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Rational maps in real algebraic geometry
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Abstract. The paper deals with rational maps between real algebraic sets. We are interested in the

rational maps which extend to continuous maps defined on the entire source space. In particular,

we prove that every continuous map between unit spheres is homotopic to a rational map of such a

type. We also establish connections with algebraic cycles and vector bundles.
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1 Introduction

Let X ⊆ R
k and Y ⊆ R

ℓ be nonsingular irreducible algebraic sets. A map f : X −→ Y
of class Cr (where r = 0, 1, . . . ,∞, and C0 stands for continuous) is said to be a Cr

rational map if there exist a nonempty Zariski open subset U of X and a regular map ϕ :
U −→ Y with f |U = ϕ. In that case f is completely determined by ϕ since U is dense

in X . Denote by P (f) the indeterminacy locus (that is, the complement of the domain

of definition) of the rational map from X into Y represented by ϕ. Hence P (f) is the

smallest algebraic subset ofX for which the restriction map f |X\P (f) : X\P (f) −→ Y
is regular. The graph of f |X\P (f) is a semi-algebraic subset of X × Y , whose closure

is equal to the graph of f . It follows that the graph of f is also a semi-algebraic subset.

In other words, every Cr rational map is a semi-algebraic map. Thus Cr rational maps are

natural objects in real algebraic or semi-algebraic geometry. We shall see below that they

have some remarkable properties. We wish to emphasize that certain Cr rational maps

admit a very explicit description. Since the restriction f |X\P (f) is a regular map, there

∗The paper was completed at the Max-Planck-Institut für Mathematik in Bonn, whose support and hospitality

are gratefully acknowledged.
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exist polynomials P1, . . . , Pℓ, Q in R[T1, . . . , Tk] with

P (f) = {x ∈ R
k | Q(x) = 0},

f(x) =

(

P1(x)

Q(x)
, . . . ,

Pℓ(x)

Q(x)

)

for all x in X\P (f),

cf. [6, Proposition 3.2.3]. Of course, in general, the value of f at a point in P (f) cannot be

read off from the formula given above without computing a limit. However, if it happens

that f(P (f)) contains at most one point, then f is given on the whole X by a finite

formula. In several of our results Cr rational maps of exactly such a type are involved.

Let us mention that we obtain a new class of maps exclusively for r finite since any

C∞ rational map is automatically regular, cf. Proposition 2.1. One readily checks that

every continuous rational map from X into Y is regular, provided dimX = 1. Some

explicit examples of Cr rational maps that are not regular are given in Example 2.2. In

this paper we deal with problems specific to real algebraic geometry. Any continuous

rational map between complex algebraic sets is regular.

Henceforth we mainly investigate under what conditions a continuous map from X
into Y is homotopic to a Cr rational map. For maps between unit spheres the answer

is definitive: no extra assumptions are necessary. More precisely, let Sn denote the unit

n-sphere,

Sn = {(x1, . . . , xn+1) ∈ R
n+1 | x2

1 + · · · + x2
n+1 = 1}.

Theorem 1.1. Let r be a nonnegative integer. For every pair (n, p) of positive integers,

each continuous map h : Sn → Sp is homotopic to a Cr rational map f : Sn → Sp with

codimSnP (f) ≥ p and f(P (f)) containing at most one point.

In the literature there are some related results concerning polynomial or regular maps

between spheres. The motivation was to represent homotopy classes of maps between

spheres by “simple” maps, given by finite formulas. As it turned out, this cannot always

be achieved with polynomial maps. Making use of quadratic forms, Wood [25] proved

that every polynomial map from Sn into Sp is a constant map, provided n ≥ 2m > p
for some integer m. The question whether every continuous map from Sn into Sp is

homotopic to a regular map, for all pairs (n, p), remains open and seems to be a hard

problem, cf. [6, p. 367] and [22, p. 1153]. According to [6, 7, 8, 22], the answer is

affirmative for some pairs (n, p) with the homotopy group πn(Sp) nontrivial, including

infinitely many such pairs for which the polynomial maps are constant.

Theorem 1.1 is proved in Section 2, which contains also results concerning Cr rational

maps from X into Sp. Among the latter the following is the simplest.

Theorem 1.2. Let r be a nonnegative integer. Assume thatX is compact and dimX = n.

Then each continuous map h : X → Sn is homotopic to a Cr rational map f : X → Sn

with the set P (f) finite and f(P (f)) containing at most one point.

This result demonstrates that Cr rational maps are indeed more flexible than regular

maps. For example, in contrast with Theorem 1.2, a continuous map from S1 × S1 into

S2 is homotopic to a regular map if and only if it is null homotopic, cf. [6, 8]. Some
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cases, resolved by Theorem 1.2 for Cr rational maps, remain open problems for regular

maps. For instance, it is not known whether every continuous map from S2 × S2 into S4

is homotopic to a regular map, cf. [6, Remark 12.5.5].

In general not every continuous map from X into Sp is homotopic to a Cr rational

map. Some obstructions depend on the existence of homology or cohomology classes not

representable by algebraic subsets. Below we make this precise.

Assume that X is compact. Denote by

Halg

d (X,Z/2)

the subgroup of the homology group Hd(X,Z/2) generated by the homology classes

represented by d-dimensional algebraic subsets of X , cf. [4, 6, 13, 14]. As usual, set

Hc
alg(X,Z/2) = D−1

X (Halg

d (X,Z/2)),

where c + d = dimX and DX : Hc(X,Z/2) → Hd(X,Z/2) is the Poincaré duality

isomorphism. Given any continuous map h : X → Y , denote by

h∗ : Hd(X,Z/2) → Hd(Y,Z/2) and h∗ : Hc(Y,Z/2) → Hc(X,Z/2)

the induced homomorphisms.

Proposition 1.3. Assume that X and Y are compact. If f : X → Y is a continuous

rational map, then

f∗(H
alg

d (X,Z/2)) ⊆ Halg

d (Y,Z/2),

f∗(Hc
alg(Y,Z/2)) ⊆ Hc

alg(X,Z/2)

for d ≥ 0 and c ≥ 0.

Proposition 1.3 is well known for regular maps (cf. [4, 6, 13, 14]), and therefore it

holds for continuous maps homotopic to regular ones. There are however Cr rational

maps not homotopic to regular maps, cf. Theorem 1.2 and the comment that follows it.

Denote by σp the unique generator of Hp
alg(S

p,Z/2) = Hp(Sp,Z/2) ∼= Z/2. By

Proposition 1.3, a necessary condition for a continuous map h : X → Sp to be homo-

topic to a continuous rational map is that h∗(σp) be in Hp
alg(X,Z/2). In some cases this

condition is also sufficient.

Corollary 1.4. Assume that X is compact. For any continuous map h : X → S1, the

following conditions are equivalent:

(a) h is homotopic to a continuous rational map.

(b) h is homotopic to a regular map.

(c) h can be approximated by regular maps.

(d) h∗(σ1) is in H1
alg(X,Z/2).

Proof. It is known that Conditions (b), (c), (d) are equivalent, cf. [7, Theorem 1.4]. By

Proposition 1.3, (a) implies (d), while (b) trivially implies (a). ✷
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Regular maps with values in S1 are extensively studied in [6, 10]. It is known that

Condition (d) is an essential restriction.

Theorem 1.5. Let r be a nonnegative integer. Assume that X is compact and dimX =
n+ 1. For any continuous map h : X → Sn, the following conditions are equivalent:

(a) h is homotopic to a Cr rational map f : X → Sn with dimP (f) ≤ 1 and f(P (f))
containing at most one point.

(b) h is homotopic to a continuous rational map.

(c) h∗(σn) is in Hn
alg(X,Z/2).

Other results concerning representation of homotopy classes of maps from X into Sp

by Cr rational maps are contained in Sections 2 and 3, cf. Theorems 2.4, 2.5, Proposi-

tion 2.8, and Corollaries 2.6, 2.7, 3.8. Among these Theorem 2.4 is crucial. All results

announced above are proved in Section 2. In Section 3 we study Cr rational maps with

values in Grassmannians. To this end we introduce the notion, interesting in its own right,

of Cr rational structure on a vector bundle.

In order to allow for ease of exposition it will be convenient to adopt in the subse-

quent sections the following convention. The term real algebraic variety will designate

a locally ringed space isomorphic to an algebraic subset of R
n, for some n, endowed

with the Zariski topology and the sheaf of R-valued regular functions. Recall that the

quasi-projective real algebraic varieties are real algebraic varieties in this sense, cf. [6,

Proposition 3.2.10, Theorem 3.4.4]. Zariski closed subsets of a real algebraic variety

will be often called algebraic subsets. Morphisms between real algebraic varieties will

be called regular maps. Every real algebraic variety carries also the Euclidean topology,

which is determined by the usual metric topology on R. Unless explicitly stated other-

wise, all topological notions related to real algebraic varieties will refer to the Euclidean

topology. Our standard reference on real algebraic geometry is [6].

2 Rational maps into spheres

We begin by showing that C∞ rational maps are regular maps. The argument is completely

standard.

Proposition 2.1. Let X and Y be nonsingular irreducible real algebraic varieties. Any

C∞ rational map from X into Y is a regular map.

Proof. We may assume Y ⊆ R
ℓ, for some ℓ, and hence reduce the proof to the case

Y = R. Let f : X → R be a C∞ rational function. There exist two regular functions ϕ
and ψ from X into R with ψ−1(0) 6= X and f(x) = ϕ(x)/ψ(x) for all x in X\ψ−1(0).
Thus ψf = ϕ on X .

Given a point x in X , we denote by Rx the local ring of X at x, that is, the ring

of germs at x (with respect to the Zariski topology) of regular functions. Since X is

nonsingular and irreducible, the completion R̂x of Rx, with respect to the maximal ideal

of Rx, is isomorphic to the ring of formal power series in n variables over R, n = dimX .
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The equality ψf = ϕ implies that ψx divides ϕx in R̂x, where ϕx and ψx are the germs

at x of, respectively, ϕ and ψ. Hence ψx divides ϕx in Rx, cf. [21, § 1.C]. Consequently,

f is a regular function in a Zariski neighborhood of x. Since x is an arbitrary point of X ,

it follows that f is regular on X . ✷

In view of Proposition 2.1, considering Cr rational maps we will usually assume that

r is finite.

Example 2.2. Assume that r is a nonnegative integer.

(i) There exists a Cr rational map g : S2 → S1 with P (g) 6= ∅. Indeed, h : R
2 → R,

h(x1, x2) =

{

(x4
1+x4

2)
r+1

x2
1
+x2

2

for (x1, x2) 6= (0, 0)

0 for (x1, x2) = (0, 0)

is a Cr rational function with P (h) = {(0, 0)}. Define g : S2 → S1 by g = σ ◦ h ◦ π,

where

π : S2 → R
2, π(x1, x2, x3) = (x1, x2),

σ : R → S1, σ(t) =

(

2t

t2 + 1
,
t2 − 1

t2 + 1

)

.

Then g is a Cr rational map with P (g) = {(0, 0, 1), (0, 0,−1)}.

(ii) There exists a Cr rational map f : S2×S1 → S1 such that f is not null homotopic

and f(P (f)) = S1. Indeed, define f by f(x, z) = g(x)z for (x, z) in S2 ×S1, where g is

as in (i) and S1 = {z ∈ C | |z| = 1} is regarded as a multiplicative group. It follows that

P (f) = P (g) × S1, and hence f(P (f)) = S1. Moreover, f is not null homotopic since

for any point x in S2, the map S1 → S1, z → f(x, z) is homotopic to the identity map.

As the first step toward our main goals, we record a simple fact concerning nonsingu-

lar points of real algebraic varieties.

Lemma 2.3. Let X be a nonsingular real algebraic variety and let U be a nonempty

Zariski open subset of X . Let N be a Zariski closed subset of U and let V be its Zariski

closure inX . Then V = N∪W , whereW is a Zariski closed subset ofX withN∩W = ∅
and dimW < dimN . In particular, N is precisely the set of nonsingular points of V ,

assuming N is compact and nonsingular.

Proof. The equality dimN = dimV is well known. Since N = V ∩ U , the set W =
V \N is Zariski closed in X and W ⊆ X\U . We have V = N ∪W , N ∩W = ∅, and

dimW ≤ dimV . Moreover, no irreducible component of V is contained inW . It follows

that dimW < dimV , as required. Indeed, suppose to the contrary that dimW = dimV
and choose an irreducible component Z of W with dimZ = dimV . Then Z is an

irreducible component of V , and we get a contradiction.

The last assertion in the lemma follows immediately. ✷
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Proofs of the results announced in Section 1 depend on the Pontryagin–Thom con-

struction. Unless explicitly specified otherwise, all smooth (of class C∞) manifolds will

be without boundary. Smooth submanifolds will be closed subsets of the ambient mani-

fold. The unit p-sphere Sp will be oriented as the boundary of the unit (p+1)-disk. Recall

that for any compact smooth manifold M there is a canonical one-to-one correspondence

πp(M) −→ F p(M),

where πp(M) is the set of homotopy classes of continuous maps from M into Sp, and

F p(M) is the set of framed cobordism classes of framed submanifolds of M of codi-

mension p (cf. [15, 19] for details). Given a continuous map h : M → Sp, we denote

by

PT (h)

the element of F p(M) corresponding to the homotopy class of h.

For sake of clarity, it will be convenient to introduce some notation related to this

construction. A framed submanifold of M of codimension p is a pair (N,F ), where N
is a codimension p smooth submanifold of M with trivial normal bundle ν(N), while

F = (v1, . . . , vp) is a p-tuple of smooth sections of ν(N) such that (v1(x), . . . , vp(x)) is

a basis of the fiber ν(N)x of ν(N) over x for every point x in N . Here ν(N) is regarded

as the quotient vector bundle (τ(M)|N)/τ(N), where τ(M) (respectively τ(N)) is the

tangent bundle to M (respectively N ).

Given a continuous map h : M → Sp and a point y in Sp, assume the existence of

an open neighborhood V of y for which the restriction map h|h−1(V ) : h−1(V ) → V
is smooth and transverse to y. Choose a positively oriented basis B = (w1, . . . , wp)
of the tangent space τ(Sp)y . Then PT (h) is represented by the framed submanifold

(h−1(y), F (h,B)), where F (h,B) = (v1, . . . , vp) and (v1(x), . . . , vp(x)) is transformed

onto (w1, . . . , wp) by the isomorphism ν(N)x → τ(Sp)y induced by the derivative dhx :
τ(M)x → τ(Sp)y for every x in h−1(y).

Let ϕ : M → R
p be a smooth map transverse to 0 in R

p and let N be the union of

some connected components ofϕ−1(0). Then we obtain a framed submanifold (N,F (ϕ))
of M , where F (ϕ) = (v1, . . . , vp) and (v1(x), . . . , vp(x)) is transformed onto the canon-

ical basis of R
p by the isomorphism ν(N)x → R

p induced by the derivative dϕx :
τ(M)x → τ(Rp)0 = R

p for every x in N .

The following is the main result of this section.

Theorem 2.4. Let r be a nonnegative integer. For any compact nonsingular irreducible

real algebraic variety X and any continuous map h : X → Sp, the following conditions

are equivalent:

(a) h is homotopic to a Cr rational map f : X → Sp with codimXP (f) ≥ p and

f(P (f)) containing at most one point.

(b) h is homotopic to a continuous rational map g : X → Sp with g(P (g)) 6= Sp.

(c) PT (h) is represented by a framed submanifold (N,F ) of X , where N is the set of

nonsingular points of some algebraic subset of X .
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Proof. Obviously, (a) implies (b). Suppose that (b) holds. Since g(P (g)) is a proper

closed subset of Sp, it follows from Sard’s Theorem that the regular map g|X\P (g) :
X\P (g) → Sp is transverse to some point y in Sp\g(P (g)). Hence PT (h) = PT (g)
is represented by the framed submanifold (g−1(y), F (g,B)), where B is a positively

oriented basis of τ(Sp)y . Note that g−1(y) is a nonsingular Zariski closed subset of

X\P (g). By Lemma 2.3, g−1(y) is precisely the set of nonsingular points of the Zariski

closure of g−1(y) in X . Consequently, (c) is satisfied with (N,F ) = (g−1(y), F (g,B)).

It remains to prove that (c) implies (a). This follows immediately from Theorem 2.5

below, which contains also some additional information. ✷

We introduce first some terminology. Let X be a nonsingular real algebraic variety

and let S be an algebraic subset of X . Suppose there is a finite sequence of maps

Y = Xk
πk−−−−→ Xk−1

πk−1
−−−−→ · · ·

π2−−−−→ X1
π1−−−−→ X0 = X,

where π1 is the blowup of X0 at a nonsingular algebraic subset of X0 contained in S and

πi+1 is the blowup of Xi at a nonsingular algebraic subset of Xi contained in (π1 ◦ · · · ◦
πi)

−1(S) for i = 1, . . . , k − 1. We call the composite map π = π1 ◦ · · · ◦ πk : Y → X
a multiblowup of X over S. Note that Y is a nonsingular real algebraic variety and the

restriction πS : Y \π−1(S) → X\S of π is a biregular isomorphism. In particular, if A is

an algebraic subset of Y , then π(A) ∪ S is an algebraic subset of X .

Theorem 2.5. Let X be a compact nonsingular irreducible real algebraic variety and

let (N,F ) be a framed submanifold of X of codimension p. Assume that N is the set of

nonsingular points of some algebraic subset of X . Then for any nonnegative integer r,

there exists a Cr rational map f : X → Sp such that

(i) codimXP (f) ≥ p,

(ii) f(P (f)) ⊆ {a},

(iii) f−1(b) = N ,

(iv) f |X\P (f) : X\P (f) → Sp is transverse to b,
(v) (N,F (f,B)) is framed cobordant to (N,F ),

where a = (0, . . . , 0, 1) ∈ Sp, b = (0, . . . , 0,−1) ∈ Sp and B is a positively oriented

basis of the tangent space τ(Sp)b.

Proof. LetZ be the Zariski closure ofN inX . By assumption,N is the set of nonsingular

points of Z. In particular, S := Z\N is an algebraic subset of X . The singularities of Z
can be resolved by a finite sequence of blowups. More precisely, by Hironaka’s resolution

of singularities theorem [16], there exists a multiblowup π : Y → X of X over S such

that the Zariski closure V of π−1(N) in Y is nonsingular. We assert V = π−1(N).
Indeed, Y \π−1(S) is a Zariski open subset of Y and π−1(N) is a Zariski closed subset

of Y \π−1(S). Consequently, dim(V \π−1(N)) < dimπ−1(N) (cf. Lemma 2.3). Hence

π−1(N) is dense in V in the Euclidean topology, V being nonsingular. The set N is

compact, so the last observation implies π(V ) ⊆ N , and therefore V = π−1(N), as

asserted.
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In particular, Y is a compact nonsingular irreducible real algebraic variety and V is a

nonsingular algebraic subset of Y . Since the restriction

πS : Y \π−1(S) → X\S

of π is a biregular isomorphism, the normal bundle of V in Y is trivial. We endow V with

a framing FV so that the framed submanifold (V, FV ) of Y corresponds to (N,F ) via πS .

A standard transversality argument implies the existence of a smooth map ϕ : Y → R
p

such that ϕ is transverse to 0 in R
p, V ⊆ ϕ−1(0) (in particular, V is the union of some

connected components of ϕ−1(0)), and (V, F (ϕ)) is framed cobordant to (V, FV ). By

a relative version of the Weierstrass approximation theorem [6, Lemma 12.5.5], one can

find a regular map ψ : Y → R
p arbitrarily close in the C∞ topology to ϕ and with

V ⊆ ψ−1(0). If ψ is sufficiently close to ϕ, then ψ is transverse to 0 in R
p and (V, F (ψ))

is framed cobordant to (V, F (ϕ)). Moreover, ψ−1(0) is a nonsingular algebraic subset of

Y and

ψ−1(0) = V ∪W,

where W is a subset of Y with V ∩ W = ∅. Since V is also a nonsingular algebraic

subset of Y , it follows that W is an algebraic subset of Y , cf. [6, Proposition 3.3.17].

Hence W ∪ π−1(S) is an algebraic subset of Y , which implies the existence of a regular

function α : Y → R with

α−1(0) = W ∪ π−1(S).

Note that V ∩ α−1(0) = ∅. By the Łojasiewicz inequality [6, Corollary 2.6.7], there

exist a neighborhood U of α−1(0) in Y , a positive real number c, and a positive integer k
satisfying

‖ψ(y)‖ ≥ cα(y)2k for all y in U,

where ‖ ‖ denotes the Euclidean norm on R
p. Set

β(y) = 1/α(y)2(k+ℓ) for all y in Y \α−1(0),

where ℓ is a positive integer to be determined later.

The stereographic projection

ρ : Sp\{a} → R
p

is a biregular isomorphism. Define h : Y → Sp by

h(y) =

{

ρ−1(β(y)ψ(y)) for y in Y \α−1(0)

a for y in α−1(0).

By construction, the restriction h|Y \α−1(0) is a regular map transverse to b. Moreover,

h is continuous, h−1(b) = V , and (V, F (h,B)) is framed cobordant to (V, F (ψ)). Thus

(V, F (h,B)) is framed cobordant to (V, FV ).
Note that π(α−1(0)) = π(W )∪S is an algebraic subset ofX with codimXπ(α−1(0))

≥ p. Define f : X → Sp by

f(x) =

{

(h ◦ π−1
S )(x) for x in X\π(α−1(0))

a for x in π(α−1(0)).
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Then f |X\π(α−1(0)) is a regular map transverse to b. Since Y is compact and π :
Y → X is a continuous map, it follows that f is also continuous. By construction,

f−1(b) = N and (N,F (f,B)) is framed cobordant to (N,F ). The last assertion holds

since (V, F (h,B)) is framed cobordant to (V, FV ), and (V, FV ) corresponds to (N,F )
via πS . Clearly, P (f) ⊆ π(α−1(0)), and hence codimXP (f) ≥ p and f(P (f)) ⊆ {a}.

It remains to observe that f is of class Cr if ℓ is a sufficiently large integer. This follows

from the representation of blowups in local coordinates. ✷

Proof of Theorem 1.1. Let (M,FM ) be a framed submanifold of Sn representing PT (h).
We may assume that the point a = (0, . . . , 0, 1) ∈ Sn is not in M , and hence ρ(M) is

a smooth submanifold of R
n, where ρ : Sn\{a} → R

n is the stereographic projection.

By [2, Theorem A], ρ(M) is isotopic in R
n to the set of nonsingular points of some

algebraic subset W of R
n. Denoting by V the Zariski closure of ρ−1(W ) in Sn, we

have V ⊆ ρ−1(W ) ∪ {a}. Thus M is isotopic in Sn to the set N of nonsingular points

of V . Consequently, there is a framing F of N such that (N,F ) is framed cobordant

to (M,FM ). Since (N,F ) represents PT (h), the proof is complete in view of Theo-

rem 2.4. ✷

Proof of Theorem 1.2. It suffices to apply Theorem 2.4. ✷

The other results stated in Section 1 could be proved now, but instead we derive first

three consequences of Theorem 2.4. These facts are not required for the proofs of Propo-

sition 1.3 and Theorem 1.5.

Corollary 2.6. Let X be a compact nonsingular irreducible real algebraic variety and

let p be a positive integer. Assume that X is homotopically equivalent to Sn, n ≥ 1. Then

for any nonnegative integer r, each continuous map h : X → Sp is homotopic to a Cr

rational map f : X → Sp with codimXP (f) ≥ p and f(P (f)) containing at most one

point.

Proof. Let ϕ : X → Sn be a homotopy equivalence and let g : Sn → Sp be a continuous

map such that h is homotopic to g ◦ ϕ. By Theorem 1.1, we may assume that g is a

Cr rational map with g(P (g)) containing at most one point. Similarly, by Theorem 2.4,

we may assume that ϕ is a Cr rational map with ϕ(P (ϕ)) containing at most one point.

Moreover, if P (g) 6= ∅, we can choose ϕ so that ϕ(P (ϕ)) ⊆ P (g). By construction,

g ◦ ϕ : X → Sp is a Cr rational map with P (g ◦ ϕ) ⊆ P (ϕ) ∪ ϕ−1(P (g)), and hence

(g ◦ ϕ)(P (g ◦ ϕ)) contains at most one point. Making use of Theorem 2.4, we obtain a

Cr rational map f : X → Sp satisfying the required conditions. ✷

The experience following from [6, 7, 8, 9] shows that in the investigation of regular

maps between real algebraic varieties, one frequently encounters F-vector bundles, where

F stands for R,C or H (the quaternions). It turns out that F-vector bundles are useful, and

in Section 3 indispensable, for the purposes of the present paper. For any algebraic variety

X , algebraic F-vector subbundles of the standard trivial F-vector bundle with total space

X×F
n, for some n, are called algebraic F-vector bundles onX . In other words, algebraic

F-vector bundles on X correspond to finitely generated projective modules over the ring

of regular functions from X into F, cf. [6] for other equivalent definitions. In order to
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prevent any confusion, let us mention that the objects called here and in [6] algebraic F-

vector bundles were called in earlier papers [4, 5, 7, 8, 9, 11] strongly algebraic F-vector

bundles. An F-vector bundle on a real algebraic variety is said to admit an algebraic

structure if it is isomorphic to an algebraic F-vector bundle (cf. [5, 7, 11], where this

notion is extensively studied). In this section we use exclusively R-vector bundles.

If p is one of the integers 1, 2, 4 or 8, then on Sp there is a smooth R-vector bundle

θp of rank p, which has a smooth section transverse to the zero section and with the

zero set consisting precisely of one point (this is certainly well known, but if desired [12,

Theorem 1.5], containing a more general fact, can be consulted). It readily follows that

for any point y in Sp, one can find a smooth section v of θp, which is transverse to the

zero section of θp and satisfies Z(v) = {y}, where Z(v) = {z ∈ Sp | v(z) = 0} is the

zero set of v.

Corollary 2.7. LetX be a compact nonsingular irreducible real algebraic variety and let

h : X → Sp be a continuous map. Assume that p is one of the integers 1, 2, 4, or 8, and

the R-vector bundle h∗θp on X admits an algebraic structure. Then for any nonnegative

integer r, the map h is homotopic to a Cr rational map f : X → Sp with codimXP (f) ≥
p and f(P (f)) containing at most one point. In particular, the conclusion holds if every

R-vector bundle of rank p on X admits an algebraic structure.

Proof. We may assume that h is a smooth map. By Sard’s Theorem, h is transverse to

some point y in Sp. Hence PT (h) is represented by the framed submanifold (h−1(y),
F (h,B)), where B is a positively oriented basis of the tangent space τ(Sp)y .

Let v : Sp → θp be a smooth section transverse to the zero section of θp and satisfying

Z(v) = {y}. By assumption, there exist an algebraic R-vector bundle ξ on X and an

R-vector bundle isomorphism ϕ : h∗θp → ξ. General theory of smooth vector bundles

allows us to assume that ϕ is a smooth isomorphism. The smooth section u := ϕ◦(h∗v) :
X → ξ is transverse to the zero section of ξ and Z(u) = h−1(y). One can find an

algebraic section s : X → ξ close to u in the C∞ topology, cf. [6, Theorem 12.3.2].

Hence, Z(s) is a nonsingular algebraic subset of X isotopic to h−1(y). It follows that

(h−1(y), F (h,B)) is framed cobordant to (Z(s), F ), where F is a suitable framing of

Z(s). By Theorem 2.4, there is a Cr rational map f : X → Sp satisfying the required

conditions. The proof is complete. ✷

We shall now derive a consequence of Theorem 2.4 related to the cohomotopy groups.

Let X be a compact nonsingular irreducible real algebraic variety and let p be a positive

integer. Denote by

πp
rat(X)

the subset of πp(X) consisting of the homotopy classes [f ], where f : X → Sp is

a continuous rational map with f(P (f)) containing at most one point. According to

Theorem 2.4, for any nonnegative integer r, each element of πp
rat(X) is the homotopy

class of a Cr rational map f : X → Sp with codimXP (f) ≥ p and f(P (f)) containing

at most one point. Obviously, πp
rat(X) contains the subset πp

alg(X) of πp(X) consisting

of the homotopy classes of regular maps from X into Sp (cf. [6, 8] for results concerning

πp
alg(X)).



Rational maps in real algebraic geometry 527

If dimX ≤ 2p− 2, then πp(X) is endowed with the structure of commutative group,

called the pth cohomotopy group ofX , cf. [17]. It is not known whether πp
alg(X) is always

a subgroup of πp(X), cf. [6, p. 361].

Proposition 2.8. With notation as above, if dimX ≤ 2p− 2, then πp
rat(X) is a subgroup

of πp(X).

Proof. First we show that πp
rat(X) is closed under addition. Let [f1] and [f2] be in πp

rat(X).
We may assume that fi : X → Sp is a continuous rational map with

codimXP (fi) ≥ p and fi(P (fi)) ⊆ {b} for some point b in Sp, i = 1, 2. Set

A = P (f1) ∪ P (f2) and B = f1(A) ∪ f2(A).

Since dimP (fi) ≤ dimX − p ≤ p − 2 and fi is a semi-algebraic map for i = 1, 2, we

get dimB ≤ p−2, cf. [6, Theorem 2.8.8]. By Sard’s Theorem, there is a point (y1, y2) in

(Sp\B) × (Sp\B) such that the restriction of fi to X\A is transverse to yi for i = 1, 2,

and the restriction of (f1, f2) : X → Sp × Sp to X\A is transverse to (y1, y2). The last

condition and the assumption dimX ≤ 2p− 2 imply

f−1
1 (y1) ∩ f

−1
2 (y2) = ∅.

Choosing a positively oriented basis Bi of the tangent space τ(Sp)yi
, we obtain that

PT (fi) is represented by (f−1
i (yi), F (fi, Bi)). The element [f1] + [f2] of πp(X) cor-

responds to the framed cobordism class of (N,F ), where N = f−1
1 (y1) ∪ f

−1
2 (y2) and

the restriction of F to f−1
i (yi) is equal to F (fi, Bi) for i = 1, 2. By construction, N is

a nonsingular Zariski closed subset of X\A. According to Lemma 2.3, N is the set of

nonsingular points of its Zariski closure in X , which in view of Theorem 2.4 implies that

[fi] + [f2] is in πp
rat(X).

For any [f ] in πp(X), we have −[f ] = [ϕ ◦ f ], where ϕ : Sp → Sp is an arbitrary

continuous map of topological degree −1. We can choose ϕ regular, and hence −[f ] is in

πp
rat(X), provided [f ] is in πp

rat(X). ✷

Corollary 2.7 with p = 1 is contained in Corollary 1.4, which is based on Proposi-

tion 1.3 to be proved now. Recall that for any regular map ϕ : X → Y between compact

nonsingular real algebraic varieties,

ϕ∗(H
alg

d (X,Z/2)) ⊆ Halg

d (Y,Z/2),

ϕ∗(Hc
alg(Y,Z/2)) ⊆ Hc

alg(X,Z/2)

for all d ≥ 0 and c ≥ 0, cf. [14, Section 5] or [4].

Given a compact smooth manifold M , we denote by [M ] its fundamental class in

Hm(M,Z/2), m = dimM . As in Section 1, DM : H∗(M,Z/2) → H∗(M,Z/2) will

denote the Poincaré duality isomorphism.
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Proof of Proposition 1.3. By Hironaka’s theorem on resolution of points of indetermi-

nacy [16], there is a commutative diagram

V
π

~~~~
~~

~~
~

g

  
@@

@@
@@

@

X
f

// Y

where π : V → X is a multiblowup of X over P (f) and g : V → Y is a regular map. In

particular, V is a compact nonsingular real algebraic variety and π∗([V ]) = [X].

Given β in Halg

d (X,Z/2), set α = DV (π∗(D−1
X (β))). Since π is a regular map, α is

in Halg

d (V,Z/2). A simple computation involving ∪ and ∩ products yields

π∗(α) = π∗(π
∗(D−1

X (β)) ∩ [V ])

= D−1
X (β) ∩ π∗([V ]) = D−1

X (β) ∩ [X] = β,

and hence

f∗(β) = f∗(π∗(α)) = (f ◦ π)∗(α) = g∗(α),

which in turn implies that f∗(β) is in Halg

d (Y,Z/2), the map g being regular. Hence

f∗(H
alg

d (X,Z/2)) ⊆ Halg

d (Y,Z/2).

For any v in Hc
alg(Y,Z/2), we have π∗(f∗(v)) = (f ◦ π)∗(v) = g∗(v), and hence

DX(f∗(v)) = f∗(v) ∩ [X] = f∗(v) ∩ π∗([V ])

= π∗(π
∗(f∗(v)) ∩ [V ]) = π∗(g

∗(v) ∩ [V ]) = π∗(DV (g∗(v))),

which in turn implies

f∗(v) = D−1
X (π∗(DV (g∗(v)))).

Since π and g are regular maps, it follows that f∗(v) is in Hc
alg(X,Z/2). Hence

f∗(Hc
alg(Y,Z/2)) ⊆ Hc

alg(X,Z/2).

The proof is complete. ✷

As an immediate consequence of Proposition 1.3 we can obtain a result concerning

Cr rational maps with values in real projective q-space P
q(R), containing Corollary 1.4

as a special case. Recall that P
1(R) is biregularly isomorphic to S1.

Corollary 2.9. For any compact nonsingular irreducible real algebraic variety X and

any continuous map h : X → P
q(R), the following conditions are equivalent:

(a) h is homotopic to a continuous rational map.

(b) h is homotopic to a regular map.

(c) h can be approximated by regular maps.
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(d) h∗(λ) is in H1
alg(X,Z/2), where λ is the unique generator of H1(Pq(R),Z/2) ∼=

Z/2.

Proof. It is known that Conditions (b), (c), (d) are equivalent, cf. [6, Theorems 12.4.6 and

13.3.1]. Since H1(Pq(R),Z/2) = H1
alg(P

q(R),Z/2), by Proposition 1.3, (a) implies (d),

while (b) trivially implies (a). ✷

We conclude this section by proving Theorem 1.5. First some preparation is necessary.

If N is a compact smooth submanifold of a smooth manifold M , we denote by [N ]M
the homology class represented by N in Hn(M,Z/2), n = dimN . In other words,

[N ]M = i∗([N ]), where i : N →֒M is the inclusion map. As usual, w1(ξ) will stand for

the first Stiefel–Whitney class of an R-vector bundle ξ, and w1(M) = w1(τ(M)). By a

smooth curve we mean a smooth manifold of dimension 1.

Let Y be a compact nonsingular real algebraic variety. An algebraic curve in Y is, by

definition, an algebraic subset of Y of dimension 1. We say that a smooth curve C in Y
can be approximated by nonsingular algebraic curves in Y if every neighborhood of the

inclusion map C →֒ Y (in the C∞ topology) contains a smooth embedding e : C → Y
such that e(C) is a nonsingular algebraic curve in Y . A characterization of smooth curves

C in Y having this approximation property will be needed. It is derived for curves with

trivial normal bundle since a more general result is not required in the present paper (cf.

Lemma 2.15). Results of [1] will be freely used.

Notation 2.10. In the remaining part of this section V will denote a compact nonsingular

real algebraic variety with dimV ≥ 3.

Lemma 2.11. Let C be a smooth curve in V and let A be a nonsingular algebraic curve

in V . Assume that A ∩ C = ∅ and A ∪ C = ∂F , where F is a compact smooth surface-

with-boundary in V with trivial normal bundle. Then C can be approximated by nonsin-

gular algebraic curves in V .

Proof. Set dimV = n+1. There is a smooth map f : V → R
n transverse to 0 in R

n and

with f−1(0) = A∪C, cf. [12, Theorem 1.12]. By the relative Weierstrass approximation

theorem [6, Lemma 12.5.5], one can find a regular map g : V → R
n close to f in the C∞

topology and satisfying A ⊆ g−1(0). If g is sufficiently close to f , then g is transverse to

0, and hence g−1(0) is a nonsingular algebraic curve in V . Moreover, g−1(0) = A ∪ B
with A ∩ B = ∅, which implies that B is a nonsingular algebraic curve in V , cf. [6,

Proposition 3.3.17]. By construction, B approximates C. ✷

Lemma 2.12. Let C be a smooth curve in V . Assume that for each connected component

D of C, the modulo 2 intersection number of [D]V and DV (w1(V )) is zero. Then there

is a smooth submanifold S of V satisfying codimV S = 1, DV (w1(V )) = [S]V , and

S ∩ C = ∅.

Proof. Let N be any smooth submanifold of V with codimV N = 1 and DV (w1(V )) =
[N ]V . Note that N ∩D consists of an even number of points for every connected compo-

nent D of C. We obtain S with the required properties by modifying N as in [1, p. 213]

or [10, p. 599]. ✷
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Lemma 2.13. Let C be a smooth curve in V . Let S be a smooth submanifold of V with

codimV S = 1 and DV (w1(V )) = [S]V . If i : V \S →֒ V is the inclusion map, then

every homology class in the kernel of the induced homomorphism

i∗ : H1(V \S,Z/2) → H1(V,Z/2)

is of the form [B]V \S , where B is a nonsingular algebraic curve in V , B ⊆ V \S, and

B ∩ C = ∅.

Proof. Denoting by ν(S) the normal bundle of S in V , we have τ(S)⊕ ν(S) ∼= τ(V )|S.

Hence w1(S) + w1(ν(S)) = j∗(w1(V )), where j : S →֒ V is the inclusion map. Since

DV (w1(V )) = [S]V , we get j∗(w1(V )) = w1(ν(S)), cf. [20, Theorem 11.3]. Therefore

w1(S) = 0, which means that S is orientable. One completes the proof (the essential part

of it) by repeating the argument used in [1, Lemma 5]. ✷

Lemma 2.14. Let A be a nonsingular algebraic curve in V . Then there is a nonsingular

algebraic curve B in V with [A]V = [B]V and such that each connected component of V
contains at most one connected component of B.

Proof. It suffices to repeat the argument used in [1, Lemma 6]. ✷

The last four lemmas are needed only to prove the next one, which in turn will be used

in the proof of Theorem 1.5.

Lemma 2.15. LetK be a smooth curve in V with trivial normal bundle. Assume [K]V =
[A]V , where A is a nonsingular algebraic curve in V . Then K can be approximated by

nonsingular algebraic curves in V .

Proof. In virtue of Lemma 2.14, we may assume that each connected component of V
contains at most one connected component of A. Applying a small isotopy to K and

making use of transversality, we may assume K ∩A = ∅.

We will now verify that Lemma 2.12 (with C = K ∪A) is applicable.

Let L be a connected component of K. Since the vector bundles τ(L) and ν(L) are

trivial, and τ(L) ⊕ ν(L) ∼= τ(V )|L, we get

j∗(w1(V )) = 0

where j : L →֒ V is the inclusion map. Hence a simple computation yields

〈w1(V ) ∪D−1
V ([L]V ), [V ]〉 = 〈w1(V ), D−1

V ([L]V ) ∩ [V ]〉 = 〈w1(V ), [L]V 〉

= 〈w1(V ), j∗([L])〉 = 〈j∗(w1(V )), [L]〉 = 0,

which means that the modulo 2 intersection number of [L]V and DV (w1(V )) is zero.

If H is a connected component of A, then either [H]V = 0 or [H]V = [K ′]V , where

K ′ is the union of some connected components of K. Thus the modulo 2 intersection

number of [H]V and DV (w1(V )) is zero.
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Hence by Lemma 2.12, there is a smooth submanifold S in V with codimV S = 1,

DV (w1(V )) = [S]V , and S ∩ (K ∪A) = ∅. Let i : V \S →֒ V be the inclusion map and

let

i∗ : H1(V \S,Z/2) → H1(V,Z/2)

be the induced homomorphism. Since [K]V \S − [A]V \S is in the kernel of i∗, it follows

from Lemma 2.13 (with C = K ∪A) that [K]V \S − [A]V \S = [B]V \S , or equivalently,

[K]V \S + [A]V \S + [B]V \S = 0

for some nonsingular algebraic curve B in V satisfying B ⊆ V \S and B ∩ (K ∪A) = ∅.

The equalityDV (w1(V )) = [S]V implies that V \S is an orientable smooth manifold.

In particular, every smooth curve in V \S has trivial normal bundle. For any oriented

smooth curve E in V \S, denote by oE its homology class in H1(V \S,Z). Endowing the

curves K,A,B with orientations, we get

oK + oA + oB + 2v = 0

for some homology class v in H1(V \S,Z). Let D0 be an oriented smooth curve in V \S
with oD0

= v andD0∩ (K∪A∪B) = ∅. There is a smooth embedding e : D0× [0, 1] →
V \S such that the smooth surface-with-boundary G = e(D0 × [0, 1]) has trivial normal

bundle, e(D0 ×{0}) = D0, and G∩ (K ∪A∪B) = ∅. Note that ∂G = D0 ∪D1, where

D1 = e(D0 × {1}). Endowing D1 with an appropriate orientation, we have oD1
= v. By

Lemma 2.11, there is a nonsingular algebraic curve C in Y which approximates D0 ∪D1.

We can choose C satisfying C ⊆ X\S and C ∩ (K ∪ A ∪ B) = ∅. Orienting C in a

suitable way, we get oC = 2v. Hence regarding K ∪ A ∪ B ∪ C as an oriented smooth

curve in V \S, we obtain

oK∪A∪B∪C = 0.

It follows that K ∪ A ∪ B ∪ C = ∂F for some compact oriented smooth surface-with-

boundary F in V \S. We can discard the connected components of F with empty bound-

ary. Then the orientability of F implies that its normal bundle is trivial. Since A∪B ∪C
is a nonsingular algebraic curve in V , we complete the proof by applying Lemma 2.11. ✷

The next observation is of a different nature.

Lemma 2.16. LetD be a smooth curve in V and letB be an algebraic (possibly singular)

curve in V satisfying D ∩B = ∅ and [D]V = [B]V . Let ρ : W → V be the blowup of V
at a point b in V \D. If C = ρ−1(D) and A is the strict transform of B under ρ, then

[C]W = [A]W + [H]W ,

where H is a nonsingular algebraic curve in W satisfying H ⊆ ρ−1(b) and A ∩H = ∅.

Proof. Set E = ρ−1(b). The homology class [C]W − [A]W is in the kernel of ρ∗, and

hence

[C]W = [A]W + j∗(v),
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where v is in H1(E,Z/2) and j : E →֒ W is the inclusion map (cf. for example [3,

Lemma 2.9.3]). If dimV = n + 1, then E is biregularly isomorphic to P
n(R). Since

n ≥ 2 and A ∩ E is a finite set, we have j∗(v) = [H]W with H satisfying the required

conditions. ✷

Proof of Theorem 1.5. Clearly, (a) implies (b), and in view of Proposition 1.3, part (b)

implies (c).

Assuming that (c) is satisfied, we will prove now that (a) holds. If n = 1, then

(a) follows from Corollary 1.4, and therefore in what follows n ≥ 2. Without loss of

generality, we may assume h to be a smooth map.

Let B be an algebraic (possibly singular) curve in X with [B]X Poincaré dual to

h∗(σn). There is a sequence of blowups

Y = Xk
πk−−−−→ Xk−1

πk−1
−−−−→ · · ·

π2−−−−→ X1
π1−−−−→ X0 = X,

each blowup at one point, such that the composite map π = π1 ◦ · · · ◦ πk : Y → X is a

multiblowup of X over the set S of singular points of B, and the strict transform A of B
under π is a nonsingular algebraic curve in Y .

By Sard’s Theorem, h is transverse to some point y in Sn\h(B). Thus D = h−1(y)
is a smooth curve in X with D ∩ B = ∅. Since the normal bundle of D in X is trivial

and the restriction πS : Y \π−1(S) → X\S of π is a biregular isomorphism, it follows

that the smooth curve K = π−1(D) in Y has trivial normal bundle. Moreover, in view of

Lemma 2.16,

[K]Y = [A]Y + [H]Y ,

where H is a nonsingular algebraic curve in Y with H ∩ A = ∅. Hence by Lemma 2.15,

there is a nonsingular algebraic curve C in Y approximating K. We may choose C ⊆
Y \π−1(S). Thus π(C) is a smooth curve in X isotopic to D. Moreover, π(C) is a

nonsingular Zariski closed subset of X\S. By Lemma 2.3, π(C) is precisely the set of

nonsingular points of its Zariski closure in X . In virtue of Theorem 2.4, (a) holds. The

proof is complete. ✷

3 Rational maps into Grassmannians

Let F stand for R, C or H. When convenient we identify F with R
d(F), where d(F) =

dimR F. Denote by Gn,p(F) the Grassmannian of p-dimensional vector subspaces of F
n.

As in [5, 6, 7], we shall always regard Gn,p(F) as a real algebraic variety. The universal

F-vector bundle γn,p(F) on Gn,p(F) is algebraic. In this section we study Cr rational

maps with values in Gn,p(F). The main result is Theorem 3.7. In our considerations F-

vector bundles will play a crucial role. Given a topological space Y , we denote by εk
Y (F)

the standard trivial F-vector bundle on Y with total space Y × F
k. If ξ is an F-vector

subbundle of εk
Y (F), then ξ⊥ will stand for the orthogonal complement of ξ with respect

to the standard scalar product F
k × F

k → F; thus ξ⊥ is an F-vector subbundle of εk
Y (F)

and ξ ⊕ ξ⊥ = εk
Y (F). If Y is a real algebraic variety and ξ is an algebraic F-vector

subbundle of εk
Y (F), then ξ⊥ is also an algebraic F-vector subbundle of εk

Y (F).
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Notation 3.1. Throughout this section X will denote a compact nonsingular irreducible

real algebraic variety. Unless explicitly specified otherwise, r will stand for a nonnegative

integer or ∞.

The following notion will play a key role.

Definition 3.2. An F-vector bundle ξ on X is said to admit a Cr rational structure if

there exist a Cr
F-vector subbundle η of εk

X(F), for some k, and a nonempty Zariski

open subset U of X such that ξ is isomorphic to η and the restriction η|U is an algebraic

F-vector subbundle of εk
U (F).

By shrinking U , we may require in Definition 3.2 that η|U be algebraically trivial.

Since U is dense in X , it follows that ξ has constant rank on X .

Of course, every F-vector bundle on X admitting an algebraic structure admits also a

Cr rational structure.

Although Definition 3.2 has a somewhat technical character, we will see below that it

is “natural”. For any ringA (associative with 1) denote by Proj(A) the set of isomorphism

classes of finitely generated projective (left) A-modules. Denote by C(X,F) the ring of

all continuous functions from X into F. For any F-vector bundle ξ on X , the C(X,F)-
module Γ(ξ) of all continuous sections of ξ is finitely generated and projective. By [23],

the correspondence ξ → Γ(ξ) gives rise to a bijection

V BF(X) → Proj(C(X,F)),

where V BF(X) is the set of isomorphism classes of F-vector bundles on X . We regard

the ring Rr(X,F) of all Cr rational functions from X into F as a subring of C(X,F).
According to [24, Theorem 2.2], the map

Proj(Rr(X,F)) → Proj(C(X,F))

determined by the correspondence M → C(X,F) ⊗M is injective. The image of this

map can be described in terms of F-vector bundles admitting a Cr rational structure, cf.

Proposition 3.3. In view of Proposition 2.1, R∞(X,F) is the ring of all regular functions

from X into F, which is usually denoted by R(X,F). By [6, Proposition 2.1.12], an F-

vector bundle ξ on X admits an algebraic structure if and only if Γ(ξ) is isomorphic to

C(X,F) ⊗ P for some finitely generated projective R(X,F)-module P .

Proposition 3.3. For any F-vector bundle ξ on X of rank p, the following conditions are

equivalent:

(a) ξ admits a Cr rational structure.

(b) ξ is isomorphic to f∗γn,p(F), where n ≥ p and f : X → Gn,p(F) is a Cr rational

map.

(c) Γ(ξ) is isomorphic to C(X,F)⊗M for some finitely generated projective Rr(X,F)-
module M .
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Proof. Assume that (a) holds. Let η and U be as in Definition 3.2. Define g : X →
Gk,p(F) by

{x} × g(x) = the fiber of η over x ⊆ {x} × F
k

for all x inX . Then g is a Cr map and η = g∗γk,p(F). Thus ξ is isomorphic to g∗γk,p(F).
Since g|U : U → Gk,p(F) is a regular map (cf. [6, Proposition 3.4.7]), (b) holds with

n = k and f = g.

We shall now prove that (a) implies (c). Since η ⊕ η⊥ = εk
X(F), we have P ⊕ P⊥ ∼=

Rr(X,F)k, where P (respectively P⊥) is the Rr(X,F)-module of all Cr sections of η
(respectively η⊥) that are Cr rational maps fromU into the total space of η|U (respectively

η⊥|U ). It follows that P is a finitely generated projective Rr(X,F)-module. Moreover,

the C(X,F)-modules C(X,F)⊗ P and Γ(η) are isomorphic. Since Γ(ξ) is isomorphic to

Γ(η), Condition (c) holds with M = P .

Assume now that (b) is satisfied. Note that f∗γn,p(F) is a Cr
F-vector subbundle of

εn
X(F). Let V be a nonempty Zariski open subset of X for which the restriction f |V :
V → Gn,p(F) is a regular map. Then (f∗γn,p(F))|V = (f |V )∗γn,p(F) is an algebraic

F-vector subbundle of εn
V (F), and hence (a) holds.

It remains to prove that (c) implies (a). Assume that (c) holds. LetN be an Rr(X,F)-
module such that M ⊕N is isomorphic to R(X,F)n for some n. Without loss of gener-

ality we may assume that M and N are submodules of R(X,F)n and

M ⊕N = Rr(X,F)n.

Note that the submodule M̄ := C(X,F)M of C(X,F)n is isomorphic to C(X,F) ⊗M .

We complete the proof by constructing an F-vector subbundle ζ of εn
X(F) corresponding

to M̄ . Define a subset E of X × F
n and a map π : E → X by

E = {(x, v) ∈ X × F
n | v = (a1(x), . . . , an(x)) for some (a1, . . . , an) in M̄},

π(x, v) = x.

The fiber Ex = π−1(x) of π over x is a vector subspace of {x} × F
n. In particular,

ζ := (E, π,X) is a family of F-vector spaces on X . Since M̄ is isomorphic to Γ(ξ) and

rank ξ = p, we have dimF Ex = p for all x in X .

Let [aij ] be an m × n matrix with entries in Rr(X,F), whose rows generate M as

an Rr(X,F)-module. Then Ex = {x} × Ax, where Ax is the vector subspace of F
n

generated by the rows of the matrix [aij(x)]. It follows that the map

h : X → Gn,p(F), h(x) = Ax for all x in X

is well defined and of class Cr. By construction, h∗γn,p(F) = ζ, which implies that ζ is a

Cr
F-vector subbundle of εn

X(F). If W is a nonempty Zariski open subset of X for which

the restrictions aij |W : W → F are regular functions for all i and j, then h|W : W →
Gn,p(F) is a regular map (cf. [6, Proposition 3.4.7]) and hence ζ|W = (h|W )∗γn,p(F) is

an algebraic F-vector subbundle of εn
W (F). Since Γ(ζ) = M̄ ∼= Γ(ξ), it follows that ξ is

isomorphic to ζ. Thus ξ admits a Cr rational structure and (a) holds. ✷

Corollary 3.4. An F-vector bundle on X admits a Cr rational structure if and only if it is

stably equivalent to an F-vector bundle admitting a Cr rational structure.
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Proof. The assertion follows from Proposition 3.3 and [24, Theorem 2.2]. ✷

Corollary 3.5. For any F-vector bundle ξ on X , the following conditions are equivalent:

(a) ξ admits a C∞ rational structure.

(b) ξ admits an algebraic structure.

Proof. Since R∞(X,F) = R(X,F) is the ring of regular functions from X into F, in

virtue of Proposition 3.3, (a) implies (b). It is obvious that (b) implies (a). ✷

Any F-vector bundle ξ can be regarded as an R-vector bundle; to indicate that we

write ξR. If ξ admits a Cr rational structure, then so does ξR. Our next result shows that

Definition 3.2 imposes severe restrictions on F-vector bundles.

Theorem 3.6. Let ξ be an F-vector bundle on X admitting a Cr rational structure. Then

the kth Stiefel–Whitney class wk(ξR) of ξR is in Hk
alg(X,Z/2) for all k ≥ 0.

Proof. Let p = rank ξR. By Proposition 3.3, there is an integer n ≥ p and a Cr rational

map f : X → Gn,p(R) with f∗γn,p(R) ∼= ξR. This implies wk(ξR) = f∗(wk(γn,p(R))).
Since

Hk
alg(Gn,p(R),Z/2) = Hk(Gn,p(R),Z/2)

(cf. [6, Proposition 11.3.3]), it follows from Proposition 1.3 that wk(ξR) is in Hk
alg(X,

Z/2). ✷

Theorem 3.7. For any Cr map h : X → Gn,p, the following conditions are equivalent:

(a) h can be approximated in the Cr topology by Cr rational maps.

(b) h is homotopic to a Cr rational map.

(c) The pullback F-vector bundle h∗γn,p(F) on X admits a Cr rational structure.

Proof. In order to ease notation, we will write Gn,p, γn,p, ε
i
Y instead of Gn,p(F), γn,p(F),

εi
Y (F), respectively. Obviously, (a) implies (b). If (b) holds and h is homotopic to a Cr

rational map g : X → Gn,p, then the F-vector bundles h∗γn,p and g∗γn,p are isomorphic,

and hence (c) is satisfied in virtue of Proposition 3.3.

It remains to prove that (c) implies (a). Assume (c) holds and h∗γn,p is isomorphic to

a Cr
F-vector subbundle η of εk

X , whose restriction η|U to a nonempty Zariski open subset

U of X is an algebraic F-vector subbundle of εk
U . Since η and h∗γn,p are Cr

F-vector

bundles, there is a Cr
F-vector bundle isomorphism ϕ : η → h∗γn,p. Regarding h∗γn,p

as a subbundle of εn
X , we define a Cr section w : X → Hom(η, εn

X) by w(x)(e) = ϕ(e)
for all x in X and e in the fiber E(η)x of η over x. Note that w(x) : E(η)x → {x} × F

n

is an injective F-linear transformation for all x in X .

Claim. There is a Cr section s : X → Hom(η, εn
X), arbitrarily close to w in the Cr

topology, such that s|U is an algebraic section of Hom(η, εn
X)|U = Hom(η|U, εn

U ).
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The equality εk
X = η ⊕ η⊥ implies the existence of a Cr section v : X → Hom(εk

X ,
εn

X) satisfying w = ρ ◦ v, where

ρ : Hom(εk
X , ε

n
X) → Hom(η, εn

X), ρ(ψ) = ψ|η

is a Cr homomorphism of F-vector bundles. Sections of Hom(εk
X , ε

n
X) can be identified

with maps from X into F
kn, and hence by the Weierstrass approximation theorem, there

exists an algebraic section u : X → Hom(εk
X , ε

n
X) close to v in the Cr topology. Thus

the Cr section s = ρ ◦ u : X → Hom(η, εn
X) is close to w. Since η|U and η⊥|U are

algebraic F-vector subbundles of εk
U , the restriction

Hom(εk
X , ε

n
X)|U = Hom(εk

U , ε
n
U ) → Hom(η, εn

X)|U = Hom(η|U, εn
U )

of ρ is an algebraic homomorphism. It follows that s|U is an algebraic section. The claim

is proved.

If s is sufficiently close to w, then s(x) : E(η)x → {x} × F
n is an injective F-linear

transformation for all x in X . The map f : X → Gn,p, defined by {x} × f(x) =
s(x)(E(η)x) for all x in X , is of class Cr and its restriction f |U is a regular map, cf. [6,

Proposition 3.4.7]. Moreover, f is close to h, provided s is close tow. Hence (a) holds. ✷

Of particular interest is Theorem 3.7 for maps with values in G2,1(F). Recall that

G2,1(F) is biregularly isomorphic to Sd(F), where d(F) = dimR(F). If a = (0, 1) ∈ F×R

and if ρ : Sd(F)\{a} → R
d(F) = F is the sterographic projection, then αF : Sd(F) →

G2,1(F), defined by

αF(x) =

{

F(ρ(x), 1) ⊆ F
2 for x in Sd(F)\{a}

F(1, 0) ⊆ F
2 for x = a,

is a biregular isomorphism. We will make use of the F-vector bundle γd(F) := α∗
F
γ2,1(F)

on Sd(F).

Corollary 3.8. For any Cr map h : X → Sd(F), the following conditions are equivalent:

(a) h can be approximated in the Cr topology by Cr rational maps.

(b) h is homotopic to a Cr rational map.

(c) The pullback F-vector bundle h∗γd(F) on X admits a Cr rational structure.

Proof. It suffices to apply Theorem 3.7. ✷

There is a connection between Corollaries 2.7 and 3.8. The values of d(F) are 1, 2

or 4, when F is R,C or H, respectively. In Corollary 2.7, one can take θp = (γp)R for p
equal to one of the integers 1, 2 or 4.

The example below shows that F-vector bundles admitting a Cr rational structure are

distinct from other types of F-vector bundles studied heretofore in literature.

Example 3.9. (i) There are F-vector bundles which do not admit a Cr rational structure

for any r. Indeed, let Y be a nonsingular real algebraic variety diffeomorphic to S4 × S1
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and satisfyingH4
alg(Y,Z/2) = 0, cf. [18, Corollary 1.8]. Define h : Y → S4 by h = π◦ϕ,

where ϕ : Y → S4 × S1 is a smooth diffeomorphism and π : S4 × S1 → S4 is the

canonical projection. The H-vector bundle ξ = h∗γ4 on Y satisfies w1(ξR) 6= 0. By

Theorem 3.6, the R-vector bundle ξR does not admit a Cr rational structure. Consequently,

the C-vector bundle ξC and the H-vector bundle ξ do not admit a Cr rational structure.

Here ξC denotes ξ regarded as a C-vector bundle.

(ii) Let r be a nonnegative integer. There are F-vector bundles which admit a Cr

rational structure, but do not admit an algebraic structure. Indeed, by [5, Theorem 9.1],

there exists a nonsingular real algebraic variety Σ diffeomorphic to S4 on which every

F-vector bundle admitting an algebraic structure is stably trivial. Let ψ : Σ → S4 be

a smooth diffeomorphism. The H-vector bundle ζ = ψ∗γ4 on Σ satisfies w4(ζR) 6= 0.

Hence the vector bundles ζR, ζC, ζ are not stably trivial, and therefore do not admit an

algebraic structure. On the other hand, by Theorem 1.2, they admit a Cr rational structure.

Assuming that X is of low dimension, in the next two corollaries we give simple

characterizations of F-vector bundles on X admitting a Cr rational structure.

Corollary 3.10. If dimX ≤ 3, then for any R-vector bundle ξ on X , the following

conditions are equivalent:

(a) ξ admits a Cr rational structure.

(b) ξ admits an algebraic structure.

(c) ξ has constant rank and wi(ξ) is in Hi
alg(X,Z/2) for i = 1, 2.

Proof. By [11, Theorem 1.6], (b) is equivalent to (c). According to Theorem 3.6, (a)

implies (c). It is obvious that (b) implies (a). ✷

Corollary 3.11. Assume that dimX ≤ d(F) + 1 and r is a nonnegative integer. For any

F-vector bundle ξ on X , the following conditions are equivalent:

(a) ξ admits a Cr rational structure.

(b) ξ has constant rank and wd(F)(ξR) is in H
d(F)
alg (X,Z/2).

Proof. By Theorem 3.6, (a) implies (b) (recall that every F-vector bundle admitting a Cr

rational structure has constant rank).

If F = R, then (b) implies (a) in virtue of Corollary 3.10. Assume now that (b)

holds and F is either C or H. If rank ξ = p ≥ 1, then ξ is isomorphic to an F-

vector bundle of the form (h∗γd(F)) ⊕ εp−1
X (F) for some continuous map h : X →

Sd(F). Since wd(F)(ξR) = h∗(wd(F)((γd(F))R)) and wd(F)((γd(F))R) is a generator of

H
d(F)
alg (Sd(F),Z/2) ∼= Z/2, by Theorem 1.5, there exists a Cr rational map f : X → Sd(F)

homotopic to h. Hence ξ is isomorphic to (f∗γd(F))⊕ εp−1
X (X), which implies that ξ ad-

mits a Cr rational structure and (a) holds. ✷
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