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Abstract. We prove that a finite group G has two rational-valued irreducible
characters if and only if it has two rational conjugacy classes, and determine
the structure of any such group. Along the way we also prove a conjecture
of Gow stating that any finite group of even order has a non-trivial rational-
valued irreducible character of odd degree.

1. Introduction

One of the fundamental questions in the character theory of finite groups is to
analyze fields of values of characters. In this paper, we are focused on the rational-
valued irreducible characters of G, probably the most important case. Let us write
Irrrat(G) for the set of complex irreducible characters of G with values in Q, and
clrat(G) for the set of conjugacy classes of rational elements in G.

The relationship between the structure of G and the set Irrrat(G) is not fully
understood. It is known, for instance, that all irreducible characters of G are
rational-valued if and only if all conjugacy classes of G are rational; however, the
structure of such a group G is not completely determined until now. It is also
known that G has no non-trivial rational-valued irreducible characters if and only
if G has odd order, equivalently, |clrat(G)| = 1. This result (see Theorem 8.2 below
for a proof; see also Corollary 9.7) already requires the classification of finite simple
groups. This indicates, in our opinion, that rationality questions in finite groups
are of deep nature. Our main goal in this paper is to take the next step and prove
the following.
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Theorem A. Suppose that G is a finite group. Then G has two irreducible rational-
valued characters if and only if G has two rational conjugacy classes.

In general, it is not true that the number of irreducible rational-valued characters
and the number of rational conjugacy classes of G coincides, as is very well-known.
There are many examples (solvable and non-solvable) illustrating this. However,
there are also many important situations when there is equality, and we are hoping
that the techniques that we are developing here will help us to study this in the
future, as well as to study various rationality questions about ordinary and Brauer
characters.

The proof of Theorem A is surprisingly complicated. It is naturally divided
into two cases, according to whether the group G is solvable or not. In each of
these cases, both implications will be non-trivial. One of the many (but perhaps
the most significant) obstacles toward the proof of Theorem A is that we need to
prove not only that groups of even order have non-trivial irreducible rational-valued
characters but also something stronger. The following was a conjecture of R. Gow,
which we can finally prove.

Theorem B. If G is a finite group of even order, then G has a non-trivial irre-
ducible rational-valued character of odd degree.

The structure of non-solvable groups with two rational-valued characters is de-
scribed in the following theorem. We write O2′

(G) for the smallest normal subgroup
of G with odd index, and O2′(G) for the largest of odd order.

Theorem C. Suppose that G is a finite non-solvable group with exactly two ra-
tional-valued irreducible characters. If M := O2′

(G) and N := O2′(M), then
M/N = PSL2(32a+1) for some a ≥ 1.

The structure of solvable groups with exactly two rational-valued characters is
completely described in §4 below.

2. Extending characters

Throughout the paper, a character of a finite group G is called real, resp. ra-
tional, if it is real-valued, resp. rational-valued. Furthermore, Qn denotes the n-th
cyclotomic field. If K > 0 is an integer and p is a prime, then Kp, resp. Kp′ ,
denotes the p-part, resp. the p′-part, of K.

If G has order dividing some integer n > 0, then Gal(Qn/Q) acts naturally on
Irr(G) since the representations of G over C can be realized in Qn. If χ ∈ Irr(G),
then Q(χ) is the field generated by the values of χ. In fact, if σ ∈ Gal(Q(χ)/Q),
then χσ ∈ Irr(G).

The purpose of this section is to produce rational characters of G from ratio-
nal characters of its normal subgroups in some special situations. We will often
use Burnside’s theorem stating that odd order groups have no non-trivial real irre-
ducible characters.

If χ ∈ Irr(G), we denote by o(χ) the order of the linear character det(χ). Recall
that if χ ∈ Irr(G) is real, then o(χ) divides 2. (This follows from the following
argument: If X is a representation affording χ and Y(g) = X (g−1)t for g ∈ G, then
X and Y are equivalent.)

The following lemma was pointed out to us by M. Isaacs.
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2.1. Lemma. Suppose that N � G has odd index. If θ ∈ Irr(N) is G-invariant
and real, then θ has a unique real extension η to G. Also, o(η) = o(θ).

Proof. Suppose first that θ extends to G, and let χ ∈ Irr(G) be any character
extending θ. Then the map λ �→ λχ is a bijection between the linear characters of
G/N and the set of extensions of θ to G (by Gallagher’s Corollary (6.17) of [14]).
Hence, the number of extensions of θ to G is odd, and since complex conjugation
acts on them, it follows that there is some real extension η ∈ Irr(G) of θ. If ψ is
another one, then ψ = λη for some linear λ ∈ Irr(G/N). Then λ̄η = ψ = λη, and
we conclude that λ is real. Hence λ2 = 1 and since G/N is of odd order, we have
that λ = 1.

Therefore, it suffices to show that θ extends to G. We prove it by induction
on |G : N |. By Corollary (11.31) of [14], we may assume that G/N is a p-group.
Let N ⊆ M � G be such that |G : M | = p. Then θ has a unique real extension
δ ∈ Irr(M) by induction. By uniqueness, δ is G-invariant. Since G/M is cyclic,
then δ extends to G.

Let ν = det(θ) and let µ = det(η), where η is the unique real extension of θ to
G. Since µN = ν, then o(ν) divides o(µ). Since θ and η are real, we have that
o(ν) and o(µ) divide 2. If ν has order 2, necessarily µ has order 2. If ν = 1, then
µ ∈ Irr(G/N) has order at most 2 in a group of odd order G/N , so µ is trivial. �

The following was already noticed in [21]. If N � G and θ ∈ Irr(N), then Irr(G|θ)
is the set of χ ∈ Irr(G) that lie above θ.

2.2. Corollary. Let N � G with G/N of odd order. If θ ∈ Irr(N) is real, then
there is a unique real character χ in Irr(G|θ). In particular, if θ is rational, then
χ is rational.

Proof. Let T be the stabilizer of θ in G. By Lemma 2.1, θ has a unique real extension
θ̂ ∈ Irr(T ). Then χ = (θ̂)G is real. Every other member of Irr(G|θ) is uniquely
written in the form (θ̂β)G, where β ∈ Irr(T/N), by the Clifford correspondence and
Gallagher’s theorem. By the uniqueness, we see that β is real if and only if (θ̂β)G

is real. Since β is real only if β is principal (because T/N has odd order), it follows
that χ is the only real character over θ. If θ is rational, again by uniqueness, it
follows that χ is fixed by every τ ∈ Gal(Qn), where n = |G|. It follows that χ is
rational. �

If N � G, θ ∈ Irr(N) is G-invariant and (|G : N |, θ(1)o(θ)) = 1, then it is well-
known that there exists a unique χ ∈ Irr(G) extending θ such that o(χ) = o(θ)
(Corollary (6.28) of [14]). Sometimes we call χ the canonical extension of θ
to G. Notice, too, that Q(χ) = Q(θ). (This can be proved as follows. We have
that Q(θ) ⊆ Q(χ). If σ ∈ Gal(Q(χ)/Q(θ)), then χσ is another extension with
o(χσ) = o(θ). Hence, χσ = χ and σ is the identity.)

2.3. Theorem. Let N be a normal subgroup of G, and let θ ∈ Irr(N) be G-
invariant, real of odd degree. Suppose that o(θ) = 1. Then θ has a unique real
extension η ∈ Irr(G) such that o(η) = 1.

Proof. First we prove that θ extends to G. So it suffices to show that θ extends
to P/N , where P/N is a Sylow p-subgroup of G/N (by Corollary (11.31) of [14]).
If p = 2, this follows from Corollary (6.28) of [14]. If p is odd, this follows from
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Lemma 2.1. So now let χ ∈ Irr(G) be any extension of θ to G. We have that the
set of extensions of θ to G is {λχ |λ ∈ Irr(G/M)}, where M = G′N .

We prove the theorem by induction on |G : N |. Suppose first that M = G.
Hence χ is the unique extension of θ to G. So it suffices to show that χ is real and
that o(χ) = 1. By uniqueness, we have that χ is real (because θ is real). Also,
det(χ)N = det(θ) = 1, so det(χ) is a linear character of G/N . Since M = G, we
conclude that det(χ) = 1.

So we may assume that M < G. By induction, we have that there exists a unique
real extension ν of θ to M such that o(ν) = 1. Suppose that N < M . Then by
induction, we will have that there exists a unique real extension τ ∈ Irr(G) of ν with
o(τ ) = 1. So τ is a real extension of θ to G with o(τ ) = 1. Suppose that χ ∈ Irr(G)
is real and also extends θ with det(χ) = 1. Then χM is a real extension of θ to
M with trivial determinantal character. By the inductive hypothesis, χM = ν, and
therefore χ = τ , again by induction.

Hence, we may assume that M = N . Thus G/N is abelian. Let P/N be a Sylow
2-subgroup of G/N and let H/N be a 2-complement. By Lemma 2.1, there exists
a unique real ξ ∈ Irr(H) extending θ. Furthermore, o(ξ) = 1. Also, let θ̂ ∈ Irr(P )
be the canonical extension of θ to P , so that o(θ̂) = 1. We have that θ̂ is real
and G-invariant by uniqueness. By Corollary (4.2) of [13], we have that restriction
defines a bijection

Irr(G | θ̂) → Irr(H | θ) .

Hence, there exists a unique

ρ ∈ Irr(G|θ̂)
such that ρH = ξ. In particular, ρ extends θ. Now, ρ is real because the restriction
map is one to one. Since det(ρ)P = det(θ̂) = 1 and det(ρ)H = det(ξ) = 1, we
conclude that det(ρ) = 1. Finally, suppose that µ ∈ Irr(G) is real, extends θ and is
such that o(µ) = 1. Then µP is an extension of θ with determinantal order 1, and
so µP = θ̂. Also, µH is a real extension of θ to H, so µH = ξ, and µ = ρ, by the
uniqueness of the restriction map. �

2.4. Corollary. Let N be a normal subgroup of G, and let θ ∈ Irr(N) be rational
of odd degree. Suppose that o(θ) = 1. Then there exists a rational χ ∈ Irr(G | θ).

Proof. Let T be the stabilizer of θ in G. By Theorem 2.3, there exists a unique real
extension ψ of θ to T with trivial determinantal order. By uniqueness ψ is rational,
and then χ = ψG ∈ Irr(G) is rational. �

3. 2-length and rational characters

The solvable case of Theorem B is quite easy.

3.1. Lemma. Suppose that G is a solvable group of even order. Then G has a
non-trivial rational irreducible character of odd degree.

Proof. Let K = O2′
(G). Since G is of even order, K > 1, and since O2′

(K) = K,
L = O2(K) < K. Then K/L has a non-trivial linear character of order 2. This
character has a canonical extension λ̂ to its stabilizer, which is also rational by
uniqueness. Then χ = (λ̂)G is rational and non-trivial. �
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A celebrated theorem of J. G. Thompson, which we will be using later on, asserts
that if G is a solvable group with one conjugacy class of involutions and such that
its Sylow 2-subgroup S has more than one involution, then G has 2-length one.
(See Theorem IX.8.6 in [12].) In fact, the first step in the proof of the solvable case
of Theorem A is to show that the 2-length of the group in question is also one.
There is something slightly more general.

3.2. Theorem. Let G be a solvable group of even order. Then the 2-length of G
is less than the number of irreducible rational characters of G of odd degree.

Proof. For i ≥ 1, let Gi = O2′2(Gi−1), where G0 = G. Let Mi = O2′
(Gi−1).

Then Gi = O2(Mi), Gi = O2(Gi) and Mi = O2′
(Mi). By Lemma 3.1, there exists

χ1 ∈ Irr(G/G1) non-trivial, rational of odd degree. Suppose that Mt > 1 and
Mt+1 = 1 for some t ≥ 2.

Let k ≤ t, so that Mk/Gk > 1. Let Pk/Mk be a Sylow 2-subgroup of G/Mk,
so that Pk/Gk is a Sylow 2-subgroup of G/Gk. Thus [Mk, Pk] < Mk. Thus there
is a non-trivial Pk-invariant linear character λk ∈ Irr(Mk/Gk) of order 2. Now, by
considering its canonical extension in Gk−1 and the Clifford correspondence, there
exists θk ∈ Irr(Gk−1/Gk) over λk, with odd degree, rational and Pk-invariant. Since
θk is real, it follows that o(θk) divides 2. Since O2(Gk−1) = Gk, it follows that
o(θk) = 1. By Theorem 2.3, there exists a unique real extension ψk of θk to its
stabilizer Tk in G with o(ψk) = 1. By uniqueness, ψk is rational. Since Pk ⊆ Tk, it
follows that χk = (ψk)G ∈ Irr(G/Gk) is rational of odd degree which does not have
Gk−1 in its kernel. �

4. Odd-order groups acting on 2-groups

We start with some elementary lemmas. As usual, in a p-group G, Ω1(G) is the
set of elements x ∈ G with xp = 1.

4.1. Lemma. Suppose that a finite group X acts on a homocyclic p-group G.
Then the actions of X on G/Φ(G) and Ω1(G) are permutation isomorphic.

Proof. Suppose that pn is the exponent of G. Then

Φ(G) = {x ∈ G |xpn−1
= 1} .

If x, y ∈ G, notice that xΦ(G) = yΦ(G) if and only if xpn−1
= ypn−1

. Hence, the
map G/Φ(G) → Ω1(G) given by xΦ(G) �→ xpn−1

is a natural bijection. �

If X acts coprimely on an abelian group G, by Fitting’s Lemma we have that G =
[G, X] × CG(X). In particular, the number of X-invariant irreducible characters
of G is |CG(X)|. Thus, as is well-known, the actions of X on Irr(G) and on G are
permutation isomorphic (see Lemma (13.23) of [12]).

4.2. Lemma. Suppose that X acts coprimely on an abelian p-group G. If X acts
transitively on Irr(G/Φ(G)) \ {1G}, then X acts transitively on Ω1(G) \ {1G}.

Proof. The actions of X on G/Φ(G) and on Irr(G/Φ(G)) are permutation isomor-
phic. So we have that X transitively permutes the non-identity elements of G/Φ(G).
The action of X on G/Φ(G) is therefore irreducible, and hence G is homocyclic (by
elementary group theory). Then we may apply Lemma 4.1. �
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4.3. Lemma. Let X be an odd-order group acting on a 2-group P . If X acts
transitively on the real non-principal irreducible characters of P , then X is transitive
on the involutions of P .

Proof. Let G = PX be the semidirect product. By Corollary 2.2, we know that
G has exactly one real irreducible character lying over the unique X-orbit of non-
principal real irreducible characters of P . But every real character χ ∈ Irr(G) lies
over some real irreducible character of P because χP has an odd number of distinct
irreducible constituents, which must be permuted by complex conjugation.

Thus G has a total of two real irreducible characters and thus has exactly two
real classes. It follows that all involutions of P are G-conjugate. But P has a
central involution z, and thus the X-orbit of z is the G-orbit of Z, which consists
of all involutions of P . �

Recall that a non-abelian 2-group with more than one involution and acted on
by a solvable group X such that X is transitive on the involutions of P is a Suzuki
2-group. A fact that we will need is the following. If P is a Suzuki 2-group, then
Φ(P ) = P ′ = Z(P ) = Ω1(P ). (See Theorem VIII.7.9 of [12].) Note that a Suzuki
2-group has exponent 4, and so all real characters are actually rational.

M. Isaacs simplified our proof of the next theorem below.

4.4. Theorem. Let P be a 2-group and suppose X has odd order and acts on
P , acting transitively on the non-principal rational irreducible characters. Then X
acts transitively on the involutions in P , and either P is homocyclic abelian or P
is a Suzuki 2-group. In particular, all real characters of P are rational.

Proof. Note that X acts transitively on the non-principal linear characters of
P/Φ(P ) and these are the only non-principal rational irreducible characters of P .
By Lemma 4.2, we may assume that P is not abelian.

Now P has more than one involution or else it must be Q8 since larger generalized
quaternion groups do not admit an odd group X acting non-trivially on P/Φ(P ).
But Q8 has a rational character not in Irr(P/Φ(P )), and this is a contradiction.
Thus P has more than one involution.

Assume that X is not transitive on involutions, and thus by Lemma 4.3, it is not
transitive on non-principal real irreducible characters of P . Thus there exists a real
character θ ∈ Irr(P ) with Φ(P ) �≤ ker(θ), and in particular, θ is not rational. Then
θ is non-linear and therefore P ′ �≤ ker(θ). We now want to derive a contradiction.

If P ′ is minimal normal in PX, then it is central in P and elementary abelian.
Let λ ∈ Irr(P ′) lie under θ and note that since λ is P -invariant and P/P ′ is abelian,
there exists a subgroup R with P ′ ≤ R ≤ P and a character µ ∈ Irr(R) extending
λ and fully ramified with respect to θ (by Lemma 2.2 of [25], for instance). As θ
is real, so is µ. But µ is linear, and so is rational, and it follows that θ is rational,
which is not the case.

Then P ′ is not minimal normal in PX and we choose Z ≤ P ′ so that Z is
minimal normal in PX. In particular Z is elementary. Then X acts on P/Z and
the original hypotheses are satisfied here. Working by induction on |P |, we deduce
that X is transitive on the involutions of P/Z and P/Z is a Suzuki 2-group. (It is not
abelian since Z < P ′.) In particular, we have that P ′/Z = Z(P/Z) = Ω1(P/Z) is
elementary, X acts transitively on the involutions of P/Z (which are the involutions
of P ′/Z) and P/P ′ is elementary.
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Now, [P, P ′] ≤ Z and therefore [P, P ′, P ] = 1. By the three subgroups lemma,
we have that P ′ is abelian. If P ′ is elementary, then P has exponent 4 and so all real
characters are rational, which is not the case. Thus P ′ is abelian, but not elementary
abelian. But P ′/Z is elementary, and thus 1 < Φ(P ′) ≤ Z and we deduce that
Φ(P ′) = Z. Also, since X acts irreducibly on P ′/Z and Z ≤ Ω1(P ′) < P ′, we
deduce that Z = Ω1(P ′).

Each involution of P maps to an involution (or the identity) of P/Z, and so by
the structure of Suzuki 2-groups, it lies in P ′, and hence in Z, and we conclude that
Z = Ω1(P ). Now X acts transitively on the non-identity elements of P ′/Φ(P ′) and
P ′ is abelian, so by Lemma 4.2, we have that X is transitive on the non-identity
elements of Ω1(P ′) = Z = Ω1(P ). Hence, X is transitive on the involutions of P ,
and this is a contradiction.

Finally, suppose that τ ∈ Irr(P ) is real. If P is abelian, then τ2 = 1 and τ is
rational. If P is not abelian, then P is a Suzuki 2-group, and then τ is rational. �
4.5. Lemma. Suppose that G has a normal Sylow 2-subgroup P , and let X be a
2-complement of G. Then |Irrrat(G)| = 2 if and only if X acts transitively on the
non-trivial rational irreducible characters of P .

Proof. Let 1 �= δ ∈ Irr(P ) be rational. If δ̂ is the canonical extension of δ to
its stabilizer, then ψ = (δ̂)G is a rational non-trivial irreducible character of G
lying over δ, and it is the only one by Corollary 2.2. Hence, if G has exactly two
rational irreducible characters, then X acts transitively on the non-trivial rational
irreducible characters of P .

Now, suppose that χ ∈ Irr(G) is rational. Let θ ∈ Irr(P ) be an irreducible
constituent of χP . If τ is a Galois automorphism of the cyclotomic field Q|P |, then
θτ lies under χ, and therefore θτ = θx for some x ∈ X. Since τ has 2-power order
and x is of odd order, it follows that θτ = θ. Thus θ is rational.

Suppose now that X acts transitively on the non-trivial rational irreducible char-
acters of P . If χ ∈ Irr(G) is rational, non-trivial, then the irreducible constituents
of χP are rational. Suppose that θ ∈ Irr(P ) is one of those. Since P is not in the
kernel of χ, we have that the X-orbit of θ is the unique orbit of rational characters
of P . By Corollary 2.2, χ is the unique rational character over θ. �
4.6. Corollary. Suppose that |Irrrat(G)| = 2 and assume that G has a normal
Sylow 2-subgroup. Then G has exactly two real irreducible characters.

Proof. Let X be a 2-complement of G, and let P be the Sylow 2-subgroup of G. By
Lemma 4.5, X acts transitively on the non-trivial rational irreducible characters of
P , and by Theorem 4.4, we have that every real irreducible character of P is rational.
Now, let τ ∈ Irr(G) be real, and let θ ∈ Irr(P ) be an irreducible constituent. Then
(θ̄)x = θ for some x ∈ X. Then θx2

= θ and since x ∈ 〈x2〉, it follows that θx = θ.
Therefore, θ is real, and therefore it is rational by Theorem 4.4. Thus θ lies under
the unique rational non-trivial character ψ of G. Now, τ = ψ by Corollary 2.2. �

Although groups with a normal Sylow 2-subgroup and exactly two rational ir-
reducible characters necessarily have two real irreducible characters (as shown in
Corollary 4.6); this fact is not true for solvable groups in general. Iwasaki studied
in [15] groups with exactly two real characters. It is easy to check that these groups
have a normal Sylow 2-subgroup, and the main work in [15] is to classify their Sylow
2-subgroups. So we can conclude that solvable groups with exactly two rational
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characters have 2-length 1 (by Theorem 3.2), and that their Sylow 2-subgroups are
of the type described in [15].

5. Rational classes

Now, we take some time to prove a few elementary properties of rational classes.
Recall that an element x ∈ G is rational (in G) if whenever 〈y〉 = 〈x〉, then y is
G-conjugate to x. In this case, we say that the class K = clG(x) is rational.

5.1. Lemma. Let G be a finite group.
(a) Assume that x ∈ G is rational. Then xN is rational in G/N for every N � G.
(b) If g ∈ H ≤ G is rational in H, then g is rational in G.
(c) Suppose that x ∈ G has order p, a prime. Then x is rational in G if and only

if there is a p′-element g ∈ G such that xg = xt, where t(mod p) is any generator
of Z×

p .
(d) Assume x ∈ G is rational. Then every power of x is also rational. In

particular, xπ is rational for every set of primes π.
(e) If N � G, (o(x), |N |) = 1 and xN is rational, then x is rational.

Proof. Parts (a) and (b) are obvious. We start with part (c). If x is rational in G
and t(mod p) is any generator of Z×

p , then there is some g ∈ G such that xg = xt.
Now, g ∈ NG(〈x〉) = U and since U/CG(x) is not divisible by p, it is clear that
we may replace g by gp′ . For the converse, if 〈y〉 = 〈x〉, then y = xk for some
1 ≤ k ≤ p − 1. Now xg = xt for some g ∈ G. Thus

xgm

= xtm

for every natural m. Since Z×
p is generated by t(modp), it follows that y is G-

conjugate to x.
(d) Assume that y is a power of x, with order n/a, where n = o(x), and that

〈z〉 = 〈y〉. Since 〈xa〉 is the unique subgroup of order n/a in 〈x〉, we can write
y = xak, z = xal for some integers k, l that are coprime to n/a. Claim that we can
find k1 ∈ k + (n/a)Z coprime to n. We proceed by induction on a. Suppose p|k for
some prime p|n; in particular (p, n/a) = 1. By the pigeonhole principle, one can
find k′ ∈ k + (n/a)Z such that (k′, p) = 1. Now k′ is coprime to np/a = n/(a/p).
By the induction hypothesis we can find k1 ∈ k′ + (np/a)Z that is coprime to n.
Thus, we may assume that k and l are coprime to n. By assumption, xk and xl are
conjugate, and so are xak and xal.

(e) First, we claim that if xN = zN , where o(z) is coprime with |N |, then x and
z are N -conjugate. By the Schur-Zassenhaus Theorem, we have that 〈x〉 = 〈z〉n for
some n ∈ N . Hence, x = (zk)n for some integer k. Thus zN = xN = (zk)nN =
zkN and we deduce that z = zk, proving the claim.

Suppose finally that 〈y〉 = 〈x〉. Then 〈yN〉 = 〈xN〉 and there exists g ∈ G such
that xgN = yN . It follows that xgn = y for some n ∈ N by the previous claim. �
5.2. Lemma. Assume that p is a prime and that N is a normal subgroup of G
such that G/N contains a rational element of order p. Then G contains a rational
element of order p.

Proof. If p = 2, then the lemma is clear. So we may assume that p is odd. We
proceed by induction on |N ||G|. If Q ∈ Sylq(N), then NG(Q)/NN (Q) ∼= G/N
contains a rational element of order p. Hence, by induction, we may assume that
N is nilpotent.
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Suppose now that x ∈ G is such that xN is a rational element of order p in G/N .
Clearly, we can choose x to be a p-element.

Now, if 1 < M < N is a normal subgroup of G, then G/M has a rational element
of order p by induction. Again by induction, we will have that G has a rational
element of order p. So we may assume that N is an elementary abelian q-group
for some prime q. If q �= p, then x has order p and is rational by Lemma 5.1(d).
Hence, we may assume that N is a minimal normal subgroup of G, and therefore
an elementary abelian p-group.

Let t be an integer such that t(mod p) generates F×
p . By assumption, there is

g ∈ G such that
gxg−1 = xtn

for some n ∈ N . Without loss we may assume that G = 〈N, x, g〉. Let C := CN (x).
Notice that C �= 1 and C � G, so C = N by the minimality of N . Thus [x, N ] = 1,
and x has order p or p2. Now if o(x) = p2, then gxpg−1 = (xtn)p = (xp)t, whence
xp is rational of order p. So we may assume that x has order p. Also, if gmg−1 = mt

for some 1 �= m ∈ N , then m is rational of order p (by Lemma (5.1.c)). Thus we
may assume that the map y �→ yg−1

y−t is a bijection N → N . In particular, we
can find y ∈ N such that

gyg−1y−t = n−1 .

It follows that g(xy)g−1 = xtnn−1yt = (xy)t, and xy is a rational element of order
p. �

6. Galois and group actions on solvable groups

Before we proceed to start proving the main results in this paper, we need a few
results on how Galois and group actions on solvable groups are related.

If G has order dividing n, then, as we already said, G = Gal(Qn/Q) acts naturally
on Irr(G) and cl(G). Indeed, if ξ is a primitive n-th root of unity and σ ∈ G, then
there is a unique 1 ≤ k ≤ n coprime with n such that σ(ξ) = ξk. If K = clG(x) ∈
cl(G), then Kσ = clG(xk). Also, χσ(g) = χ(g)σ−1

. We define the action this way
so that χσ(gσ) = χ(g), where gσ is in the class of gk. Of course, χ ∈ Irr(G) is
rational-valued if and only if χ is G-fixed, and x ∈ G is rational if and only if
K = clG(x) is G-fixed.

6.1. Lemma. With the previous notation, suppose that A acts as an automorphism
group on G and let σ ∈ G and a ∈ A. Then there exists 1 �= χ ∈ Irr(G) such that
χσ = χa iff there exists 1 �= K ∈ cl(G) such that Kσ = Ka.

Proof. Let B = A × G. We claim that B acts on Irr(G) and cl(G) such that

χb(gb) = χ(g) ,

where b ∈ B and gb is in the class clG(g)b. Suppose that b = (u, σ) ∈ B. We define
χb = (χu)σ = (χσ)u and Kb = (Ku)σ = (Kσ)u.

Now, let z = (a, σ−1) ∈ B. By Brauer’s lemma on character tables (Theorem
(6.32) of [14]), we have that z fixes the same number of classes as characters. �

In the next lemma, we find it very useful to use the Isaacs Bp-characters [13].
If G is a finite p-solvable group, then Bp(G) ⊆ Irr(G) is a canonical subset of the
irreducible characters of G with values in Q|G|p . If G is a p-group, then Bp(G) =
Irr(G), and if G is a p′-group, then Bp(G) consists of only the trivial character. The
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reader needs to know the following. If N � G and θ ∈ Bp(N), then all irreducible
constituents of θG lie in Bp(G) if G/N is a p-group; and exactly one of them lie in
Bp(G) if G/N is a p′-group.

The following rather technical lemma is essential for our purposes.

6.2. Lemma. Let p be an odd prime and L be a finite group of order dividing n.
Suppose that σ ∈ Gal(Qn/Q) fixes p′-roots of unity and has order p − 1 and write
ξσ = ξk, where ξ is any p-th root of unity. Suppose that a acts as an automorphism
on L and let Z � L be a-invariant where L/Z is p-solvable. Assume that the order
of a on its action on L/Z is not divisible by p. Suppose that 1 �= λ ∈ Irr(Z) lies in
Bp(Z) is such that λa = λσ.

(a) Then there exists 1 �= ψ ∈ Bp(L) over λ such that ψa = ψσ.
(b) If L/M has no elements x of order p such that xa = xk for every a-invariant

Z ⊆ M � L, and Q(λ) ⊆ Qp, then ψ can also be taken such that Q(ψ) ⊆ Qp.

Proof. Write |L|p = pe and Gal(Qpe/Qp) = 〈τ 〉. By hypothesis, notice that
k(mod p) is a generator of Z×

p .
Among all a-invariant normal subgroups K of L containing Z having some θ ∈

Bp(K) over λ with θσ = θa, we choose K of the largest possible order. (In part
(b); then we choose K adding the condition that Q(θ) ⊆ Qp.) Of course, we wish
to prove that K = L.

If K < L, then let 1 < E/K be a minimal a-invariant normal subgroup of L/K.
Suppose first that E/K is a p′-group. Then there exists a unique ψ in Bp(E)

lying over θ. Now, ψσa−1
is in Bp and also lies over θ, and therefore ψσ = ψa.

Suppose that we are in case (b). We know that Q(ψ) ⊆ Qpe . Since θτ = θ, then by
uniqueness ψτ = ψ, and therefore Q(ψ) ⊆ Qp.

So we have that E/K is an elementary abelian p-group. Notice that u �→
(uk)a−1

= uρ is an isomorphism E/K → E/K of p′-order s. If we are in case
(b), then we will have that CE/K(ρ) = 1.

Now, let T be the stabilizer of θ in E. Since θσ = θa, notice that the stabilizer
of θ in E is a-invariant. Since T/K is abelian, there exists a unique K ⊆ U ⊆ T
such that θ extends to U and every extension is fully ramified in T/U (by Lemma
2.2 of [25]). Since λa = λσ, we conclude that U is also a-invariant. Also, in case
(b), we have that CU/K(ρ) = 1.

Now, let δ ∈ Irr(U) be any extension of θ to K. With certain abuse of notation,
write ρ = σa−1, and notice that λρ = λ. Hence δρ = εδ for a unique ε ∈ Irr(U/K)
by Gallagher’s theorem. Now, by coprime action, we have that

U/K = CU/K(ρ) × [U/K, ρ] .

Hence, we may write
ε = µ(ν−1)ρν ,

where µ is fixed by ρ. Hence, by replacing δ by νδ, we may find an extension, call
it δ again, such that δρ = µδ, where µ is fixed by ρ. Now

δρm

= µmδ

for every number m. If s is the order of the action of ρ on E/K, then µs = 1, and
therefore µ = 1 and δ is ρ-invariant. If we are in case (b), then notice that δ is
the unique ρ-invariant extension of θ. Also, δ lies in Bp(U) and since θτ = θ, we
conclude that δτ = δ. Hence, Q(δ) ⊆ Qp. Now, δT = fφ, for some φ ∈ Irr(T )
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with Q(δ) = Q(φ), and ψ = φE ∈ Irr(E). Since E/K is a p-group, we have that
ψ ∈ Bp(E), ψρ = ψa, and in case (b), we also have that Q(ψ) ⊆ Qp. �

We shall need the following two results later on.

6.3. Corollary. Suppose that L � G and let p be an odd prime number. Suppose
that 〈σ〉 is the unique subgroup of Gal(Q|G|/Q) which fixes p′-roots of unity and has
order p− 1. Assume that there exists θ ∈ Irr(L) such that θg = θσ for some g ∈ G
with Q(θ) ⊆ Qp. Assume that T is p-solvable, where T is the stabilizer of θ in G,
and that θ ∈ Bp(L). If G/L has no rational elements of order p, then there exists
χ ∈ Irr(G|θ) rational valued.

Proof. Since o(σ) is not divisible by p, then we notice that gp fixes θ, so we may
assume that the order of g is not divisible by p. Now T g = T and g acts on T .
If L ≤ M � T is g-invariant and T 〈g〉/M has a rational element of order p, then
we will have that T 〈g〉/L has a rational element of order p (by Lemma 5.2), and
this is against our hypothesis. Hence, by Lemma 6.2(b), there exists ψ ∈ Irr(T |θ)
such that Q(ψ) ⊆ Qp, and ψσ = ψg. Now, we claim that χ = ψG ∈ Irr(G) is
rational-valued. First notice that Q(χ) ⊆ Q(ψ) ⊆ Qp, so we only need to check
that χσ = χ. However,

χσ = (ψσ)G = (ψg)G = ψG = χ ,

as claimed. �

6.4. Corollary. Let p be an odd prime. Suppose that a acts as an automorphism
on a p-solvable group L, has order not divisible by p and is such that there exists an
element x ∈ L of order p such that xa = xk, where k(mod p) is a generator of Z×

p .
Then there exists 1 �= ψ ∈ Irr(L) such that Q(ψ) ⊆ Qp, ψ ∈ Bp(L) and ψa = ψσ,
where 〈σ〉 is the unique subgroup of Gal(Q|G|/Q) which fixes p′-roots of unity and
has order p − 1.

Proof. We argue by induction on |L|. Let 1 < K < L be a-invariant and normal in
L. If x /∈ K, then xK ∈ L/K is a rational element of order p with (xK)a = (xK)k,
and so we are done by induction. So we may assume that x ∈ K. Therefore x lies in
some normal a-invariant elementary subgroup Z of L. By Lemma 6.1, there exists
λ ∈ Irr(Z) such that λa = λσ. Since x has order p, Z is a p-group, and therefore
λ ∈ Bp(Z). Now, apply Lemma 6.2(b). �

7. Solvable groups

We will need the following simple statement:

7.1. Lemma. If G has a normal Sylow 2-subgroup G, then every real element of
G is a 2-element.

Proof. Let Q � G be the Sylow 2-subgroup of G and suppose that xg = x−1. Then
xg2

= x, and hence, g2′ centralizes x. So there is no loss to assume that g has
2-power order. Thus g ∈ Q. Now xg

2′ = x−1
2′ . Hence [x2′ , g] ∈ 〈x2′〉, and thus g

commutes with x2′ . Then x2′ = x−1
2′ , x2′ = 1, and we are done. �

7.2. Theorem. Suppose that G is solvable. Then we have that |clrat(G)| = 2 if
and only if |Irrrat(G)| = 2.
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Proof. Let P ∈ Syl2(G). Let L = O2′(G).
Suppose first that |clrat(G)| = 2. Let clG(u) be the unique class of involutions

of G. We prove that G has two rational characters by induction on |G|. Suppose
first that L > 1 and let N be a minimal normal odd order subgroup of G. We
claim that |clrat(G/N)| = 2. Suppose that 1 �= xN is rational in G/N . Hence x2′N
is also rational. If this element is non-trivial, then by using Lemma 5.1, we may
assume that G/N has a rational element of order an odd prime p. In this case,
by Lemma 5.2, G has a rational element of order p, and this is impossible. Thus
xN is a 2-element. But in this case x is rational, again by Lemma 5.1. Hence,
x is an involution, proving the claim. By induction, we will have that G/N has
exactly two rational characters. Suppose that χ ∈ Irr(G) is rational and does not
contain N in its kernel. We know that N is an elementary abelian p-group, for
some odd prime p. Now, let σ ∈ Gal(Q|G|/Q) be any extension of a generator τ
of Gal(Qp/Q). Since χσ = χ, there exists 1 �= λ ∈ Irr(N) and g ∈ G such that
λg = λσ = λτ . Let ζ be a complex primitive p-th root of unity and let τ (ζ) = ζt for
some t ∈ (Z/pZ)×. Identifying Irr(N) with the dual space N∗ we see that g acting
on N∗ has an eigenvalue t. It follows that g−1 acting on N has an eigenvalue t. In
other words, there exists 1 �= x ∈ N such that g−1xg = xt, whence x is rational.
This contradiction proves that we may assume L = 1.

If P is cyclic, then G has a normal 2-complement. Hence G is a 2-group, and
the theorem is true in this case. If P is generalized quaternion, then P has rational
elements of order 4, and this is against our hypothesis. So we may assume that P
has more than one involution.

By Thompson’s theorem (IX.8.6 of [12]), we have that P � G. Now, let X be
a 2-complement of G. We have that X acts transitively on the involutions of P
(start with an involution in the center of P ). If P is abelian, then P is homocyclic,
and the theorem follows from Lemmas 4.1 and 4.5 since the rational characters of
P are those containing Φ(P ) in its kernel.

So we may assume that P is a Suzuki 2-group. In this case the exponent of P
is 4. Now, let clG(z) be a real class of G. By Lemma 7.1, we have that z is a
2-element. Then z4 = 1 and therefore clG(z) is rational. Thus z2 = 1, and we
conclude that G has exactly two real characters. So G has exactly two rational
characters.

Suppose now that G has exactly two rational irreducible characters. We prove
by induction on |G| that G has a unique class of involutions and that there are no
more non-trivial rational elements. We know that G has 2-length one by Theorem
3.2. Let L = O2′(G) and K = PL. Since G/L has even order, then all rational
irreducible characters of G have L in its kernel by Lemma 3.1 and our hypothesis.

Assume that L > 1. By induction, we have that the class of involutions of
G/L is the unique rational class of elements in G/L. Suppose that 1 �= x ∈ L
is rational. Then by Lemma 5.1, we may assume that x has order a prime p. If
t(mod p) generates Z×

p , then there exists a p′-element g ∈ G such that xg = xt.
Let σ ∈ Gal(Q|G|/Q) be an element of order p− 1 fixing p′-roots of unity such that
ξσ = ξt, where o(ξ) = p. By Corollary 6.4, there exists 1 �= ψ ∈ Bp(L) such that
ψσ = ψg and Q(ψ) ⊆ Qp. By Corollary 6.3, there exists a rational character of G
over ψ, and this is impossible. All of this proves that there are no rational elements
in L. This easily implies that we may assume that L = 1. By Corollary 4.6, we
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have that G has exactly two real classes, and therefore, G has exactly two rational
classes. �

8. Groups with one rational character

In this section we study finite groups with no non-trivial irreducible rational
characters. We use the classification of finite simple groups.

8.1. Lemma. Suppose that G is a simple sporadic group. Then |Irrrat(G)| ≥ 6.
Also G has a non-trivial irreducible rational character of odd degree.

Proof. Check the Atlas [4]. �

Next we prove that groups with no non-trivial rational irreducible character have
odd order.

8.2. Theorem. Let G be a finite group. If G has exactly one irreducible rational
character, then G has odd order.

Proof. We argue by induction on |G|. Let N be a minimal normal subgroup of G.
By induction, G/N has odd order. If |N | is odd, then G has odd order. So we may
assume that N has even order, and if N < G, by induction N has a non-trivial
rational irreducible character. Hence so has G by Corollary 2.2. So we may assume
that G is simple. If G is sporadic, then Lemma 8.1 applies. If G is of Lie type,
then the Steinberg character is a rational irreducible character of G. If G = Altn,
then G has a rational irreducible character of degree n − 1, for instance. �

We have to work much harder, however, to prove that every group of even order
has a non-trivial rational irreducible character of odd degree. (See Theorem 9.6
below.)

9. Rational characters of simple groups

In this section we will need some basic facts from the Deligne-Lusztig theory of
complex irreducible characters of finite groups of Lie type [3], [5], [6], [17], [18]. Let
G be a connected reductive algebraic group in characteristic p and F a Frobenius
morphism of G. Recall that to each F -stable maximal torus T of G and a character
θ ∈ Irr(T F ) one can define the Deligne-Lusztig (virtual) character RG

T (θ); cf. [3],
[6]. The characters RG

T (θ) are parametrized by the GF -conjugacy classes of pairs
(T , θ). Let G∗ be a simple algebraic group with a Frobenius map F ∗ such that
(G∗, F ∗) is dual to (G, F ). Then the GF -conjugacy classes of (T , θ) are in bijective
correspondence Π with the G∗F∗

-conjugacy classes of pairs (T ∗, s), where s ∈ G∗F∗

is semisimple and T ∗ is an F ∗-stable maximal torus containing s (cf. Prop. 13.13 of
[6]); in particular, one can label RG

T (θ) by RT ∗,s. This correspondence Π is explicitly
described in [6]. Now assume that s ∈ G∗F∗

is semisimple and CG∗(s) is connected.
Then to the G∗F∗

-conjugacy class of s one can associate the semisimple character

χs =
±1

|W (s)|
∑

w∈W (s)

RT ∗
w ,s ,

where W (s) is the Weyl group of CG∗(s), T ∗
w is a torus of G∗ of type w and the

sign ± is chosen such that χs(1) > 0; cf. [6]. By Corollary 14.47 of [6], χs is an
irreducible character of GF , of degree |G∗F∗

: CG∗F∗ (s)|p′ .
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A construction of rational characters of G of p′-degree is provided in the following
statement.

9.1. Lemma. Assume s ∈ G∗F∗
is a rational semisimple element such that CG∗(s)

is connected. Then χs is a rational irreducible character of p′-degree of GF .

Proof. It suffices to show that χs is rational. Observe that T ∗F∗
is isomorphic to

Irr(T F ) (considered under multiplication), and the above correspondence Π speci-
fies an isomorphism between them (cf. Remark 10.3 of [10]). Hence if (T , θ) corre-
sponds to (T ∗, s) under Π, then the multiplicative order of θ is equal to n = o(s).
In particular, Q(RT ,θ) is contained in the n-th cyclotomic field Qn. Fix a primitive
n-th root γ of unity in Qn and consider any Galois automorphism σ of Qn over Q.
Then σ(γ) = γk for some integer k coprime to n. Recall (Theorem 7.2.8 of [3]) that
if t and u are the semisimple and unipotent parts of any element g ∈ GF and C is
the connected component of CG(t), then

RG
T (θ)(g) =

1
|CF |

∑

x∈GF

θ(x−1tx)QC
xT x−1(u).

Since the Green functions QC
xT x−1(·) are rational, it follows that (RG

T (θ))σ =
RG

T (θk). But (T , θk) corresponds to (T ∗, sk) under Π, so (χs)σ = χsk . Since s

and sk are G∗F∗
-conjugate by rationality of s, we conclude that χs is stable under

σ. �

9.2. Corollary. Let G be a simple algebraic group of adjoint type in characteristic
2, and let F be a Frobenius map on G. Assume in addition that GF is not solvable.
Then GF has an irreducible rational character χs of odd degree > 1.

Proof. Note that Z(G) = 1 is connected, whence the centralizer of any semisimple
element in G∗ is connected; cf. Remark 13.15 of [6]. First we consider the case
where G := GF is not a Suzuki group. Then one can embed X = SL2(q) in G∗F∗

for some power q of 2. Clearly, X contains a rational non-central element s of
order 3. Now Lemma 9.1 implies that χs is irreducible, rational of odd degree.
We claim that χs(1) > 1. Assume the contrary. The assumption that GF is not
solvable implies by the classification of finite groups of Lie type [3] that S := [G, G]
is simple non-abelian. Furthermore, S = L/Z(L) where L is the finite Lie-type
group of simply connected type in the same isogeny class of G, and |L| = |G|.
Moreover, we can identify L with G∗F∗

since the defining characteristic for L is 2.
Obviously, G has at most |G : S| = |L|/|S| = |Z(L)| irreducible characters of degree
1. On the other hand, Lusztig’s classification of irreducible characters of G gives
at least |Z(L)| irreducible characters of degree 1, namely the semisimple characters
χz corresponding to central elements z ∈ Z(L). It follows that χs = χz for some
z ∈ Z(L). Since Lusztig series are disjoint (cf. Prop. 14.41 of [6]), we conclude
that s and z are L-conjugate, whence s ∈ Z(L), contrary to the choice of s. Next
assume G ∼= 2B2(q) with q > 2. Then G∗F∗

contains a rational non-central element
s of order 5. Then we can again apply Lemma 9.1 to χs and argue as above. �

9.3. Lemma. Assume n ≥ 5. Then the alternating group Altn has at least 2
irreducible rational characters α, β of distinct degrees d and d + 1 with d > 1.
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Proof. The case n = 5 is clear, so we will assume n ≥ 6. Under this assumption, the
Specht modules of Symn corresponding to the partitions (n − 2, 2) and (n − 2, 12)
are irreducible over Altn and have degrees d and d + 1 with d = n(n − 3)/2. �

9.4. Lemma. (i) Let S = PSL2(q) with q ≥ 4 and q �= 32a+1 for any a ≥ 1. Then
S has at least two irreducible rational characters α, β of distinct degrees d, e > 1
with d odd. The same is true for SL2(32a+1) with a ≥ 1.

(ii) Let S = PSL2(32a+1) for some a ≥ 1. Then S has one class of involutions
and exactly one non-trivial irreducible rational character α. Furthermore, α(1) =
32a+1.

Proof. We will prove this lemma by using the character table of G = SL2(q) (both
for odd and even q) as given in [7] (and the notation therein for the irreducible
characters of G). Clearly, the Steinberg character α of G is rational of degree q and
it is trivial on Z = Z(G). If q ≡ 1(mod 3), then one can take β to be the character
χ(q−1)/3 of degree q+1. If q ≡ −1(mod 3), then take β to be the character θ(q+1)/3

of degree q − 1. If 3 divides q and q ≡ 1(mod 4), then take β to be the character
χ(q−1)/4 of degree q + 1. In all of these cases, βZ is trivial.

From now on we assume that q = 32a+1 for some a ≥ 1. Observe that θ(q+1)/4

is a faithful irreducible rational character of G. It is straighforward to check that
every ρ ∈ Irr(S) \ {1S , α} is not rational (indeed, either ρ = χ2k and Q(ρ) =
Q(cos(4πk/(q − 1))), or ρ = θ2k and Q(ρ) = Q(cos(4πk/(q + 1))), for some k with
1 ≤ k ≤ (q − 3)/4). Finally, every involution in S lifts to an element of order 4 in
G, and G has exactly one class of elements of order 4. �

In what follows, we will use the notation GLε
n(q) to denote GLn(q) if ε = + and

GUn(q) if ε = −. Similarly, Eε
6 denotes type E6 if ε = + and type 2E6 if ε = −.

9.5. Theorem. Let S be a non-abelian finite simple group. Then exactly one of
the following statements holds:

(i) S has at least two irreducible rational characters α, β of distinct degrees
d, e > 1 with d odd.

(ii) S ∼= PSL2(32a+1) for some a ≥ 1 and S has exactly one non-trivial irre-
ducible rational character α. Furthermore, α(1) = 32a+1.

Proof. In view of Lemmas 8.1, 9.3 and 9.4, we may assume that S is a Lie type
group in characteristic p and moreover S �∼= PSL2(q). We can consider S as the
commutator subgroup of G := GF for some simple algebraic group G of adjoint
type and some Frobenius map F on G.

1) First we consider the case p > 2. Then we can take α to be the Steinberg
character. If S = PSLn(q) with n ≥ 3, then choose β = ρ − 1S , where ρ is
the doubly transitive permutation character of degree (qn − 1)/(q − 1) of S. If
S = PSU3(q), then choose β to be the cuspidal unipotent character of degree
q(q − 1). Next assume that S is one of the groups PSUn(q) with n ≥ 4, PSp2n(q)
with n ≥ 2, PΩ2n+1(q) with n ≥ 3, and PΩ±

2n(q) with n ≥ 4. It is well known
(see [23], for instance) that S has a rank 3 permutation character, with two non-
trivial irreducible constituents of distinct degrees, which are not p-powers. By the
uniqueness of their degrees, any of these two constituents is rational, and we can
choose β to be any of these two. Now we can suppose S is an exceptional group
of Lie type. If S = G, then by Lemma 9.1 we can choose β = χs, with s any
(non-central) involution in G∗F∗ ∼= S. There remain groups of types E±

6 and E7 to
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be considered. For these groups, it is shown in [20] that S has a unique non-trivial
(unipotent) irreducible character of smallest degree. For the reader’s convenience
we list this smallest degree e. We have that e = q(q4 +1)(q6 + εq3 +1) if S = Eε

6(q)
with ε = ±, and e = q(q6 + 1)(q14 − 1)/(q4 − 1) if S = E7(q). So we can choose β
to be this smallest degree character.

2) From now on we may assume p = 2. Choosing β to be the Steinberg character,
we need to find an α ∈ Irr(S) of odd degree d > 1. By Corollary 9.2, G has a rational
irreducible character χs of odd degree > 1. If |G : S| is a 2-power we can take α to
be (χs)S . It remains to consider groups of types Aε

n−1(q) and Eε
6(q) with ε = ± and

n ≥ 3 (and |G : S| not a 2-power). Here we consider the case where S = PSLε
3(q)

with 3|(q − ε1). It suffices to show that any irreducible S-constituent θ of the
character χs of G constructed in Corollary 9.2 is rational, and we may assume that
(χs)S =

∑3
i=1 θi with θi being G-conjugate to θ. Let g ∈ S. If clG(g) = clS(g),

then θ(g) = χs(g)/3 ∈ Q. The conjugacy classes of SLε
3(q) are described in [22].

In particular, we see that clG(g) �= clS(g) can happen only when g is a regular
unipotent element (of order 4) of S, in which case g turns out to be rational and
so θ(g) ∈ Q as well.

3) For the remaining groups S, we can find a simple simply connected algebraic
group H and a Frobenius map F on H such that S = L/Z(L) for L := HF . Let
the pair (H∗, F ∗) be dual to (H, F ). Here we consider the case where S is of type
Eε

6(q). Then F4(2) embeds in H∗F∗
and so H∗F∗

contains a rational non-central
element s of order 5. Note that H is the universal cover for H∗ and 5 is coprime
to |Z(H)|. Hence by Corollary E-II.4.6 of [1], CH∗(s) is connected. Therefore the
semisimple character χs is an irreducible rational character of odd degree > 1 of L
by Lemma 9.1. But s ∈ [H∗F∗

,H∗F∗
], so χs is trivial at Z(L) by [18], and so we

can view χs as an S-character and we are done in this case.
Finally, we consider the case S = PSLε

n(q) with n ≥ 5 . Then H∗F∗
= PGLε

n(q)
contains a rational non-central element s of order 3, which lifts to an element ŝ in
GLε

n(q) that is conjugate to diag(ω, ω−1, 1, . . . , 1) in Ĥ∗ := GLn(Fq), where ω ∈ Fq

has order 3. Now if g ∈ CH∗(s), then ĝŝĝ−1 = λŝ for an inverse image ĝ ∈ Ĥ∗

of g and 0 �= λ ∈ Fq. Recall that n ≥ 5, so ŝ has eigenvalue 1 with multiplicity
n − 2 ≥ 3 and eigenvalues ω, ω−1 both with multiplicity 1. The same is true for
ĝŝĝ−1 = λŝ. It follows that λ = 1. Thus CH∗(s) = CĤ∗(s)/Z(Ĥ∗) and so CH∗(s)
is connected (as the centralizer of any element in Ĥ∗ is connected). Furthermore,
s ∈ [H∗F∗

,H∗F∗
]. Arguing as above, we see that the semisimple character χs of L

is in fact an irreducible rational character of odd degree > 1 of S. �

The following is Theorem B. The reduction to simple groups (which was already
noticed in [21]) is the same as in Theorem 8.2.

9.6. Theorem. Let G be a finite group of even order. Then G has a non-trivial
irreducible rational character of odd degree.

Proof. The same argument as in the proof of Theorem 8.2 shows that we may
assume that G is simple. Now, we apply Theorem 9.5. �

9.7. Corollary. Let G be a finite group. Then the following are equivalent:
(i) G has odd order.
(ii) G has exactly one irreducible rational character.
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(iii) G has exactly one rational conjugacy class.
(iv) G has exactly one absolutely irreducible representation over Q.

Proof. It is well known that (i) implies (ii) – (iv). Assume |G| is even. Then (iii)
obviously fails. By Theorem 9.6, G has a non-trivial irreducible rational character χ
of odd degree, and χ has Schur index 1 over Q by the Brauer-Speiser Theorem. �

Corollary 9.7 is false if one replaces “absolutely irreducible” by “irreducible” in
(iv) – C3 is a counterexample. Furthermore, the example of SL2(27) shows that
G may have two absolutely irreducible representations over Q, but more than two
rational conjugacy classes, resp. more than two irreducible rational characters.

10. Non-solvable groups with two irreducible rational characters

We will need the following orbit theorem.

10.1. Theorem. Let V be a non-trivial finite dimensional F2-module for the group
S = PSL2(32a+1) with a ≥ 1. Then there is v ∈ V such that CS(v) has odd order.

Proof. Since S is perfect, the non-triviality of V implies that V has submodules U ⊃
W such that U/W is a non-trivial irreducible S-module. Assuming the statement
is proved for irreducible modules, we can find u ∈ U such that CS(u + W ) has odd
order. Since CS(u) ≤ CS(u + W ), the statement also holds for V .

Thus we may assume that V is irreducible. By Lemma 9.4, S has a unique class
of involutions, say clS(g), of length q(q − 1)/2 for q = 32a+1. For each h ∈ S,
let V h := ker(h − 1). It suffices to show that V �=

⋃
h∈clS(g) V h (indeed, for any

v ∈ V \
⋃

h∈clS(g) V h, CS(v) does not contain any involution and so has odd order).
Since |clS(g)| = q(q − 1)/2, it suffices to show that |V | > |V g| · q(q − 1)/2. Let
m = dim(V ). It is well known that m ≥ (q − 1)/2.

By [9], we have that three conjugates of g generate S. Hence by Lemma 3.2 of
[11], dim(V g) ≤ m − m/3�. If a ≥ 2, then q ≥ 243 and so |V |/|V g| ≥ 2(q−1)/6 >
q(q − 1)/2. Assume a = 1. Since V is an irreducible F2-module, m ≥ 26 by [16],
and so m/3� ≥ 9. It follows that |V |/|V g| ≥ 29 > q(q − 1)/2. �

We are finally ready to give a proof of Theorem C.

10.2. Theorem. Suppose that G is a finite non-solvable group with exactly two
rational irreducible characters. If M := O2′

(G) and N := O2′(M), then M/N =
PSL2(32a+1).

Proof. Let ψ ∈ Irr(G) be the unique non-trivial rational character of G. Let 1 < M
be the smallest normal subgroup of G such that G/M is solvable. Thus M is perfect.
Now, let M/N be a minimal normal subgroup of G/N . Since M/N has even order,
it follows by Theorem 9.6, that there exists η ∈ Irr(M/N) non-trivial, rational of
odd degree. By Corollary 2.4, there exists a rational irreducible character of G
lying over η, which necessarily is ψ. In particular, it follows that N ⊆ ker(ψ), while
M is not contained in the kernel of ψ. Hence, G/M has odd order (by Lemma 3.1).
Also M = O2′

(G).
Now, if 1 �= ν ∈ Irr(M) is rational, by Corollary 2.2 we have that ν lies under

ψ. Hence, all non-trivial rational irreducible characters of M are G-conjugate. In
particular, all of them have N contained in its kernel.

We may write
M/N = S1 × · · · × Sa ,
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where the non-abelian simple groups Si are transitively permuted by G. Write
S = S1 and by Theorem 9.6, let θ ∈ Irr(S) be rational, non-trivial, of odd degree.
Suppose that a ≥ 2. Since θ×1×· · ·×1 ∈ Irr(M/N) and θ×1×· · ·×θ ∈ Irr(M/N)
cannot be G-conjugate, we deduce that a = 1. Now, we know that all irreducible
non-trivial rational characters of S are G-conjugate, and in particular they have
the same degree. By Theorem 9.5, we have that S = M/N = PSL2(32a+1).

Suppose that O2(N) < N , and let N/U be a chief factor of G with N/U a
2-group. We are going to prove that G/U has more than two irreducible rational
characters. This contradiction will prove that O2(N) = N . Working in G/U , we
may assume that U = 1. By Corollary 2.2, it is enough to show that there exists
an irreducible rational character τ of M such that N is not in the kernel of τ .

We have that N ⊆ CM (N) ⊆ M . If N = Z(M), then we deduce that M =
SL2(32a+1). In this case, M has a rational irreducible character τ such that N is
not contained in ker(τ ) by Lemma 9.4.

Thus, we may assume that CM (N) = N . Now, we have that V = Irr(N) is a
non-trivial GF (2)-module for S. By Theorem 10.1, there exists λ ∈ Irr(N) such
that if T is the stabilizer of λ in M , then T/N is of odd order. Now, let λ̂ ∈ Irr(T )
be the canonical extension, and notice that (λ̂)M is a rational irreducible character
of M which does not contain N in its kernel. This shows that N = O2(N).

Finally, suppose that N has even order. Then there exists a non-trivial rational
character ρ of odd degree by Theorem 9.6. Since o(ρ) = 1 (because O2(N) = N), by
Corollary 2.4, we have that ψ lies over ρ. But this is impossible since N ⊆ ker(ψ).
We deduce that N has odd order, and the proof of the theorem is complete. �

11. Non-solvable groups with two rational classes

We start with the following result.

11.1. Theorem. Let S be a finite non-abelian simple group. Then either S con-
tains a rational element of order 3, or S = 2B2(q) and S contains a rational
element of order 5, or S = PSL2(3n) for some odd n ≥ 3.

Proof. The sporadic groups can be checked directly. Also, any simple alternating
group contains a 3-cycle which is rational. So let S be a finite simple group of Lie
type in characteristic p. The claim is well known for 2B2(q). On the other hand,
the Ree groups 2G2(3n) contain 2G2(3) = PSL2(8) · 3, and PSL2(8) contains a
rational element of order 3. For all other groups, if p �= 3, then S contains either
SL2(p) or PSL2(p), which both contain rational elements of order 3. Assume
p = 3. Notice that PSL2(32a) contains PSL2(9) � Alt6 for any integer a ≥ 1.
So we may assume S is not of type A1. Next we observe that the groups SL3(3),
SU2(9), SU3(3), Ω5(3), and G2(3) all contain rational elements of order 3. So we are
done if S = PSLm(3n) with m ≥ 3 (as it contains SL3(3)), or if S = PSUm(3n)
with m ≥ 3 (as it contains SU3(3) for odd n and SL2(9) for even n). All the
other classical groups in characteristic 3 contain Ω5(3). Finally, all the remaining
exceptional Lie-type groups contain G2(3), and so we are done. �

One can show using Lemma 5.2 that if a finite group G has subgroups K � H
such that H/K � Sym3, then G has a rational element of order 3. Hence one can
also deduce Theorem 11.1 from the determination of the finite simple groups that
are Sym3-free obtained by G. Glauberman and B. Stellmacher without using the
classification of finite simple groups.
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Now we will work with the following condition:
(�) : The group G has one class of involutions, no real elements of order 4, and

no rational element of odd prime order.
Note that if G is of even order, then (�) is equivalent to the condition |clrat(G)| =

2 by Lemma 5.1.

11.2. Theorem. Assume that G is any finite non-solvable group with property
(�). Then S � G/O2′(G) < Aut(S) and |G|/|S| is odd, where S = PSL2(32a+1) for
some a ≥ 1.

Proof. By Lemmas 5.1 and 5.2, G/O2′(G) satisfies (�). So without loss we may
assume that O2′(G) = 1. Consider the generalized Fitting subgroup F ∗(G) =
F (G)E(G).

1) First assume that E(G) �= 1. Then E(G) is a central product of quasisim-
ple subgroups Ki, 1 ≤ i ≤ m. By Theorem 11.1 and Lemma 5.2, Ki/Z(Ki) =
PSL2(3ni) for some odd ni ≥ 3. But SL2(3ni) contains a real element of order 4.
Hence (�) implies that Z(Ki) = 1 for all i. It follows that E(G) = K1 × . . . × Km.
Notice that G permutes the subgroups K1, . . . , Km. If m ≥ 2, then by choosing
involutions xi ∈ Ki we see that x1 and x1 . . . xm are two involutions which are not
G-conjugate, contrary to (�). We have shown that E(G) = S = PSL2(32a+1) for
some a ≥ 1. Clearly, O2(G) ∩ S = 1, whence (�) implies that O2(G) = 1. Thus
F (G) = O2′(F (G)) ≤ O2′(G) = 1, and so F ∗(G) = S. By the fundamental prop-
erty of the generalized Fitting subgroup, CG(S) = Z(S) = 1, and so G embeds in
Aut(S). Notice that the elements of order 3 in S form two conjugacy classes in S
which are permuted by any outer automorphism of order 2 of S. We conclude that
|G/S| is odd.

2) From now on we may assume that E(G) = 1 and, as above, O2′(F (G)) = 1,
whence F := F ∗(G) = O2(G) �= 1. Again, CG(F ) = Z(F ) and G is non-solvable,
so Aut(F ) must be non-solvable. Now if F has only one involution, then F is either
cyclic or (generalized) quaternion, and so Aut(F ) is solvable, a contradiction. Thus
F has more than 1 involution and G acts transitively on the set of involutions of
F ; in other words, F is a 2-automorphic 2-group [8]. Let r := |Ω1(Z(F ))|. By the
main results of [8] and [24], such a group F is either homocyclic, or of exponent 4,
class 2 and order r2 or r3. Moreover, it is proved in [2] that if F has class 2 and
order r3, then F is a Suzuki 2-group and Aut(F ) is solvable, which is impossible
under our assumptions. In the remaining two cases, W := F/Φ(F ) is an elementary
abelian group of order r, and F acts (via conjugation) trivially on W .

3) We claim that G/F acts faithfully on W and moreover it permutes the non-
trivial elements of W transitively. Indeed, it is well known that CG(W )/CG(F )
contains no non-trivial element of odd order, whence it is a 2-group. But CG(W ) ≥
F , CG(F ) = Z(F ), and F = O2(G), so CG(W ) = F . Now pick any involution
z ∈ Z(F ). Then the set of 2b−1-th roots (in the homocyclic case), resp. of square
roots (in the class 2 case), of z is exactly a coset in F/Φ(F ). Since G permutes
the involutions in Z(F ) transitively, we conclude that G permutes the non-trivial
elements of W transitively.

4) The results of 3) show that the semidirect product W : (G/F ) is a doubly
transitive affine permutation group (on the elements of W ), with a point stabilizer
G/F . Recall that G/F is non-solvable. Now we can apply Hering’s theorem as
stated in [19] to this affine permutation group. This implies that G/F contains a
normal quasisimple subgroup H, either of type At−1 or Ct with t ≥ 2, or G2, all in
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characteristic 2, or Alt7. By Theorem 11.1, H, and so G/F and G as well, contains
a rational element of order 3, a contradiction. �

We will need the following trivial lemma:

11.3. Lemma. Let ζ be a complex primitive p-th root of unity for some prime
p ≥ 3. Assume that

∑m
i=1(ζ

ti + ζ−ti) ∈ Q for some sequence t1, . . . , tm of integers
coprime to p. Then the sequence ±t1, . . . ,±tm contains each residue l ∈ (Z/pZ)×

with the same multiplicity. Moreover,
∑m

i=1(ζ
kti + ζ−kti) ∈ Q for any k ∈ Z.

Proof. For each k, 1 ≤ k ≤ p − 1, let nk denote the multiplicity that the residue
k(mod p) occurs in the sequence ±t1, . . . ,±tm, and let

f(x) :=
p−1∑

k=1

nkxk −
m∑

i=1

(ζti + ζ−ti) ∈ Q[x].

Then f(ζ) = 0 by the assumption, whence f(x) = a
∑p−1

k=0 xk for some a ∈ Q.
It follows that n1 = . . . = np−1 = a as stated. The second statement is now
obvious. �

11.4. Lemma. Let q = 32c+1 ≥ 27 and S = PSL2(q) be a normal subgroup of odd
index of G. Assume in addition that CG(S) = 1. Then |clrat(G)| = 2 if and only if
|Irrrat(G)| = 2.

Proof. We will use the notation for irreducible characters and conjugacy classes of
SL2(q) as given in [7]. The condition CG(S) = 1 implies that S � G ≤ Aut(S).
Since |G/S| is odd, G/S can induce only field automorphisms of S. Now we can
write G/S = Cr = 〈σ3s〉 for some integers r, s, where σk is the map sending any field
element x to xk for a given integer k. Set T := {3(i−1)s | 1 ≤ i ≤ r}. Observe that
SL2(q) has a unique conjugacy class of cyclic subgroups of order q − 1, resp. q + 1.
Moreover one can choose a cyclic subgroup 〈a〉 of order q−1 and a cyclic subgroup
〈b〉 of order q + 1 inside SL2(q) that are invariant under field automorphisms of
SL2(q). For the sake of convenience we will sometimes denote an element y ∈ S
and a preimage of it in SL2(q) by the same symbol. Note that σk(al) is S-conjugate
to akl and σk(bl) is S-conjugate to bkl.

1) First assume that |Irrrat(G)| > 2. Recall that since |G/S| is odd, G has two
rational irreducible characters lying above the principal character and the Steinberg
character of S. So G must have another rational irreducible character χ. Consider
an irreducible constituent µ of χS . Since |G/S| is odd, µ must be real, whence
µ = χi or θi for some even integer i with 2 ≤ i ≤ (q − 3)/2, in the notation of
[7]. The two cases are similar, so we will assume that µ = χi (in particular, it has
degree q + 1).

Let ρ be a complex primitive (q − 1)-th root of unity. Then χk can be labeled
in such a way that χk(aj) = ρjk + ρ−jk. For convenience, we define χk := χj if
k ≡ ±j(mod (q− 1)), for any integer k /∈ (q− 1)/2+ (q− 1)Z. Then χk is uniquely
determined by its degree q+1 and its value at a. Hence we may represent the G-orbit
of χi as {χitj

| 1 ≤ j ≤ m} for some t1, . . . , tm ∈ T . Also let n := o(ρi); in particular
n|(q − 1)/2 and n ≥ 3. Since q ≡ 3(mod 8), we can find a prime divisor p ≥ 3 of n
and consider ζ := ρni/p. Since χ is rational,

∑m
j=1 χitj

(an/p) =
∑m

j=1 (ζtj + ζ−tj )
is rational. By Lemma 11.3, this implies that the set {±t1, . . . ,±tm} covers all
residues in (Z/pZ)×. Now the element g := ani/p has order p (both in SL2(q) and
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in S). Given any residue l ∈ (Z/pZ)×, we have l = ±tj(mod p) for some j, whence
σtj

(g) is S-conjugate to gl. Since the automorphism σtj
is induced by some xj ∈ G,

we conclude that g is rational in G, and so |clrat(G)| > 2.
2) Now we assume that |clrat(G)| > 2. Consider a non-trivial rational element

g ∈ G which is not conjugate to a (fixed) involution in S. Since |G/S| is odd, no
element in G \ S and no element of order 3 of S can be real in G; in particular,
g ∈ S and o(g) �= 3. Thus o(g) > 3 is odd or twice an odd number. By Lemma
5.1 we may assume that g has prime order p ≥ 3, and write g = ai or bi for some
integer i. Moreover, we can choose i ∈ 2Z if g = ai, and i ∈ 4Z if g = bi. The two
cases are similar, so we assume g = ai. Notice that ai and aj are S-conjugate if and
only if i ≡ ±j(mod (q − 1)/2). Also, our choice of i ensures that p = o(ρi), where
ρ is defined in 1). The rationality of ai implies that for any residue l ∈ (Z/pZ)×,
there is some tl ∈ T such that ail and σtl

(ai) are S-conjugate, i.e. tl ≡ ±l(mod p).
In this case, χ

σtl
i = χil. Thus the G-orbit of χi contains all the distinct ones among

the χil with l ∈ (Z/pZ)×. Observe that each such distinct character occurs twice
among the χil with l ∈ (Z/pZ)×. By Lemma 11.3,

∑
l∈(Z/pZ)× χil is rational at

S. (Indeed, Lemma 11.3 implies the rationality at any power of a. At any other
element, χk is always rational.)

Note that χi is real. Since |G/S| is odd, by Corollary 2.2 there is a unique real
irreducible character χ of G that lies above χi. We will show that χ is rational,
which concludes the proof of the lemma (as G contains two other rational irreducible
characters that lie above the principal character and the Steinberg character of
S). Indeed, χS is a rational multiple of

∑
l∈(Z/pZ)× χil and so it is rational. Let

K := Q(χ) ⊆ R and consider any τ ∈ Gal(K/Q). Then χτ
S = χS (because χS

is rational), whence χτ is a real irreducible character of G lying above χi. By
uniqueness, χτ = χ. Consequently, χ is rational. �
11.5. Corollary. Let G be a finite non-solvable group with exactly two rational
classes. Then G also has exactly two rational irreducible characters.

Proof. Clearly, G satisfies condition (�), so we may apply Theorem 11.2 to G.
Arguing as in the first part of Theorem 7.2, we clearly may assume that O2′(G) = 1.
Now apply Theorem 11.2 and Lemma 11.4. �

Finally, this will complete the proof of Theorem A:

11.6. Theorem. Let G be a finite non-solvable group with exactly two rational
irreducible characters. Then G also has exactly two rational classes.

Proof. We proceed by induction on |G|. The structure of such a G is described
in Theorem 10.2. In particular, G has a unique composition factor of form S :=
PSL2(32a+1), |G|/|S| is odd, and the only rational irreducible characters of G are
of degree 1 and 32a+1. First we consider the case L := O2′(G) = 1. Then, S
is in fact a normal subgroup of odd index in G. Setting C := CG(S), we have
C ∩ S = 1, whence |C| is odd and so C = 1. Thus S � G ≤ Aut(S). Consequently,
|clrat(G)| = 2 by Lemma 11.4.

Hence, we may assume that L > 1. Since G/L is non-solvable, we have that
Irrrat(G) = Irrrat(G/L) by hypothesis. Hence, by induction, we have that the class
of involutions of G/L is the unique rational non-trivial class of G/L.

Suppose that 1 �= x ∈ L is rational. Arguing as in the last paragraph of the
proof of Theorem 7.2, we will obtain some 1 �= ψ ∈ Bp(L) with values in Qp, for
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some odd prime p, such that ψσ = ψg, where g ∈ G and σ ∈ Gal(Q|G|/Q) fixes
p′-roots of unity and has order p − 1.

Let I be the stabilizer of ψ in G, and J := 〈I, g〉. We claim that J is solvable.
Indeed, some element in J must invert ψ, whence |J/I| is even. But notice that
|G|/|S| is odd and |S| is not divisible by 8. It follows that |I| is not divisible by 4,
and so I is solvable. By Corollary 6.3, there exists an irreducible rational character
(of even degree) of G over ψ. This is impossible. This proves that if 1 �= x ∈ G is
rational, then 1 �= xL is rational in G/L, easily concluding the theorem. �

Theorem A now follows immediately from Theorem 7.2, Corollary 11.5, and
Theorem 11.6.

We conclude by observing that there are examples of groups with exactly two
irreducible rational characters which have the exact form as in Theorem C.

Let S = PSL2(q) with q = 37 and H = S · 7 (the extension by the field
automorphism σ of order 7). Next, suppose that V is a non-trivial irreducible F11H-
module. We claim that the semidirect product G := V H has exactly two rational
irreducible characters. First observe that H has exactly two rational irreducible
characters. Indeed, q − 1 = 2 · 1093, q + 1 = 4 · 547, and 1093 and 547 are primes.
Now it is easy to check that H has exactly two rational conjugacy classes and so
the observation follows from Corollary 11.5. Next, let σ ∈ Gal(Q|G|/Q) be fixing
11′-roots of unity and sending every 11-th root of unity ξ to ξ4, so that σ has
order 5. Now, if ψ ∈ Irr(G) is non-trivial rational and λ ∈ Irr(V ) is an irreducible
constituent of ψV , then it follows that λσ = λh for some h ∈ H by Clifford’s
theorem. Then

λ = λσ5
= λh5

.

Since H is a 5′-group, it follows that λ = λh = λσ. But then λ = 1V and thus
ψ = χ, the unique non-trivial rational character of G/V = H.
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