δE

[

d(0, θt)
∂

∂u1

V (0, θt+1; u1) | θt

]

= d(1, θt) + δE

[

d(1, θt)
∂

∂u1
∆(θt+1; u1) | θt

]

,

where the last equality follows from the identity d(a, θt) ≡ −d(1 − a, θt). Iterating

gives

∂

∂u1
∆(θt; u1) =

∞
∑

t′=t

δt
′−tE

[

t′
∏

t′′=t

d(1, θt′′) | θt

]

.

By part 1 of the proposition, d(1, θt) > 0 for each θt, and hence ∂
∂u1

∆(θt; u1) > 0.

C.3 Response times

Proof of Proposition 6. Since actions following any at−1 6= wt−1 are payoff-irrelevant,

the problem has a solution in which the agent acquires information only before the

first terminal action; that is, if σt−1(xt−1) 6= wt−1 then I(θ; xt | x
t−1) = 0. We restrict

attention to solutions of this form.

Note that the system of constraints in (17) together with the preceding paragraph

imply

E
[

I
(

θ; xt | x
t−1
)]

≤ κPr
(

σt−1
(

xt−1
)

= wt−1
)

for all t = 1, . . . , T.

Taking partial sums gives

t
∑

τ=1

E
[

I
(

θ; xτ | xτ−1
)]

≤ κ
t
∑

τ=1

Pr
(

στ−1
(

xτ−1
)

= wτ−1
)

for all t = 1, . . . , T.

In addition, if at = σt(xt), then

t
∑

τ=1

E
[

I
(

θ; aτ | aτ−1
)]

= I(θ; at) ≤ I(θ; xt) =

t
∑

τ=1

E
[

I
(

θ; xτ | xτ−1
)]

.
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Therefore, the value of the problem

max
p

E
[

T
∑

t=1

ut

(

at, θ
)

]

(31)

s.t.

t
∑

τ=1

E
[

I
(

θ; aτ | aτ−1
)]

≤ κ

t
∑

τ=1

Pr
(

aτ−1 = wτ−1
)

for all t = 1, . . . , T

is an upper bound on the value of problem (17). Thus if we find a choice rule p∗

solving (31), and construct a strategy (f, σ) feasible in (17) that generates p∗, then

(f, σ) solves (17).

Since the set of choice rules satisfying the constraints in (31) is convex and the

objective is linear in p, the first-order conditions are sufficient for a global optimum.

For each t, let λ̃t ≥ 0 denote the shadow price of the constraint in (31) for t. Consider

the problem

max
p

E
[

T
∑

t=1

(

ut(a
t, θ) + λt+1κ1at=wt − λtI(θ; at | a

t−1)
)

]

, (32)

where λT+1 = 0, and λt =
∑T

τ=t λ̃τ for each t = 1, . . . , T . We will use Proposition 3

to find a solution to (32) with λ1 = λ2 = · · · = λT = c/κ, and then show that, for a

range of values of c, this solution satisfies the first-order conditions for (31).

The only non-trivial decision node in each period t is at−1 = wt−1. Each of these

nodes is associated with a unique belief about θ, which, by symmetry, is the uniform

belief. Symmetry also implies that, for each t, the continuation value Vt(w
t−1, θ) is

independent of θ; accordingly, we omit the arguments of Vt. Multiplying the objective

by κ/c to eliminate the λt coefficient on the mutual information term and applying

Proposition 3 implies that, at each node wt−1, the solution corresponds to that of the

static RI problem with a uniform prior over θ and payoffs

ût (at, θ) =



















κ/c if at = θ,

0 if at = 1− θ,

κ(Vt+1 − c+ κc/κ)/c if at = w,

where VT+1 := 0. Note that the last expression simplifies to ût(w, θ) = κVt+1/c.

We solve this static RI problem using Proposition 2. By symmetry, the rate rt
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satisfies rt/2 = qt(0 | wt−1) = qt(1 | wt−1) for each t. By (7), the accuracy satisfies

gt =
exp(κ/c)

1+exp(κ/c)
for each t.

Since action w is dominated at T by a uniform mixture of 0 and 1, rT = 1. By (12),

the value associated with the static RI problem at time T (including the rescaling

by κ/c) is κVT /c = log
(

1
2
(exp(κ/c) + 1)

)

. Proposition 2 implies that, for each t, rt

solves

max
rt∈[0,1]

log
(rt
2
(exp(κ/c) + 1) + (1− rt) exp(κVt+1/c)

)

. (33)

This problem is solved by any rt ∈ [0, 1] if and only if κVt+1/c = log
(

1
2
(exp(κ/c) + 1)

)

,

in which case Vt = Vt+1. Proceeding recursively from period T back to period 1, it

follows that, for each r ∈ (0, 1), there is a solution with r1 = · · · = rT−1 = r.

For this to solve (31), r must be such that the constraints are satisfied. Note that,

since gt =
exp(κ/c)

1+exp(κ/c)
for each t,

T
∑

τ=1

E
[

I
(

θ; aτ | a
τ−1
)]

= I(θ; aT ) = h (1/2)− h

(

exp(κ/c)

1 + exp(κ/c)

)

,

where h(p) := −p log p− (1− p) log(1− p). Since the constraint for period T in (31)

is binding, r must satisfy

h (1/2)− h

(

exp(κ/c)

1 + exp(κ/c)

)

= κ
T
∑

τ=1

(1− r)τ−1. (34)

The left-hand side of this equation is decreasing in c, while the right-hand side ranges

from κ to κT as r ranges from 1 to 0. By assumption, h(1/2) > κT , and hence there

exist c and c (whose values depend on κ) such that (34) has a solution r ∈ (0, 1)

whenever c ∈ (c, c). Since gt is constant, I(θ; at) = Pr(at 6= wt)κ
∑T

τ=1(1 − r)τ−1 for

each t, from which it is straightforward to verify that the constraints in (31) hold for

each period t < T . In addition, because λt = λT for each t < T , the shadow price

λ̃t of the constraint for t is 0, and that for the binding constraint at T is positive.

Therefore, the choice rule corresponding to gt ≡
exp(κ/c)

1+exp(κ/c)
and rt ≡ r satisfying (34)

solves (31).

All that remains is to construct a strategy (f, σ) satisfying the system of con-

straints in (17) that generates this choice rule. Without loss of generality, let 0,

1, w0, and w1 be distinct elements of X, and let W = {w0, w1}. Let σ satisfy
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σt(x
t) = xt if xt ∈ {0, 1} and σt(x

t) = w if xt ∈ W . Let the information strat-

egy f satisfy Pr(xt = 0 | xt−1 ∈ W t−1) = Pr(xt = 1 | xt−1 ∈ W t−1) = rt/2 and

Pr(xt = w0 | xt−1 ∈ W t−1) = Pr(xt = w1 | xt−1 ∈ W t−1) = (1 − rt)/2 for ev-

ery t, and generate the following posteriors: if xt−1 ∈ W t−1 and xt = a ∈ {0, 1}

then Pr(θ = a | xt) = g; and if xt−1 ∈ W t−1 and xt = wa for a ∈ {0, 1} then

Pr(θ = a | xt) = g̃t, where g̃t satisfies

h (1/2)− h(g̃t) = κ
T
∑

τ=T−t+1

(1− r)τ−1. (35)

Since g̃t is increasing and smaller than g for all t < T , there exists an information

strategy generating these posteriors. Equation (35) is equivalent to

(h (1/2)− h (g̃t)) (1− r)t +
(

1− (1− r)t
)

κ

T
∑

τ=1

(1− r)τ−1 = κ

t
∑

τ=1

(1− r)τ−1.

For t = 1, this together with (34) implies that the capacity constraint is binding.

Proceeding inductively, the constraint binds at every wt.
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