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SUMMARY

We prove that the unitary factor appearing in the QR factorization of a suitably de�ned rational
Krylov matrix transforms a Hermitian matrix having pairwise distinct eigenvalues into a diagonal-plus-
semiseparable form with prescribed diagonal term. This transformation is essentially uniquely de�ned by
its �rst column. Furthermore, we prove that the set of Hermitian diagonal-plus-semiseparable matrices
is invariant under QR iteration. These and other results are shown to be the rational counterpart of
known facts involving structured matrices related to polynomial computations. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In order to summarize the results to be presented in this paper, and to shed light on their
relevance, we review shortly some well-known facts concerning structured matrices connected
with polynomial computations, see References [1, 2].
Consider an n× n Hermitian matrix A having eigenvalues �i, and a complex n-vector

v. Furthermore, let K =K(A; v) be the n× n Krylov matrix de�ned by A and v, that is,
K =[v; Av; : : : ; An−1v]. If A has spectral factorization A=U�U H and we let U Hv=w=(w1; : : : ;
wn)T, then K =U [w;�w; : : : ;�n−1w]=U diag(w1; : : : ; wn)V , where V is the Vandermonde
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matrix

V =

⎛
⎜⎜⎜⎜⎝
1 �1 · · · �n−11

...
... · · · ...

1 �n · · · �n−1n

⎞
⎟⎟⎟⎟⎠

Hence, K is non-singular if and only if the numbers �i are pairwise distinct and all the
entries of w are non-zero. If this is the case, consider the unitary factorization K =QR. Then
T =QHAQ is an irreducible tridiagonal matrix. The matrix T can also be computed without
explicitly forming K by simply applying the Lanczos algorithm to A and the starting vector
v. Using a short notation, we can write T =L(A; v). Actually, the unitary transformation Q
that brings an Hermitian matrix A to tridiagonal form is uniquely de�ned in terms of the �rst
column of Q: This is the essential content of the Implicit-Q theorem for tridiagonal matrices.
Finally, it is well known that the set of Hermitian tridiagonal matrices is closed under QR
iterations. Moreover, if the matrix T̃ is the result of a QR step from T ,

T − �I =Q1R1; T̃ =R1Q1 + �I

then T̃ is the same matrix obtained by the Lanczos tridiagonalization process applied to A
and the starting vector (A− �I)v, that is, T̃ =L(A; (A− �I)v).
The plan of this paper is as follows: Firstly, in the next section we set some basic notations

and introduce the two matrix structures that are exploited in this paper, namely, the class of
diagonal-plus-semiseparable (dpss) matrices, and a rational variant of classical Krylov matri-
ces. Section 3 is devoted to an analysis of algebraic properties of rational Krylov matrices.
In particular, we prove that the conditions for non-singularity of rational Krylov matrices are
the same as for classical Krylov matrices. Moreover, in Theorem 1 we prove that any Hermi-
tian matrix is transformed into dpss form by the unitary factor of a suitably de�ned rational
Krylov matrix, thus giving a rational counterpart of the classical Lanczos tridiagonalization
algorithm. We show in Theorem 2 that the above-mentioned transformation is essentially
identi�able by its �rst column. As a consequence, we solve in Theorem 3 a particular inverse
eigenvalue problem for dpss matrices that generalizes [3, Theorem 4]. In the last section we
prove our main results, showing that the set of Hermitian dpss matrices is closed under QR
iterations. In particular, Theorem 4 shows that the relationship between a QR step on dpss
matrices and the rational variant of the Lanczos algorithm is the same as in the classical
case.

2. BASIC NOTATIONS

Throughout this paper, all matrices are assumed to have order n, and ei will denote the ith
column of the identity matrix I . Although our results are presented using (complex) Hermitian
and unitary matrices, they have an obvious restatement with real symmetric and orthogonal
matrices, respectively.
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Let a1; : : : ; an and b1; : : : ; bn be complex numbers such that aibi ∈ R, for i=1; : : : ; n. The
Hermitian matrix

S=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1b1 a2b1 · · · anb1

a2b1 a2b2
. . .

...

...
. . . . . . anbn−1

anb1 · · · anbn−1 anbn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= SH

is a semiseparable matrix. According to this de�nition, a matrix is semiseparable if and
only if its triangular parts, both lower and upper, are the same of a rank-one matrix. In fact,
Hermitian semiseparable matrices are but a minor generalization of the real symmetric case,
since for any Hermitian S there exists a unitary diagonal matrix � such that �S�H is real and
symmetric. We refer to References [4–7] for recent accounts on structural and computational
properties of symmetric semiseparable matrices. Remark that Hermitian rank-one matrices are
semiseparable.
In what follows, we are concerned with Hermitian matrices M that can be decomposed into

the sum of a (real) diagonal matrix D and a semiseparable matrix S, M =D+S. Such matri-
ces are henceforth called diagonal-plus-semiseparable [3, 8, 9] (dpss, for brevity). According
to the above de�nition, this class includes the two main non-trivial examples of symmetric
matrices having prescribed spectrum, namely, symmetric arrowhead matrices and diagonal-
plus-rank-one matrices [10]. A great interest is arising recently around this structured matrix
class. Indeed, the computational properties of these matrices appear to be analogous to that
of tridiagonal matrices. Fast and stable algorithms for the computation of their inverses, char-
acteristic polynomials, and the solution of associated linear systems and eigenproblems, have
been published, e.g. in References [8, 11–13].
Let A be any Hermitian matrix, and let d1; : : : ; dn be real numbers, not necessarily distinct,

such that

det(A− diI) �=0; i=1; : : : ; n (1)

This hypothesis will be tacitly assumed throughout this paper. We will use the notations
d=(d1; : : : ; dn)T and D=diag(d1; : : : ; dn) for the diagonal matrix whose entries are d1; : : : ; dn.
De�ne the rational functions

�1(�)= (�− d1)−1; �i(�)= (�− di)−1�i−1(�); i=2; : : : ; n (2)

Furthermore, for any complex vector v, we de�ne the matrix

KR(A; v)= [�1(A)v; : : : ; �n(A)v] (3)

as the rational Krylov matrix generated by A, the poles di and the vector v. We omit
to indicate the dependence of KR(A; v) from d1; : : : ; dn, since they will not be considered
as variables in what follows. Observe that the matrix KR(A; v) is well de�ned whenever
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conditions (1) are ful�lled. The above de�nition is basically the same as introduced in Refer-
ences [14, 15], where one sets �1(�)=1 and the matrix A is not assumed to be Hermitian. In
the above-mentioned papers, a variant of the Lanczos algorithm is introduced to compute the
QR factorization of rational Krylov matrices. In fact, this rational Krylov iteration, as it is
called in Reference [15], starts with a vector q1 having unit length and builds up an orthonor-
mal basis Q=[q1; : : : ; qn], one column at a time, in each step multiplying qi with the shifted
and inverted matrix (A− diI)−1, and orthogonalizing the resulting vector with respect to the
previously computed part of the basis by means of the Gram–Schmidt procedure. When all
the poles di are equal, this algorithm reduces to the well-known shifted and inverted Arnoldi
algorithm. Further analysis and variants of this algorithm, and its applications to the compu-
tation of generalized eigenvalues also in the non-Hermitian case, are given e.g. in References
[16–18], mainly in the context of model reduction problems.
Finally, for any matrix X , we will denote Q(X ) the unitary factor in the factorization

X =QR, that is, Q(X )=Q, such that the diagonal entries of R are non-negative. We recall
that, while the function Q is not uniquely de�ned when its argument is a singular matrix,
the restriction of the map Q to the set of invertible matrices is not only continuous but also
di�erentiable, see e.g. Reference [19].

3. PROPERTIES OF RATIONAL KRYLOV MATRICES

In what follows, we need to assess the non-singularity of rational Krylov matrices. In the
next result we state the necessary and su�cient conditions ensuring this case.

Lemma 1
Let A=U�U H be the spectral decomposition of the Hermitian matrix A, where �=diag
(�1; : : : ; �n), and let U Hv=w=(w1; : : : ; wn)T. The matrix K =KR(A; v) is non-singular if and
only if �i �= �j for i �= j and all entries of w are non-zero.
Proof
By hypothesis (1), for i; j=1; : : : ; n all the numbers dj − �i are di�erent from zero, hence the
matrix

F ≡ (�j(�i))i; j=1:::n

is well de�ned. Introduce the monic polynomials

�0(�)=1; �j(�)=
j∏
i=1
(�− dn−i+1); j=1; : : : ; n− 1

We have formally

�j(�)=�n(�)�n−j(�); j=1; : : : ; n
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As a consequence, we can factor the matrix F as

F =

⎛
⎜⎜⎝
�n(�1) O

. . .

O �n(�n)

⎞
⎟⎟⎠
⎛
⎜⎜⎝
�n−1(�1) · · · �0(�1)

... · · · ...

�n−1(�n) · · · �0(�n)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
�n(�1) O

. . .

O �n(�n)

⎞
⎟⎟⎠
⎛
⎜⎜⎝
1 �1 · · · �n−11

...
... · · · ...

1 �n · · · �n−1n

⎞
⎟⎟⎠ JC

where J is the reversal permutation matrix and C is an upper triangular matrix having unit
diagonal, built from the coe�cients of the polynomials �i(�) in the monomial basis. Since
�n(�i) �=0, the matrix F is non-singular if and only if the Vandermonde matrix with nodes
�1; : : : ; �n is non-singular, that is, when �i �= �j for i �= j. The ith column of K is

Kei=�i(A)v=U�i(�)w=U diag(w1; : : : ; wn)Fei

Hence we have K =U diag(w1; : : : ; wn)F . From the preceding factorization we obtain the
claim.

Next, we prove that non-singular rational Krylov matrices are dense in the set of all rational
Krylov matrices:

Corollary 1
Given a rational Krylov matrix K =KR(A; v), for any matrix norm ‖ · ‖ and any �¿0 there
exists a non-singular rational Krylov matrix K̃ =KR(Ã; ṽ) such that ‖K − K̃‖6�.
Proof
If K is non-singular then simply choose K = K̃ . In the other case, consider the spectral fac-
torization A=U�U H. We can perform an arbitrarily small perturbation on the matrix �
so that the perturbed matrix �̃ has pairwise distinct eigenvalues. Analogously, an arbitrarily
small perturbation on the vector v will make all entries of U Hṽ di�erent from zero. By
the preceding lemma, the matrix K̃ =KR(Ã; ṽ), with Ã=U �̃U H, is non-singular. The claim
thus follows since all norms in a �nite-dimensional vector space are equivalent, and the map
(A; v) �→KR(A; v) is continuous.

Rational Krylov matrices have a kind of displacement structure as de�ned in Refer-
ence [20], since they are usefully characterized as solution of a particular matrix equation:

Lemma 2
If the matrix K =KR(A; v) is well de�ned, that is, conditions (1) are ful�lled, then K is the
unique solution of the matrix equation

AK − KB= veT1 (4)
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where B is the upper bidiagonal matrix

B=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 1

d2
. . .

. . . 1

dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

Proof
By the hypothesis (1), the spectra of the matrices A and B are disjoint. Hence, the operator
X �→AX −XB is invertible, see e.g. Reference [21, Chapter 5]. As a consequence, the solution
of the matrix equation AX −XB= veT1 exists and is unique. We show that the matrix K is such
a solution by considering the matrix equation (4) column by column. For the �rst column
we have:

(AK − KB)e1 =A�1(A)v− d1�1(A)v=(A− d1I)�1(A)v= v
For the ith column, with i=2; : : : ; n, we have

(AK − KB)ei=A�i(A)v− di�i(A)v− �i−1(A)v=(A− diI)�i(A)v− �i−1(A)v=0
owing to the de�nition (2). Hence the matrices AK −KB and veT1 have the same columns and
Equation (4) is proved.

There is a link between rational Krylov matrices and dpss matrices, that mirrors the one
existing between classical Krylov matrices and tridiagonals.

Theorem 1
If the matrix K =KR(A; v) is non-singular, and Q(K)=Q, then QHAQ is an Hermitian dpss
matrix, QHAQ=D+ S, with the diagonal matrix D=diag(d1; : : : ; dn).

Proof
For any matrix X ≡(xi; j) let triu(X ) be the strictly upper triangular matrix whose (i; j)-entry is
zero if i¿j and xi; j otherwise. Let K =QR be the unitary factorization of K . In the notations
of the preceding lemma, from AQR−QRB= veT1 and owing to the non-singularity of the factor
R, we have

QHAQ= RBR−1 +QHveT1R
−1

= R

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
D+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1

0
. . .

. . . 1

O 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
R−1 +QHveT1R

−1

=D+ triu(RBR−1) +QHveT1R
−1
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Hence, QHAQ − D is the sum of a strictly upper triangular matrix and a rank-one matrix;
furthermore, it is Hermitian, so it must be semiseparable.

The following example shows that the hypothesis of non-singularity of the matrix K in the
above theorem is essential: consider

D=

(
0 0

0 0

)
; A=

(
1 0

0 −1

)
; v=

(
1

0

)

Then we have

K =

(
1 1

0 0

)
=R; Q= I; M = S=A

hence, S is not semiseparable, according to our de�nition.
Apart of the special cases leading to a singular K , Theorem 1 introduces a unitary trans-

formation of the matrix A into dpss form, whose diagonal term is related to the poles of the
rational functions (2). In the sequel, we denote this transformation by LR(A; v):

LR(A; v)=M ⇐⇒
{
M =QHAQ

Q=Q(KR(A; v))

The map LR is obviously continuous, being the composition of continuous functions, but
not one-to-one, apart of trivial cases, as it should be made clear by considering the number
of parameters describing its arguments and result. For example, for any positive scalar � we
have LR(A; �v)=LR(A; v). In the next lemma we examine a particular transformation of its
arguments leaving the result unchanged.

Lemma 3
Let M =LR(A; v), and Ã=VHAV , for some unitary matrix V . Then for w=VHv we have
M =LR(Ã; w).

Proof
Let K =KR(A; v) and K̃ =KR(Ã; w). The ith columns of K and K̃ are, respectively,

Kei=�i(A)v; K̃ei=�i(VHAV )w=VH�i(A)Vw=VH�i(A)v

Hence, K̃ =VHK , and we obtain Q(K̃)=VHQ where Q=Q(K). Finally, we have

LR(Ã; w)= (VHQ)HÃ(VHQ)=QHV ÃVHQ=QHAQ=LR(A; v)

and the proof is complete.

Observe that, for any vector v, the matrices A and M =LR(A; v) are similar. Hence, under
assumption (1), all matrices M − diI are non-singular.
The following theorem is almost the counterpart for dpss matrices of the classical Implicit-

Q theorem for tridiagonal matrices, see Reference [2, Theorem 7.4.2]. Basically, it states that
the similarity transformation bringing an Hermitian matrix A to a dpss form with prescribed
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diagonal term is essentially determined by the �rst column of the transforming matrix. Before
stating it we need one further preliminary result.

Lemma 4
In the preceding notations and under the assumption (1), if QHAQ=D+ S for some unitary
matrix Q, then S has no zero columns or rows.

Proof
Since det(A − diI) �=0 we have det(D + S − diI) �=0. Hence 0 �=(D + S − diI)ei= Sei. The
claim follows since S is Hermitian.

Theorem 2
Suppose that Q1 and Q2 are unitary matrices such that QH1 AQ1 =M1 and QH2 AQ2 =M2 are
Hermitian dpss matrices having the same diagonal term, that is, M1 =D+S1 and M2 =D+S2,
with S1 and S2 semiseparable. Furthermore, suppose that Q1e1 =Q2e1. Then, for i=1; : : : ; n,
there exists a unitary diagonal matrix � such that Q2 =Q1� and M1 =�M2�H.

Proof
Introduce the matrix W =QH1 Q2. We obtain We1 = e1 and M1W =WM2. Let a(1); a(2) ∈ Cn
be the �rst column of S1 and S2, respectively. We know from Lemma 4 that a(1); a(2) are
non-zero. Then

d1e1 + a(1) =M1e1 =M1We1 =WM2e1 =W (d1e1 + a(2))=d1e1 +Wa(2)

Hence a(1) =Wa(2). Moreover, for some scalars �1; �2 we have

M1We2 =WM2e2 =W (d2e2 + �1a(2) + �2e1)=d2We2 + �1a(1) + �2e1

We obtain (M1 − d2I)We2 = �1a(1) + �2e1. The right-hand side of the last equation belongs to
the space generated by the �rst two columns of M1 − d2I . Since M1 − d2I is non-singular by
assumption (1), the second column of W has non-zero entries only in the �rst two positions.
On the basis of the preceding result we can start a �nite induction argument: For i=2; : : : ; n,
given that the �rst i − 1 columns of W are in upper triangular form, there exist some scalar
�i and two vectors fi and gi belonging to the linear span of e1; : : : ; ei−1, such that

M1Wei=WM2ei=W (diei + �ia(2) + fi)=diWei + �ia(1) + gi

so that we obtain (M1 − diI)Wei= �ia(1) + gi. The right-hand side of the preceding equation
belongs to the space generated by the �rst i columns of M1 − diI . In fact, for 16j6i,
we have (M1 − diI)ej ∈ Span{a(1); e1; : : : ; ei−1} because of the semiseparable structure of
M1. Since M1 − diI is invertible, the associated map is one-to-one from Span{e1; : : : ; ei} to
Span{a(1); e1; : : : ; ei−1}. Observe that �ia(1) + gi belongs to the latter subspace by hypothesis.
Hence, Wei ∈ Span{e1; : : : ; ei}, that is, the ith column of W has zeros below the ith entry.
Finally, we conclude that W is upper triangular. Since W is also unitary, it must be diagonal,
so we have the claim with W =�.

On the basis of the preceding theorem, we can state a converse result of Theorem 1.
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Corollary 2
Let M =D + S be a dpss matrix having pairwise distinct eigenvalues, such that all matrices
M − diI are non-singular, and let M =U�U H be its spectral factorization. If all entries of
U He1 are non-zero then there exists a unitary diagonal matrix � and a vector v such that
K =KR(�; v) is non-singular and �M�H=LR(�; v).

Proof
Firstly, let v=(�− d1I)U He1 and K =KR(�; v). The matrix K is non-singular by Lemma 1,
since � − d1I is non-singular. The �rst column of K is Ke1 = (� − d1I)−1v=U He1, hence
it is a unit length vector. Let Q=Q(K). From Theorem 1 we have that QH�Q is a dpss
matrix with diagonal term equal to D. Since Qe1 =Ke1 =U He1, and both Q and U H bring �
into dpss form with the same diagonal term D, by Theorem 2 there exists a unitary diagonal
matrix � such that U H =Q�. Moreover,

LR(�; v)=QH�Q=�U�U H�H =�M�H

and the proof is complete.

As a minor by-product of the preceding analysis, we address the problem of reconstructing
a dpss matrix from its eigenvalues, the diagonal term, and some additional information. The
following theorem generalizes Theorem 4 in Reference [3] to the case where the diagonal
entries of D are arbitrary, and proves that the reconstructed matrix M is substantially unique.

Theorem 3
Given two real diagonal matrices �=diag(�1; : : : ; �n) and D=diag(d1; : : : ; dn), and a unit
vector v, if the matrix K =KR(�; v) is well de�ned and non-singular, there exists a unitary
matrix Q, which is unique apart of a unitary scaling of its columns, such that QH�Q −D is
semiseparable and Qe1 = v.

Proof
Let w=(�−d1I)v and K̂ =KR(�; w). The matrix K̂ is non-singular, due to Lemma 1. Indeed,
all diagonal entries of �−d1I are non-zero, hence the same must be true for the entries of w.
Let Q=Q(K̂). Observe that the �rst column of K̂ is v, so we have Qe1 = v. Hence the matrix
M =LR(�; w) is a dpss matrix with diagonal term D by Theorem 1. The claim follows from
Theorem 2.

4. ANALYSIS OF QR STEPS ON HERMITIAN DPSS MATRICES

This last section contains the main results of this paper, proving that the Hermitian dpss
structure is invariant under QR iterations.

Theorem 4
Let M1 =LR(A; v), for some Hermitian matrix A and a complex vector v. Let M2 be the
matrix obtained after performing a QR step with shift � ∈ R:

M1 − �I =Q1R1; M2 =R1Q1 + �I

If the matrix M1 − �I is non-singular, then M2 =LR(A;w) where w=(A− �I)v.
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Proof
By assumptions we have M1 =QHAQ, where Q is the unitary factor in K =QR and K =KR

(A; v). By Lemma 2 we have AK =KB + veT1 , where B is as in (5). Firstly, suppose K be
invertible. Let F =B+ K−1veT1 . From AK =KF we have

RF =QHKF =QHAK =QHAQQHK =M1R

Moreover,

(A− �I)QR=QR(F − �I)=Q(M1 − �I)R=QQ1R1R

As a consequence, QQ1 is the unitary factor of a rational Krylov matrix:

K̃ =(A− �I)K =KR(A; (A− �I)v)=KR(A;w)

The matrix K̃ is non-singular. Indeed, by Lemma 1, if A=U�U H, the non-singularity of K
implies that all entries of U Hv are non-zero. Observe that U Hw=U H(A−�I)v=(�−�I)U Hv.
Since �− �I is a non-singular diagonal matrix, also the entries of U Hw are non-zero. Since
M2 = (QQ1)HA(QQ1) we obtain the claim from Theorem 1. The general case follows from a
continuity argument. Indeed, with the help of Corollary 1, for any matrix norm ‖ · ‖ we can
�nd a sequence of matrices {An} and vectors {vn}, converging to A and v, respectively, such
that all matrices Kn=KR(An; vn) are invertible. Clearly, we have Kn →K as n→ ∞. Since the
set of unitary matrices is compact, we can extract from {An} and {vn} subsequences {Am}
and {vm}, such that the sequence {Q(Km)} converges to a unitary matrix Q. Since QHmKm is
upper triangular, the same must be true for QHK . By applying the preceding discussion, a
QR step with shift � from Mm;1 =LR(Am; vm) leads to Mm;2 =LR(Am; (Am − �I)vm). Letting
m go to in�nity, from the continuity of the map LR we obtain the claim.

The special case D=O of the preceding theorem was also shown in Reference [4], by
exploiting the low-rank structure of the triangular parts of a semiseparable matrix. Details
on the implementation of QR steps on matrix classes including dpss matrices, also in the
non-symmetric case, are given in References [6, 22, 23]. We observe that, with the help of
Corollary 2, the proof of the preceding theorem leads also to a further result:

Corollary 3
Let M1 be an Hermitian dpss matrix, M1 =D + S1, with D=diag(d1; : : : ; dn), such that all
eigenvalues of M1 are di�erent from the numbers di. Let M2 be the matrix obtained after
performing a QR step with shift � ∈ R, as in the preceding theorem. If M1 − �I is non-
singular, then M2 is an Hermitian dpss matrix that can be decomposed as M2 =D + S2, for
some semiseparable matrix S2.

The hypothesis of non-singularity of M1 − �I appearing in the preceding theorem and
corollary cannot be dropped out, as shown in the following counterexample: consider the
matrices

S1 =

(
1 1

1 2

)
; D=

(
0 0

0 −1

)
; M1 =D+ S1 =

(
1 1

1 1

)
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Clearly, M1 is singular, and for �=0 we have the unitary factorization M1 =QR with

Q=
1√
2

(
1 1

1 −1

)
; R=

⎛
⎝

√
2

√
2

0 0

⎞
⎠

Thus the QR step from M1 leads to

M2 =RQ=

(
2 0

0 0

)
; S2 =M2 −D=

(
2 0

0 1

)

and the matrix S2 is not semiseparable.

5. CONCLUSIONS

The main aim of this paper is to show that the set of Hermitian dpss matrices is invariant
under shifted QR steps. Incidentally, our discussion shows that there is a close relationship be-
tween matrices arising from polynomial computations and matrices arising from computations
with rational functions: In some sense, dpss matrices are a rational counterpart of irreducible
tridiagonal matrices, exactly as rational Krylov matrices are of classical Krylov matrices. The
development of this analogy will be continued elsewhere, in particular, with regard to the
study of sequences of rational orthogonal functions. Preliminary results in this direction are
given in Reference [24].
The preceding results were sometimes obtained under minor hypotheses, e.g. the non-

singularity of rational Krylov matrices appearing in our arguments, as in Theorem 1, and
the assumption that the eigenvalues of A are all distinct. Furthermore, one major limit of this
paper is the assumption that all matrices A−diI are non-singular. As a consequence, Theorem
2 is not the exact counterpart of the well-known Implicit-Q theorem for tridiagonal matrices
[2, Theorem 7.4.2], due to the hypothesis on non-singularity of the matrices M1 − diI .
The generalization of these results under weaker hypotheses, for example, with the help of

structural properties of semiseparable matrices analysed in References [4, 7], is also a possible
direction of further research.
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