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Abstract
In this paper we consider the (inverse) problem of determining the iterated function
system (IFS) which produces a shaped fractal interpolant. We develop a new type of
rational IFS by using functions of the form Ei

Fi
, where Ei are cubics and Fi are

preassigned quadratics having 3-shape parameters. The fixed point of the developed
rational cubic IFS is in C1, but its derivative varies from a piecewise differentiable
function to a continuous nowhere differentiable function. An upper bound of the
uniform error between the fixed point of a rational IFS and an original function
� ∈ C4 is deduced for the convergence results. The automatic generations of the
scaling factors and shape parameters in the rational IFS are formulated so that its fixed
point preserves the positive/monotonic features of prescribed data. The presence of
scaling factors provides additional freedom to the shape of the fractal interpolant
over its classical counterpart in the modeling of discrete data.

1 Introduction
Setting a novel platform for the approximation of natural objects such as trees, clouds,
feathers, leaves, flowers, landscapes, glaciers, galaxies, and torrents of water, Mandelbrot
[] introduced the term fractal in the literature. Since fractals capture the non-linear struc-
tures of various objects effectively, the fractal geometry has been successfully used in dif-
ferent problems in applied sciences and engineering [–]. The iterated function system
(IFS) was introduced by Hutchinson [] for the construction of various types of fractal
sets, and popularized by Barnsley []. An IFS is a dynamical system consisting of a finite
collection of continuous maps. Based on the IFS theory, Barnsley [] constructed a class
of functions that are known as FIFs. The graph of a FIF is the fixed point of an IFS. Also
a FIF is the fixed point of the Read-Bajraktarević operator on a suitable function space.
Common features between a FIF and a piecewise polynomial interpolation are that they
are geometrical in nature, and they can be computed rapidly, but the main difference is
the fractal character, i.e., a FIF satisfies a functional relation related to the self-similarity
on smaller scales. In the direction of smooth fractal curves, Barnsley and Harington []
initiated the construction of a restricted class of differentiable FIF or Ck-FIF that interpo-
lates the prescribed data if the values of �(p), p = , , . . . ,k, at the initial end point of the
interval are given, where � is the original function. This method is based on the recursive
nature of an algorithm, and specifying the boundary conditions similar to the classical
splines was found to be quite difficult to handle in this construction. The fractal splines
with general boundary conditions have been studied recently [–] by restricting their
IFSs parameters suitably.
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The motivation of this work is the research on different types of splines by several au-
thors; see, for instance, Schmidt and Heß [], Fritsch and Carlson [], Schumaker [],
and Brodlie and Butt [], and references therein. The uniqueness of spline representation
for a given data set turns out to be a disadvantage for shape modification problems. The
use of rational functions with the shape parameters was introduced by Späth [] to pre-
serve different geometric properties attached to a given set of data. Rational interpolants
are often used in data visualization problems due to their excellent asymptotic proper-
ties, capability to model complicated smooth structures, better interpolation properties,
and excellent extrapolating powers. Gregory and Delbourgo [] introduced the rational
cubic spline with one family of shape parameters, and this work inspired a large amount
of research in shape-preserving rational spline interpolations, see [, ] and references
therein.
In this paper, we introduce the rational cubic IFSwith -shape parameters in each subin-

terval of the interpolation domain such that its fixed point generalizes the corresponding
classical rational cubic spline functions []. The developed rational cubic spline FIF is
bounded, and is unique by fixed point theory for a given set of scaling factors and shape pa-
rameters. Because of the recursive nature of FIF, the necessary conditions for monotonic-
ity on the derivative values at knots alone may not ensure the monotonicity of a rational
cubic fractal interpolant for a given monotonic data. Based on the appropriate condition
on the rational IFS parameters: (i) the scaling factors that depend only on given data, and
(ii) the shape parameters that depend on both the interpolation data and scaling factors,
we construct the shape-preserving rational cubic FIFs for a prescribed positive and/or
monotonic data. By varying the scaling factors (within the shape-preserving interval) and
shape parameters (according to the conditions derived in our theory), we can make the
fixed point of a rational cubic IFS more pleasant and suitable for aesthetic requirements
in a modeling problem. The proposed method is suitable for the shape-preserving inter-
polation problems where a data set originates from an unknown function � ∈ C and its
derivative �′ is a continuous nowhere differentiable function, for instance, the motion of
single inverted pendulum in non-linear control theory [].
Comparison of the proposed rational cubic FIF over some existing schemes:
• When all the scaling factors are zero, the proposed rational cubic FIF reduces to the
classical rational cubic interpolant [], see Remark , Section .

• To generate shape-preserving interpolants, our construction does not need additional
knots in contrast to methods due to Schumaker [] and Brodlie and Butt [], which
require additional knots for the shape-preserving interpolants.

• The classical interpolants [, ] are suitable only for monotonicity interpolation
whereas the proposed rational cubic FIF is suitable for both monotonicity and
positivity interpolation. Moreover, the rational quadratic interpolant [] is a special
case of our rational cubic FIF for the particular choice of the scaling factors and shape
parameters, see Remark , Section .

• For given monotonic data, the monotonic curve generated by the rational quadratic
interpolant [] is unique for fixed shape parameters, whereas for the same monotonic
data an infinite number of monotonic curves will be obtained using our rational FIF
by suitable modifications in the associated scaling factors. Thus, when the shape
parameters are incapable to change the shape of an interpolant in given intervals, then
the scaling factors can be used to alter the shape of the interpolant in our method.
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• Where monotonicity is concerned, our construction does not need an additional
condition on derivatives at knots except for the necessary conditions. But the
construction of Fritsch and Carlson [] needs some restrictions on derivatives at
knots apart from the necessary conditions for the same problem.

• The derivatives of the shape-preserving interpolants [–, ] are piecewise
smooth, whereas the derivative of our rational cubic FIF may be piecewise smooth to
a non-differentiable function according to the choice of the scaling factors. Owing to
this special feature, the proposed method is preferable over the classical
shape-preserving interpolants when the approximation is taken for data originating
with an unknown function � ∈ C having a shape with fractality in �′.

This paper is organized as follows. In Section , the general constructions of fractal in-
terpolants and Cr-rational cubic FIFs based on IFSs are summarized. Section  is devoted
to the construction of a suitable rational IFS so that its fixed point is the desired inter-
polant that can be used for shape preservation. Then we deduce an upper bound of the
uniform error bound between the original function and the rational cubic FIF. The fixed
point of this rational IFS does not follow any shape constraints. The restrictions on the
rational IFS parameters are deduced for a positivity shape in Section , and the results
are illustrated with suitably chosen examples. In Section , the monotonicity problem is
considered through the developed rational cubic IFS.

2 IFS for fractal functions
Let x < · · · < xn be a partition of I = [x,xn]. Let fi be the value of original function at xi,
i = , , . . . ,n. Denote Ii = [xi,xi+], C = I × D, Ci = Ii × D, and let D be a compact sub-set
of R such that fi ∈ D, i = , , . . . ,n. Let Li(x) = aix + bi : I → Ii, i = , , . . . ,n – , be the
contractive homeomorphisms such that

Li(x) = xi, Li(xn) = xi+. ()

It is easy to verify that {I;Li(x), i = , , . . . ,n – } is a just touching hyperbolic IFS whose
unique fixed point is

I =
n–⋃
i=

Li(I). ()

Let Fi(x, f ) = ξif + qi(x), |ξi| < , i = , , . . . ,n – , be the continuous real-valued functions
on C such that

Fi(x, f) = fi, Fi(xn, fn) = fi+, ()

and qi : I → R, i = , , . . . ,n – , are the suitable continuous functions. Now define the
functions wi : C → Ci, ∀i = , , . . . ,n – , as wi(x, f ) = (Li(x),Fi(x, f )) for every (x, f ) ∈ C.
Then I ≡ {C;wi(x, f ), i = , , . . . ,n–} is called an IFS related to a given interpolation data
{(xi, fi), i = , , . . . ,n}. According to [], the IFS I has a unique fixed point G which is the
graph of a continuous function φ : I →R, φ(xi) = fi, i = , , . . . ,n. The function φ is called
a FIF generated by the IFS I , and it takes the form

φ
(
Li(x)

)
= ξiφ(x) + qi(x), x ∈ [x,xn].
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The existence of a spline FIF based on a polynomial IFS is given in []. We have extended
this result to the rational IFS with -shape parameters in the following.

Theorem  Let {(xi, fi), i = , , . . . ,n} be a given data set, where di are the slope at xi, and
d(k)
i (k = , . . . , r) are the kth derivative values at xi for i = , , . . . ,n. Consider the rational

IFS I∗ ≡ {I × D;wi(x, f ) = (Li(x),Fi(x, f )), i = , , . . . ,n – }, where Li(x) = aix + bi satisfies
equation (),D is a suitable compact sub-set of R. Fi(x, f ) = ari (ξif +qi(x)),

�i,(x)
�i,(x)

,�i,(x) is a
polynomial containing r + arbitrary constants, and �i,(x) is a non-vanishing quadratic
polynomial with -shape parameters in each subinterval defined on I, and |ξi| ≤ κ < ,
i = , , . . . ,n–. Let F (k)

i (x, f ) = ar–ki (ξif +q(k)i (x)),where q(k)i (x) represents the kth derivative
of qi(x) with respect to x.With the setting fi = d()

i , di = d()
i , i = , , . . . ,n, if

F (k)
i

(
x,d(k)


)
= d(k)

i , F (k)
i

(
xn,d(k)

n
)
= d(k)

i+, i = , , . . . ,n – ,k = , , . . . , r, ()

then the fixed point of the rational IFS I∗ is the graph of the Cr-rational FIF.

Proof Suppose F r = {h ∈ Cr[x,xn] | h(x) = f and h(xn) = fn}. Now (F r ,dr) is a complete
metric space, where dr is the metric on F r induced by the Cr-norm on Cr[x,xn]. Define
the Read-Bajraktarević operator U on F r as

Uh(x) = ari
{
ξih

(
L–i (x)

)
+ qi

(
L–i (x)

)}
, x ∈ Ii, i = , , . . . ,n – . ()

Since ai = xi+–xi
xn–x < , the conditions |ξi| ≤ κ <  and () imply that U is a contractive op-

erator on (F r ,dr). The fixed point ψ of U is a fractal function that satisfies the functional
equation:

ψ
(
Li(x)

)
= ari

{
ξiψ(x) + qi(x)

}
, x ∈ I, i = , , . . . ,n – . ()

Since ψ ∈ Cr[x,xn], ψ (k) satisfies

ψ (k)(Li(x)) = ar–ki
{
ξiψ

(k)(x) + q(k)i (x)
}
, x ∈ I, i = , , . . . ,n – ,k = , , . . . , r. ()

Using equation () in equation (), we get the following system of equations for i =
, , . . . ,n – :

d(k)
i = ar–ki

{
ξid(k)

 + q(k)i (x)
}
, d(k)

i+ = ar–ki
{
ξid(k)

n + q(k)i (xn)
}
, ∀k = , , . . . , r. ()

When all r +  arbitrary constants in qi(x) are determined from equation (), then ψ(x)
exists. By using similar arguments as in [], it can be shown that IFS I∗ has a unique fixed
point, and that it is the graph of the rational FIF ψ ∈ Cr[x,xn]. �

3 Rational cubic IFS
The construction of the desired rational cubic IFS is given in Section . such that its fixed
point is used for shape preservation in the sequel. The error analysis of the fixed point
of rational cubic IFS with an original function is studied in Section . for convergence
results.
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3.1 Construction
In the proposed rational cubic IFS, we assume qi (i = , , . . . ,n – ) are the rational func-
tions with -shape parameters, whose denominators are preassigned quadratics. Based on
Theorem , with r = , consider the following fixed point equation:

ψ
(
Li(x)

)
=

{
ai{ξiψ(x) + qi(x)} if 	i 
= ,
fi if 	i = ,

()

where |ξi| ≤ κ < , for i = , , . . . ,n – , 	i = fi+–fi
xi+–xi

, qi(x) = �i,(x)
�i,(x)

≡ Ei(θ )
Fi(θ )

, θ = x–x
xn–x , x ∈

[x,xn],

Ei(θ ) = Ai( – θ ) +Ciθ ( – θ ) +Diθ
( – θ ) + Biθ

,

Fi(θ ) = αi( – θ ) + γiθ ( – θ ) + βiθ
,

Ai, Bi, Ci, and Di are arbitrary constants, and αi, βi, and γi are the shape parameters such
that sgn(αi) = sgn(βi) = sgn(γi). From this condition, it is easy to see that Fi(θ ) 
=  for all
θ ∈ [, ]. Tomake the fixed pointψ a C-interpolant, the following Hermite interpolatory
conditions are imposed:

ψ(xi) = fi, ψ(xi+) = fi+, ψ ′(xi) = di, ψ ′(xi+) = di+.

After evaluation of Ai, Bi, Ci, and Di using the above Hermite interpolatory conditions,
we get the desired rational cubic FIF:

ψ
(
Li(x)

)
=

{
aiξiψ(x) + Ei(θ )

Fi(θ )
if 	i 
= ,

fi if 	i = ,
()

where

Ei(θ ) = αi(fi – ξifai)( – θ ) +
(
fi(γi + αi) + diαihi – ξi

{
αihid + fai(γi + αi)

})
θ ( – θ )

+
(
fi+(γi + βi) – di+βihi + ξi

{
βihidn – fnai(γi + βi)

})
× θ( – θ ) + βi(fi+ – ξifnai)θ,

Fi(θ ) = αi( – θ ) + γiθ ( – θ ) + βiθ
, θ =

x – x
xn – x

,x ∈ [x,xn].

Now it is easy to see that C-rational cubic FIFψ is the fixed point of the following rational
cubic IFS:

{
I ×D;wi(x, f ) =

(
Li(x),Fi(x, f )

)
, i = , , . . . ,n – 

}
, ()

where Li(x) = aix + bi, ai, bi are evaluated by using equation (),

Fi(x, f ) =
{
aiξif + Ei(θ )

Fi(θ )
if 	i 
= ,

fi if 	i = .

The fixed point ψ of the above rational cubic IFS is unique for every fixed set of scaling
factors and shape parameters. Thus by taking different sets of scaling and shape param-
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eters, we can generate an infinite number of fixed points for the above rational cubic IFS. In
most applications, the derivatives di (i = , , . . . ,n) are not given, and hence they must be
calculated either from the given data or by using numerical approximation methods [].

Remark  If ξi =  for i = , , . . . ,n– , then the rational cubic FIF () coincides with the
corresponding classical rational cubic interpolation function S as

S(x) =
{ N,i

N,i
if 	i 
= ,

fi if 	i = ,

N,i = αifi( – ρ) +
{
fi(γi + αi) + diαihi

}
ρ( – ρ)

+
{
fi+(γi + βi) – di+βihi

}
ρ( – ρ) + fi+ρ,

N,i = αi( – ρ) + γiρ
( – ρ) + βiρ

,

described in the literature [] with ρ = x–xi
xi+–xi

, x ∈ [xi,xi+].

Remark  Substituting αi = βi =  and γi = hi(di+di+–ξi(d+dn))
fi+–fi–ξiai(fn–f)

for i = , , . . . ,n –  in equa-
tion (), we have

ψ
(
Li(x)

)
=

{
aiξiψ(x) + E∗

i (θ )
F∗
i (θ )

if 	i 
= ,
fi if 	i = ,

where

E∗
i (θ ) = (fi – ξifai)( – θ ) +

{[
hi(di + di+ – ξi(d + dn))
fi+ – fi – ξiai(fn – f)

+ 
]

× (fi – ξifai) + hi(di – ξid)
}
θ ( – θ ) +

{
hi(di+ – ξidn)

+
[
hi(di + di+ – ξi(d + dn))
fi+ – fi – ξiai(fn – f)

+ 
]
(fi+ – ξifnai)

}
θ ( – θ ) + (fi+ – ξifnai)θ,

F∗
i (θ ) = ( – θ ) +

hi(di + di+ – ξi(d + dn))
fi+ – fi – ξiai(fn – f)

θ ( – θ ) + θ.

After some rigorous calculations, we have found that

E∗
i (θ )

F∗
i (θ )

=
A∗
i ( – θ ) + B∗

i θ ( – θ ) +C∗
i θ



	i( – θ ) +D∗
i (di – ξid + di+ – ξidn)θ ( – θ ) +	iθ , ()

where

A∗
i =	i(fi – ξifai), C∗

i = 	i(fi+ – ξifnai), D∗
i =

	i(xn – x)
fi+ – fi – ξiai(fn – f)

,

B∗
i =D∗

i
{
ai(fidi+ + fi+di) – ξi

(
ai(fi+d + fidn) + ai (fndi + fdi+)

)
+ ξ 

i ai (fnd + fdn)
}
.

Now from equation (), we conclude that for the above choice of αi, βi, and γi, our rational
cubic FIF ψ reduces to a monotonicity preserving rational quadratic FIF [] constructed
by our group. Also it is easy to verify that, if ξi = , αi = βi =  and γi = di+di+

	i
, i = , , . . . ,n–

, then the rational cubic FIF reduces to the rational quadratic function as in [].
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3.2 Error analysis of fixed point of rational cubic IFS
Theorem  Let ψ and S, respectively, be the fixed point of rational cubic IFS () and
the classical rational cubic function with respect to the data {(xi, fi), i = , , . . . ,n} obtained
from the original function � ∈ C[x,xn]. Denote V =

⊗n–
i= (–κ ,κ),  < κ < , a∞ = max{ai :

i = , , . . . ,n – }. Let the shape parameters satisfy sgn(αi) = sgn(βi) = sgn(γi). Then

‖� –ψ‖∞ ≤ max
≤i≤n–

{
ωihi
νiτi

(
ζi +

E†
i (�)


)}
+

κa∞(H(h) +H(h))
 – κa∞

, ()

where E†
i (�) = hi ‖�()‖∞A(�) + ζihi ‖�()‖∞ + ζihi ‖�()‖∞, Ai(�) = ‖�()‖∞ + ζi

 ,
ζi = max{|�′(xi) – di|, |�′(xi+) – di+|}, h = max≤i≤n– hi, νi = minxi≤x≤xi+ |�′(x)|, ωi =
max{αi,βi}, τi = min{αi,βi}, H(h) = max≤i≤n–{(|fi| + |fi+|) + hi(|di| + |di+|)}, H(h) =
max≤i≤n–{ai(|f| + |fn|) + hi(|d| + |dn|)}.

Proof Since the coefficients of �i,(x) in equation () depend on ξi, we can write qi(x) =
qi(x, ξi) = �i,(x,ξi)

�i,(x)
≡ Ei(θ ,ξi)

Fi(θ ,ξi)
. From equation (), the Read-Bajraktarević operator U : F  ×

V →F  (cf. Section  with r = ) is re-written as for x ∈ Ii,

Uξh(x) = Fi
(
L–i (x),h ◦ L–i (x), ξi

)
= ai

(
ξih ◦ L–i (x) + qi

(
L–i (x), ξi

))
. ()

Let ξ and e be the non-zero and zero vectors in V , respectively. If ξi = , qi(x, ) is the only
function of x for i = , , . . . ,n – , then the classical rational cubic interpolant S(x) is the
fixed point ofUe. Let us assume thatψ is a fixed point of a rational cubic IFS () associated
with a non-zero scale vector ξ . Consequently, ψ is the fixed point of Uξ . From equation
(), it is easy to verify that Uξ is a contractive operator for a fixed scaling vector ξ :

‖Uξψ –UξS‖∞ ≤ κa∞‖ψ – S‖∞. ()

Now,
∣∣UξS(x) –UeS(x)

∣∣ = ai
(∣∣ξiS ◦ L–i (x) + qi

(
L–i (x), ξi

)
– qi

(
L–i (x), 

)∣∣)
≤ ai

(|ξi|‖S‖∞ +
∣∣qi(L–i (x), ξi

)
– qi

(
L–i (x), 

)∣∣). ()

Using the mean value theorem for functions of several variables, there exists η =
(η,η, . . . ,ηn–) ∈ V such that for i = , , . . . ,n – ,

qi
(
L–i (x), ξi

)
– qi

(
L–i (x), 

)
=

∂qi(L–i (x),ηi)
∂ξi

ξi, |ηi| < |ξi|. ()

Using equation () in equation (), we have

∣∣UξS(x) –UeS(x)
∣∣ ≤ κa∞

(
‖S‖∞ +

∣∣∣∣∂qi(L–i (x),ηi)
∂ξi

∣∣∣∣
)
. ()

Now we wish to calculate the bounds of each term in the right-hand side of equation ().
From Remark , it is easy to see that

∣∣S(x)∣∣ ≤ Si,(x) + Si,(x)
|Si,d(ρ)| , ()

http://www.advancesindifferenceequations.com/content/2014/1/30
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where

Si,(x) = |αi||fi|( – ρ) +
{|fi|(|γi| + |αi|

)
+ |di||αi|hi

}
ρ( – ρ),

Si,(x) =
{|fi+|(|γi| + |βi|

)
+ |di+||βi|hi

}
ρ( – ρ) + |fi+|ρ,

Si,d(ρ) = αi( – ρ) + γiρ
( – ρ) + βiρ

.

Since sgn(αi) = sgn(βi) = sgn(γi) for i = , , . . . ,n – , we have

∣∣Si,d(ρ)∣∣ ≥ max
{|αi|( – ρ), |γi|ρ( – ρ), |βi|ρ} for each ρ ∈ [, ]. ()

Now using equation () in equation (), we get |S(x)| ≤ |fi| + |fi+| + hi(|di| + |di+|).
Since the above inequality is true for all i = , , . . . ,n–, we get the following estimation:

‖S‖∞ ≤H(h). ()

Since �i,(x)≡ Fi(θ ) is independent of ξi, it easy to see that

∂qi(L–i (x),γi)
∂αi

=
–(Qi,(θ ) +Qi,(θ ))

�i,(L–i (x))
, θ =

L–i (x) – x
xn – x

,x ∈ [xi,xi+],

where

Qi,(θ ) = αifai( – θ ) +
{
αihid + fai(γi + αi)

}
θ ( – θ ),

Qi,(θ ) =
{
βihidn – fnai(γi + βi)

}
θ( – θ ) + βifnaiθ.

By using similar arguments as used in the estimation of ‖S‖∞, we have found that
∣∣∣∣∂qi(L–i (x),ηi)

∂ξi

∣∣∣∣ ≤H(h), i = , , . . . ,n – . ()

By using equations () and () in equation (), we have

∣∣UξS(x) –UeS(x)
∣∣ ≤ κa∞

(
H(h) +H(h)

)
.

Since the above inequality is true for i = , , . . . ,n – ,

‖UξS –UeS‖∞ ≤ κa∞
(
H(h) +H(h)

)
. ()

Combining equations () and () with the inequality

‖ψ – S‖∞ = ‖Uξψ –UeS‖∞ ≤ ‖Uξψ –UξS‖∞ + ‖UξS –UeS‖∞,

we get

‖ψ – S‖∞ ≤ | ξ |∞ a∞(H(h) +H(h))
 – κa∞

. ()

From equation (), it is evident that for ξi = , i = , , . . . ,n– , the fixed point of rational
cubic IFS () coincides with the corresponding classical rational cubic interpolant.

http://www.advancesindifferenceequations.com/content/2014/1/30
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Since the original function � ∈ C[x,xn], it is known that []

‖� – S‖∞ ≤ max
≤i≤n–

{
ωihi
νiτi

(
ζ ∗
i +

E†
i (�)


)}
. ()

Therefore, using equations ()-() together with the inequality ‖� – ψ‖∞ ≤ ‖f –
S‖∞ + ‖S – ψ‖∞, we get the bound for ‖� – ψ‖∞, and it completes the proof of theo-
rem. �

Corollary  (Convergence results) Assume that H(h) and H(h) are bounded as h → +.
Then we have the following results:

(i) Since a∞ = h
xn–x , we conclude from equation () that the fixed point of rational

cubic IFS equation () converges uniformly to the original function � as h→ .
(ii) Again from the error estimation (), O(hp) (p = , , ) convergence can be obtained

if the derivative values are available such that ζi =O(hp–i ) (p = , , ), and the
scaling factors are chosen as |ξi| ≤ κap–i (p = , , ) for i = , , . . . ,n – .

4 Positivity preserving rational cubic FIF
The C-rational cubic fractal interpolation function developed in Section  has deficien-
cies as far as the positivity preserving issue is concerned. Because of the recursive nature
of FIFs, we assume all the scaling factors are non-negative so that it is easy to derive the
sufficient conditions for a positive fixed point of the rational cubic IFS (). It requires
one to assign appropriate restrictions on the scaling factors ξi and shape parameters αi,
βi and γi, for i = , , . . . ,n – , so that the positivity feature of a given set of positive data
is preserved in the fixed point of the rational cubic IFS (). In Section ., the suitable
restrictions are developed on the scaling factors and shape parameters for a positivity pre-
serving C-rational cubic spline FIF. The importance of suitable restrictions on the rational
IFS parameters is illustrated in Section ..

4.1 Restrictions on IFS parameters for positivity
Theorem  Let {(xi, fi,di), i = , , . . . ,n} be a given positive data. If

(i) the scaling factors ξi, i = , , . . . ,n – , are selected as

ξi ∈
{
[,min{ fi

aif
, fi+aifn

}] if min{ fi
aif

, fi+aifn
} < κ ,

[,κ] if min{ fi
aif

, fi+aifn
} ≥ κ ,

()

(ii) with γi > , the shape parameters αi, βi, i = , , . . . ,n – , are chosen as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αi >  if λi ≥ ,
αi ∈ (, –γis∗i

λi
) if λi < ,

βi >  if μi ≥ ,
βi ∈ (, –γip∗

i
μi

) if μi < ,

()

where p∗
i = fi+ – ξifnai, s∗i = fi – ξifai, λi = fi + dihi – ξi(hid + fai),

μi = fi+ – di+hi – ξi(fnai – hidn), then for fixed ξi, αi, βi, γi (i = , , . . . ,n – ), the
unique fixed point ψ of the rational IFS () is positive.

http://www.advancesindifferenceequations.com/content/2014/1/30
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Proof From equation (), we have

ψ
(
Li(x)

)
= aiξiψ(x) +

Ei(θ )
Fi(θ )

.

It is easy to verify that using equation (), if ξi ≥ , i = , , . . . ,n–, the sufficient conditions
forψ(Li(x)) >  for all x ∈ [x,xn] are Ei(θ )

Fi(θ )
>  for all θ ∈ [, ], i = , , . . . ,n–. If we assume

αi > , βi > , and γi > , then it is easy to see that Fi(θ ) >  for any θ ∈ [, ]. Thus the initial
conditions on the scaling factor and shape parameters are ξi ≥ , and αi > , βi > , γi ≥ ,
respectively, for i = , , . . . ,n– . Including the initial conditions on the shape parameters,
we have Ei(θ )

Fi(θ )
>  ⇔ Ei(θ ) >  ∀θ ∈ [, ], i = , , . . . ,n – . Thus our problem reduces to

finding conditions on the scaling factors and shape parameters for which Ei(θ ) >  for all
θ ∈ [, ]. From equation (), Ei(θ ) is re-written as

Ei(θ ) = piθ + qiθ + riθ + si, ()

where

pi = γi(fi – fi+) + hi(αidi + βidi+),

qi = (αi – γi)fi + (γi + βi)fi+ – hi(αidi + βidi+),

ri = (γi – αi)fi + αihidi, si = αifi.

By substituting θ = s
s+ in equation (), Ei(θ ) >  for all θ ∈ [, ] is equivalent to �i(s) =

p∗
i s +q∗

i s + r∗i s+ s∗i >  for all s ≥ , where p∗
i = pi+qi+ ri+ si, q∗

i = qi+ri+si, r∗i = ri+si,
s∗i = si.
From [], we have �i(s) >  for all s ≥  if and only if (p∗

i ,q∗
i , r∗i , s∗i ) ∈ R ∪ R, where

R =
{(
p∗
i ,q∗

i , r∗i , s∗i
)
: p∗

i > ,q∗
i > , r∗i > , s∗i > 

}
,

R =
{(
p∗
i ,q∗

i , r∗i , s∗i
)
: p∗

i > , s∗i > ,

p∗
i r∗i + s∗i q∗

i + p∗
i s∗i – p∗

i q∗
i r∗i s∗i – q∗

i r∗i > 
}
.

Let (p∗
i ,q∗

i , r∗i , s∗i ) ∈ R, then we have p∗
i > , s∗i > , q∗

i = βiμi + γip∗
i > , r∗i = αiλi + γis∗i > .

Now p∗
i > , s∗i >  if and only if ξi < fi

fai
, ξi < fi+

fnai
, respectively. Hence, the restriction on

the scaling factor ξi is

ξi < min

{
fi
fai

,
fi+
fnai

}
. ()

If λi ≥ , r∗i = αiλi + γis∗i >  is true from equation (), and in this case αi >  can be
chosen arbitrarily. Otherwise, λi < , we have r∗i = αiλi + γis∗i >  ⇔ αi <

–γis∗i
λi

. Similarly
q∗
i = βiμi + γip∗

i >  is true when (i) μi ≥ , βi >  arbitrary (ii) μi < , βi <
–γip∗

i
μi

. Another
set of restrictions on ξi, αi, βi, and γi can be derived if (p∗

i ,q∗
i , r∗i , s∗i ) ∈ R. But we have not

considered it here due to the complexity involved in the calculations. The above discus-
sions yield equation ().
Therefore, Ei(θ ) ≥  whenever equations () and () are true. Now it is easy to see

that the fixed point of the rational cubic IFS () is positive if the scaling factors and shape
parameters involved in the IFS () satisfy equations () and (), respectively. �

http://www.advancesindifferenceequations.com/content/2014/1/30
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(a) The original function �. (b) Effects of ξ in Figure (a). (c) Effects of ξ in Figure (a).

(d) Effects of α in Figure (a). (e) Effects of β in Figure (c). (f ) Classical rational cubic interpolant.

Figure 1 Illustration of positive rational fractal interpolants with shape parameters.

(a) Derivative of original func-
tion �.

(b) Derivative of rational cubic
FIF in Figure (b).

(c) Derivative of rational cubic
FIF in Figure (c).

(d) Derivative of rational cubic
FIF in Figure (d).

(e) Derivative of rational cubic
FIF in Figure (e).

(f ) Derivative of classical ra-
tional cubic interpolant in Fig-
ure (f ).

Figure 2 Derivatives of positive rational fractal interpolants and classical interpolant.

4.2 Examples and discussion
In order to demonstrate the positive interpolation using our rational cubic IFS, con-
sider the positive data set {(, .), (, .), (, ), (, .), (, .), (, .), (., .)},
which is taken from a function (see Figure (a)) with an irregular derivative function as
described in Figure (a). Such type of data arises in the motion of a single inverted pendu-
lum in the field of non-linear control theory []. The position of the cart can be taken
as smooth and positive in a short time interval with an irregular cart velocity. To ap-
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Table 1 Rational IFS parameters for positive fractal interpolants

Figure Scaling factors Shape parameters

1(a) ξ1 = 0.123, ξ2 = 0.107, ξ3 = 0.179,
ξ4 = 0.005, ξ5 = 0.005, ξ6 = 0.124

βi = γi = 1, i = 1(1)6,
αi = 1, i = 1, 2, 3, 6, α4 = 0.445, α5 = 0.512

1(b) ξ1 = 0.01, ξ2 = 0.107, ξ3 = 0.179,
ξ4 = 0.005, ξ5 = 0.005, ξ6 = 0.124

βi = γi = 1, i = 1(1)6,
αi = 1, i = 1, 2, 3, 6, α4 = 0.445, α5 = 0.512

1(c) ξ1 = 0.123, ξ2 = 0.107, ξ3 = 0.01,
ξ4 = 0.005, ξ5 = 0.005, ξ6 = 0.124

βi = γi = 1, i = 1(1)6,
αi = 1, i = 1, 2, 3, 6, α4 = 0.445, α5 = 0.512

1(d) ξ1 = 0.123, ξ2 = 0.107, ξ3 = 0.179,
ξ5 = 0.005, ξ6 = 0.124

βi = γi = 1, i = 1(1)6,
ξ4 = 0.005, αi = 1, i = 1, 2, 3,
α4 = 0.445, α5 = 0.512, α6 = 109

1(e) ξ1 = 0.123, ξ2 = 0.107, ξ3 = 0.01,
ξ4 = 0.005, ξ5 = 0.005, ξ6 = 0.124

βi = γi = 1, i ∈ {1, 2, 4, 5, 6}, γ3 = 1, β3 = 103 ,
αi = 1, i = 1, 2, 3, 6, α4 = 0.445, α5 = 0.512

1(f ) ξ1 = ξ2 = ξ3 = ξ4 = ξ5 = ξ6 = ξ7 = 0 βi = γi = 1, i = 1(1)6,
αi = 1, i = 1, 2, 3, 6, α4 = 0.445, α5 = 0.512

proximate such data, we have employed the rational cubic IFS (). The derivative val-
ues at the knots are approximated by the arithmetic mean method [] as d = –.,
d = –., d = –., d = –., d = –., d = –., and d = –..
The scaling factors are constrained as ξ ∈ [, .], ξ ∈ [, .], ξ ∈ [, .],
ξ ∈ [, .], ξ ∈ [, .], ξ ∈ [, .] by equation () with a choice of κ = ..
The IFS parameters of the original function are given in Table , and aesthetic modi-

fications are illustrated by varying the scaling factors and shape parameters. In order to
explain the sensitiveness of a rational cubic FIF with respect to the scaling factors, we have
taken a fixed set of shape parameters in the construction of Figures (b)-(c), see Table .
By comparing Figure (b) with Figure (a), we observe that the fractal curve pertaining to
the first subinterval [x,x] converges to a convex shape as ξ → +, and changes in other
subintervals are negligible. By comparing the shapes of Figure (a) and Figure (c), we no-
tice perceptible variations in the second subinterval, and variations in other subintervals
are negligible. By comparing Figures (d)-(e) with Figure (a) and Figure (c), respectively,
we can observe the sensitivity of the positive FIF with respect to its shape parameters. Fi-
nally, we have constructed the classical rational cubic interpolant in Figure (f ) with the
zero scaling vector. From the above discussion, we conclude that the effects due to the
scaling factors ξ, ξ, and shape parameters α, β are very local in nature for the given
positive data set.
From equations () and (), ψ ′ interpolates the data {(xi,di) : i = , , . . . ,n}. In this ex-

ample, the interpolation data for ψ ′ is {(, –.), (, –.), (, –.), (,–.),
(,–.), (,–.), (.,–.)}. The derivative functions of rational cubic FIFs
in Figures (a)-(e) are constructed in Figures (a)-(e), respectively, and they are typically
irregular fractal functions close to a continuous function, but at least they differ from a
piecewise differentiable function. We have calculated the uniform errors between this
original function � in Figure (a) and the rational cubic FIFs in Figures (b)-(f ) (see Ta-
ble ). Also we have calculated the uniform errors between their derivatives (see Table ).
The effects of the scaling factors ξ are very prominent in the first subinterval of Figure (b),
but they also rendermajor effects in its derivative (see Figure (b) and Table ). The effects
of the scaling factor ξ are prominent in the second and third subintervals of Figure (c) in
comparison with Figure (a). Hence the scaling factor ξ is moderately local in nature in
the derivative of rational cubic FIF. The shape parameters α and β produce similar effects

http://www.advancesindifferenceequations.com/content/2014/1/30
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Table 2 Uniform errors between � and rational fractal interpolants, and their derivatives

Rational cubic
FIF

Uniform distance with
Figure 1(a)

Derivative of rational
cubic FIF

Uniform distance with
Figure 2(a)

Figure 1(b) 0.0401 Figure 2(b) 0.5042
Figure 1(c) 0.1901 Figure 2(c) 1.7129
Figure 1(d) 0.1646 Figure 2(d) 1.8654
Figure 1(e) 0.0379 Figure 2(e) 1.0421
Figure 1(f ) 0.3154 Figure 2(f ) 2.9245

(see the corresponding figures and Table ). The rational fractal functions in Figures (a)-
(e) are irregular in nature over the interval [x,x], whereas the derivative of a classical
interpolant is piecewise differentiable in the interval [x,x] (see Figure (f )). Comparing
the uniform distances in Table , if the original function is C-smooth and positive but
its derivative is very irregular, then our rational cubic IFS is an ideal tool for approximat-
ing such a function instead of the classical rational cubic interpolant whose derivative is a
piecewise smooth function.

5 Monotonicity preserving rational cubic FIF
The fixed point ψ of a rational cubic IFS may not preserve the monotonic feature of a
given set of monotonic data. For an automatic generation of rational IFS parameters, we
restrict them in Section ., and the results are implemented in Section . through suit-
able examples.

5.1 Restrictions on IFS parameters for monotonicity
Theorem  Let {(xi, fi,di), i = , , . . . ,n} be a given monotonic data. Let the derivative val-
ues satisfy the necessary conditions for monotonicity, namely

{
di = di+ =  for 	i = ,
sgn(di) = sgn(di+) = sgn(	i) for 	i 
= .

()

If (i) the scaling factors ξi, i = , , . . . ,n – , are chosen as

ξi ∈
{
[,min{ di+dn , did }] if min{ di+dn , did } < min{	i(xn–x)

fn–f ,κ},
[,min{	i(xn–x)

fn–f ,κ}] if min{ di+dn , did } ≥ min{	i(xn–x)
fn–f ,κ}, ()

(ii) the shape parameters αi, βi, and γi, i = , , . . . ,n – , are selected as

sgn(αi) = sgn(βi), and γi =
αi(di – ξid) + βi(di+ – ξidn)

	i – ξi
fn–f
xn–x

, ()

then for a fixed ξ , αi, βi, γi (i = , , . . . ,n– ), the unique fixed point ψ of the rational cubic
IFS () is monotonic in nature.

Proof Differentiating equation () with respect to x, after some mathematical manipula-
tions, we get

ψ ′(Li(x)) = ξiψ
′(x) +

∑
j=Aj,iθ

j–( – θ )–j

(Fi(θ ))
, ()

http://www.advancesindifferenceequations.com/content/2014/1/30
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where

A,i = (di – ξid)α
i , A,i = (di+ – ξidn)β

i ,

A,i = αi
[
(γi + βi)	i – βidi

]
– ξiαi

[
(γi + βi)

fn – f
xn – x

– βid
]
,

A,i =
[
αiβi + (γi + βi)(γi + αi)

]	i –
[
βidi+(γi + αi) + αidi(γi + βi)

]
– ξi

[
αiβi + (γi + βi)(γi + αi)

fn – f
xn – x

–
{
αid(γi + βi) + βidn(γi + αi)

}]
,

A,i = βi
[
(γi + αi)	i – αidi+

]
– ξiβi

[
(γi + αi)

fn – f
xn – x

– αidn
]
.

Due to the recursive nature of rational fractal function (), the necessary conditions ()
are not sufficient to ensure themonotonicity of fixed pointψ of the rational cubic IFS ().
We impose additional restrictions on the scaling factors ξi, and shape parameters αi, βi,
and γi, i = , , . . . ,n – , so that these conditions together with the necessary conditions
() yield the monotonic feature of the fixed point ψ of the IFS ().

Case I:Monotonically increasing data
Suppose {(xi, fi), i = , , . . . ,n} is a given monotonically increasing data set. Due to the
recursive nature of IFS and equation (), it is assumed that all the scaling factors ξi,
i = , , . . . ,n–, are non-negative for amonotonic fixed point of rational cubic IFS (). For
	i = , ψ(Li(x)) = fi, which is monotone on [xi,xi+] (choose ξi = ). Otherwise for 	i > ,
the sufficient conditions for the monotonicity of the fixed point of rational cubic IFS ()
are Aj,i ≥ , j = , , . . . , . From equation (),

A,i ≥  ⇔ (di – ξid)α
i ≥  ⇔ di – ξid ≥  ⇔ ξi ≤ di

d
. ()

Similarly,

A,i ≥  ⇔ ξi ≤ di+
dn

. ()

From equation (), A,i is re-written as

A,i = αi(γi + βi)
(

	i – ξi
fn – f
xn – x

)
+ αiβi(di – ξid).

Without loss of generality, assume that

	i – ξi
fn – f
xn – x

> , ()

i.e., ξi < �i(xn–x)
fn–f . We search for sufficient conditions that make A,i ≥ . For this purpose,

we make each term in A,i non-negative. The selection of ξi with respect to equations ()
and () gives di – ξid ≥  and 	i – ξi

fn–f
xn–x > , respectively. Now it remains to make

αi(γi +βi)≥  and αiβi ≥ . In these two inequalities, the product of the shape parameters
is involved. Therefore these inequalities are true if we restrict the shape parameters αi, βi,
and γi, i = , , . . . ,n – , respectively, as in equation ().
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Justification for equation ()
Let sgn(αi) = sgn(βi) be negative, then from equations () and ()-(), we can conclude
that sgn(γi) is negative. Therefore, αi(γi + βi) ≥  and αiβi ≥ . Similarly, it can be shown
that sgn(αi) = sgn(βi) being positive gives similar results.
The above discussion led to the following procedure to make A,i ≥ : first choose the

scaling factors with respect to equations ()-(), then select the shape parameters ac-
cording to equation ().
Again from equation (), A,i is re-arranged as A,i = βi(γi + αi)(	i – ξi

fn–f
xn–x ) +

αiβi(di+ – ξidn). Similarly, it is easy to verify that equations () and ()-() are suffi-
cient for A,i ≥ . For simplicity, denote d∗

i = di – ξid, d∗
i+ = di+ – ξidn, 	∗

i =	i – ξi
fn–f
xn–x .

From equation (), and with the above notations, A,i is re-written as

A,i =
[
αiβi + (γi + βi)(γi + αi)

]	∗
i – αi(γi + βi)d∗

i – βi(γi + αi)d∗
i+

= αiβi	∗
i + γ 

i 	∗
i + γiαi	∗

i + γiβi	∗
i – γiαid∗

i – γiβid∗
i+ – αiβid∗

i – αiβid∗
i+.

Substituting γi (see equation ()) in the above expression, we get

A,i = αiβi	∗
i +

(αid∗
i + βid∗

i+)

	∗
i

+ αi
(
αid∗

i + βid∗
i+

)
+ βi

(
αid∗

i + βid∗
i+

)

–
αid∗

i (αid∗
i + βid∗

i+)
	∗

i
–

βid∗
i+(αid∗

i + βid∗
i+)

	∗
i

– αiβid∗
i – αiβid∗

i+

= αiβi

(
	i – ξi

fn – f
xn – x

)
+ α

i (di – ξid) + β
i (di+ – ξidn).

From the final expression of A,i, it is easy to verify that equations () and ()-() are
sufficient forA,i ≥ .Hencewe have proved that the fixed pointψ of the rational cubic IFS
() is monotonically increasing over [x,xn], if the scaling factors and shape parameters
are chosen according to equation () and equation (), respectively. In the case of	i = ,
the fixed point of the rational cubic IFS () is a constant throughout that subinterval with
the value fi, and ξi = .

Case II:Monotonically decreasing data
Suppose {(xi, fi), i = , , . . . ,n} is a given monotonically decreasing data set. It is easy to see
that the sufficient conditions for monotonicity of equation () on [xi,xi+] are Aj,i ≤ ,
j = , , . . . , . As explained in Case I, it is easy to verify that selections of the scaling factors
and shape parameters according to equation () and (), respectively, are sufficient for
Aj,i ≤ , j = , , . . . , .
Therefore from the arguments in Case I and Case II, we conclude that if the scaling

factors and shape parameters are chosen according to () and (), respectively, then the
fixed point ψ of the rational cubic IFS () is monotone for given monotonic data. �

Remark  Convergence results in Corollary  are valid for the shape-preserving rational
cubic FIFs.

5.2 Examples and discussion
We construct the C-rational cubic fractal interpolation functions (RCFIFs) for the stan-
dard increasingAkimadata [] {(, ), (, ), (, ), (, ), (, ), (, ), (, .), (, ),
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(a) A standard rational cubic
FIF.

(b) Effects of ξ in Figure (a). (c) Effects of ξ in Figure (a).

(d) Effects of ξ, ξ, ξ and ξ
in Figure (a).

(e) Effects of α and β in Fig-
ure (a).

(f ) Effects of α and β in Fig-
ure (b).

(g) Effects of α in Figure (c). (h) Effects of β in Figure (c). (i) Classical rational cubic in-
terpolant of Figure (g).

Figure 3 Monotonicity preserving rational cubic FIFs and their derivatives.

(, ), (, ), (, )}. The C-rational cubic FIFs are generated iteratively (Figures (a)-
(i)) as the fixed points of rational cubic IFS (). Since �i =  for i = , , . . . , , ξi =  for
i = , , . . . , , and there is no need to choose αi and βi, consequently there is no need to
calculate γi for i = , , . . . ,  using equation (). The derivatives values di (i = , , . . . , )
are approximated by the arithmetic mean method [] as d = , d = , d = , d = ,
d = , d = ., d = ., d = ., d = , d = ., and d = ..
Let κ = . in equation (). The scaling factors are restricted as ξ ∈ [, .],
ξ ∈ [, .], ξ ∈ [, .], ξ ∈ [, .], ξ ∈ [, .) to capture the mono-
tonicity of the Akima data. A standard rational cubic FIF � in Figure (a) is generated
with a suitable choice of the scaling factors (see Table ). By comparing Figure (b) with
Figure (a), we observe that the graph of the rational cubic FIF in the subinterval [x,x]
converges to a convex shape as ξ → +, and the changes in other intervals are negligible.
By analyzing the shapes of Figure (a) and Figure (c), we observe that visually pleasing
effects are produced in the ninth subinterval. By analyzing Figure (d) with respect to Fig-
ure (a), we have found excellent variations in [x,x]. The individual effects of ξ and ξ,
respectively, from Figure (b) and Figure (c) are reflected in Figure (d), and thereby we
conclude that all the non-zero scaling factors are very much local in nature for this Akima
data. Next to visualize the effects of change in the shape parameters, we construct the
monotonically increasing rational cubic FIFs in Figures (e)-(h). By comparing the shapes
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Table 3 Rational IFS parameters for monotonic fractal interpolants

Figure Scaling factors Shape parameters

3(a) ξ6 = 0.034, ξ7 = 0.44,
ξ8 = 0.789, ξ9 = 0.578, ξ10 = 0.999

αi = βi = 1, i = 6(1)10, γ6 = 4.2927,
γ7 = 503.3320, γ8 = 1.5805,
γ9 = 20.5370, γ10 = 2.4994

3(b) ξ6 = 0.034, ξ7 = 0.1,
ξ8 = 0.789, ξ9 = 0.578, ξ10 = 0.999

αi = βi = 1, i = 6(1)10, γ6 = 4.2927,
γ7 = 14.3808, γ8 = 1.5805,
γ9 = 20.5370, γ10 = 2.4994

3(c) ξ6 = 0.034, ξ7 = 0.44,
ξ8 = 0.789, ξ9 = 0.1, ξ10 = 0.999

αi = βi = 1, i = 6(1)10, γ6 = 4.2927,
γ7 = 503.3320, γ8 = 1.5805,
γ9 = 9.6296, γ10 = 2.4994

3(d) ξ6 = 0.034, ξ7 = 0.1,
ξ8 = 0.1, ξ9 = 0.1, ξ10 = 0.1

αi = βi = 1, i = 6(1)10, γ6 = 4.2927,
γ7 = 14.3808, γ8 = 1.4227,
γ9 = 20.537, γ10 = 2.0408

3(e) ξ6 = 0.034, ξ7 = 0.44,
ξ8 = 0.789, ξ9 = 0.578, ξ10 = 0.999

αi = βi = 1, i ∈ {6, 7, 8, 10}, α9 = 104 , β9 = 10,
α10 = 1, β10 = 1, γ6 = 4.2927, γ7 = 503.3320,
γ8 = 1.5805, γ9 = 1.1857, γ10 = 2.4994

3(f ) ξ6 = 0.034, ξ7 = 0.1,
ξ8 = 0.789, ξ9 = 0.578, ξ10 = 0.999

αi = βi = 1, i ∈ {6, 8, 9, 10},
α7 = 104 , β7 = 10, γ6 = 4.2927, γ7 = 6.3276,
γ8 = 1.5805, γ9 = 20.5370, γ10 = 2.4994

3(g) ξ6 = 0.034, ξ7 = 0.44,
ξ8 = 0.789, ξ9 = 0.1, ξ10 = 0.999

αi = βi = 1, i ∈ {6, 7, 8, 10},
α9 = 104 , β9 = 1, γ6 = 4.2927, γ7 = 503.3320,
γ8 = 1.5805, γ9 = 5.556, γ10 = 2.4994

3(h) ξ6 = 0.034, ξ7 = 0.44,
ξ8 = 0.789, ξ9 = 0.1, ξ10 = 0.999

αi = βi = 1, i ∈ {6, 7, 8, 10},
α9 = 1, β9 = 104 , γ6 = 4.2927, γ7 = 503.3320,
γ8 = 1.5805, γ9 = 4.0796, γ10 = 2.4994

3(i) ξi = 0, i = 6(1)10 αi = βi = 1, i ∈ {6, 7, 8, 10},
α9 = 104, β9 = 1, γ6 = 0.0003, γ7 = 0.0011,
γ8 = 0.0001, γ9 = 5.0004, γ10 = 0.0002

of Figure (e) and Figure (a), we notice perceptible variations in the ninth subinterval,
and variations in other subintervals are negligible. Again analyzing Figure (a), Figure (c),
and Figure (e), we observe that to get appropriate deviations in the rational cubic FIF in
the ninth subinterval, one has to vary the scaling parameter ξ, the shape parameters α

and/or β suitably.
Next a monotonic rational FIF in Figure (f ) is constructed as per the data in Table 

and the variations in [x,x] of Figure (f ) with respect to Figure (a) are more evident
than those of Figure (f ) with respect to Figure (b). So, we can say that the scaling factor
ξ is dominant over the shape parameters α and β in this case at [x,x]. Hence, for ma-
jor changes at [x,x], one has to modify ξ, and for minor changes (or fine tuning), one
has to alter α and/or β. This observation is useful for aesthetic requirements in various
engineering design problems. By analyzing Figures (g)-(h) with respect to Figure (c), we
have noticed that the graphs of rational cubic FIFs in the ninth subinterval in Figures (g)-
(h) are concave and convex, respectively. Finally, we construct the classical rational cubic
interpolant in Figure (i) with respect to the shape parameters of Figure (g), and ξi = 
for all i. Since the shape parameters α and β are the same in Figure (g) and Figure (i),
there is some visual similarity between these two curves in [x,x], whereas the same ef-
fects are missing in Figure (h) due to a variation in β. Also, one gets a classical rational
cubic interpolant which is similar to Figure (h) in our fractal scheme, whenever ξi = 
for all i, and the shape parameters are chosen according to Figure (h). The presence of
scaling factors in a monotonic rational FIF with shape parameters gives an additional ad-
vantage in the choice of interpolant over the classical interpolants with shape parameters.
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Table 4 Uniform errors between � and rational fractal interpolants, and their derivatives

Monotonic
RCFIF

Uniform distance with
monotonic RCFIF in Figure 3(a)

Derivative of
monotonic RCFIF

Uniform distance with
derivative in Figure 3(a)

Figure 3(b) 0.7871 Figure 3(b) 18.736
Figure 3(c) 2.3678 Figure 3(c) 27.0239
Figure 3(d) 2.3783 Figure 3(d) 44.6254
Figure 3(e) 0.8223 Figure 3(e) 3.6775
Figure 3(f ) 2.0038 Figure 3(f ) 18.6884
Figure 3(g) 4.6438 Figure 3(g) 29.531
Figure 3(h) 1.5456 Figure 3(h) 23.4984

Our construction gives an extra freedom for aesthetic modifications in local shape over
the classical rational cubic interpolants to an user. For a qualitative study of the derivatives
of monotonic fractal interpolants, the readers are invited to check the effects of rational
IFS parameters in Figures (a)-(g). The uniform errors between monotonic fractal inter-
polants and their derivatives are given in Table  to show the importance of our rational
cubic IFS ().
From the examples in Sections -, it is observed that proper interactive adjustments

of the scaling factors and shape parameters give us a wide variety of positivity and/or
monotonicity preserving fixed points of our rational cubic IFS () that can be used in
various scientific and engineering problems for aesthetic modifications. In order to get an
optimal choice of the fixed point of our rational cubic IFS (), one can employ a genetic
algorithm interactively until the desired accuracy is obtained with the original function.

6 Conclusion
A new type of rational cubic IFS with -shape parameters is introduced in this work such
that its fixed point can be used for shaped data. The developed FIF in this paper includes
the corresponding classical rational cubic interpolant as a special case. An upper bound
of uniform error between the rational cubic FIF ψ and an original function � in C[x,xn]
is estimated, and consequently we have found that ψ converges uniformly to � as h → .
When the accurate derivatives of O(hpi ), i = , , . . . ,n are available, and the scaling factors
are chosen as |ξi| < κap–i , i = , , . . . ,n – , it is possible to get O(hp) (p = , , ) conver-
gence for the rational cubic FIF. Automatic data dependent restrictions are derived on
the scaling factors and shape parameters of rational cubic IFS so that its fixed point pre-
serves the positivity or monotonicity features of a given set of data. The effects of a change
in the scaling factors and shape parameters on the local control of the shape of rational
cubic FIF are demonstrated through various examples. Our rational cubic FIFs are more
flexible and more suitable for shape related problems in computer graphics, CAD/CAM,
CAGD, medical imaging, finance, and engineering applications, and apply equally well to
data with or without derivatives. In particular, the proposed method will be an ideal tool
in shape-preserving interpolation problems where the data set originates from a positive
and/or monotonic function � ∈ C, but its derivative �′ is a continuous and nowhere dif-
ferentiable function.
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