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Abstract

Individuals must often choose among discrete alternatives with imperfect infor-

mation about their values. Before choosing, they have an opportunity to study the

options, but doing so is costly. This creates new choices such as the number of and

types of questions to ask. We model these situations using the rational inattention

approach to information frictions. We find that the decision maker’s optimal strategy

results in choosing probabilistically in line with a generalized multinomial logit model,

which depends both on options’ true values as well as on prior beliefs.
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1 Introduction

Economists and psychologists have long known that scarce attention plays an important

role in decision making (Simon, 1959; Kahneman, 1973). In this paper we study the dis-

crete choice behavior of an agent who must allocate his limited attention to the available

information about the choice situation.

It is not uncommon for one to be faced with a choice among discrete alternatives with

imperfect information about the value of each alternative. Before making a choice, one

may have an opportunity to study the options, however, in most cases it is too costly to

investigate the options to the point where their values are known with certainty. As a result,

some uncertainty about the values remains when one chooses among the options even if

complete information were available in principle. Because of this uncertainty, the option

that is ultimately chosen may not be the one that provides the highest utility to the decision

maker (DM). Moreover, the noise in the decision process may lead identical individuals to

make different choices. In this manner, imperfect information naturally leads choices to

contain errors and be probabilistic as opposed to deterministic.

In this context, the DM faces choices of how much to study the options and what to

investigate when doing so. That is, the DM must choose how to allocate his attention.

For example, a firm might choose how long to spend interviewing candidates for a job and

choose what to ask them during the interview. After completing the interview, the firm faces

a discrete choice among the candidates.

We explore the optimal “information processing” behavior of a DM for whom acquiring

information is costly and characterize the resulting choice behavior in this discrete choice

context. As choices are probabilistic, our characterization involves describing the probability

with which the DM selects a particular option in a particular choice situation. Specifically,

we model the cost of acquiring and processing information using the rational inattention

framework introduced by Sims (1998, 2003).

The major appeal of the rational inattention approach to information frictions is that

it does not impose any particular assumptions on what agents learn or how they go about
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learning it. Instead, the rational inattention approach derives the information structure from

the utility-maximizing behavior of the agents for whom information is costly to acquire. As

a result, rationally inattentive agents process information that they find useful and ignore

information that is not worth the effort of acquiring and processing.

Our main finding is that the DM’s optimal information processing strategy results in

probabilistic choices that follow a logit model that reflects both the options’ true values as

well as the DM’s prior beliefs. In a choice among N options with any form of prior beliefs,

our modified logit formula takes the form

e(vi+αi)/λ∑N
j=1 e

(vj+αj)/λ
, (1)

where vi is the value of option i and λ is a parameter that scales the cost of information.

The DM’s prior knowledge and information processing strategy are incorporated into the

choice probabilities through the weights, αi, attached to each position in the choice set.

These weights shift the choice probabilities towards those options that appeared to be good

candidates a priori and they are completely independent of the actual values of the options.

As the cost of information rises, the DM’s choice becomes less sensitive to the actual values

of the options and more sensitive to his prior beliefs.

When the a priori beliefs do not influence the choice our work provides a new foundation

for the multinomial logit model . We show that whenever the options are exchangeable in

the DM’s prior, αi is constant across i so equation (1) simplifies to the standard multinomial

logit formula. Cases where the options are homogenous a priori arise naturally whenever

the DM lacks specific knowledge that allows him to distinguish between the options before

entering the choice situation.

The multinomial logit model is perhaps the most commonly used model of discrete choice

and it has two canonical foundations.1 According to the random utility derivation, the

DM evaluates the options with some noise. If the noise in the evaluation is additively

1The logit model was first proposed for binary choices by Bradley and Terry (1952) and the multinomial
logit was introduced by Luce (1959). Anderson et al. (1992), McFadden (2001), and Train (2009) present
surveys of discrete choice theory and the multinomial logit model.
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separable and independently distributed according to the extreme value distribution, then

the multinomial logit model emerges.2 To date, there is not a clear economic or psychological

justification of why these disturbances should be extreme value distributed. The model has

a second canonical foundation, namely, Luce’s (1959) derivation from the independence

of irrelevant alternatives (IIA) axiom, which states that ratios of choice probabilities are

independent of the choice set.

We believe our findings are important for two reasons. First, while the logit model is

sometimes used in situations in which information frictions are thought to be an impor-

tant part of the choice environment, there has not previously been a fully-specified model of

those information frictions that justifies the use of the multinomial logit. We fill that gap and

demonstrate that the fully-specified model is not subject to some of the criticisms of the logit

model. Second, most existing work with rational inattention has focussed on situations where

the DM chooses from a continuous choice set. In this context, the model remains tractable

if one assumes the agent is acquiring information about a normally-distributed quantity and

the objective function is quadratic, as under these assumptions the DM chooses normally dis-

tributed signals. Beyond this situation, however, the continuous-choice rational inattention

model must be solved numerically and even numerical solutions can be difficult to obtain.

In contrast, we show here that the discrete-choice version of the rational inattention model

is extremely tractable. Our results allow the rational inattention framework to be easily

applied by building on a large body applied theoretical work that exploits the tractability of

the multinomial logit.3

2Luce and Suppes (1965, p. 338) attribute this result to Holman and Marley (unpublished). See McFadden
(1974) and Yellott (1977) for the proof that a random utility model generates the logit model only if the
noise terms are extreme value distributed.

3The multinomial logit model is commonly used in the industrial organization and international trade
literatures as a model of consumer demand, in political economy models of voting, and in experimental
economics to capture an element of bounded rationality in subject behavior. See Anderson et al. (1992) for
a survey of its use in industrial organization. The logit demand structure was introduced to international
trade by Goldberg (1995) and Verboven (1996). The logit model was incorporated into probabilistic voting
models by Lindbeck and Weibull (1987). Work following McKelvey and Palfrey (1995) uses logit response
functions to capture randomness in the responses of experimental subjects playing a game. Matějka and
McKay (2012) is an example of how the results of this paper can be integrated with existing results based on
the multinomial logit model to study the optimal price-setting behavior of firms facing rationally inattentive
consumers.
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In our model, a choice set is a vector of true values and a prior distribution of beliefs about

those values. Accordingly, there are two ways that a choice situation can change. First, the

realized vector of true values can change. Second, the prior beliefs themselves can change.

The generalized logit model describes how choice probabilities change when the realization

of values changes. In this case, the position weights, αi, are fixed across realizations.

The rationally inattentive agent’s choices are context dependent where context is defined

by prior beliefs that represent the immediately apparent characteristics of the options. As the

DM’s prior changes, his choice behavior changes both due to standard Bayesian updating

and through endogenous changes in his information processing strategy. Changes in the

information processing strategy can lead to results that are appealingly intuitive and to

results that seem surprising. We show:

• The rationally inattentive agent ignores duplicate options.

• Adding an option to the choice set can increase the likelihood that an existing option is

selected—an outcome that cannot occur in any random utility model. The addition of

an option changes the choice set and therefore the DM’s prior beliefs, which can induce

him to process information sufficiently differently so as to increase the probability that

he selects an existing option.

• Option i is more likely to be selected if the DM’s beliefs about it improve in the sense

of first-order-stochastic dominance. As we demonstrate, this monotonicity does not

always hold under Bayesian updating with an exogenous information structure.

That the rationally inattentive agent ignores duplicate options stands in contrast to the

standard logit model. Debreu (1960) criticized IIA and the logit model for having counter-

intuitive implications for the treatment of duplicate options because the standard model

treats each option as distinct and only allows them to be differentiated in one dimension

(e.g. their values). Thus, there is no sense of similarity between options and adding a

duplicate of one option will increase the probability that the option (or its duplicate) is

selected. In our setting, however, we can introduce the concept of similarity through prior
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knowledge. If two options are duplicates, then the DM knows a priori that they will have the

same value even if this common value is unknown. We show that when a duplicate option is

added to the choice set, the rationally inattentive agent will choose to ignore it. Therefore

the model does not display the counter-intuitive behavior that Debreu (1960) criticized.

The paper is organized as follows: In the remainder of this section we review related work.

Section 2 presents the choice setting and discusses the assumptions underlying the rational

inattention approach to information frictions. Section 3 studies the DM’s optimal strategy.

Section 4 presents a characterization result that connects the optimal behavior of the ratio-

nally inattentive agent to weaker versions of Luce’s IIA axiom. Section 5 demonstrates how

the DM’s prior knowledge influences his choice behavior. Finally, Section 6 concludes.

Related Literature Our work relates to the literature on rational inattention. Most

existing work with rational inattention has focussed on situations where the DM chooses from

a continuous choice set. Rational inattention has mostly been applied in macroeconomic

contexts such as consumption-savings problems (Sims, 2006; Maćkowiak and Wiederholt,

2010) and price setting (Mackowiak and Wiederholt, 2009; Matějka, 2010a).4 A few papers,

however, consider applications with binary choice problems. Woodford (2009) was the first

to do so in a study of a binary choice of whether to adjust a price, while Yang (2011)

investigates a global game setting with the choice of whether to invest or not. Moreover,

Matějka and Sims (2010) and Matějka (2010a) provide a connection between the continuous

and discrete problems by showing that rationally inattentive agents can voluntarily constrain

themselves to a discrete choice set even when the initial set of available options is continuous.

We extend the existing literature by establishing a connection between rational inattention

and the multinomial logit model and characterize the implications of rational inattention for

discrete choice behavior.5

Closely related to our work is the work of Caplin and Martin (2011) who derive testable

4Other applications are Luo (2008); Luo and Young (2009); Tutino (2009); Van Nieuwerburgh and Veld-
kamp (2010); Mondria (2010); Matějka (2010b); Paciello and Wiederholt (2011).

5In an independent paper that is as of yet unfinished, Woodford (2008) notices the connection to the logit
model in the context of a binary choice problem, but does not explore the connection in further detail.
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implications from a model of choice under imperfect perception with rational expectations.

Weibull et al. (2007) and Natenzon (2010) study discrete choice models with imperfect infor-

mation in which the DM receives signals with an exogenously given structure. Masatlioglu

et al. (2012) and Manzini and Mariotti (2012) model imperfect attention using a consid-

eration set approach. Under this approach, choices occur in two stages: first, some of the

available options are selected into a consideration set and then the utility maximizing option

is chosen from the consideration set. Under this approach, the DM may overlook some of

the available options while in our setting the DM is aware of all options, but may not be

aware of their exact characteristics.

The rational inattention approach to information frictions uses information theoretic con-

cepts to measure the amount of information processed by the DM and there is a mathematical

connection between the entropy function, which is at the heart of information theory, and

the multinomial logit. This connection has appeared in the context of statistical estima-

tion (Anas, 1983) and in the context of an agent stabilizing a trembling hand (Stahl, 1990;

Mattsson and Weibull, 2002). Here we are considering the decision problem of an agent who

must acquire information about the values of the alternatives. In this context, the entropy

function arises naturally.6

2 The model

In this section, we first describe the agent’s decision problem, then we discuss the modeling

choices of how the agent processes information. The DM is presented with a group of N

options, from which he must choose one. The values of these options potentially differ and

the agent wishes to select the option with the highest value. Therefore, let vi denote the

value of option i ∈ {1, · · · , N}.
6In mathematical terms, our work is close to that of Shannon (1959) who derives the multinomial logit

formula in an engineering application that is the dual to our problem in the a priori homogeneous case.
Shannon’s question is how quickly a message can be communicated through a limited-capacity channel, such
as a telegraph wire, without distorting the message beyond a certain degree on average. We thank Michael
Woodford for pointing us to this connection to Shannon’s work.
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The DM is rationally inattentive in the style of Sims (2003, 2006). He possesses some

prior knowledge of the available options; this prior knowledge is described by a joint distri-

bution G(v), where v = (v1, · · · , vN) is the vector of values of the N options. To refine his

knowledge, he processes information about the options. One interpretation is that he asks

questions about the values and each question comes at a cost. Finally, the DM chooses the

option with the highest expected value.

At the heart of the model is a formulation of the cost of asking questions, submitting

queries to a database, or otherwise gathering and processing information. We assume that

all information about the N options is available to the DM, but processing the information

is costly. If the DM could process information costlessly, he would select the option with

the highest value with probability one. With costly information processing, the DM must

choose the following:

(i) how much information to process, i.e. how much attention to pay,

(ii) what pieces of information to process, i.e. what to pay attention to,

(iii) what option to select conditional on the acquired posterior belief.

The novelty of rational inattention is that the DM is allowed to choose the optimal

mechanism for processing information considering the cost of acquiring information. The

first point to establish is that it is not necessary to model questions or signals explicitly:

it is enough to consider the relationship between fundamentals, v, and actions, the option

i that is ultimately selected. In general, what knowledge outcomes can be generated by a

specific mechanism of processing information, e.g. a series of questions, is fully described by

a joint probability distribution of fundamentals and posterior beliefs about them (Blackwell,

1953). It follows that any information processing mechanism will induce a joint distribution

between fundamentals and actions because each posterior belief will determine a particular

choice from among the options. Therefore, it is this joint distribution between v and i that

is the DM’s strategy under the rational inattention approach. It is not necessary to model

questions or signals, but nevertheless, the DM’s strategy describes both the choice of how to
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process information as well as the choice among the options conditional on the posteriors.7

Mathematically, we can describe the DM’s strategy using the conditional probability

P(i|v) ∈ [0, 1] for all i and v. This is the probability of selecting option i when the realized

values are v. Let us denote this probability as Pi(v). Since the DM’s prior on the values

of all options is given by G(v), the conditional distribution can be used to generate the full

joint distribution.

The DM’s strategy is thus a solution to the following problem:

max
{Pi(v)}Ni=1

(
N∑
i=1

∫
v

viPi(v)G(dv)− cost of information processing

)
, (2)

subject to

∀i : Pi(v) ≥ 0 a.s., (3)

N∑
i=1

Pi(v) = 1 a.s. (4)

The first term in (2) is the expected value of the selected option. What remains is to specify

the cost of information.

In macroeconomics, the literature following Sims uses information theory to measure the

“amount” of information that has been used by an agent in making a decision. Under this

approach, the cost of information is λκ, where λ is the unit cost of information and κ the

amount of information that the DM processes, which is measured by the expected reduction

in the entropy of the distribution representing knowledge of v. The amount of information

processed, κ, is a function of the DM’s strategy of how to process information, while λ is a

given parameter.

There are no constraints on the DM’s choice of strategy apart from requiring the proba-

7Signals do not appear in the final formulation of the problem since each posterior belief is associated
with a single i that is selected given that belief. It would not be optimal to select an information structure
that would generate two different forms of posterior knowledge leading to the same i, i.e. it would not be
optimal to acquire information that is not ultimately used in the choice. This approach is used in Sims
(2006) and also in Matějka (2010a), where it is discussed at more length.
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bilities to be well defined. Rational inattention is a theory describing how the DM processes

the information that is available. If the DM were willing to pay the cost, he could in principle

acquire perfect information about the available options. However, suppose there were some

uncertainty that the DM could not resolve through processing information. The model can

accommodate such a situation if vi is taken to be the expected value of the option where the

expectation is taken over the uncertainty that cannot be resolved.

Entropy is a measure of the uncertainty associated with a random variable. In our case,

the random variable is the vector v and acquiring better knowledge about the values, i.e.

narrowing down the belief, is associated with a decrease in the entropy.

Our results depend crucially on the choice to model the cost of information using the

reduction in entropy, but this is not an ad hoc modeling choice. Entropy provides the exact

measure of the cost for a rationally inattentive agent who acquires information through a

limited-capacity channel. Using a limited-capacity channel means the DM receives a sequence

of symbols (e.g. a list of ones and zeros). The symbols can mean virtually anything: they

can represent answers to questions the agent asks, pieces of text or digits he reads, etc. The

more information the DM processes, i.e. the more symbols he receives, the tighter his pos-

terior beliefs can be. The coding theorem of information theory (Shannon, 1948; Cover and

Thomas, 2006) states that any joint distribution of source variables, i.e. fundamentals, and

posterior beliefs is achievable by an information channel if and only if the expected decrease

in the entropy of the knowledge is less than the amount of information processed, which is

proportional to the number of symbols received.8 Choosing how to process information is

then equivalent to choosing how many questions to ask and what to ask about.9

The assumption that the cost of information processing is λκ can be interpreted as saying

the cost is proportional to the expected number of questions asked. One could think of the

coefficient λ as a shadow cost of allocating attention to this decision problem out of a larger

8The coding theorem relies on information being encoded optimally and this encoding can introduce
delays. We, like other papers on rational inattention, do not consider the effects of these delays. If delays
were penalized in some way, the DM’s behavior could deviate from the results presented here.

9The amount of information per symbol depends on the physical properties of the channel. For instance, if
the DM processes information by asking questions with yes or no answers, then the information per question
is one bit.
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budget of attention that the agent is allocating to many issues. By modeling the cost of

information in terms of the number of questions that the DM asks or the number of symbols

that he receives, we are modeling a world in which receiving answers to each question with

the same number of possible answers is equally costly. The assumption that the cost is linear

in the reduction in entropy could be modified without fundamentally changing the results.

If the cost function were convex in κ, the equilibrium marginal cost of information would

take the place of λ in our key result equation (9).

Mathematically, the entropy of a random variable X with a pdf p(x) with respect to a

probability measure σ is defined as:

H(X) ≡ −
∫
p(x) log p(x)σ(dx). (5)

In the DM’s problem, the expected reduction in the entropy of v is the difference between

the prior entropy of v and the expectation of the posterior entropy of v conditional on the

chosen option i.10 This quantity is also called the mutual information between v and i. For

our purposes, it is convenient to use the symmetry of mutual information and express the

amount of information processed as the expected reduction in the entropy of i conditional

on v: 11

κ(P , G) = H(v)− Ei [H(v|i)] = H(i)− Ev [H(i|v)]

= −
N∑
i=1

P0
i logP0

i +

∫
v

(
N∑
i=1

Pi(v) logPi(v)

)
G(dv), (6)

where P = {Pi(v)}Ni=1 is the collection of conditional probabilities, and P0
i is the uncondi-

tional probability of choosing option i defined as

P0
i =

∫
v

Pi(v)G(dv). (7)

10The pdf of the posterior with respect to the base measure G(dv) is Pi(v)/
∫
v
Pi(v)G(dv).

11The mutual information between random variables X and Y is H(X)−EY [H(X|Y )], which also equals
H[Y ]− EX [H[Y |X]], see Cover and Thomas (2006).
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We can now state the DM’s optimization problem.

Definition 1. Let G(v) be the DM’s prior on the values of a finite number of options and

let λ ≥ 0 be the unit cost of information. The discrete choice strategy of the rationally

inattentive DM is the collection of conditional probabilities P = {Pi(v)}Ni=1 that solves the

following optimization problem.

max
P={Pi(v)}Ni=1

N∑
i=1

∫
v

viPi(v)G(dv)− λκ(P , G), (8)

subject to (3) and (4), and where κ(P , G) denotes the right hand side of (6).

To summarize, the model allows the DM to investigate the values of the options at a cost

that can be interpreted as proportional to the number of questions that he asks about their

values. The DM is able to select both the number and content of these questions.

Finally, one might ask what types of situations is this model suited to? It is clear that

our DM is solving a very sophisticated optimization problem and therefore the model is

not a model of the random mistakes that a careless agent might make. Instead, the model

captures the fact that it in many choice situations it is prohibitively costly to resolve all the

uncertainty about the options. The key limitation is not computational, but rather stems

from the difficulty of acquiring complete information about the options. In the case of a job

interview, it is costly to divert the attention of the manager away from the operations of the

firm to conduct an interview. Therefore, it is reasonable to think that the interview would

focus on the features of the job candidates that are most important to the firm while less

important features might go unexplored. While some of our assumptions, such as optimizing

behavior, are stark, the model provides a natural benchmark for attention allocation and

yields a convenient analytical form that is able to generate a rich set of behaviors.
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3 Solving the model

3.1 Solving for choice probabilities

We begin our analysis of the model with a general analytical expression for the probability

that the DM chooses a particular option conditional on the realized values of all the options.

Theorem 1. If λ > 0, then the DM forms his strategy such that the conditional choice

probabilities satisfy:

Pi(v) =
P0
i e

vi/λ∑N
j=1P0

j e
vj/λ

, a.s. (9)

If λ = 0, then the DM selects the option(s) with the highest value with probability one.

Proof. See Appendix A.

We can understand several properties of the DM’s behavior from equation (9). The

unconditional probabilities, P0
i , are by definition independent of a specific realization of the

values v. They are the marginal probabilities of selecting each option before the agent starts

processing any information and they only depend on the prior knowledge G(v) and the cost

of information λ.

When the unconditional probabilities are uniform, P0
i = 1/N for all i, (9) becomes the

usual multinomial logit formula. As we discuss in Section 3.2, this happens when G is invari-

ant to permutations of its arguments. In other cases, the conditional choice probabilities are

not driven just by v, as in the logit case, but also by the unconditional probabilities of select-

ing each option, {P0
i }Ni=1. These unconditional probabilities are monotonic transformations

of the position weights that we referred to in the introduction with exp(αi/λ) = P0
i . Using

this transformation, equation (9) can be rewritten as equation (1) and the choice probabil-

ities can be interpreted as a multinomial logit in which the value of option i is shifted by

the term αi. When an option seems very attractive a priori, then it has a relatively high

probability of being selected even if its true value is low. As the cost of information, λ, rises,

the less the DM finds out about the realization of v and the more he decides based on prior
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knowledge of the options. In what follows, we find it more convenient to work directly with

the unconditional probabilities, P0
i , rather than the transformed version, αi.

The parameter λ converts bits of information to utils. Therefore, if one scales the values

of all of the options by a constant c, while keeping the information cost, λ, fixed, the problem

is equivalent to the one with the original values and the information cost scaled by 1/c. By

scaling up the values, one is scaling up the differences between the values and therefore

raising the stakes for the DM. The DM chooses to process more information because more

is at stake and thus is more likely to select the option that provides the highest utility. The

DM behaves just as he would if the cost of information had fallen.

Equation (9) does not give a fully explicit expression for the choice probabilities because

it depends on the P0
i terms, which are themselves part of the DM’s strategy although they

are independent of the realized values, v. We can substitute equation (9) into the objective

function to arrive at the following formulation of the optimization problem that we will use

to solve for the unconditional choice probabilities.

Lemma 1. Alternative formulation: The agent’s optimization problem in Definition 1

can be equivalently formulated as maximization over the unconditional probabilities, {P0
i }

N
i=1,

max
{P0

i }Ni=1

∫
v

λ log

(
N∑
i=1

P0
i e

vi/λ

)
G(dv). (10)

subject to

∀i : P0
i ≥ 0, (11)∑

i

P0
i = 1, (12)

where the conditional probabilities Pi(v) are given by (9).

Proof. See Appendix A.

This novel formulation is useful for two reasons. First, it allows for clearer insights into

the properties of choice probabilities than the original problem and we use it extensively
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in the proofs in Section 5. Second, it greatly reduces the complexity of the optimization

problem and allows for more efficient computations. Rational inattention problems with

continuous choice variables can also be formulated this way.12 The first-order conditions of

this problem give us

Corollary 1. Normalization condition: For all i such that P0
i > 0, the solution satisfies

∫
v

evi/λ∑N
j=1P0

j e
vj/λ

G(dv) = 1. (13)

Proof. See Appendix A.

We call this the normalization condition because if one multiplies both sides of equation

(13) by P0
i , the result ensures that the conditional choice probabilities in equation (9) inte-

grate to the unconditional choice probability as in (7). The analysis in the next subsection

and in section 5 is based on finding solutions to equations (9) and (13).

Appendix A establishes that a solution to the DM’s maximization problem exists, how-

ever, the solution may not be unique. Cases with multiple solutions require a special structure

for the uncertainty in which the values co-move in some very rigid way. For instance, when

values of two options are equal in all states of the worlds, then the DM can relocate the

choice probabilities between the two options arbitrarily and realize the same E[U ]. Perhaps

an illustrative interpretation of non-unique solutions is that when there are multiple solutions

there always exists at least one option that can be eliminated from the choice set without

reducing the expected utility that the for the DM can achieve. These eliminations can be

repeated until the solution is unique. Appendix A provides the exact conditions that are

necessary and sufficient for uniqueness.

12For a general problem under rational inattention, such as in Sims (2006), the alternative formulation
takes the same form with vi replaced by U(X,Y ), with the sum over i replaced an by integral over Y and v
replaced by X, where X is the unknown and Y the action.
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3.2 Multinomial logit

We now present conditions under which the behavior of the rationally inattentive agent

follows the multinomial logit model. This connection to the logit model holds across different

realizations of v.

Let us assume that all the options are exchangeable in the prior G, i.e. the prior is

invariant to all permutations of the entries of v. We call such options a priori homogeneous.

Problem 1. The DM chooses i ∈ {1, · · · , N}, where the options are a priori homogeneous

and take different values with positive probability.

The options will be a priori homogeneous whenever the DM does not distinguish between

them before he starts processing information so the position in the choice set does not provide

any information. We view this as a plausible benchmark case as it will arise anytime the

DM lacks specific knowledge of the options a priori.

Proposition 1. Logit: In Problem 1, the probability of choosing option i as a function of

the realized values of all of options is:

Pi(v) =
evi/λ∑N
j=1 e

vj/λ
. (14)

Proof. See Appendix A.

This is the multinomial logit formula written in terms of exponentials as it is most often

used in practice. We show that the a priori homogeneity of the options implies that the

unconditional probabilities are uniform so that (9) then takes the form of the logit as the

only thing that distinguishes options is the actual values. The assumption on the difference

of values is needed so that the DM faces a meaningful solution and for uniqueness.

Let us emphasize that here Pi(v) does not depend on the prior G. As long as the options

are a priori homogeneous, the resulting choice probabilities take the form of (14). This

feature is particularly useful as it makes applications of the rational inattention framework

very simple in this case. This result follows from the endogenous information structure in

16



the model. The optimal choice of information fixes the nature of the optimal posteriors

and the DM selects what information to acquire so as to arrive at posteriors of that form.

In contrast, with an exogenous information structure, changes in the prior lead directly to

changes in the form of the posterior, with corresponding effects on the choice probabilities.

4 Characterization and IIA

In this section we show that the model provides a testable theory of choice. Thus far,

we have been working with objects that are hard to observe or in principle unobservable.

Now we characterize the choice behavior implied by the model, which we do for a given yet

unobserved prior.

We use the term “object” to refer to the outcome that the DM has preferences over.

The DM has prior beliefs over what object—and therefore what value—he will find in each

position of the choice set. Let x be the choice set vector, which consists of an ordered set

of objects. If the choice is indeed driven by rational inattention, then the key implication

of Theorem 1 is that while the agent processes information about the unknown values, the

choice probabilities are as if the DM attaches some weight, P0
i , to each position in the choice

set and some weight vi/λ = v(xi) to each object and then chooses among the position-object

pairs probabilistically according to equation (9).

Notice that in our setting the domain of choice is larger than that considered in typical

models of discrete choice as it is not just the objects that are offered to the agent, but

object-position pairs, which is to say objects in the context of the agent’s prior beliefs.

We now present necessary and sufficient conditions on choice probabilities that allow us

to write them as functions of position weights and object weights as in Theorem 1. While

the prior is fixed, we consider varying the actual realization of objects that appear in each

position.

Slightly abusing notation, let Pi(x) be the probability of selecting the object in position

i when the realization of objects is x. Then we have the following axioms:
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Axiom 1. Independence from irrelevant alternatives (objects): if Pj(x) > 0, then

Pi(x)

Pj(x)
=
Pi(y)

Pj(y)
∀x,y, i, j s.t. xi = yi and xj = yj. (15)

Axiom 2. Independence from irrelevant alternatives (positions): if Pj(x) > 0, then

Pi(x)

Pj(x)
=
Pi(y)

Pj(y)
∀x,y, i, j s.t. xi = xj and yi = yj. (16)

Our axioms are similar to the standard IIA axiom, which implies proportional scaling

of choice probabilities: as the choice set changes, the probability of two given object scales

proportionally leaving the ratio intact. Our axioms weaken the standard IIA axiom to only

require proportional scaling in some cases. Axiom 1 states that proportional scaling holds if

the the two objects remain in the same positions, but not necessarily otherwise.

Axiom 2 is a statement about proportional scaling of positions. Consider duplicate

objects, which we can define as two objects that, when inserted into the same choice set lead

to the same choice probabilities.13 Standard IIA implies the choice probabilities of duplicate

objects must be equal. Our axiom, however, does not require that their choice probabilities

are equal, but that it is a constant ratio when the duplicate options remain in the same

positions. Moreover, the axiom says this ratio is a function of the positions and not the

nature of the objects except that they are duplicates. This seems reasonable as it is only

the positions that distinguish these two object-position pairs. It is restrictive, however, as

it limits the way objects and positions can interact in the choice probabilities and position

weights cannot be functions of the objects. This is the key to the separation between object

weights and position weights in Theorem 1.

Luce viewed the the proportional scaling implied by the standard IIA axiom as a natural

benchmark. Following Luce’s work, Debreu criticized IIA for generating counter-intuitive

implications. We show in the next section that this criticism does not apply to the rational

inattention model. One final note about the axioms, they imply that if Pj(x) > 0, then for

13This is the definition of duplicate objects used by Gul et al. (2012). In terms of rational inattention
model, duplicate objects yield the same value to the DM.
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a vector y that satisfies the conditions in the axioms we have Pj(y) > 0 as otherwise the

ratios on the right-hand side are not well-defined.

Towards a representation result, we first establish the following:

Lemma 2. If Axioms 1 and 2 hold for a choice among N ≥ 3 options, then each position

is either never selected for any x or it is selected with positive probability for all x.

Proof. See Appendix B.

We will refer to positions that are always selected with some probability as “positive

positions” and refer to those that are never selected as “zero positions.” The main result of

this section is:

Proposition 2. Let there exist at least three positive positions. Then the choice probabilities

satisfy Axioms 1 and 2 if and only if there exist non-negative constants {P0
i }Ni=1 such that∑N

i=1P0
i = 1 and also a function v(xi) from a space of objects to R such that for any i and

any vector of objects x, the probability of selecting the object in position i, is

Pi(x) =
P0
i e

v(xi)∑
j P0

j e
v(xj)

. (17)

Proof. See Appendix B.

Some intuition for the result can be gained by considering the extreme case of a realization

in which the same object appears in all positions. In this case, the choice of object-position

pairs is reduced to a choice of positions because all objects are the same. Therefore, we can

think of the positions as the choice set in a standard discrete choice setting and then the

logit model follows from the fact that the choice probabilities satisfy Axiom 2, which is an

analog of the standard IIA axiom, and thus it implies logit in positions, too.

The requirement that there are three positive positions is a technical convenience for the

proof that the axioms are sufficient. The characterization of choice probabilities could be

extended to the case of two positive positions by taking the limit as the probability of a

third position goes to zero.
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4.1 Relationship between entropy and IIA

Axioms 1 and 2 are useful for understanding the connection between rational inattention

and the multinomial logit model. An important property of both models is that the choice

procedure could equivalently be formulated as a two-stage process in which the DM first se-

lects between sub-groups of options and then in a second stage selects from within the chosen

sub-group. The standard IIA axiom implies that the choice probabilities are unaffected by

this two-stage process and, indeed, the axiom is sometimes stated in this way. Under ra-

tional inattention, the DM can achieve the same final joint distribution between v and i in

the two-stage procedure because he has complete flexibility in choosing his strategy in each

of the two stages. The key is that the information cost he would incur in the two-stage

procedure is the exact same as he would incur in the direct procedure in our model. This

invariance to intermediate stages is in fact one of Shannon’s (1948) axioms that characterize

entropy as a measure of information.

Using the logic of a two-stage choice procedure, it becomes clear why the rationally

inattentive agent’s behavior satisfies axioms 1 and 2. Suppose that we required the agent

to select between {1, 2} and {3, . . . , N} in the first stage. Whenever the DM selects {1, 2},

he will enter the second stage with the same prior beliefs about the values of options 1 and

2. As such, the second stage will proceed independently of the values of options 3, · · · , N

although their values can influence the probability of {1, 2} in the first stage.

5 The role of prior beliefs

In this section, we present comparative static results that demonstrate how the choice prob-

abilities depend on the DM’s prior beliefs about the options. Mathematically, we show how

changes in the prior distribution G(v) affect the unconditional probabilities or in other words

the position weights.

The solutions exhibit lots of structure due to the endogeneity of the DM’s posterior beliefs.

We begin with general results concerning two main types of modifications to the prior:
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changes in the level of values and changes the co-movement of values across realizations.

First, we show that anytime an option is improved in the prior then the DM is more likely to

select it. We then show that if two options become more similar, defined as having values that

co-move more strongly in the prior, then the probability that the DM selects either of these

options falls. We connect this notion of similarity to the criticisms of the IIA property of

the multinomial logit model and show that the rationally inattentive agent’s behavior is not

subject to the same criticisms. Finally, we demonstrate that the behavior of the rationally

inattentive agent fails regularity as adding an additional option to the choice set can increase

the probability that an existing option is selected. An implication of this failure of regularity

is that the rationally inattentive agent cannot generally be viewed as maximizing a random

utility function.

5.1 Monotonicity

The following proposition states that a change in the prior that makes one option more

attractive ceteris paribus leads the DM to select that option with a higher unconditional

probability and therefore a higher probability in all states of the world. Such a result

does not generally hold under Bayesian updating if the information structure is exogenously

given.14 In this way, rational inattention places more structure on choice behavior than does

incompleteness of information alone.

Proposition 3. Assume λ > 0 and let {P0
i }

N
i=1 be the unique solution to the agent’s maxi-

14 Here is a counterexample in which improving prior beliefs about one option leads it to be selected less
often under Bayesian updating with an exogenous information structure. Imagine that there are two states
of the world that each occur with probability 1/2. There are two available options that take the following
values in the two states of the world

state 1 state 2
v1 −2 4
v2 0 x.

Suppose the information structure is that the DM receives a signal y = v2 +ε where the noise ε is distributed
uniformly on (−1, 1). When x = −2, the signal perfectly distinguishes between the states of the world and
so the DM selects option 1 in state 2 and option 2 in state 1. When option 2 is improved so that x = 0, the
signal contains no information about the state of the world. In this case, the DM always selects option 1 as
it has the larger expected value. So improving option 2 leads it to be selected less often.
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mization problem with prior G(v). If Ĝ(v̂) is generated from G(v) by transforming v to v̂

such that v̂i = vi for all i > 1, v̂1 ≥ v1 for all v and v̂1 > v1 on a set of positive measure, then

P̂0
1 ≥ P0

1 , where
{
P̂0
i

}N
i=1

is the solution to the problem with prior Ĝ. The last inequality

holds strictly if P0
1 ∈ (0, 1).

Proof. See Appendix C.1.

That the monotonicity is strict only when P0
1 ∈ (0, 1) is intuitive. When P0

1 = 1, there

is no scope for increasing its probability further. When P0
1 = 0, option 1 might be so

unattractive to start with that the improvement does not lead the DM to select it with any

probability.

In some special cases we can say even more. If λ = 0 so the agent is not inattentive at all

then then the prior is irrelevant and the DM selects the highest value option in all states of

the world. Conversely, if λ =∞, the actual realization of v is irrelevant and the DM selects

the option with the highest expected value according to the prior. The DM may also behave

in this way for a finite λ if he chooses not to process any information. Finally, if one option

is dominated by another in all states of the world, then it will never be selected.

5.2 Similarity and independence from irrelevant alternatives

While the previous proposition considers the effect of improving one option, suppose we leave

the marginal distributions of the values of each option unchanged, but change the prior to

increase the degree to which the values of two options co-move. What happens to the choice

probabilities in this case? To motivate this investigation, consider Debreu’s famous criticism

of IIA, which is now known as the red-bus blue-bus problem. The well known example goes:

The DM is pairwise indifferent between choosing a bus or a train, and selects each with

probability 1/2. If a second bus of a different color is added to the choice set and the DM

is indifferent to the color of the bus, then IIA—and therefore the multinomial logit, which

can be derived from IIA—implies probabilities of 1/3, 1/3, 1/3. Debreu argued that this

is counter-intuitive because duplicating one option should not materially change the choice

problem.
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What does it mean that the busses are duplicates? We will say that two options are

duplicates if the prior asserts that the values of the two options are equal to one another in

all states of the world: it is clear to the DM a priori that it is irrelevant which of the two

options he selects. We will now show that the rationally inattentive agent does not display

the counter-intuitive behavior that Debreu criticized and then expand these ideas to cases in

which the options can be thought to be “similar” i.e. have values that are correlated across

states of the world, but are not exact duplicates.

5.2.1 Duplicates

We study a generalized version of Debreu’s bus problem to analyze how the rationally inatten-

tive agent treats duplicate options. Duplicates carry the same value almost surely although

this common value may be unknown.

Definition 2. Options i and j are duplicates if and only if the probability that vi 6= vj is

zero.

Problem 2. The DM chooses i ∈ {1, · · · , N + 1}, where the options N and N + 1 are

duplicates.

The following proposition states that duplicate options are treated as a single option. We

compare the choice probabilities in two choice problems, where the second one is constructed

from the first by duplicating one option. In the first problem, the DM’s prior is G(v), where

v ∈ RN . In the second problem, the DM’s prior is Ĝ(u), where u ∈ RN+1. Ĝ is generated

from G by duplicating option N . This means that options N and N + 1 satisfy Definition

2, and G(v) is the marginal of Ĝ(u) with respect to uN+1.

Proposition 4. If {P0
i }Ni=1 and {Pi(v)}Ni=1 are unconditional and conditional choice prob-

abilities that are a solution to Problem 2, then {P̂i(u)}N+1
i=1 solve the corresponding problem
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with the added duplicate of the option N if and only if they satisfy the following:

P̂i(u) = Pi(v), ∀i < N (18)

P̂N(u) + P̂N+1(u) = PN(v), (19)

where v ∈ RN and u ∈ RN+1, and vk = uk for all k ≤ N . The analogous equalities hold for

the unconditional probabilities.

Proof. See Appendix C.2.

The implication of this proposition is that the DM treats duplicate options as though

they were a single option. The behavior of the rationally inattentive agent does not always

satisfy IIA and as a result is not subject to Debreu’s critique. As we showed in section 4, a

version of IIA holds for a fixed prior, but not when the prior changes.

5.2.2 Similar options

The case of exact duplicates is somewhat extreme as the DM knows a priori that the values

of the two options are exactly equal. Here we consider options with values that are correlated,

but not identical. We show that the probability that the DM selects either of two options

(among three or more) decreases as those two options become more similar. By “more

similar,” we mean that we consider an alternative choice situation in which we increase the

probability that the two options have the same value by shifting the prior probability from

states of the world in which their values differ to states of the world where their values are

the same. We have the following proposition.

Proposition 5. Assume λ > 0 and let {P0
i }

N
i=1 be the unique solution to the agent’s maxi-

mization problem with prior G(v). Let the prior G(·) be such that the there exist two states

of positive probabilities P1 and P2 with (v1, v2) = (H,L) in state 1, and (v1, v2) = (L,H) in

state 2, and values of any other option be equal in both states.

If Ĝ(v̂) is generated from G(·) by relocating probability mass Π ≤ min(P1, P2) from state

1 to state 3, where (v1, v2) = (L,L), and relocating probability mass Π from state 2 to state
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4, where (v1, v2) = (H,H), then P̂0
1 + P̂0

2 < P0
1 + P0

2 , where
{
P̂0
i

}N
i=1

is the solution to the

problem with prior Ĝ.

Proof. See Appendix C.3.

Intuitively, a higher degree of co-movement in the manner described in the proposition

means that the event (v1 = H) ∪ (v2 = H) has lower probability and this is the event in

which the DM is most interested in selecting option 1 or 2. In the next section, we present

an example of this type of effect in which increasing the correlation between the values of

two options decreases their cumulative probability.

5.3 Examples

We bring our analysis to a close with two examples. First, we demonstrate the effect of

the degree of similarity among options. We then show that adding an additional option can

increase the probability that an existing option is selected.

5.3.1 Co-movement

We now explore a choice among three options, where two options have positively or negatively

correlated values. Even though all three options have the same a priori expected value, in

some cases the DM will ignore one of the options completely. This example demonstrates that

when the allocation of attention is endogenous, the DM can choose to investigate different

options in different levels of detail.

Problem 3. The DM chooses from the set {red bus, blue bus, train}. The DM knows the

value of the train exactly, vt = 1/2. The buses each take one of two values, either 0 or 1,

with expected values 1/2 for each, the correlation coefficient between their values is ρ. The
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Figure 1: Unconditional probability of selecting a bus for various values of λ and ρ. The
probability is the same for both the red and blue buses.

joint distribution of the values of all three options is:

g(0, 0, 1/2) = 1
4
(1 + ρ)

g(1, 0, 1/2) = 1
4
(1− ρ)

g(0, 1, 1/2) = 1
4
(1− ρ)

g(1, 1, 1/2) = 1
4
(1 + ρ).

(20)

In Appendix D we describe how to solve the problem analytically. Figure 1 illustrates

the behavior of the model for various values of ρ and λ. The figure shows the unconditional

probability that the DM selects a bus of a given color (the probability is the same for both

buses). As the correlation between the values of the buses decreases, the probability that

a bus carries the largest value among the three options increases and the unconditional

probability of choosing either bus increases, too. If the buses’ values are perfectly correlated,

then the sum of their probabilities is 0.5, they are effectively treated as one option, i.e.

they become duplicates in the limit. On the other hand, if ρ = −1, then the unconditional

probability of either bus is 0.5 and thus the train is never selected.

For λ > 0 and ρ ∈ (−1, 1), the probability that a bus is selected is larger than it is in

the perfect information case (λ = 0). With a larger cost of information, the DM economizes
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on information by paying more attention to choosing among the buses and less to assessing

their values relative to the reservation value 1/2.

The choice probabilities strongly reflect the endogeneity of the information structure in

this case. As the correlation decreases, the DM knows that the best option is more likely to

be one of the buses. As a result, the DM focusses more of his attention on choosing between

the buses and eventually ignores the train completely. Notice that this can happen even

when there is some chance that the train is actually the best option.

5.3.2 Failure of regularity

Random utility models, such as the standard multinomial logit model, have the feature

that adding an additional option to the choice set will not increase the probability that an

existing option is selected (Luce and Suppes, 1965, p. 342). However, the following example

demonstrates that the behavior of the rationally inattentive agent does not always satisfy

this regularity condition as adding an additional option can raise the probability that an

existing option is selected.

Problem 4. Suppose there are three options and two states of the world. The options take

the following values in the two states of the world

state 1 state 2

option 1 0 1

option 2 1/2 1/2

option 3 Y −Y

States 1 and 2 have prior probabilities g(1) and g(2), respectively.

First, consider a variant of this choice situation in which only options 1 and 2 are available.

In Appendix D we show that there exists g(1) ∈ (0, 1) large enough that the DM will not

process information and will select option 2 with probability 1 in all states of the world so

P0
1 = 0. Now add option 3 to the choice set. For a large enough value of Y and the given

g(1) ∈ (0, 1), the DM will find it worthwhile to process information about the state of the
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world in order to determine whether option 3 should be selected. Given that the DM will

now have information about the state of the world, if state 2 is realized, the DM might as

well select option 1. From an a priori perspective, there is a positive probability of selecting

option 1 so P0
1 > 0. The choice probabilities conditional on the realization of the state of

the world are given by equation (9), which implies that the probability of selecting option 1

is zero if P0
1 = 0 and positive if P0

1 > 0 and all options have finite values. So we have the

following.

Proposition 6. For λ > 0, there exist g(1) ∈ (0, 1) and Y > 0 such that adding option 3 to

the choice set in Problem 4 increases the probability that option 1 is selected in all states of

the world.

Proof. See Appendix D.

Corollary 2. The behavior of a rationally inattentive agent cannot always be described by a

random utility model.

Obviously there are cases, such as the standard logit case, when the rationally inattentive

agent’s behavior can be described by a random utility model.

6 Conclusion

This paper builds on the literature that treats scarce attention as an important factor in

choice behavior. Rational inattention is an appealing model of attention allocation because it

does not depend on assumptions about how the DM allocates his attention to the available

information except in the form of a well-founded cost function that measures the DM’s

information processing effort. While appealing, the rational inattention model in its original

continuous-action form is considered by some to be intractable. In this paper, however,

we have shown that the discrete choice behavior of a rationally inattentive agent has a

simple analytical structure providing a new foundation for the multinomial logit model. The

standard logit model emerges in cases where the options are homogeneous a priori. More
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generally, choices depend on the context formed by prior beliefs. While the DM’s prior is

a complicated infinite-dimensional object, its effect on choice probabilities is captured by a

simple vector of position weights. The resulting tractability allows us to establish results on

monotonicity, co-movement, and uniqueness, which are general and fundamental properties

of rationally inattentive behavior. The discrete choice framework presented here facilitates

the application of rational inattention to new questions.
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A Proof for Section 3

Proof of Theorem 1. The case of λ = 0 is trivial. When λ > 0, then the Lagrangian of

the DM’s problem formulated in Definition 1 is:

L(P) =
N∑
i=1

∫
v

viPi(v)G(dv)− λ

(
−

N∑
i=1

P0
i logP0

i +
N∑
i=1

∫
v

Pi(v) logPi(v)G(dv)

)

+

∫
v

ξi(v)Pi(v)G(dv)−
∫
v

µ(v)

(
N∑
i=1

Pi(v)− 1

)
G(dv),

where ξi(v) ≥ 0 are Lagrange multipliers on (3) and µ(v) are the multipliers on (4).

If P0
i > 0, then the first order condition with respect to Pi(v) is:

vi + ξi(v)− µ(v) + λ
(

logP0
i + 1− logPi(v)− 1

)
= 0. (21)

This implies that if P0
i > 0 and vi > −∞, then Pi(v) > 0 almost surely. To see this,

suppose to the contrary that Pi(v) = 0 on a set of positive measure with respect to G. Since

ξi(v) ≥ 0 and since we also assume that P0
i > 0, and thus logP0

i > −∞, it would have to be

µ(v) going to infinity that would balance logPi(v) = −∞ to make the first order condition

hold. However, if µ(v) = ∞ on a set of positive measure, then for all such v in order for

(21) to hold then for all j either Pj(v) = 0 or ξj(v) =∞. But ξj(v) > 0 only if Pj(v) = 0,

when (3) is binding. Therefore, if there exists i such that Pi(v) = 0, then Pj(v) = 0 for all

j. This is not possible, since then
∑N

j=1Pj(v) = 0, which must sum up to 1 and hence a

contradiction.

Therefore, whenever P0
i is positive, then the conditional probability Pi(v) is also positive

as long as the realized value vi is not minus infinity. As (3) does not bind, we have ξi(v) = 0

and the first order condition can be rearranged to

Pi(v) = P0
i e

(vi−µ(v))/λ. (22)
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Plugging (22) into (4), we find:

eµ(v)/λ =
∑
i

P 0
i e

vi/λ,

which we again use in (22) to arrive at equation (9). Finally, notice that the theorem holds

even for P0
i = 0, as otherwise equation (7) could not hold.

Proof of Lemma 1. Substitute equation (9) into the objective function to obtain

N∑
i=1

∫
v

viPi(v)G(dv) + λ

{
N∑
i=1

P0
i logP0

i −
∫
v

[
N∑
i=1

Pi(v) log

(
P0
i e

vi/λ∑N
j=1P0

j e
vj/λ

)]
G(dv)

}

and rearrange to obtain

∫
v

N∑
i=1

Pi(v)

[
vi − λ log

(
P0
i e

vi/λ∑N
j=1P0

j e
vj/λ

)]
G(dv) + λ

N∑
i=1

P0
i logP0

i

=

∫
v

N∑
i=1

Pi(v)

[
vi − vi − λ log

(
P0
i

)
+ λ log

(
N∑
j=1

P0
j e

vj/λ

)]
G(dv) + λ

N∑
i=1

P0
i logP0

i

=

∫
v

N∑
i=1

Pi(v)λ log

(
N∑
j=1

P0
j e

vj/λ

)
G(dv)− λ

N∑
i=1

∫
v

Pi(v)G(dv)︸ ︷︷ ︸
=P0

i

logP0
i + λ

N∑
i=1

P0
i logP0

i

=

∫
v

[
N∑
i=1

Pi(v)

]
λ log

(
N∑
j=1

P0
j e

vj/λ

)
G(dv)

=

∫
v

λ log

(
N∑
j=1

P0
j e

vj/λ

)
G(dv),

where the last line follows from the fact that Pi(v) is the conditional probability of selecting

i given v and so the sum is equal to one.

Proof of Corollary 1. For P0
i > 0, the first order condition on (10) with respect to P0

i , is

λ

∫
v

evi/λ − evN/λ∑N
j=1P0

j e
vj/λ

G(dv) = 0, (23)
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where P0
N denotes 1−

∑N−1
i=1 P0

i .

For i ∈ {1, · · · , N − 1}, we can write

∫
v

evi/λ∑N
i=j P0

j e
vj/λ

G(dv) =

∫
v

evN/λ∑N
j=1P0

j e
vj/λ

G(dv) ≡ µ.

Notice that µ = 1 because

N∑
i=1

P0
i µ =

N∑
i=1

P0
i

∫
v

evi/λ∑N
j=1P0

j e
vj/λ

G(dv)

=

∫
v

∑N
i=1P0

i e
vi/λ∑N

j=1P0
j e

vj/λ
G(dv)

=

∫
v

G(dv) = 1

so µ
∑N

i=1P0
i = 1, but as {P0

i }
N
i=1 are probabilities we know

∑N
i=1P0

i = 1. Therefore, µ = 1.

Equation (23) then becomes (13).

Lemma 3. The DM’s optimization problem in Definition 1 always has a solution.

Proof. Since (9) is a necessary condition for the maximum, then the collection {P0
i }Ni=1

determines the whole solution. However, the objective is a continuous function of {P0
i }Ni=1,

since {Pi(v)}Ni=1 is also a continuous function of {P0
i }Ni=1. Moreover, the admissible set for

{P0
i }Ni=1 is compact. Therefore, the maximum always exists.

Uniqueness Concerning uniqueness, there can be special cases where the DM is indifferent

between processing more information in order to generate a higher E[vi] and processing less

information and conserving on information costs. However, a rigid co-movement of values is

required for these cases to arise. Without this structure, if the DM were indifferent between

two different strategies then their convex combination would be preferred as the entropy cost

is convex in strategies, {Pi(v)}Ni=1, while E[vi] is linear.

Lemma 4. Uniqueness: If the random vectors evj/λ are linearly independent with unit
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scaling, i.e. if there does not exist a set {aj}N−1
j=2 such that

∑N
k=2 ak = 1 and

evi/λ =
N∑
k=2

ake
vj/λ a.s., (24)

then the agent’s problem has a unique solution. Conversely, if the agent’s problem has a

unique solution, then the random vectors evj/λ for all j s.t. P0
j > 0 are linearly independent

with unit scaling.

Proof. Let us first study an interior optimum of (10), where the boundary constraint (11)

is not binding. The first order conditions take the form of (13) for i < N and denote

P0
N = 1−

∑N−1
k=1 P0

k to satisfy the constraint (12). The (N − 1) dimensional Hessian is

Hij = −
∫
v

( evi/λ − evN/λ∑N
k=1P0

ke
vk/λ

)( evj/λ − evN/λ∑N
k=1P0

ke
vk/λ

)
G(dv) ∀i, j < N. (25)

The hessian H is thus (−1) times a Gramian matrix, which is a matrix generated from

inner products of random vectors evi/λ−evN/λ∑N
k=1 P0

ke
vk/λ

. H is thus negative semi-definite at all interior

points {P0
i }Ni=1, not just at the optimum only. This implies that an interior optimum of the

objective (10) is a unique maximum if and only if the Hessian is negative definite at the

optimum. From (25) we see that for N = 2 the Hessian is not negative-definite, i.e. the

objective is not a strictly concave function of P0
1 , only when ev1 = ev2 almost surely, i.e.

when the options are identical. Moreover for N > 2, we can use the fact that Gramian

matrices have a zero eigenvalue if and only if the generating vectors are linearly dependent,

which means that there exist i and a set {aj}N−1
j=1, 6=i such that

evi/λ − evN/λ∑N
k=1P0

ke
vk/λ

=
N−1∑
j=1,6=i

aj
evj/λ − evN/λ∑N
k=1P0

ke
vk/λ

a.s. (26)

Since the equality needs to hold almost surely, we can get rid of the denominators, which

are the same on both sides. By denoting aN = 1 −
∑N−1

j=1,6=i aj, this implies the following

sufficient and necessary condition for non-uniqueness in the interior for N ≥ 1: there exists
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a set {aj}Nj=1, 6=i such that
∑N

k=2 ak = 1, and

evi/λ =
N∑

k=1,6=i

ake
vj/λ a.s. (27)

Now, we extend the proof to non-interior solutions. In the the agent’s optimization problem

formulated in Definition 1, the objective is a weakly concave function of {Pi(v)}i on a convex

set. Therefore, any convex linear combination of two solutions must be a solution, too. This

implies that there always exists a solution with P0
i > 0 for all i ∈ S, where S is a set of

indices i for which there exists a solution with P0
i > 0. For example, if there exist two

distinct solutions such that P0
1 > 0 for one and P0

2 > 0 for the other, then there exists a

solution with both P0
1 and P0

2 positive. Therefore, there always exists an interior solution

on the subset S of options that are ever selected in some solution. Moreover, we can create

many such solutions by taking different convex combinations. However, if the conditions

of the proposition are satisfied, then there can only be one interior solution and hence the

multiple boundary solutions leads to a contradiction. For the options that are not selected

in any solution, the solution is unique with P0
i = 0.

Corollary 3. If any one of the following conditions is satisfied, then the solution is unique.

(1) N = 2 and the values of the two options are not equal almost surely.

(2) The prior is symmetric and values of the options are not equal almost surely.

Proof of Proposition 1. The solution to the DM’s problem is unique due to Corollary 3,

point (2).

The DM forms a strategy such that P0
i = 1/N for all i. If there were a solution with

non-uniform P0
i , then any permutation of the set would necessarily be a solution too, but

the solution is unique. Using P0
i = 1/N in equation (9), we arrive at the result.

38



B Proofs for Section 4

Proof of Lemma 2. Let there exist an x such that Pi(x) > 0. Let without the loss of

generality i = 1. We prove the statement by showing that the position 1 is selected with

positive probability for all vectors y.

Let us first generate a vector x11 by copying x1 to position 2: x11 = (x1, x1, x3, . . . , xN).

We find that P1(x11) > 0, which is due to Axiom 1 when it is applied to x and x11 with

i = 3 and j = 1: the axiom implies that P3(x)
P1(x)

= P3(x11)
P1(x11)

. Now, Axiom 2 implies that as long

as there is the same object in both positions 1 and 2, then the probability of position 1 is

positive independently of what the object is and what objects in the other positions are.

Finally, we show that P1(y) > 0, where y is an arbitrary vector of objects. This is

due to the fact that P1(y11) > 0, which we just showed in the paragraph above, where

y11 = (y1, y1, y3, . . . , yN), and due to Axiom 1 when it is applied to y11, y, i = 3 and j = 1.

The Axiom implies that if P1(y11) > 0, then P1(y) > 0 too, since y and y11 differ in position

2 only.

To establish that if Pi(x) = 0 then Pi(y) = 0 for all y is straightforward: suppose

Pi(y) > 0, then the argument above implies Pi(x) > 0.

Proof of Proposition 2. Assume w.l.o.g. that positions 1, 2, and N are positive. Fix a

vector of objects x and define

v(a) ≡ log

(
P1(a, x2, x3, · · · , xN)

PN(a, x2, x3, · · · , xN)

)
. (28)

So the value of object a is defined in terms of the probability that it is selected when it

is inserted into the first position of a particular vector of objects. Also define

ξk ≡
Pk(xk)

P1(xk)
,

where xk is defined as (xk, x2, x3, · · · , xN), which is x with the first element replaced by a

second instance of the object in the kth position. Notice that if k is a zero position, then
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ξk = 0. By Axiom 2, we have

ξk =
Pk(yk)

P1(yk)
,

where yk is generated from an arbitrary vector of objects y in the same manner that xk was

generated from x.

Consider a vector of objects y that shares the N th entry with the generating vector x,

such that yN = xN . We will show

Pi(y) =
ξie

v(yi)∑N
j=1 ξje

v(yj)
, (29)

for all i. If i is a zero position, then (29) holds trivially so we will suppose that i is a positive

position. As the choice probabilities must sum to one, we proceed as follows

1 =
∑
j

Pj(y) = Pi(y)
∑
j

Pj(y)

Pi(y)
= Pi(y)

∑
j

Pj(y)/PN(y)

Pi(y)/PN(y)

Pi(y) =
Pi(y)/PN(y)∑
j Pj(y)/PN(y)

. (30)

Now, by Axiom 1:

Pk(y)

PN(y)
=
Pk(yk)

PN(yk)

so (30) becomes

Pi(y) =
Pi(yi)/PN(yi)∑
j Pj(yj)/PN(yj)

=
ξiP1(yi)/PN(yi)∑
j ξjP1(yj)/PN(yj)

. (31)

For any k, as yN = xN in the case we are considering, by Axiom 1 and definition of v(·) in
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(28):

P1(yk)

PN(yk)
=
P1(yk, x2, x3, · · · , xN)

PN(yk, x2, x3, · · · , xN)

= ev(yk).

Therefore (31) becomes (29).

We will now consider an arbitrary y allowing for yN 6= xN as well. We will show that

(29) still holds by using the axioms and some intermediate vectors to connect y to x. Let

ywizj be the vector generated from y by replacing the first element of y with wi and the last

element of y with zj for given vectors w and z. For example:

yy1xN = (y1, y2, y3, · · · , yN−1, xN)

yx1xN = (x1, y2, y3, · · · , yN−1, xN)

yxNxN = (xN , y2, y3, · · · , yN−1, xN)

yyNyN = (yN , y2, y3, · · · , yN−1, yN).

Consider yyNyN. For any i < N , by Axiom 1:

Pi(yyNyN) = P1(yyNyN)
Pi(yyNxN)

P1(yyNxN)

= P1(yyNyN)
ξie

v(yi)

ξ1ev(yN )
, (32)

where the second equality follows from the fact that (29) holds for y = yyNxN as its N th

entry is xN and we have already established that (29) holds for vectors y for which yn = xN .

For i = N we have, by Axiom 2:

PN(yyNyN) = P1(yyNyN)
PN(yxNxN)

P1(yxNxN)

= P1(yyNyN)
ξNe

v(xN )

ξ1ev(xN )
= P1(yyNyN)

ξN
ξ1

. (33)
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Combining (32) and (33),

Pi(yyNyN)

PN(yyNyN)
=

ξie
v(yi)

ξNev(yN )
(34)

for all i. As the probabilities sum to one, we arrive at

PN(yyNyN) =
ξNe

v(yN )∑
j ξje

v(yj)
(35)

and (29) for y = yyNyN follows from (34) and (35).

Finally, we turn our attention to the arbitrary y. For any j < N , we use Axiom 1 to

write

Pj(y)

P2(y)
=
Pj(yy1xN)

P2(yy1xN)
=
ξje

v(yj)

ξ2ev(y2)
, (36)

where the second equality follows from the fact that (29) has already been established for

y = yy1xN. For j = N , by Axiom 1 we can write

PN(y)

P2(y)
=
PN(yyNyN)

P2(yyNyN)
=
ξNe

v(yN )

ξ2ev(y2)
, (37)

where the second equality follows from the fact that (29) has already been established for

y = yyNyN. Using
∑

j Pj(y) = 1 we arrive at

P2(y) =
ξ2e

v(y2)∑
j ξje

v(yj)

and then (29) follows from (36) and (37).

To complete the proof, we apply the normalization P0
i = ξi/

∑
j ξj for all i.
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C Proofs for Section 5

C.1 Monotonicity

Proof of Proposition 3. The agent’s objective function, (10), can be rewritten to include

the constraint
∑N

i=1P0
i = 1

∫
v

λ log

[
N−1∑
i=1

P0
i e

vi/λ +

(
1−

N−1∑
i=1

P0
i

)
evN/λ

]
G(dv).

Written in this way, the agent is maximizing over {P0
i }

N−1
i=1 subject to (11). Let us first

assume that the constraint (11) is not binding and later on we show the statement holds in

general.

The first order condition with respect to P0
1 is

λ

∫
v

ev1/λ − evN/λ∑N
j=1P0

j e
vj/λ

G(dv) = 0, (38)

where P0
N denotes 1−

∑N−1
i=1 P0

i .

Ĝ(·) is generated from G(·) by increasing the values of option 1 and this change can

be implemented using a function f(v) ≥ 0, where
∫
f(v)G(dv) > 0, which describes the

increase in v1 in various states. Let v be transformed such that ev̂1/λ = ev1/λ (1 + f(v)) and

with v̂j = vj for all v and j = 2, · · · , N . Under the new prior, Ĝ(·), the left-hand side of

(38) becomes

∆1 ≡ λ

∫
v

ev1/λ (1 + f(v))− evN/λ∑N
j=1P0

j e
vj/λ + P0

1e
v1/λf(v)

G(dv). (39)

Notice that [∆1, · · · ,∆N−1] is the gradient of the agent’s objective function under the new

prior evaluated at the optimal strategy under the original prior. We now consider a marginal

improvement in the direction of f(v). In particular, consider an improvement of εf(v) for

43



some ε > 0. Equation (39) becomes

∆1 = λ

∫
v

ev1/λ (1 + εf(v))− evN/λ∑N
j=1P0

j e
vj/λ + P0

1e
v1/λεf(v)

G(dv). (40)

Differentiating with respect to ε at ε = 0 leads to

∂∆1

∂ε

∣∣∣∣
ε=0

= λ

∫
v

ev1/λf(v)
∑N

j=1P0
j e

vj/λ −
(
ev1/λ − evN/λ

)
P0

1e
v1/λf(v)(∑N

j=1P0
j e

vj/λ
)2 G(dv) (41)

= λ

∫
v

ev1/λf(v)

∑N
j=2P0

j e
vj/λ + evN/λP0

1(∑N
j=1P0

j e
vj/λ
)2 G(dv) > 0. (42)

This establishes that at the original optimum, {P0
i }

N−1
i=1 , the impact of a marginal im-

provement in option 1 is to increase the gradient of the new objective function with respect

to the probability of the first option. Therefore the agent will increase P0
1 in response to the

marginal improvement. Notice that this holds for a marginal change derived from any total

f(v). Therefore, if the addition of the total f(v) were to decrease P0
1 , then by regularity

there would have to be a marginal change of the prior along νf(v), where ν[0, 1], such that

P0
1 decreases due to this marginal change too. However, we showed that the marginal change

never decreases P0
1 .

We conclude the proof by addressing the cases when the (11) can be binding. We already

know that monotonicity holds everywhere in the interior, therefore the only remaining case

that could violate the monotonicity is if P0
1 = 1, while P̂0

1 = 0. In other words, if after an

increase of value in some states the option comes from being selected with probability one

to never being selected. However, this is not possible since the expected value of the option

1 increases. If P0
1 = 1, the agent processes no information and thus the expected utility

equals the expectation of v1. After the transformation of values of option 1, under Ĝ, each

strategy that ignores option 1 delivers the same utility as before the transformation, but

the expected utility from selecting the option 1 with probability one is higher than before.

Therefore, P̂0
1 = 1. Strict monotonicity holds in the interior and weak monotonicity on the

44



boundaries. .

C.2 Duplicates

Proof of Proposition 4. Let us consider a problem with N+1 options, where the options

N and N + 1 are duplicates. Let {P̂0
i (u)}N+1

i=1 be the unconditional probabilities in the

solution to this problem. Since uN and uN+1 are almost surely equal, then we can substitute

uN for uN+1 in the first order condition (9) to arrive at:

P̂i(u) =
P̂0
i e

ui/λ∑N−1
j=1 P̂0

j e
uj/λ + (P̂0

N + P̂0
N+1)euN/λ

a.s.,∀i < N (43)

P̂N(u) + P̂0
N+1(u) =

(P̂0
N + P̂0

N+1)eui/λ∑N−1
j=1 P̂0

j e
uj/λ + (P̂0

N + P̂0
N+1)euN/λ

a.s. (44)

Therefore, the right hand sides do not change when only P̂0
N and P̂0

N+1 change if their

sum stays constant. Inspecting (43)-(44), we see that any such strategy produces the same

expected value as the original one. Moreover, the amount of processed information is also

the same for both strategies. To show this we use (9) to rewrite (6) as:15

κ =

∫ N+1∑
i=1

P̂i(u) log
P̂i(u)

P̂0
i

G(du) =

∫ N+1∑
i=1

P̂i(u) log
eui/λ∑N−1

j=1 P̂0
j e

uj/λ + (P̂0
N + P̂0

N+1)euN/λ
G(du).

(45)

Therefore, the achieved objective in (8) is the same for any such strategy as for the original

strategy, and all of them solve the DM’s problem.

Finally, even the corresponding strategy with P̂0
N+1 = 0 is a solution. Moreover, this

implies that the remaining {P̂0
i }Ni=1 is the solution to the problem without the duplicate

option N + 1, which completes the proof.

15Here we use the fact that the mutual information between random variables X and Y can be expressed

as Ep(x,y)

[
log p(x,y)

p(x)p(y)

]
. See Cover and Thomas (2006, p. 20).
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C.3 Similar options

Proof of Proposition 5. We proceed similarly as in the proof of Proposition 3 by showing

that ∆2 ≡ ∂E[U ]

∂P0
1

+ ∂E[U ]

∂P0
2

decreases at all points {P 0
i }Ni=1 after a marginal change of prior in

the direction of interest. Notice that ∆2 is a scalar product of the gradient of E[U ] and the

vector (1, 1, 0, . . . , 0). We thus show that at each point, the gradient passes through each

plane of constant P0
1 + P0

2 more in the direction of the negative change of P0
1 + P0

2 than

before the change of the prior.

The analog to equation (39), after relocating εΠ probability from state 1 to 3 and from

state 2 to 4, the sum of the left hand sides of the first order conditions for i = 1 and i = 2,

becomes:

∆2 =λ

∫
v

ev1/λ + ev2/λ − evN/λ∑N
j=1P0

j e
vj/λ

G(dv)

+ λΠ
((1− ε)(eH/λ + eL/λ − evN/λ)

P0
1e

H/λ + P0
2e

L/λ + a
+

(1− ε)(eH/λ + eL/λ − evN/λ)
P0

1e
L/λ + P0

2e
H/λ + a

+
ε(2eH/λ − evN/λ)

P0
1e

H/λ + P0
2e

H/λ + a
+

ε(2eL/λ − evN/λ)
P0

1e
L/λ + P0

2e
L/λ + a

)
, (46)

where a =
∑N

j=3P0
j e

vj/λ is constant across the states 1-4, since for j > 2, vj is constant

there.

The analog to equation (41) when we differentiate ∆2 = ∂E[U ]

∂P0
1

+ ∂E[U ]

∂P0
2

with respect to ε

is:

∂∆2

∂ε

∣∣∣∣
ε=0

=λ
(
− eH/λ + eL/λ − evN/λ

P0
1e

H/λ + P0
2e

L/λ + a
− eH/λ + eL/λ − evN/λ

P0
1e

L/λ + P0
2e

H/λ + a

+
2eH/λ − evN/λ

P0
1e

H/λ + P0
2e

H/λ + a
+

2eL/λ − evN/λ

P0
1e

L/λ + P0
2e

L/λ + a

)
. (47)

Multiplying the right hand side by the positive denominators, the resulting expression

46



can be re-arranged to

−λ(eH/λ − eL/λ)2[
a2(P0

1 + P0
2 ) + eH/λeL/λ(P0

1 − P0
2 )2(P0

1 + P0
2 ) + a(eH/λ + eL/λ)((P0

1 )2 + (P0
2 )2)

+ evN/λP0
1P0

2 (2a+ eH/λP0
1 + eL/λP0

1 + eH/λP0
2 + eL/λP0

2 )
]

which is negative, and thus ∂∆2

∂ε

∣∣
ε=0

is negative, too. After the marginal relocation of prob-

abilities that makes options 1 and 2 co-move more closely, the optimal P0
1 + P0

2 decreases.

The treatment of the boundary cases is analogous to that in the proof of Proposition 3.

D Derivations for examples (For online publication)

D.1 Auxillary example

This is perhaps the simplest example of how rational inattention can be applied to a discrete

choice situation. We present it here principally because this analysis forms the basis of our

proof of Proposition 6 in Appendix D.3, but also because it provides some additional insight

into the workings of the model.

Suppose there are two options, one of which has a known value while the other takes one

of two values. One interpretation is that the known option is an outside option or reservation

value.

Problem 5. The DM chooses i ∈ {1, 2}. The value of option 1 is distributed as v1 = 0

with the probability g0 and v1 = 1 with the probability 1 − g0. Option 2 carries the value

v2 = R ∈ (0, 1) with certainty.
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Figure 2: P0
1 as a function of R and λ = 0.1, g0 = 0.5.

To solve the problem, we must find {P0
i }2

i=1. We show below that the solution is:

P0
1 = max

0,min

1,−
e
R
λ

(
−e 1

λ + e
R
λ − g0 + g0e

1
λ

)
(
e

1
λ − eRλ

)(
−1 + e

R
λ

)
 (48)

P0
2 = 1− P0

1 .

For a given set of parameters, the unconditional probability P0
1 as a function of R is shown in

Figure 2. For R close to 0 or to 1, the DM decides not to process information and selects one

of the options with certainty. In the middle range however, the DM does process information

and the selection of option 1 is less and less probable as the reservation value, R, increases,

since option 2 is more and more appealing. For g0 = 1/2 and R = 1/2, solutions take the

form of the multinomial logit, i.e. P0
1 = P0

2 = 1/2. If the DM observed the values, he would

choose option 1 with the probability (1 − g0) = 1/2 for any reservation value R. However,

the rationally inattentive agent chooses option 1 with higher probability when R is low.

Figure 3 again shows the dependance on R, but this time it presents the probability of

selecting the first option conditional on the realized value v1 = 1, it is P1(1, R). Since R < 1,

it would be optimal to always select the option 1 when its value is 1. The DM obviously

does not choose to do that because he is not sure what the realized value is. When R is

high, the DM processes less information and selects a low P0
1 . As a result, P1(1, R) is low.
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Figure 3: P1(1, R) as a function of R and λ = 0.1, g0 = 0.5.
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Figure 4: P0
1 as a function of λ evaluated at various values of g0 and R = 0.5.
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In general, one would expect that as R increases, the DM would be more willing to reject

option 1 and receive the certain value R. Indeed, differentiating the non-constant part of (48)

one finds that the function is non-increasing in R. Similarly, the unconditional probability

of selecting option 1 falls as g0 rises, as it is more likely to have a low value. Moreover, we

see from equation (48) that, for R ∈ (0, 1), P0
1 equals 1 for g0 in some neighborhood of 0

and it equals 0 for g0 close to 1.16 For these parameters, the DM chooses not to process

information.

The following Proposition summarizes the immediate implications of equation (48). More-

over, the findings hold for any values of the uncertain option {a, b} such that R ∈ (a, b).

Proposition 7. Solutions to Problem 5 have the following properties:

1. The unconditional probability of option 1, P0
1 , is a non-increasing function of g0 and

the value R of the other option.

2. For all R ∈ (0, 1) and λ > 0, there exist gm and gM in (0, 1) such that if g0 ≤ gm,

the DM does not process any information and selects option 1 with probability one.

Similarly, if g0 ≥ gM , the DM processes no information and selects option 2 with

probability one.

Figure 4 plots P0
1 as a function of the information cost λ for three values of the prior,

g0. When λ = 0, P0
1 is just equal to 1 − g0 because the DM will have perfect knowledge of

the value of option 1 and choose it when it has a high value, which occurs with probability

1 − g0. As λ increases, P0
1 fans out away from 1 − g0 because the DM no longer possesses

perfect knowledge about the value of option 1 and eventually just selects the option with

the higher expected value according to the prior.

Solving for the choice probabilities in Problem 5. To solve the problem, we must find P0
1 ,

while P0
2 = 1 − P0

1 . These probabilities must satisfy the normalization condition, equation

16The non-constant argument on the right-hand side of (48) is continuous and decreasing in g0, and it is
greater than 1 at g0 = 0 and negative at g0 = 1.
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(13):

1 =
g0

P0
1 + P0

2e
R
λ

+
(1− g0)e

1
λ

P0
1e

1
λ + P0

2e
R
λ

if P0
1 > 0, (49)

1 =
g0e

R
λ

P0
1 + P0

2e
R
λ

+
(1− g0)e

R
λ

P0
1e

1
λ + P0

2e
R
λ

if P0
2 > 0. (50)

There are three solutions to this system,

P0
1 ∈

0, 1,−
e
R
λ

(
−e 1

λ + e
R
λ − g0 + g0e

1
λ

)
(
e

1
λ − eRλ

)(
−1 + e

R
λ

)
 (51)

P0
2 = 1− P0

1 .

Now, we make an argument using the solution’s uniqueness to deduce the true solution to

the DM’s problem. The first solution to the system, P0
1 = 0, corresponds to the case when

the DM chooses option 2 without processing any information. The realized value is then R

with certainty. The second solution, P0
1 = 1, results in the a priori selection of option 1

so the expected value equals (1 − g0). The third solution describes the case when the DM

chooses to process a positive amount of information.

In Problem 5, there are just two options and they do not take the same values with

probability one. Therefore, Corollary 3 establishes that the solution to the DM’s optimization

problem must be unique.

Since the expected utility is a continuous function of P0
1 , R, λ and g0, then the optimal

P0
1 must be a continuous function of the parameters. Otherwise, there would be at least

two solutions at the point of discontinuity of P0
1 . We also know that, when no information

is processed, option 1 generates higher expected utility than option 2 for (1− g0) > R, and

vice versa. So for some configurations of parameters P0
1 = 0 is the solution and for some

configurations of parameters P0
1 = 1 is the solution. Therefore, the solution to the DM’s

problem has to include the non-constant branch, the third solution. To summarize this, the

51



only possible solution to the DM’s optimization problem is

P0
1 = max

0,min

1,−
e
R
λ

(
−e 1

λ + e
R
λ − g0 + g0e

1
λ

)
(
e

1
λ − eRλ

)(
−1 + e

R
λ

)
 . (52)

D.2 Problem 3

To find the solution to Problem 3 we must solve for {P0
r ,P0

b ,P0
t }. The normalization condi-

tion P0
r =

∫
v
Pr(v)G(dv) yields:

1 =
1
4

(1 + ρ)

P0
r + P0

b + (1− P0
r − P0

b )e1/2λ
+

1
4

(1− ρ) e1/λ

P0
r e

1/λ + P0
b + (1− P0

r − P0
b )e1/2λ

+
1
4

(1− ρ)

P0
r + P0

b e
1/λ + (1− P0

r − P0
b )e1/2λ

+
1
4

(1 + ρ) e1/λ

P0
r e

1/λ + P0
b e

1/λ + (1− P0
r − P0

b )e1/2λ
(53)

Due to the symmetry between the buses, we know P0
r = P0

b . This makes the problem one

equation with one unknown, P0
r . The problem can be solved analytically using the same

arguments as in Appendix D.1. The resulting analytical expression is:

P0
r = max


0,min


0.5,


e

1
2λ − 8e

1
λ + 14e

3
2λ − 8e2/λ + e

5
2λ

+1
2
e

1
2λ (1− ρ)− e 3

2λ (1− ρ) + 1
2
e

5
2λ (1− ρ)

+e
1
2λ

(
−1 + e

1
λ

)
x


2
(

4e
1
2λ − 16e

1
λ + 24e

3
2λ − 16e2/λ + 4e

5
2λ

)




,

where

x =

√√√√√√√√
2− 2e

1
λ + e2/λ − 8e

1
2λ (1− ρ) + 14e

1
λ (1− ρ)

−8e
3
2λ (1− ρ) + e2/λ(1− ρ) + 1

4
(1− ρ)2

−1
2
e

1
λ (1− ρ)2 + 1

4
e2/λ(1− ρ)2 − ρ

.
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D.3 Inconsistency with a random utility model

This appendix establishes that the behavior of the rationally inattentive agent is not consis-

tent with a random utility model. The argument is based on the counterexample described

in section 5.3.2. Let Problem A refer to the choice among options 1 and 2 and Problem B

refer to the choice among all three options. For simplicity, Pi(s) denotes the probability of

selecting option i conditional on the state s, and g(s) is the prior probability of state s.

Lemma 5. For all ε > 0 there exists Y s.t. the DM’s strategy in Problem B satisfies

P3(1) > 1− ε, P3(2) < ε.

Proof: For Y > 1, an increase of P3(1) (decrease of P3(2)) and the corresponding reloca-

tion of the choice probabilities from (to) other options increases the agent’s expected payoff.

The resulting marginal increase of the expected payoff is larger than (Y − 1) min(g(1), g(2)).

Selecting Y allows us to make the marginal increase arbitrarily large and therefore the

marginal value of information arbitrarily large.

On the other hand, with λ being finite, the marginal change in the cost of information

is also finite as long as the varied conditional probabilities are bounded away from zero.

See equation (6), the derivative of entropy with respect to Pi(s) is finite at all Pi(s) > 0.

Therefore, for any ε there exists high enough Y such that it is optimal to relocate probabilities

from options 1 and 2 unless P3(1) > 1− ε, and to options 1 and 2 unless P3(2) < ε.

Proof of proposition 6. We will show that there exist g(1) ∈ (0, 1) and Y > 0 such that

option 1 has zero probability of being selected in Problem A, while the probability is positive

in both states in Problem B. Let us start with Problem A. According to Proposition 7, there

exists a sufficiently high g(1) ∈ (0, 1), call it gM , such that the DM processes no information

and P1(1) = P1(2) = 0. We will show that for g(1) = gM there exists a high enough Y , such

the choice probabilities of option 1 are positive in Problem B.

Let P = {Pi(s)}3,2
i=1,s=1 be the solution to Problem B. We now show that the optimal

choice probabilities of options 1 and 2, {Pi(s)}2,2
i=1,s=1, solve a version of Problem A with
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modified prior probabilities. The objective function for Problem B is

max
{Pi(s)}3,2i=1,s=1

3∑
i=1

2∑
s=1

vi(s)Pi(s)g(s)

− λ

[
−

2∑
s=1

g(s) log g(s) +
3∑
i=1

2∑
s=1

Pi(s)g(s) log
Pi(s)g(s)∑
s′ Pi(s′)g(s′)

]
, (54)

where we have written the information cost as H(s)−E[H(s|i)].17 If P3(1) and P3(2) are the

conditional probabilities of the solution to Problem B, the remaining conditional probabilities

solve the following maximization problem.

max
{Pi(s)}2,2i=1,s=1

2∑
i=1

2∑
s=1

vi(s)Pi(s)g(s)− λ

[
2∑
i=1

2∑
s=1

Pi(s)g(s) log
Pi(s)g(s)∑
s′ Pi(s′)g(s′)

]
, (55)

subject to P1(s)+P2(s) = 1−P3(s), ∀s. Equation (55) is generated from (54) by omitting the

terms independent of {Pi(s)}2,2
i=1,s=1. Now, we make the following substitution of variables.

Ri(s) = Pi(s)/
(

1− P3(s)
)

(56)

ĝ(s) = Kg(s)
(

1− P3(s)
)

(57)

1/K =
2∑
s=1

g(s)
(

1− P3(s)
)
. (58)

where K, which is given by (58), is the normalization constant that makes the new prior,

ĝ(s), sum up to 1.

The maximization problem (55) now takes the form:

max
{Ri(s)}1,2i=1,s=1

2∑
i=1

2∑
s=1

vi(s)Ri(s)ĝ(s)− λ
2∑
i=1

2∑
s=1

Ri(s)ĝ(s) log
Ri(s)ĝ(s)∑
s′Ri(s′)ĝ(s′)

, (59)

17Recall that H(Y |X) = −
∑
x∈X

∑
y∈Y p(x, y) log p(y|x) (Cover and Thomas, 2006, p. 17).
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subject to

R1(s) +R2(s) = 1 ∀s. (60)

The objective function of this problem is equivalent to (55) up to a factor of K, which is a

positive constant. The optimization problem (59) subject to (60) is equivalent to Problem

A with the prior modified to from g(s) to ĝ(s), let us call it Problem C.18

According to Proposition 7, there exists ĝm ∈ (0, 1) such that the DM always selects

option 1 in Problem C for all ĝ(1) ≤ ĝm. From equations (57) and (58) we see that for any

ĝm > 0 and g(1), g(2) ∈ (0, 1) there exists ε > 0 such that if P3(1) > 1 − ε and P3(2) < ε,

then ĝ(1) < ĝm.19 Moreover, Lemma 5 states that for any such ε > 0 there exists Y such

that P3(1) > 1 − ε and P3(2) < ε. Therefore there is a Y such that in Problem C, option

1 is selected with positive probability in both states, which also implies it is selected with

positive probabilities in Problem B, see equation (56).

18To see the equivalence to Problem A, observe that this objective function has the same form as (54)
except for a) the constant corresponding to H(s) and b) we only sum over i = 1, 2.

19ĝ(1) = g(1)(1−P3(1))∑
s g(s)(1−P3(s))

< g(1)(1−P3(1))
g(2)(1−P3(2))

< g(1)ε
g(2)(1−ε) .
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